
Construction of P-Minimal Models Using
Paraconsistent Relational Model

Badrinath Jayakumar(B) and Rajshekhar Sunderraman

Department of Computer Science, Georgia State University, Atlanta, GA, USA
{bjayakumar2,raj}@cs.gsu.edu

http://www.cs.gsu.edu/

Abstract. Positive extended disjunctive deductive databases are those
that contain explicit negation both in the head and body of the clauses.
For such databases, paraconsistent minimal models (p-minimal mod-
els) have been proposed based on multi-valued logic (four-valued logic).
Moreover, the paraconsistent relational model is also based on four-
valued logic. In this paper, we propose an algorithm, which converts
clauses to equations and solves it, to find p-minimal models using the
paraconsistent relational model. In order to accomplish that, we use dis-
junctive paraconsistent relation model.

Keywords: Inconsistency · Paraconsistent relational model · Fixed-
point semantics · Four-valued logic

1 Introduction

The paraconsistent relational model moves a step forward and completes the
relational model by representing both positive and negative information for any
given relation. The model was first proposed by Bagai and Sunderraman [5]. The
authors have given two applications for the paraconsistent relational model: weak
well-founded semantics [5] and well-founded semantics [7] for general deductive
databases. Bagai and Sunderraman find the models by constructing a system of
algebraic equations for the clauses in the database. There are two advantages
for this approach: it operates on a set of tuples instead of “tuple-at-a-time”
basis and the algebraic expression in the algebraic equation can be optimized
based on various laws of equality. The optimizations are similar to the ordinary
relations case where selections and projections are pushed deeper into expressions
whenever possible [5].

Paraconsistent logic [4,10,13] does not trivialize the result in the presence
of inconsistent information. Four-valued logic [8], which is a type of paraconsis-
tent logic, was introduced in logic programming by Blair and Subrahmanian [9].
Three prominent works have been done in positive extended disjunctive deduc-
tive databases with respect to inconsistencies: The first, answer set semantics,
by Gelfond and Lifschitz [12], trivialize the results in the presence of inconsisten-
cies. The second, p-minimal models, by Sakama and Inoue [17], which is based
c© Springer International Publishing Switzerland 2015
A. Bikakis and X. Zheng (Eds.): MIWAI 2015, LNAI 9426, pp. 16–28, 2015.
DOI: 10.1007/978-3-319-26181-2 2

Construction of P-Minimal Models Using Paraconsistent Relational Model 17

on four-valued logic [8], tolerates inconsistencies. In addition to that, for both
logic programs and disjunctive logic programs many works have been proposed
[1–3,11], where all of the approaches are based on four-valued logic. The third,
the quasi-classic models, by Zhang et al. [19], has stronger inference power than
p-minimal models because the quasi-classic models support disjunctive syllogism
and disjunction introduction. Moreover, the quasi-classic models are based on
quasi-classic logic [14].

In this paper, we use the paraconsistent relational model and propose an
algorithm to find p-minimal models for positive extended disjunctive deductive
databases. The central idea in arriving at p-minimal models for a given positive
extended disjunctive deductive database is to associate paraconsistent relations
with the predicate symbols. We then construct a system of algebraic equations for
the clauses in positive extended disjunctive deductive databases. The equations
are then used to incrementally construct p-minimal models with the help of
disjunctive paraconsistent relations.

The rest of this paper is organized as follows: in Sect. 2, we discuss preliminar-
ies to understand the paper; in Sect. 3, we explain the disjunctive paraconsistent
relational model; in Sect. 4, we propose an algorithm to find p-minimal models;
in Sect. 5, we state the conclusion and future work for the paper.

2 Preliminaries

Before we explain the details of the actual contribution of this paper, we must
briefly review positive extended disjunctive deductive databases [16,17] and the
paraconsistent relation model [5,6] which help to understand the paper.

Given a first order language L, a disjunctive deductive database P [16] con-
sists of logical inference rules of the form: r (rule) = l0 ∨· · ·∨ ln ← ln+1, . . . , lm.
A rule is called a positive disjunctive rule if the rule has both head (disjunction of
literals) and body (conjunction of literals). Concretely, the rule r is called positive
extended disjunctive rule if l0, . . . , ln, ln+1, . . . , lm are literals which are either
positive or negative (¬) atoms. For the given syntax of positive extended dis-
junctive deductive databases, we reproduce the fixed-point semantics of P [17].

