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Abstract. With the rapid proliferation of the GPS-equipped devices, a
myriad of trajectory data representing the mobility of the various moving
objects in two-dimensional space have been generated. In this paper, we
aim to detect the anomalous trajectories from the trajectory dataset and
propose a novel time-dependent popular routes based algorithm. In our
algorithm, spatial and temporal abnormalities are taken into considera-
tion simultaneously to improve the accuracy of the detection. For each
group of trajectories with the same source and destination, we firstly
design a time-dependent transfer graph and in different time period,
we can obtain the top-k most popular routes as reference routes. For
a pending inspecting trajectory in this time period, we will label it as
an outlier if has a great difference with the selected routes in both spa-
tial and temporal dimension. To quantitatively measure the “difference”
between a trajectory and a route, we propose a novel time-dependent dis-
tance measure which is based on Edit distance in both spatial and tem-
poral domain. The comparative experimental results with two famous
trajectory outlier detection methods TRAOD and IBAT on real dataset
demonstrate the good accuracy and efficiency of the proposed algorithm.

Keywords: Outlier detection · Time-dependent popular route · Trajec-
tory pattern mining

1 Introduction

In recent years, the booming development of GPS-equipped portable devices has
helped us gathering a huge amount of trajectory data. According to a report of a
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data research organization in China, there are about 66, 000 taxis in Beijing and
about 1, 900, 000 passengers each day. Each carry generates one trajectory and
there are about 69 million trajectories in one single year. Such a big dataset can
help us understanding the cabbies’ driving behavior, the city’s traffic condition
and so on. On this background, extensive researchers are encouraged in trajec-
tory pattern mining, such as life pattern mining [1,2], popular routes discovering
[3,4], transportation mode mining [5].

Trajectory outlier detection (TOD) is also a popular research topic in tra-
jectory pattern mining. According to J. Han et al. [6], an outlier means a data
object that is grossly different from or inconsistent with the remaining set of
data. The trajectory outlier means a trajectory that has a great difference with
most other trajectories in terms of some similarity metric.

Some TOD algorithms have been proposed. Each algorithm addresses cer-
tain aspects of abnormality. Among these TOD algorithms, the first impressive
method is TRAOD (TRAjectoy Outlier Detection) [7], which firstly splits a
trajectory into many trajectory partitions and then compares each trajectory
partition with its neighbors to determine whether it is an outlying portion or
not. The main advantage of TRAOD lies in the ability to detect outlying sub-
trajectories. But because of its sub-trajectory detection strategy, TRAOD has a
high time complexity of O(n2). Moreover, the detected result of TRAOD may
be influenced by irrelated trajectories because it detects outliers in the whole
dataset, as shown in Fig. 1. Recent years, another impressive method is IBAT
(Isolation Based Anomalous Trajectory detection) [8]. IBAT focuses on the test
trajectory and tries to separate it from the reset trajectories by randomly select-
ing points solely from the test trajectory. IBAT is more efficient than TRAOD
because IBAT does not need to partition the trajectory and the time complex-
ity is O(n). But IBAT has a same insufficiency with TRAOD: both of them
do not have enough attention on the travel time (departure time, arrival time
and ongoing time). TRAOD does not take the time constraint into account and
IBAT just assumes the travel time of the trajectories to be detected are in the
same time range but there is no in-depth analysis in IBAT.

Taking the travel time into account can ensure more accurate detection result.
Figure 2 shows an example of two groups of trajectories between two areas in
different time. τo and τn are two trajectories that walk the same path. But τo is
an outlier while τn is not because traffic condition changes over time. In other
words, outliers’ pattern is not static and usually changes with the time. To detect
the time-dependent outliers, this paper proposes a novel TOD algorithm called
time-dependent popular routes based trajectory outlier detection (TPRO).

TPRO detects outliers with the help of the popular routes. The popular
routes represent the most trajectories’ pattern, so it is a reasonable solution
to detect outliers based on the popular routes. As we mentioned above, TPRO
focuses on detecting the time-dependent outliers. So time-dependent popular
routes are involved to achieve this goal.

TPRO does not partition the trajectories because when facing with a large
dataset, efficiency is the first priority while sub-trajectory detection is time-
consuming. Given a trajectory dataset, in order to eliminate the influence of
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Fig. 1. A set of trajectories where Si is
the source area and Di is the destina-
tion area. The S2 → D2 dashed curve is
actually a trajectory outlier. But each
subpart of it has enough closed neigh-
bors because of being deceived by S1 →
D1 and S3 → D3 trajectories. TRAOD
cannot identify this kind of outlier.

