Towards Agent Aggregates: Perspectives
and Challenges

Mirko Viroli®? and Alessandro Ricci

Alma Mater Studiorum — Universita di Bologna, Bologna, Italy
{mirko.viroli,a.ricci}@unibo.it

Abstract. Recent works in the context of self-organisation foster the
idea of engineering large-scale situated systems by taking an aggregate
stance: system design and development are better conducted by abstract-
ing away from individuals’ details, rather directly engineering (design-
ing, programming, verifying) the overall system behaviour, as if it were
executed on top of a single, continuous-like machine. As a consequence,
concerns like interaction protocols, self-organisation, adaptation, and
large-scaleness, get automatically hidden “under the hood” of the plat-
form supporting aggregate computing, with notable advantages in raising
the abstraction level and scaling with behaviour complexity. This paper
provides an initial exploration of potentials and challenges of using aggre-
gate computing techniques in the context of multi-agent systems, con-
sidering impact on large-scale reactive MASs, environment engineering
and its cognitive exploitation, and on collective team-work by the notion
of aggregate plan.

1 Introduction

Self-organisation mechanisms support adaptivity and resilience in complex nat-
ural systems at all levels, from molecules and cells to animals, species, and entire
ecosystems [25]. A long-standing aim in computer science is to find effective engi-
neering methods for exploiting such mechanisms to bring similar adaptivity and
resilience to a wide variety of complex, large-scale computing applications—
in smart mobility, crowd engineering, swarm robotics, etc. Practical adoption,
however, poses serious challenges, since self-organisation mechanisms often trade
efficiency for resilience, and are often difficult to predictably compose to meet
more complex specifications.

On the one hand, in the context of multi-agent systems (MASs), self-
organisation is achieved relying on a weak notion of agency: following a
biology inspiration, agents execute simple and pre-defined behaviour, out of
which self-organisation is achieved by emergence [12]—ant foraging being a clas-
sical example. This approach however hardly applies to open and dynamic con-
texts in which what is the actual behaviour to be carried on by a group of agents
is to be decided (or even synthesised) at run-time: offline fine-tuning of system
parameters often hampers applicability to real-life, non trivial applications.

© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 18-30, 2015.
DOI: 10.1007/978-3-319-26184-3_2



Towards Agent Aggregates: Perspectives and Challenges 19

On the other hand, a promising set of results towards addressing solid engi-
neering of open self-organising systems are being achieved under the umbrella
of aggregate programming [3]. Its main idea is to shift the focus of system pro-
gramming from the individual’s viewpoint to the aggregate viewpoint: one no
longer programs the single entity’s computational and interactive behaviour, but
rather programs the collection. This is achieved by abstracting away from the
discrete nature of computational networks, by assuming that the overall exe-
cuting “machine” is a sort of (space-time) computational continuum able to
manipulate distributed data structures: actual self-organisation mechanisms sit
below, and are they key for automatically turning aggregate specifications into
individual behaviour. Aggregate programming is grounded in the computational
field calculus [9], its incarnation in the Protelis programming language [19], on
studies focussing on formal assessment of resiliency properties [23], and building
blocks and libraries built on top to support applications in the context of large
scale situated systems [2].

This paper aims at analysing the potentials and challenges that can arise
when combining techniques of aggregate programming in the context of MASs.
In Sect. 2 we start recapping the main elements of aggregate computing. Section 3
depicts a methodology for engineering large-scale reactive MASs on top of
aggregate computing, based on the construction of layers of resilient composable
functions, raising the abstraction level to address system complexity. Section 4
discusses impact on environment engineering: aggregate computing is about
manipulation of computational fields [9,14], which can be seen as distributed
“traces” or “stigma” that agents leave in the spatial environment as a coordi-
nation tool, up to be exploited to externalise true fields of beliefs, goals, and
intentions. Section 5 presents early ideas on applying aggregate computing to
ground a notion of “aggregate plan”, a collective plan shared and cooperatively
executed by a dynamic team of agents, developed so as to abstract from partic-
ipants’ number and details. Section 6 concludes providing final remarks.