Fixed-Point Semantics. Let P be a positive extended disjunctive deductive
database and I be a set of interpretations, then TP (I) =

⋃
I∈I TP (I)

TP (I) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∅, if ln+1, . . . , lm ⊆ I for some
ground constraint ← ln+1 . . . lmfrom P ;

{J | for each ground clause
ri : l0 ∨ · · · ∨ ln ← ln+1, . . . , lm such that
{ln+1, . . . , lm} ⊆ I, J = I ∪

⋃
ri

{lj}(0 ≤ j ≤ n)}, otherwise.

In the definition of TP (I), {lj}(1 ≤ j ≤ n) is a collection of sets where every
set in the collection contains a disjunct. For any positive extended disjunctive

18 B. Jayakumar and R. Sunderraman

deductive database P , TP is finite and TP ↑ n = TP ↑ ω where n is a successor
ordinal and ω is a limit ordinal. For any positive extended disjunctive deductive
database P , p-minimal models = min(μ(TP ↑ ω)1) where min(I) = {I ∈ I |

 ∃J ∈ I such that J ⊂ I}.

Unlike normal relations where we only retain information believed to be true
of a particular predicate, we also retain what is believed to be false of a particular
predicate in the paraconsistent relational model. Let a relation scheme Σ be a
finite set of attribute names, where for any attribute name A ∈ Σ, dom(A) is
a non-empty domain of values for A. A tuple on Σ is any map t : Σ →

⋃
A∈Σ

dom(A), such that t(A)∈ dom(A) for each A ∈ Σ. Let τ(Σ) denote the set of
all tuples on Σ. An ordinary relation on scheme Σ is thus any subset of τ(Σ).
The paraconsistent relation on a scheme Σ is a pair < R+, R− > where R+ and
R− are ordinary relations on Σ. Thus R+ represents the set of tuples believed
to be true of R, and R− represents the set of tuples believed to be false.

Algebraic Operators. Two types of algebraic operators are defined here: (i)
Set Theoretic Operators, and (ii) Relational Theoretic Operators.

Set Theoretic Operators. Let R and S be two paraconsistent relations on
scheme Σ.

Union. The union of R and S, denoted R∪̇S, is a paraconsistent relation on
scheme Σ, given that (R∪̇S)+ = R+ ∪ S+, (R∪̇S)− = R− ∩ S−.

Complement. The complement of R, denoted −̇R, is a paraconsistent relation
on scheme Σ, given that −̇R+ = R−, −̇R− = R+.

Intersection. The intersection of R and S, denoted R∩̇S, is a paraconsistent
relation on scheme Σ, given that (R∩̇S)+ = R+ ∩ S+, (R∩̇S)− = R− ∪ S−.

Difference. The difference of R and S, denoted R−̇S, is a paraconsistent rela-
tion on scheme Σ, given that (R−̇S)+ = R+ ∩ S−, (R−̇S)− = R− ∪ S+.

Relation Theoretic Operators. Let Σ and Δ be relation schemes such that
Σ ⊆ Δ and let R and S be paraconsistent relations on schemes Σ and Δ.

Join. The join of R and S, denoted R�̇�S, is a paraconsistent relation on scheme
Σ ∪ Δ, given that (R�̇�S)+ = R+ �� S+, (R�̇�S)− = (R−)Σ∪Δ ∪ (S−)Σ∪Δ.

Projection. The projection of R onto Δ , denoted π̇Δ(R), is a paraconsistent
relation on Δ, given that π̇Δ(R)+ = πΔ(R+)Σ∪Δ, π̇Δ(R)− = {t ∈ τ(Δ) | tΣ∪Δ ⊆
(R−)Σ∪Δ} where πΔ is the usual projection over Δ of ordinary relations.

Selection. Let F be any logic formula involving attribute names in Σ, constant
symbols, and any of these symbols {==, ¬, ∧, ∨}. Then, the selection of R
by F , denoted σ̇F (R), is a paraconsistent relation on scheme Σ, given that
σ̇F (R)+ = σF (R+), σ̇F (R)− = R− ∪ σ¬F (τ(Σ)), where σF is a usual selection
of tuples satisfying F from ordinary relations.

The following example is taken from Bagai and Sunderraman’s paraconsistent
relational data model [5].
1 μ(TP ↑ ω) = {I | I ∈ TP ↑ ω and I ∈ TP(I)}.