Fig. 2. Two groups of trajectories
which start from S and end at D in
different time. τo is an outlier in 8 :
00am ∼ 9 : 00am because it has a great
difference with other trajectories dur-
ing this time. But the traffic condition
changes when 5 : 00pm ∼ 6 : 00pm.
τn, walking the same path with τo, is a
normal trajectory.

irrelevant trajectories, TPRO divides trajectories with the same source and desti-
nation (we call them relevant trajectories) into the same group. Then the dataset
can be divided into many groups and detection is token group by group. Dur-
ing the detection, if a trajectory has a great difference with the popular routes
during its travel time, this trajectory is classified as an outlier.

Despite that the meaning of the outlier is easy to understand, it is nontrivial
to detect outlier based on the time-dependent popular routes. There are mainly
two challenges in TPRO:

1. Each trajectory will be compared with its corresponding popular routes to
judge whether it is an outlier or not. So given a trajectory (assume its depar-
ture time is ts and arrival time is td), TPRO should efficiently retrieve the
corresponding popular routes during the time of ts ∼ td.

2. When calculating the difference between a trajectory and its corresponding
popular routes, not only the spatial info but also the temporal info (departure
time, arrival time and ongoing time) should be taken into account.

In response to the first challenge, a time-dependent transfer graph is con-
structed in TPRO. This graph records how many trajectories have passed
through each road in different time. With the help of the time-dependent trans-
fer graph, TPRO can efficiently retrieve the top-k most popular routes in a user
specified time range. And TPRO also puts forward the time-dependent edit dis-
tance to address the second challenge. The time-dependent edit distance not only
takes the spatial distance into account but also considers the temporal distance.
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The main contributions of this paper are as follows:

1. This paper presents a time-dependent popular routes based trajectory outlier
detection algorithm, which takes both spatial and temporal abnormality into
consideration and gives us a new solution in trajectory outlier detection.

2. We put forward an efficient popular routes query method in TPRO, which
can efficiently retrieve the popular routes during a user specified time range.

3. We provide a real trajectory dataset in which the outliers have been labelled
by user study.

The rest of this paper is organized as follows. A formal definition of our
problem is given in Sect. 2. Section 3 gives a detailed statement of our solution
and Sect. 4 shows our experiment’s result. Section 5 gives a brief introduction of
the related work. At last, a conclusion is given in Sect. 6.

2 Problem Definition

This part presents some prior definitions and gives a formal definition of the
problem this paper focuses on.

Definition 1 (Raw Trajectory). A raw trajectory τ̃ is a time-ordered sequence
of sampled points: τ̃ = (p̃1, p̃2, p̃3, ..., p̃x). Each sampled point p̃i is represented
by 〈l̃i, t̃i〉 where l̃i is a geographic coordinate and t̃i is the sampling time.

It is hard to find a common path from a group of raw trajectories because
of the discrete sampled points. So this paper preprocesses the dataset and map
each raw trajectory into the road network to get a mapped continuous trajectory.

Definition 2 (Road Network). A road network is a directed graph G = (V,E)
where V is a set of vertices representing road intersections and E is a set of
edges representing road segments.

We use vi to represent a certain vertex in G. If vi and vj are two endpoints
of a certain edge, then we have ϕ(vi, vj) = 0. If the edge’s direction is vi → vj ,
then it can be denoted as ei

j . Otherwise, the edge can be denoted as ej
i .

Definition 3 (Mapped Trajectory). A mapped trajectory τ is a sequence of time-
ordered road network locations. It can be denoted as τ = (p1, p2, p3, ..., pm). Each
road network location pi is represented as 〈vi, ti〉 where vi a certain vertex in the
road network and for all i ∈ {1, 2, 3, ...,m−1} that ϕ(vi, vi+1) = 0. And ti is the
time τ passes vi.

Henceforth, we will only deal with the mapped trajectories. So for simplicity,
we will drop the mapped qualifier. Thus trajectory in the rest of the article
is short for mapped trajectory. After giving a definition of the trajectory, the
time-dependent route is defined as follows.
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Definition 4 (Time-Dependent Route). A v1 → vm time-dependent route is
denoted as γ = (pf1, pf2, pf3, ..., pfm) and each pfi ∈ γ is represented as 〈vi, t̄i,
freqi〉 where vi represents a certain vertex in the road network and for all
i ∈ {1, 2, 3, ...,m − 1} that ϕ(vi, vi+1) = 0. Meanwhile, freqi means how many
trajectories have pass through vi and t̄i is the average pass time.