2 Aggregate Programming

Most paradigms of distributed systems development, there including the
multi-agent system approach, are based on the idea of programming each single
individual of the system, in terms of its computational behaviour (goals, plans,
algorithm, interaction protocol), typically considering a finite number of “roles”,
i.e., individual classes. This approach is argued to be problematic: it makes it
complicated to reason in terms of the effect of composing behaviours, and it forces
the programmer to mix different concerns of resiliency and coordination—using
middlewares that externalise coordination/social abstractions and interaction
mechanisms only partially alleviates the problem [5,24].

These limits are widely recognised, and motivated work toward aggregate pro-
gramming across a variety of different domains, as surveyed in [1]. Historically
such works addressed different facets of the problem: making device interaction
implicit (e.g., TOTA [14]), providing means to compose geometric and topo-
logical constructions (e.g., Origami Shape Language [16]), providing means for



20 M. Viroli and A. Ricci

summarising from space-time regions of the environment and streaming these
summaries to other regions (e.g., TinyDB [13]), automatically splitting computa-
tional behaviour for cloud-style execution (e.g., MapReduce [10]), and providing
generalisable constructs for space-time computing (e.g., Proto [15]).

Aggregate computing, based on the field calculus computational model [9]
and its embodiment in Protelis programming language [19], lies on top of the
above approaches and attempts a generalisation starting from the works on
space-time computing, which are explicitly designed for distributed operation
in a physical environment filled with embedded devices, but can be extended to
work on arbitrary physical/logical environments.

2.1 Computing at the Aggregate Level

The whole approach of aggregate computing starts from the observation that the
complexity of large-scale situated systems must be properly hidden “under-the-
hood” of the programming model, so that composability of collective behaviour
can be more easily supported and better address the construction of complex
systems. Aggregate programming is then based on the following three principles:

1. The “machine” being programmed is a region of the computational envi-
ronment whose specific details are abstracted away (perhaps even to a pure
spatio-temporal continuum);

2. The program is specified as a manipulation of data structures with spatial
and temporal extent across that region;

3. These manipulations are actually carried out in a robust and self-organising
manner by the aggregate of cooperating devices situated in that region, using
local interactions.

As an example, consider the problem of designing crowd safety services
based on peer-to-peer interactions between crowd members’ smart-phones. In
this example, smart-phones could interact to collectively estimate the density
and distribution of crowding, seen as a distributed data structure mapping each
point of space to a real-value indicating the crowd estimation, namely, a compu-
tational field (or simply field) of reals [9,14]. This can be in turn used as input
for several other services: warning systems for people nearby dense regions (pro-
ducing a field of booleans holding true where warning has to be set), dispersal
systems to avoid present or future congestion (producing a field of directions
suggested to people via their smartphones), steering services to reach points-of-
interest (POI) avoiding crowded areas (producing a field of pairs of direction
and POI name). Building such services in a fully-distributed and resilient way
is very difficult, as it comes to achieve self-* behaviour by careful design of each
device’s interaction with its neighbours. With aggregate programming, on the
other hand, one instead naturally reasons in terms of an incremental construction
of computational fields, with the programming platform taking care of turning
aggregate programs into programs for the single device.



Towards Agent Aggregates: Perspectives and Challenges 21

2.2 Constructs

The field calculus [9] captures the key ingredients of aggregate neighbour-based
computation into a tiny language suitable for grounding programming and rea-
soning about correctness — recent works addressed type soundness [9] and self-
stabilisation [23] — and is then incarnated into a Java-oriented language called
Protelis [19], which we here use for explanation purposes. The unifying abstrac-
tion is that of computational field, and every computation (atomic or composite)
is about functionally creating fields out of fields. Hence, a program is made of
an expression e to be evaluate in space-time (ideally, in a continuum space-
time, practically, in asynchronous rounds in each device of the network) and
thus producing a field “evolution”. Four mechanisms are defined to hierarchi-
cally compose expressions out of values and variables, each providing a possible
syntactic structure for e:

— Application: A(ey,...,e,) applies “functional value” A to arguments ey, ...,
e, (using call-by-value semantics). A can either be a “built-in” primitive (any
non-aggregate operation to be executed locally, like mathematical, logical,
or algorithmic functions, or calls to sensors and actuators), a user-defined
function (that encapsulates reusable behaviour), or an anonymous function
value (x1,...,%,)— >e (possibly passed also as argument, and ultimately,
spread to neighbours to achieve open models of code deployment [9])—in the
latter case Protelis ad-hoc syntax is A.apply(ei,...,en).