Construction of P-Minimal Models Using Paraconsistent Relational Model 19

Example 1. Strictly speaking, relation schemes are sets of attribute names.
However, in this example we treat them as ordered sequence of attribute names,
so tuples can be viewed as the usual lists of values. Let {a, b, c} be a common
domain for all attribute names, and let R and S be the following paraconsistent
relations on schemes 〈X,Y 〉 and 〈Y,Z〉 respectively:

R+ = {(b, b), (b, c)}, R− = {(a, a), (a, b), (a, c)}
S+ = {(a, c), (c, a)}, S− = {(c, b)}.

Then, R�̇�S is the paraconsistent relation on scheme 〈X,Y,Z〉:

(R�̇�S)+ = {(b, c, a)}
(R�̇�S)− = {(a, a, a), (a, a, b), (a, a, c), (a, b, a), (a, b, b), (a, b, c), (a, c, a),

(a, c, b), (a, c, c), (b, c, b), (c, c, b)}

Now, π̇〈X,Z〉(R�̇�S) becomes the paraconsistent relation on scheme 〈X,Z〉:

π̇〈X,Z〉(R�̇�S)+ = {(b, a)}
π̇〈X,Z〉(R�̇�S)− = {(a, a), (a, b), (a, c)}

Finally, σ̇¬X=Z(π̇〈X,Z〉(R�̇�S)) becomes the paraconsistent relation on scheme
〈X,Z〉:

σ̇¬X=Z(π̇〈X,Z〉(R�̇�S))+ = {(b, a)}
σ̇¬X=Z(π̇〈X,Z〉(R�̇�S))− = {(a, a), (a, b), (a, c)(b, b), (c, c)}

��
In the rest of the paper, relations mean paraconsistent relations. In order

to find p-minimal models easily in our algorithm, we create a copy for a given
relation. For any given relation R, the copy of R is R′. Both R and R′ are
different relations with the same attributes and the same tuples. R is called an
exact relation and R′ is called a copy relation. In addition to this, the replica of
the relation R is R, where replica R has the same name, the same tuples, and
the same attributes. We assume that a relation and its replica can not appear
in the same set, but can appear in different sets. If two relations (a relation and
its replica) appear in the same set, then we merge the tuples of them and write
it as one relation.

In the next section, we explain the disjunctive relation model, which is
an adaptation of disjunctive relational model introduced by Jayakumar and
Sunderraman [15].

3 Disjunctive Relation

Let a disjunctive relation scheme 2Σ be a finite set of attribute sets, where for
any attribute set A ∈ 2Σ , dom(a) is a non-empty domain of values for each

20 B. Jayakumar and R. Sunderraman

a ∈ A. Let τ(2Σ) denote the set of all tuples on 2Σ . A disjunctive relation on
scheme 2Σ is thus any subset of τ(2Σ). A disjunctive relation, DR, over the
scheme 2Σ consists of two components 〈DR+,DR−〉, where DR+ ⊆ τ(2Σ) and
DR− ⊆ τ(2Σ). DR+ is the component that consists of a set of tuples. Each tuple
in this component represents a disjunction of facts. In the case where the tuple
is a singleton, we have a definite fact. DR− is the component that consists of a
set of tuples. Each tuple in this component represents a conjunction of facts. In
the case where the tuple is a singleton, we have a definite fact. Let T be a tuple
in DR, then for all t ∈ T , Att(t) is an attribute set that represents the element
in the tuple of the disjunctive relation DR, and let Att(R) be an attribute set
of relation R over the scheme Σ.

In the remainder of the section, we define a rename operator, mapping, and
necessary definitions, which play a key role in constructing the p-minimal models.

Rename Operator. Rename operator renames the attributes for any relations.

Attribute Rename (Θ). Let R be a relation over scheme Σ and Σ =
{A1 . . . Am, R.A1 . . . R.Am}. Then,

ΘA1...Am→R.A1...R.Am
(R) and ΘR.A1...R.Am→A1...Am

(R).

This operator (Θ) is used to maintain uniqueness of attributes between any
two relations.