For simplicity, the time-dependent qualifier will be dropped and route is short
for time-dependent route in the rest of this paper. After giving a definition of
the trajectory and the route, trajectory route distance function is put forward
to indicate the difference degree between a trajectory and a route.

Definition 5 (Trajectory Route Distance Function). A trajectory route distance
function δ(τ, γ) is a formula that can give a difference score between τ and γ.

Based on above definitions, we give a formal definition of the outlier and the
problem this paper focuses on next.

Definition 6 (Outlier). Given a trajectory τ , a route set R = {γ1, γ2, ..., γk}, a
trajectory route distance function δ and an anomalous score threshold θ, we can
calculate the trajectory’s anomalous score

sτ =
k∑

i=1

wγi
· δ(τ, γi) (1)

where wγi
is the popularity weight of γi among the route set R. If sτ > θ, then

we say that τ is a θ-outlier on R and δ.

Problem: Given a trajectory dataset T , a route distance function δ and an anom-
alous score threshold θ, we need to get a trajectory set T

′
= {τ1, τ2, ..., τn} that

satisfies: for all τi ∈ T
′
, τi is a θ-outlier on its corresponding popular routes and δ.

3 TPRO Algorithm

This section introduces how TPRO solves the problem proposed above. Given a
trajectory dataset, to eliminate influence of irrelevant trajectories, TPRO first
divides the trajectories into the many groups according to their source and des-
tination. Then after trajectory grouping, the detection is taken for each group
respectively. In each group, we firstly construct a time-dependent transfer graph
from the trajectories. Then with the help of this graph, the time-dependent pop-
ular routes querying can be more efficient. At last, we use a time-dependent edit
distance based trajectory route distance function to judge whether a trajectory
is an outlier or not.
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3.1 Dataset Grouping

The source vertex and destination vertex of a trajectory τ is represented as τ.s
and τ.d. If we adopt the strategy that only trajectories starting at same vertex
and ending at same vertex can be gathered into one group, we will find that
each group has few trajectories. So we put forward the grid-equal-to relation to
enlarge the particle size of source area and destination area.

Definition 7 (Grid-Equal-To Relation). Given two number m, n, we can split
the road network G into m×n size-equal grids. For two vertices vi, vj, if vi and
vj fall into the same grid, then we say that vi is m-n-grid-equal-to vj. It can be
denoted as o(G,m, n, vi, vj) = 1.

For two certain trajectories τi and τj , after given the grid number m and n,
if o(G,m, n, τi.s, τj .s) = 1 and o(G,m, n, τi.d, τj .d) = 1, they will be divided into
the same group.

3.2 Construction of Time-Dependent Transfer Graph

After a certain group of trajectories with the same source and destination are
mapped into the road network, we can get a subgraph of the road network (Fig. 3
shows an example of this subgraph). And for each vertex in this subgraph, we
use a vertex frequency table (i.e. the table beside each vertex in Fig. 3) to record
how many trajectories have pass through each vertex in different time range.
This subgraph is called the time-dependent transfer graph (TTG).

Fig. 3. An example of TTG. vs is the source and vd is the destination. Each table
beside the vertex vi is called vertex frequency table of vi.

Form Fig. 3, we can see that the vertex frequency tables in TTG are in the
same time interval (30 min in this example). This time interval is called TTG
time interval and is denoted as Δt.
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With the help of these vertex frequency tables, we can easily estimate how
many trajectories have pass through a certain vertex during a user specified time
range. For example, we can infer that there are 26 trajectories (8 trajectories
during 8 : 00am ∼ 8 : 30am and 18 trajectories during 8 : 30am ∼ 9 : 00am)
have passed through v1 during 8 : 00am ∼ 9 : 00am. In some cases, the use
specified time range does not fully cover the vertex frequency table time ranges.
Such as, what if we wan to know that how many trajectories have passed through
v1 during 8 : 10am ∼ 9 : 00am. From the TTG, we can know that there are
18 trajectories have passed through v1 during 8 : 30am ∼ 9 : 00am, but we
cannot infer how many trajectories during 8 : 10am ∼ 8 : 30am directly. In such
situation, we multiply the trajectories number by the proportion of the covered
time range. Thus, the trajectories during 8 : 10am ∼ 8 : 30am is

8 × 8 : 30am − 8 : 10am

8 : 30am − 8 : 00am
= 8 × 20min

30min
≈ 5

Obviously, more smaller the TTG time interval is, more accurate the inferred
number is. But the space cost and time cost will increase.