— Dynamics: rep(x<-v){e} defines a local state variable x initialised with
value v and updated at each computation round with the result of evaluating
the update expression e.

— Interaction: nbr(e) gathers by observation a map at each neighbour to its
latest resulting value of evaluating e. A special set of built-in “hood” functions
can then be used to summarise such maps back to ordinary expressions, e.g.,
minHood (m) finds the minimum value in the map m.

— Restriction: if(e){e1} else {e2} implements branching by partitioning the
network into two regions: where e evaluates to true e; is evaluated, elsewhere
es is evaluated. Notably, because if is implemented by partition, the expres-
sions in the two branches are encapsulated and no action taken by them can
have effects outside of the partition.

A simple example using the various constructs (colouring field calculus key-
words magenta, built-in functions green, user-defined functions red, and variables
green) is:

def distance-avoiding-obstacle (source, obstacle){
if (obstacle) {infinity} else {
rep(d<-infinity) {
mux (source, 0, minHood+(nbrRange + nbr(d)))

P




22 M. Viroli and A. Ricci

This code creates a field of estimated distances to devices where source is
true, using a metric that computes such distances by circumventing devices
where obstacle is true. In the region outside the obstacle (by if), a distance
estimate d (established by rep) is computed using built-in selector mux to set
sources to 0 and other devices by the triangle inequality, taking the minimum
value obtained by adding the distance to each neighbour to its estimate of d (by
nbr).

3 Impact on Building Large-Scale Self-Organising M ASs

Aggregate computing makes weak assumptions on the underlying computing
platforms, that well match those of large-scale reactive MASs: asynchronous
agent computation, broadcast of messages to neighbours, perception/action on
the local part of the physical environment. This paves the way for using aggregate
computing techniques for developing large-scale self-organising MASs.

3.1 Raising the Abstraction Level

While the constructs of aggregate computing form an universal set, they are
also too low level to be readily used for building complex distributed services
like self-organising MASs. To raise the level of abstraction it is fruitful to iden-
tify a collection of general combinators (or “building blocks”), which encapsulate
reusable coordination mechanisms, and allow one to bypass the trickier aspects
of field calculus. Such combinators set is formed by careful selection of coor-
dination mechanisms needed for complex situated MASs, and hence should be
(i) self-stabilising, meaning that they reactively adjust to changes in environ-
ment, (i) scalable to large MASs, and (%) preserve these resilience properties
when composed together into more complex coordination services.

Some operators have been identified already, in [2]. Two of them seem par-
ticularly relevant for the context of MASs: new operators G and C, to be used
along with constructs if and built-ins. The two building blocks are defined as:

— G(source,init,metric,accumulate) is a “spreading” operation generalising
distance measurement, broadcast, and projection. It may be thought of as
executing two tasks: it computes a field of shortest-path distances from a
source region (indicated as a Boolean field) according to the supplied func-
tion metric, then propagates values along the gradient of the distance field
away from source, beginning with value initial and accumulating along the
gradient with accumulate.

— C(potential,accumulate,local,null) is complementary to G, accumulat-
ing information to the source down the gradient of a supplied potential
field. Beginning with an idempotent null, at each device, the local value is
combined with “uphill” values using a commutative and associative function
accumulate, to produce a cumulative value at each device in the source.



Towards Agent Aggregates: Perspectives and Challenges 23

Although there are only a few operators, they are so general as to cover, indi-
vidually or in combination, a large number of the common coordination patterns
used in design of resilient systems. With appropriate implementation in field
calculus, this system of operators can thereby provide an expressive program-
ming environment that provides strong guarantees of resilience and scalability,
as established in [2].