Tuple Mapping to Disjunctive Relation. The algebraic equivalent for dis-
junction (∨) is union. So, we represent the disjunctive information in P as para-
consistent unions (∪̇) of relations. However, it is not very flexible to construct
p-minimal models with paraconsistent unions (∪̇) of relations. So, we map the
information in relations to a disjunctive relation DR. Let R1 . . . Rn be rela-
tions over schemes Σ1 . . . Σn where every Σi ⊆ Σ and 1 ≤ i ≤ n. Then a
set of attribute sets for any DR that refers R1∪̇ . . . ∪̇Rn is {Σ1 . . . Σn}. Next,
we map the tuples of relations containing paraconistent unions to a disjunctive
relation. For each t ∈ T , T is a tuple for any disjunctive relation (DR). Then
t : Σ → ∪A∈Att(Ri)dom(A) such that t(A) ∈ dom(A) for every i in R1 ∪̇ . . . ∪̇
Rn where Att(t) = Att(Ri). Informally, a disjunctive relation can be considered
as a collection of relations. It is intuitive to map each disjunctive relation back
to base relations because every t ∈ T of the disjunctive relation represents the
corresponding tuple in the relation.

The following example [15] is very specific, but helps to understand the algo-
rithm clearly.

Example 2. Let R1, R2 and C are relations over schemes {X}, {Y,Z} and
{X,Y,Z} and domain for every attribute is {a, b, c}. Then, we have the following
equation:

(π̇{X,Y,Z}(R1(X)∪̇−̇R2(Y,Z)))[X,Y,Z] = (π̇{X,Y,Z}(C(X,Y,Z)))+[X,Y,Z]

where C+ = {(a, b, c)}, R−
1 = {(b)} and R+

2 = {(a, c), (b, c)}

Construction of P-Minimal Models Using Paraconsistent Relational Model 21

Solution. Before the tuples of C are distributed to R1 and R2, it is impera-
tive to note that R1 and R2 contain definite tuples, which are not disjunctive
(conjunctive). The first step is to map the definite tuples of R1 and R2 to a dis-
junctive relation. The definite tuples have no disjunction (conjunction) in any
disjunctive relation. So, we rename the attributes (Θ) of R1 and R2. Then we
map the definite tuples to DR.

In the rest of the paper, we differentiate positive and negative parts of a
relation (disjunctive relation) with a double line in every relation (disjunctive
relation) diagram. Also, we call relations in left hand side of the equation as base
relations.

DR =

{R1.X} {R2.Y,R2.Z}
(b)

(a, c)
(b, c)

The next step is to distribute the tuples from

C to each individual relation in any union after applying Θ to R1 and R2. It
is necessary to apply Θ before the distribution of tuples from C because we
changed the attributes of R1 and R2 before we map the definite tuples.

R1 =
{X}
(a)
(b)

and −̇R2 =

{Y,Z}
(b, c)
(a, c)
(b, c)

The next step is to again rename (Θ) the attributes.

R1 =
{R1.X}

(a)
(b)

and −̇R2 =

{R2.Y,R2.Z}
(b, c)
(a, c)
(b, c)

Then we map the newly added tuples of R1 ∪̇ −̇R2 to DR.

DR =

{R1.X} {R2.Y,R2.Z}
(a) ∨ (b, c)
(b)

(a, c)
(b, c)

��
This state of DR is base DR. To reiterate, DR+ contains tuples which in

turn contain disjunction. From the base DR, multiple DR can be obtained by
applying disjunction in tuples. Each newly created DR from the base DR should
not lose any tuple set; otherwise, it leads to incorrect models. The following
definition addresses the issue.

Proper Disjunctive Relation (PDR). Let DR be a base disjunctive relation.
A proper disjunctive relation is a set, which contains all disjunctive relations that
can be formed from DR by applying disjunction in tuples. Concretely, for every
disjunctive relation (DRi), which is obtained from DR by applying disjunction,
τ(DR+) = τ(DR+

i) where 1 ≤ i ≤ (2n − 1)τ(DR+) such DRi is a PDRi.

22 B. Jayakumar and R. Sunderraman

Example 3. Continuing from Example 2.

Solution. The next step is to create a set of proper disjunctive relation from
DR.

PDR = {PDR1, PDR2, PDR3 } where PDR1 =

{R1.X} {R2.Y,R2.Z}
(a)
(b)

(a, c)
(b, c)

PDR2 =

{R1.X} {R2.Y,R2.Z}
(b, c)

(b)
(a, c)
(b, c)

PDR3 =

{R1.X} {R2.Y,R2.Z}
(a) ∨ (b, c)
(b)

(a, c)
(b, c)

The size of PDR is 3. Correspondingly, there should be three replicas of base
relations. We sometimes superscript the set with a number in order to show the
difference between any two sets that looks the same.