And from the TTG in Fig. 3, we can also infer the average pass time of a
certain vertex during a user specified time range. For example, there are 5 and 18
trajectories have passed through v1 during 8 : 10am ∼ 8 : 30am and 8 : 30am ∼
9 : 00am respectively. So the average pass time during 8 : 10am ∼ 9 : 00am is

5 × 8:10am+8:30am
2 + 18 × 8:30am+9:00am

2

5 + 18
≈ 8 : 40am

3.3 Retrieving Time-Depended Popular Route

For a trajectory τ to be tested, TPRO compares it with the popular routes
during ts ∼ td (ts represents the departure time and td represents the arrival
time) to judge if it is an outlier. So this paragraph explains how to query the
time-dependent popular routes with the help of TTG.

Assume that ts = 8 : 00am and td = 9 : 00am, we should find the top-k
most popular routes during this time. First of all, we can traverse the TTG and
calculate each vertex’s trajectories number and the average pass time during
ts ∼ td. Then all possible routes during ts ∼ td are got as follows:

– γ1 = (〈vs, 8 : 33am, 52〉, 〈v1, 8 : 36am, 26〉, 〈v3, 8 : 41am, 22〉,
〈vd, 8 : 45am, 29〉)

– γ2 = (〈vs, 8 : 33am, 52〉, 〈v4, 8 : 40am, 17〉, 〈vd, 8 : 45am, 29〉)
– γ3 = (〈vs, 8 : 33am, 52〉, 〈v2, 8 : 38am, 8〉, 〈vd, 8 : 45am, 29〉)

Now that all routes have been got, we should judge which route is more
popular. Inspired by Luo et al. [9], the route popularity and more-popular-than
relation are proposed as follows.

Definition 8 (Route Popularity). The popularity of a certain route γ = (pf1,
pf2, pf3, ..., pfm) can be represented as an ordered frequency sequence: ργ =
(freqj1 , freqj2 , freqj3 , ..., freqjm), where:
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1. {freqj1 , freqj2 , freqj3 , ..., freqjm} ⇔ {pf1.freq, pf2.freq, pf3.freq, ...,
pfm.freq}

2. freqj1 ≥ freqj2 ≥ ... ≥ freqjm

Definition 9 (More-Popular-Than Relation). For two routes γ and γ
′
, assume

their popularity sequences are ργ = (freqj1 , freqj2 , freqj3 , ..., freqjm) and ργ′ =
(freq

′
j1

, freq
′
j2

, freq
′
j3

, ..., freq
′
jn

). If one of the following statements holds:

– ργ is prefix of ργ′
– or there exists a number q ∈ {1, 2, 3, ...,min(m,n)} such that:

1. freqjx = freq
′
jx

for all x ∈ {1, 2, 3, ..., q − 1}, if q > 2.
2. freqjq > freq

′
jq

then we say γ is more-popular-than γ
′
, denoted as γ 
 γ

′
.

According to Definitions 8 and 9, we have that ργ1 = (52, 29, 26, 22), ργ2 =
(52, 29, 17) and ργ3 = (52, 19, 8). Obviously, ργ1 
 ργ2 
 ργ3 . It means that γ1 is
more popular than γ2 and γ2 is more popular than γ3. Assume that k = 2, then
the top-k most popular routes during 8 : 00am ∼ 9 : 00am are γ1 and γ2.

Luo et al. has proved that the selected popular routes by this method satisfy
three key properties: suffix-optimal (i.e., any suffix of the popular route is also
popular), length-insensitive (i.e., popular does not mean the shorter/longer the
better), and bottleneck-free (i.e., popular routes should not contain infrequent
vertices or edges) in [9].

3.4 Outlier Detection

After the top-k popular routes got, we compare the trajectory with each popular
route. As we known, edit distance can represent two sequences’ difference degree.
But trajectory (or route) is not just vertex sequence, it also carries the temporal
information. So we propose a time-dependent edit distance based trajectory
route distance function to handle this problem.