3.2 Towards Libraries of Collective Distributed Sensing and Action

Key operations of large-scale self-organising M ASs involve the need of perceiving
events distributed in a whole space region, elaborate them, and properly per-
form an actuation again into a whole space region. Operators G and C provide
a good “lingua franca” for expressing behaviours on top of primitive aggrega-
tion/collection operations.

For example, operator G (along with built-ins) can generate a number of inter-
esting functions related to distributed action and information diffusion. One such
common computation in spatially embedded systems is estimating the distance
from one or more designated “source” devices to others nearby, which can be
implemented by a simple application of G, beginning with zero and using esti-
mated device-to-device distance as a metric:

def distanceTo(source) {
G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})
}

Likewise, another common coordination action, broadcasting a value across the
network from a source, can be implemented by another application of G:

def broadcast(source, value) {
G(source, value, () -> {nbrRange}, (v) -> {v})
}

Other G-based operations include construction of a Voronoi partition and a “path
forecast” that marks paths that cross an obstacle or region of interest.

Similarly, operator C enables functions related to information perception,
such as accumulating the sum of all the values of a variable in a region

def summarize(sink, accumulate, local, null) {
C(distanceTo(sink), accumulate, local, null)

or computing the variable’s average or maximum value in that region.

Just as when building any other software library, these API functions can
be combined together to create higher level libraries. For example, an average
function shared throughout a region can be implemented by applying broadcast
to the output of summarize, as follows:



24 M. Viroli and A. Ricci

def average(sink,value){
broadcast(sink, summarize(sink,+,value,0) / summarize(sink,+,1,0))

3.3 Challenges

The main research challenges we identify to foster exploitation of aggregate
computing for building large-scale reactive MASs include:

— Extracting from various application contexts general building blocks and APIs
to help development of real-life complex systems;

— Designing a platform support for MASs based on aggregate computing, where
purely local interactions and cloud-based communications can be dynamically
combined;

— Integrating field calculus constructs into agent languages (such as Jason), to
streamline combination with existing agent development methodology.

4 Impact on Building MAS Environment

Turning our attention to a stronger notion of agency, how can aggregate pro-
gramming affect the agent-oriented abstractions rooting MAS engineering? An
effective way to do this is by means of the notion of environment as a first-class
design and programming abstraction [21,24].

4.1 Coordination Artifacts Enacting Computational Fields

The infrastructural substrate that reifies computational fields, which we can
call the computational fields fabric, can be modelled as the application envi-
ronment where agents are logically situated, encapsulating the functionalities
that agents can exploit to perform their individual and global tasks. In par-
ticular, the computational fields fabric can be characterised as a distributed
coordination artifact [18], since it can be exploited by agents for coordination
and self-organisation purposes. Field calculus and Protelis are the basic tools on
top of which we can program such a distributed coordination medium (like in
the case of programmable coordination media [11]), making it possible to define
the coordination and self-organisation functionalities in a declarative and macro
way on the one hand, and execute it in a fully decentralised way on the other
hand.

As an example, it can be programmed so as to create a gradient field (with
G operator), so that agents willing to advertise an event can inject informa-
tion in the environment locally, which gets then distributed around, and can
be exploited by other agents perceiving the environment, either to just observe
information or to move towards its source.

This view generally allows for conceiving in a clean way systems where the
environment encapsulates functionalities useful for self-organisation and collec-
tive adaptation, still retaining agent full autonomy.



Towards Agent Aggregates: Perspectives and Challenges 25

4.2 Cognitive Fields

The integration of aggregate programming and agents lead to consider quite
naturally the opportunity of exploiting aggregate coordination functionalities
by cognitive agents too, i.e., thinking about computational fields designed in
terms of cognitive agents’ mental attitudes, such as beliefs and goals. In other
words, with cognitive agents, a computational field would represent a kind of dis-
tributed, decentralised, and externalised mental state, which evolves according
to the agent actions and the rules of field evolution specified in the environ-
ment program. In that perspective, we envision some strong connection with
our previous works exploring the notion of cognitive stigmergy [20] and with
contributions in the cognitive science literature discussing the idea of the envi-
ronment as extended mind [8]. It is possible to consider three different levels of
cognitive fields:

— Belief fields — Belief fields are the simplest case, in which a computational field
is like a classic partially observable environment whose percepts are modelled
as beliefs by the agent situated in it. The aggregate program in this case spec-
ifies how some belief should be distributed among the agents depending on
their position inside the field. More generally, the aggregate program defines
the rule by which the overall distributed “belief” state can evolve and be
influenced by each agent and by the environment. As an example, distrib-
uted aggregation and then diffusion of information perceived by temperature
sensors can be used to automatically create a constant field of the average
temperature value across a region of space, which can be interpreted and used
as a belief field by the MAS.

— Goal fields — In a goal field, the values manipulated by the field are the goals
that are meant to be adopted by the agents that are located in some position of
the environment. Thus, the aggregate program in this case specifies a division
of labor, or how tasks are meant to be allocated to agents. For instance,
operator G can be used to create a Voronoi partition, dividing the overall
space into a set of regions based on proximity to a set of n source agents.
Each such agent n; can be considered as initiator of a distributed goal g;,
diffused to all agents in the region created by n;. The resulting partition field
is hence seen as a goal field, allocating n goals to the MAS.

— Intention fields — In an intention field, the values manipulated by the field are
the intentions that the agent located in some position of the field has, namely,
actions to execute to behave collectively. Thus, the aggregate program in
this case specifies a spatial-dependent concept of task. For instance, to steer
people towards a POI in a complex pervasive environment, one could establish
a gradient field from the POI, on top of which a field of directions towards the
source can be created. This can be understood as a field of intentions, feeding
e.g. pervasive displays that will use a direction to show a direction sign.

4.3 Tooling

From a technological point of view, enacting computational fields by environment
artifacts makes it possible to exploit existing environment-based technologies to



26 M. Viroli and A. Ricci

integrate aggregate programming with existing MAS programming tools. Main
examples are EIS [4] and CArtAgO [21].

In the latter case in particular, we can design a set of artifacts [17,21] that
make it possible for an agent to perceive and act upon a computational field, as
well as to manage the set of computational fields, creating new ones or disposing
existing ones. More in detail, in order to work within a computational field,
an agent can be equipped with an artifact conceptually representing a piece of
field, making it observable (by means of observable properties) both the value
of the field in the agent position as well as the values of the neighbourhood. By
exploiting CArtAgO with cognitive agent programming languages — such as in
the case of JaCaMo [6] based on the Jason agent programming language [7] —
this modelling makes it possible to directly implement belief fields, since artifact
observable properties are mapped into beliefs of agents observing the artifact.
Goal and intention fields can be implemented by using observable properties to
represent goals and intentions managed by the field. In this case, using Jason for
instance, agents can be equipped with suitable plans to react to changes to the
beliefs mapping these observable properties so as to e.g. adopting new goals or
adding new plans to the plan library, according to the need.

In this framework, Protelis could be used as high-level language to program
the single artifact, to be properly compiled to feed CArtAgO.

4.4 Challenges

Among the many research challenges spawning from the idea of aggregate com-
puting as an environment process, we identify:

— Develop suitable models and infrastructures to support flexible computational
fields by environment abstractions;

— Extend the notion of cognitive stigmergy to deal with spatially distributed
computational fields;

— Study the consequence of aggregate agent reasoning, in theory, models and
implementations of intelligent systems.

5 Impact on Aggregate Plans

Another fruitful idea for the integration between aggregate computing and MASs
is that of considering an aggregate program as “an aggregate plan”, which an
agent can either create or receive from peers, and can deliberate to execute or
not in different moments of time.

5.1 Life-Cycle of Aggregate Plans

In our model, aggregate plans are expressed by anonymous functions of the kind
()->e, where e is a field expression possibly calling API functions available
as part of each agent’s library. One such plan can be created in two different



Towards Agent Aggregates: Perspectives and Challenges 27

ways, by suitable functions (whose detail we abstract away): first, it can be a
sensor sns-injected-function to model the plan being generated by the exter-
nal world (i.e. a system programmer) and dynamically deployed; second, it can
model a local planner plan-creation that synthesises a suitable plan for the
situation at hand. When the plan is created, it should then be shared with other
agents, typically by a broadcasting pattern—the full power of field calculus can
be used to rely on sophisticated techniques for constraining the target area of
broadcasting.