{{(π̇{X,Y,Z}(R1(R1.X)∪̇−̇R2(R2.Y,R2.Z)))[X,Y,Z]}1,
{(π̇{X,Y,Z}(R1(R1.X)∪̇−̇R2(R2.Y,R2.Z)))[X,Y,Z]}2,
{(π̇{X,Y,Z}(R1(R1.X)∪̇−̇R2(R2.Y,R2.Z)))[X,Y,Z]}3}.

For every p in PDR, reverse map tuples to a set of base relations.
Finally, rename (Θ) each attribute name of every relation back to its old name

in every replica. Hence, R1 attribute is < X > and R2 attribute is < Y,Z >. ��
To individualize the relation, we have the following definition.

Relationalize. Let R1∪̇R2∪̇ . . . ∪̇Rn and R1, R2 . . . Rn be relations on
scheme Σ.

Relationalize(π̇{Σ}(R1∪̇R2∪̇ . . . ∪̇Rn)[Σ]) := {R1, R2 . . . Rn}
The relationalize operator removes the unions from relations and the projec-

tion for the expression. By doing so, the operator produces a set of relations.
If there is a select operation associated with the expression, then apply the
operation before Relationalize is applied. Relationalize is in accordance to {li}
(defined in Preliminaries section) [17].

Example 4. Continuing from Example 3. In this example, we relationalize only
one replica ({(π̇{X,Y,Z}(R1(X)∪̇−̇R2(Y,Z)))[X,Y,Z]}1).

Construction of P-Minimal Models Using Paraconsistent Relational Model 23

Solution. Relationalize(π̇{X,Y,Z}(R1∪̇−̇R2)[X,Y,Z]) = {R1, R2} where

R1 =
{X}
(a)
(b)

and −̇R2 =
{Y,Z}
(a, c)
(b, c)

or R2 =
{Y,Z}
(a, c)
(b, c)

��
During p-minimal models construction, we encounter a set of redundant rela-

tion sets. In order to remove it, we define the following.

Minimize. Let {R11 . . . R1m} and {R21 . . . R2n} be two sets of relations where
m ≤ n.

Minimize({{R11 . . . R1n}, {R21 . . . R2m}}) := {{R11 . . . R1m} | R1i = R2j

∧ Att(R1i) = Att(R2j) ∧ τ(R1i) = τ(R2j) such that ∀i, 1 ≤ i ≤ m ∧ ∃j, 1 ≤ i ≤ n}.

By using the definitions and operators in this section, we propose an algorithm
in the following section.

4 P-Minimal Models for Positive Extended Disjunctive
Deductive Databases

By using the algebra of the relational model, we present a bottom up method for
constructing p-minimal models for the positive extended disjunctive deductive
database. The algorithm that we present in this section is an extension of the
algorithm proposed by Bagai and Sunderraman [5]. The reader is requested to
refer to p-minimal models [17] and paraconsistent logics [18] in order to supple-
ment additional knowledge. P-minimal models construction involves two steps.
The first step is to convert P into a set of relation definitions for the predicate
symbols occuring in P . These definitions are of the form

Ur = DUr

where Ur is the paraconsistent union of disjunctive head predicate symbols of
P , and DUr

is an algebraic expression involving predicate symbols of P . Here
r refers to the equation number, 1 ≤ r ≤ N, where N refers to a total number
of equations. The second step is to iteratively evaluate the expressions in these
definitions to incrementally construct the relations associated with the predicate
symbols. The first step is called SERIALIZE and the second step is called Model
Construction.

Algorithm. SERIALIZE
Input. A positive extended disjunctive deductive database clause l0 ∨· · ·∨ ln ←
ln+1 . . . lm. For any i, 0≤ i ≤ m, li is either of the form pi(Ai1 . . . Aiki

) or
¬pi(Ai1 . . . Aiki

), and let Vi be the set of all variables occurring in li.

Output. An algebraic expression involving paraconsistent relations.

Method. The expression is constructed by the following steps :

24 B. Jayakumar and R. Sunderraman

1. For each argument Aij of literal li, construct argument Bij and condition Cij

as follows:
(a) If Aij is a constant a, then Bij is any brand new variable and Cij is

Bij = a.
(b) If Aij is a variable, such that for each k, 1≤ k < j, Aik
= Aij , then Bij

is Aij and Cij is true.
(c) If Aij is a variable, such that for some k, 1≤ k < j, Aik=Aij , then Bij is

a brand new variable and Cij is Aij = Bij .
2. Let l̂i be the atom pi(Bi1 . . . Biki

), and Fi be the conjunction Ci1 ∧ · · · ∧Ciki
.

If li is a positive literal, then Qi is the expression π̇Vi
σ̇Fi

(l̂i)). Otherwise, let
Qi be the expression −̇π̇Vi

(σ̇Fi
(l̂i)).

As a syntatic optimisation, if all conjuncts of Fi are true (i.e. all arguments
of li are distinct variables), then both σ̇Fi

and π̇Vi
are reduced to identity

operations, and are hence dropped from the expression σ̇Fi
.

3. Let U be the union (∪̇) of the Qi’s thus obtained, 0 ≤ i ≤ n. The output
expression is (σ̇F1(π̇DV (U))) [B01 . . . Bnkn

] where DV is the set of distinct
variables occurring in all li.

4. Let E be the natural join (�̇�) of the Qi’s thus obtained, n + 1 ≤ i ≤ m.
The output expression is (σ̇F1(π̇DV (E))) [B01 . . . Bnkn

]. As in step 2, if all
conjuncts are true, then σ̇F1 is dropped from the output expression.

From the algebraic expression of the algorithm, we then construct a system
of equations.

For any positive extended disjunctive deductive database P , EQN (P) is a set
of all equations of the form Ur = DUr

, where Ur is a union of the head predicate
symbols of P , and DUr

is the paraconsistent union (∪̇) of all expressions obtained
by the algorithm SERIALIZE for clauses in P with the same Ur in their head.
If all literals in the head are the same for any two rules, then Ur is the same for
the two rules.
The final step is then to construct the model by incrementally constructing the
relation values in P . For any positive extended disjunctive deductive database,
PE is the non disjunctive-facts (clauses in P without bodies), and PB is the
disjunctive rules (clauses in P with bodies). P ∗

E refers to a set of all ground
instances of clauses in PE . Then, PI = P ∗

E ∪ PB.
The following algorithm finds p-minimal models for P .

ALGORITHM. Model Construction

Input. A positive extended disjunctive deductive database (P)

Output. P-minimal models for P .

Method : The values are computed by the following steps:

1. (Initialization)
(a) Compute EQN(PI) using the algorithm SERIALIZE for each clause

in PI .

Construction of P-Minimal Models Using Paraconsistent Relational Model 25

(b) SModel = ∅, For each predicate symbol p in PE , set

p+ = {(a1 . . . ak) | p(a1 . . . , ak) ∈ P ∗
E}, and p− = ∅ or

p− = {(a1 . . . ak) | ¬p(a1, . . . ak) ∈ P ∗
E} and p+ = ∅

SModel = p
End for.

2. (Rule Application)
(a) For every SModel (SModel
= ∅), create copies of the relations in SModel

and replace the SModel with the copies. DModel = ∅.
(b) For every equation r of the form Ur = DUr

, create DRr and insert the
tuples from the copies in SModel into the corresponding exact relation
in the equation r. Apply Θ to every relation in Ur and map the definite
tuples for the relations in Ur to DRr. Again, apply Θ to every relation in
Ur. Compute the expression DUr

and set the relations in Ur with D+
Ur

.
(c) Apply Θ to every relation in Ur, map the newly added tuples of Ur to

DRr and create a set of proper disjunctive relations (PDRr) from the
DRr.

(d) Delete all tuples for the relations in Ur and create multiple replicas of Ur,
which is denoted by the set Cr, where |Cr| = |PDRr|.

(e) Re-map each p in PDRr to C where C ∈ Cr.
For every C ∈ Cr,
C = Relationalize(C)
For every R ∈ C
R = Θ(R)
End For.
End For.
DModel = DModel

⋃
Cr/* Merging relations of every equation */

(f) Once all equations are evaluated for the current SModel, perform the
following: (i) for every M ∈ DModel and for every exact relation for
SModel that is not in M , create the exact relation in M ; and (ii) for
every M ∈ DModel and for every exact relation for SModel that is in M ,
insert the tuples from the copy relation in SModel into the exact relation
of M . Then add DModel to TempModel.