Agents are to be programmed with just a minimal virtual-machine-like
code [9] that makes it participate to this broadcast pattern, so as to receive all
plans produced remotely in the form of a field of pairs of a description of the plan
and its implementation by the anonymous function. Among the plans currently
available, by the restriction operator if the agent can autonomously decide which
one to actually execute, using as condition the result of a built-in deliberation
function that has access to the plan’s description.

Note that if/when an aggregate plan is in execution, it will make the agent
cooperatively work with all the other agents that are equally executing the same
aggregate plan. This “dynamic team” will then coherently bring about the social
goal that this plan is meant to achieve, typically expressed in terms of a final
distributed data structure, used as input for other processes or to feed actuators
(i.e., to make agents/devices move). The inner mechanisms of aggregate com-
puting smoothly support entering/quitting the team, making overall behaviour
spontaneously self-organise to such dynamism.

5.2 Mapping Constructs, and Libraries

As a plan is in execution, the operations of aggregate programming that it
includes can be naturally understood as “instructions” for the single agent, as
follows:

— Function application amounts to any pure computation an agent has to exe-
cute, there including algorithmic, deliberation, scheduling and planning activ-
ities, as well as local action and perception.

— Repetition construct is instead used to make some local result of execution of
the aggregate plan persist over time, e.g. modelling belief update.

— Neighbour field construction is the mechanism by which information about
neighbour agents executing the same plan can be observed, supporting the
cooperation needed to make the plan be considered as an aggregate one.

— Restriction can be used inside a plan to temporarily structure the plan in
sub-plans, allowing each agent to decide which of them should be executed,
i.e., which sub-team has to be dynamically joined.

As explained in Sect. 3, one of the assets of aggregate programming is its
ability of defining libraries of reusable components of collective behaviour, with
formally provable resilience properties. Seen in the context of agent program-
ming, such libraries can be used as libraries of reusable aggregate plans, built
on top of building blocks:



28 M. Viroli and A. Ricci

— Building block G is at the basis of libraries of “distributed action”, namely,
cooperative behaviour aimed at acting over the environment or sets of agents
in a distributed way.

— Building block C conversely supports libraries of “distributed perception”,
namely, cooperative behaviour aimed at perceiving the environment or infor-
mation about a set of agents in a distributed way.

— The combination of building blocks G and C, and others [2], allows one to
define more complex elements of collective adaptive behaviour, generally used
to intercept distributed events and situations, compute/plan response actions,
and actuate them collectively.

5.3 Challenges

The notion of aggregate plan suggests several research directions, with the goal
of addressing the following challenges:

— study planning techniques for the dynamic creation of aggregate plans;

— experiment the pragmatics of aggregate plans, to explore their abilities of
supporting smooth, self-adaptive entering and quitting from the team playing
an aggregate plan;

— devise new linguistic constructs for the field calculus to empower its applica-
bility of model for aggregate plans.

6 Conclusions

Aggregate computing is a new metaphor for building distributed systems, with
notable impact to the engineering of “complexity”, thanks to its ability to:
(i) reason in term of field calculus programs to formally derive its behavioural
properties [23]; (i) create reusable combinators of wide applicability, to raise the
abstraction layer of system development [2]; (%ii) promote a methodology for sub-
stitutability of components to improve performance [22]; and (iv) address the
problem of platform support in a rather abstract away so as to smoothly support
different computation/communication models. All this features are seemingly
key for MASs as well.

On the other hand, aggregate programming has also the potential of deeply
affecting some aspects of agent theory, fostering a more deep understanding of
how “computational fields” can be perceived and exploited by cognitive agents.
This can shed light to new methodologies for building intelligent distributed
systems, where availability of a huge number of agents can turn from a seri-
ous coordination problem to an opportunity for building effective, efficient and
resilient systems.