(g) Once every SModel is applied, start from step 2 (a) with
SModel = Minimize(TempModel) and stop when there is no change in
SModel.

3. P-models : rewrite the set of relations in SModel as a set of literals. P-minimal
models = min(P-models) (min() is defined in Preliminaries).

It is very intuitive from the algorithm that if the computation of DUr
is empty

for any SModel, then discard the SModel. We found that the algorithm should
be extended a little to accommodate for disjunctive facts, duplicate variables in
disjunctive literals, and constants in disjunctive literals.

The following example shows that how the algorithm works.

26 B. Jayakumar and R. Sunderraman

Example 5. Let P be a positive extended disjunctive deductive database. It has
the following facts and rules :

r(a, c), p(a), p(c),¬f(a, b), s(c)
g(X) ∨ ¬p(X) ← r(X,Y), s(Y)
g(X) ∨ ¬p(X) ← ¬f(X,Y)

Solution. After step 1 (a) in initialization, EQN(PI) returns :

(U1)(π̇{X}(g(X)∪̇−̇p(X))[X] = (π̇{X}(r(X, Y)�̇�s(Y)))+[X]∪̇(π̇{X}(−̇f(X, Y)))+[X]

After step 1 (b) in initialization, SModel = {r, p, s, f} where r
{X,Y }
(a, c) p

{X}
(a)
(c)

s
{Y }
(c) f

{X,Y }
(a, b)

After step 2 (a), SModel = {r′, p′, s′, f ′} (COPIES) where

r′ {X,Y }
(a, c) p′

{X}
(a)
(c)

s′ {Y }
(c) f ′ {X,Y }

(a, b)

In step 2 (b), there is only one SModel and one equation. It is necessary to
insert the tuples from the copies in SModel to the corresponding relations in the
equation. DModel = ∅. Then map the definite tuples to DR1 for the current
SModel. Compute the expression and assign it to U1.

DR1

{g.X} {p.X}
(a)
(c)

By step 2 (c), map the newly added (disjunctive) tuples to DR1.

DR1

{g.X} {p.X}
(a) ∨ (a)

(a)
(c)

PDR1 = {PDR1
1, PDR2

1,PDR3
1}

PDR1
1

{g.X} {p.X}
(a) ∨ (a)

(a)
(c)

PDR2
1

{g.X} {p.X}
(a)
(a)
(c)

PDR3
1

{g.X} {p.X}
(a)

(a)
(c)

We skip a step (2 (d)) here. Map every p in PDR1 back to a set of base
relation. We write after relationalizing the set of relations and applying Θ (step
2 (e)).

C1= {{g, p}1,{p}2,{g, p}3}

{g, p}1 g
{X}
(a) p

{X}
(a)
(c)
(a)

{p}2 p

{X}
(a)
(c)
(a)

{g, p}3 g
{X}
(a) p

{X}
(a)
(c)

Construction of P-Minimal Models Using Paraconsistent Relational Model 27

DModel = DModel
⋃

C1

By step 2 (f), DModel = {{g, p, r, s, f}1, {p, r, s, f}2, {g, p, r, s, f}3}

{g, p, r, s, f}1 g
{X}
(a) p

{X}
(a)
(c)
(a)

r
{X,Y }
(a, c) s

{Y }
(c) f

{X,Y }
(a, b)

{p, r, s, f}2 p

{X}
(a)
(c)
(a)

r
{X,Y }
(a, c) s

{Y }
(c) f

{X,Y }
(a, b)

{g, p, r, s, f}3 g
{X}
(a) p

{X}
(a)
(c)

r
{X,Y }
(a, c) s

{Y }
(c) f

{X,Y }
(a, b)

Add DModel to TempModel.
By step 2 (g), SModel = Minimize(TempModel). The algorithm stops when

there is no change in SModel. We skip further iterations and go to the final step
(3). In the final step, we first rewrite the relation in the form of literals,

P-models ={{g(a), p(a), p(c), ¬p(a), r(a, c), s(c), ¬f(a, b)}, {p(a), p(c), ¬p(a),
r(a, c), s(c), ¬f(a, b)}, {g(a), p(a), p(c), r(a, c), s(c), ¬f(a, b)}}.

Then, p-minimal models = {{p(a), p(c), ¬p(a), r(a, c), s(c), ¬f(a, b)}, {g(a),
p(a), p(c), r(a, c), s(c), ¬f(a, b)}}. This result is the same for fixed-point
semantics defined in Preliminaries section.

5 Conclusion

In this paper, we proposed an algorithm to find p-minimal models for any positive
extended disjunctive deductive database. We also used a disjunctive relational
model to represent the relations containing paraconsistent unions [15].

Though we find the model for any given positive extended disjunctive deduc-
tive database, the algorithm does not find models for the databases with recur-
sions and constraints, which could be a good future work for this algorithm. It
would be very interesting to analyze the algorithm by allowing default negation in
program P . We observe that we have not proven the correctness and complexities
of the algorithm. We have also left that for future work. In query-intensive appli-
cations, this precomputation of the model enables efficient processing of subse-
quent queries. The creation of many proper disjunctive databases are expensive,
given the p-minimal models computation, and are probably not worth the extra
computation.

28 B. Jayakumar and R. Sunderraman

References

1. Alcântara, J., Damásio, C.V., Pereira, L.M.: A declarative characterisation of dis-
junctive paraconsistent answer sets. In: ECAI, vol. 16, p. 951. Citeseer (2004)

2. Alcântara, J., Damásio, C.V., Moniz, L.M.: Paraconsistent logic programs. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol.
2424, pp. 345–356. Springer, Heidelberg (2002)

3. Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Ann.
Math. Artif. Intell. 36(4), 381–417 (2002)

4. Arieli, O.: Distance-based paraconsistent logics. Int. J. Approximate Reasoning
48(3), 766–783 (2008)

5. Bagai, R., Sunderraman, R.: A paraconsistent relational data model. Int. J. Com-
put. Math. 55(1–2), 39–55 (1995)

6. Bagai, R., Sunderraman, R.: Bottom-up computation of the fitting model for gen-
eral deductive databases. J. Intell. Inf. Syst. 6(1), 59–75 (1996)

7. Bagai, R., Sunderraman, R.: Computing the well-founded model of deductive data-
bases. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 4(2), 157–175 (1996)

8. Belnap Jr., N.D.: A useful four-valued logic. In: Michael Dunn, J., Epstein, G. (eds.)
Modern Uses of Multiple-Valued Logic, pp. 5–37. Springer, Netherlands (1977)

9. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theor. Comput.
Sci. 68(2), 135–154 (1989)

10. Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In:
Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 1–93.
Springer, Netherlands (2007)

11. Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic pro-
grams. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential
Contradictions, pp. 241–320. Springer, Netherlands (1998)

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–385 (1991)

13. Hunter, A.: Paraconsistent logics. In: Besnard, P., Hunter, A. (eds.) Reasoning with
Actual and Potential Contradictions, pp. 11–36. Springer, Netherlands (1998)

14. Hunter, A.: Reasoning with contradictory information using quasi-classical logic.
J. Logic Comput. 10(5), 677–703 (2000)

15. Jayakumar, B., Sunderraman, R.: Paraconsistent relational model: a quasi-classic
logic approach. In: IJCAI Workshop 13 Ontologies and Logic Programming for
Query Answering, Buenos Aires, Argentina, pp. 82–90, July 2015

16. Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment.
In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and
Beyond. LNCS (LNAI), vol. 2407, pp. 472–511. Springer, Heidelberg (2002)

17. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive
programs. J. Logic Comput. 5(3), 265–285 (1995)

18. Subrahmanian, V.: Paraconsistent disjunctive deductive databases. In: Proceedings
of the Twentieth International Symposium on Multiple-Valued Logic, pp. 339–346.
IEEE (1990)

19. Zhang, Z., Lin, Z., Ren, S.: Quasi-classical model semantics for logic programs –
a paraconsistent approach. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.)
ISMIS 2009. LNCS, vol. 5722, pp. 181–190. Springer, Heidelberg (2009)

http://www.springer.com/978-3-319-26180-5

	Construction of P-Minimal Models Using Paraconsistent Relational Model
	1 Introduction
	2 Preliminaries
	3 Disjunctive Relation
	4 P-Minimal Models for Positive Extended Disjunctive Deductive Databases
	5 Conclusion
	References