Ultimately, aggregate computing and MASs have the potential of combining
into a new powerful notion of “agent aggregate”, which this paper only started
exploring in its many facets, and which will be matter of our future research
investigations.



Towards Agent Aggregates: Perspectives and Challenges 29

References

%

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pp. 436-501. IGI Global,
Hershey (2013). http://arxiv.org/abs/1202.5509

Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: Workshop on Foundations of Complex Adaptive Systems
(FOCAS) (2014)

Beal, J., Viroli, M.: Space-time programming. Philos. Trans. R. Soc. Lond A:
Math. Phys. Eng. Sci. 373, 2015 (2046)

Behrens, T., Hindriks, K., Dix, J.: Towards an environment interface standard for
agent platforms. Ann. Math. Artif. Intell. 61(4), 261-295 (2011)

Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Program. 78(6), 747-761 (2013)
Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Sci. Comput. Programm. 78(6), 747-761 (2013)
Bordini, R.H., Hiibner, J.F., Wooldrige, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley, Hoboken
(2007)

Clark, A., Chalmers, D.: The extended mind. Analysis 58(1), 7-19 (1998)
Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems. LNCS, vol.
9039, pp. 113-128. Springer, Heidelberg (2015)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274-288.
Springer, Heidelberg (1997)

Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43-67 (2013)

Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1-56 (2009)
MIT Proto. Software available at http://proto.bbn.com/. Accessed 1 January 2012
Nagpal, R.: Programmable self-assembly: constructing global shape using
biologically-inspired local interactions and origami mathematics. Ph.D. thesis, MIT
(2001)

Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A& A meta-model for multi-agent
systems. Auton. Agent. Multi-Agent Syst. 17(3), 432-456 (2008)

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R.,
Sierra, C., Sonenberg, L., Tambe, M. (eds.) Proceedings of AAMAS 2004, vol. 1,
pp. 286-293. ACM, 19-23 July 2004

Pianini, D., Beal, J., Viroli, M.: Practical aggregate programming with protelis.
In: ACM Symposium on Applied Computing (SAC 2015) (2015) (To appear)


http://arxiv.org/abs/1202.5509
http://proto.bbn.com/

30

20.

21.

22.

23.

24.

25.

M. Viroli and A. Ricci

Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy:
towards a framework based on agents and artifacts. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) EAMAS 2006. LNCS (LNAI), vol. 4389, pp. 124—
140. Springer, Heidelberg (2007)

Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agents Multi-Agent Syst. 23(2), 158-192
(2011)

Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organising systems by self-stabilising fields. In: IEEE Conference on Self-Adaptive
and Self-Organising Systems (SASO 2015) (2015)

Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In:
Kiihn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163—
178. Springer, Heidelberg (2014)

Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5-30 (2007)
Zambonelli, F., Viroli, M.: A survey on nature-inspired metaphors for pervasive
service ecosystems. Int. J. Pervasive Comput. Commun. 7(3), 186-204 (2011)



2 Springer
http://www.springer.com/978-3-319-26183-6

Engineering Multi-Agent Systems

Third International Workshop, EMAS 2015, Istanbul,
Turkey, May 5, 2015, Revised, Selected, and Invited
Fapers

Baldoni, M.; Baresi, L.; Dastani, M. (Eds.)

2015, X, 231 p. 55 illus. in color., Softcover

ISBM: 978-3-319-26183-6



	Towards Agent Aggregates: Perspectives and Challenges
	1 Introduction
	2 Aggregate Programming
	2.1 Computing at the Aggregate Level
	2.2 Constructs

	3 Impact on Building Large-Scale Self-Organising MASs
	3.1 Raising the Abstraction Level
	3.2 Towards Libraries of Collective Distributed Sensing and Action
	3.3 Challenges

	4 Impact on Building MAS Environment
	4.1 Coordination Artifacts Enacting Computational Fields
	4.2 Cognitive Fields
	4.3 Tooling
	4.4 Challenges

	5 Impact on Aggregate Plans
	5.1 Life-Cycle of Aggregate Plans
	5.2 Mapping Constructs, and Libraries
	5.3 Challenges

	6 Conclusions
	References