Assume τ−1 = (p1, p2, p3, ..., pm−1) is a sub-trajectory of τ = (p1, p2, p3, ..., ,
pm−1, pm) after remove the last point pm. And γ−1 = (pf1, pf2, pf3, ..., pfn−1) is
prefix of γ = (pf1, pf2, pf3, ..., pfn−1, pfn) after remove the last tuple pfn. The
trajectory route distance function in TPRO is defined as a recursive equation:

δ(τ, γ) = Min

⎧
⎪⎨

⎪⎩

δ(τ−1, γ) + delete cost(pm)
δ(τ, γ−1) + delete cost(pfn)
δ(τ−1, γ−1) + replace cost(pm, pfn)

(2)

where

delete cost(pm) =

{
0.5, m < 2 or pm.v �= pm−1.v

0, otherwise

+

{
0.5, m < 2 or |pm.t − pm−1.t| > Δt

0, otherwise

(3)
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delete cost(pfn) =

{
0.5, n < 2 or pfn.v �= pfn−1.v

0, otherwise

+

{
0.5, n < 2 or |pfn.t̄ − pn−1.t̄| > Δt

0, otherwise

(4)

replace cost(pm, pfn) =

{
1, pm.v �= pfn.v

0, otherwise
+

{
1, |pm.t − pfn.t̄| > Δt

0, otherwise
(5)

If there is only one vertex in τ (or γ), which means that m = 1 (or n = 1),
then we have that τ−1 = φ (or γ−1 = φ). Assume that we use τ.len and γ.len to
represent the number of vertices of τ and γ, then these two initial conditions in
this recursive equation are

δ(τ, φ) = τ.len; (6)

δ(φ, γ) = γ.len; (7)

From Eqs. 3, 4 and 5, we can see that the delete cost or the replace cost can
be broken down into the spatial cost and the temporal cost. If two vertices are
different, the spatial cost is 0.5 (delete) or 1 (replace). Otherwise, the spatial
cost is 0. When calculating the temporal cost, we have the aid of the TTG time
interval Δt in Subsect. 3.2. If the time lag is larger than Δt, the temporal cost
is 0.5 (delete) or 1 (replace). Otherwise, the temporal cost is 0.

The pseudo code of the time-dependent edit distance based trajectory route
distance function is shown in Algorithm 1.

Algorithm 1. Trajectory Route Distance Function
Input: a trajectory τ , a route γ
Output: Distance between τ and γ
1: DECLARE int DP [0..τ.len][0..γ.len]
2: for i := 0 to τ.len do
3: DP [i][0] = i;
4: end for
5: for j := 0 to γ.len do
6: DP [0][j] = j;
7: end for
8: for i = 1 to τ.len do
9: for j = 1 to γ.len do

10: DP [i][j] = minimum(
11: DP [i − 1][j] + delete cost(τ.pi),
12: DP [i][j − 1] + delete cost(γ.pfj),
13: DP [i − 1][j − 1] + replace cost(τ.pi, γ.pfj)
14: );
15: end for
16: end for
17: return DP [τ.len][γ.len];
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The trajectory route distance function can give a difference score between
a trajectory and a popular route. But in most cases, there are more than one
popular route between two areas. But it does not mean that each popular route
has the same popularity degree. So we propose the popularity weight to represent
how popular a route is among a set of routes.

Definition 10 (Popularity Weight). Assume there is a route set R = {γ1, γ2, γ3,
..., γk} and for each γi = (pf1, pf2, pf3, ..., pfm) ∈ R, we have

γi.sum =
m∑

a=1

γi.pfa.freq (8)

then the popularity weight of γi can be represented as

wγi
=

γi.sum
∑k

b=1 γb.sum
(9)

3.5 Time Complexity

The overall pseudo code of TPRO has been shown in Algorithm 2. From the
pseudo code, we can see that the time complexity of TPRO is O(k · n) where k
is the number of popular routes used to detect outliers and n is the number of
trajectories in the dataset. In most cases, k is a small number (less than 10), so
we can use approximation O(n) for the time complexity.

4 Experiment Result

This section gives an exhibition of our experiment and the result. The first
subsection gives an introduction to the experiment dataset and environment
setting. The second subsection elaborates which criteria we use to evaluate our
algorithm. Finally, we give an analysis on the experiment result.

4.1 Experiment Setting

The experiment is taken under a real-world dataset which contains 412, 032 tra-
jectories. This dataset is collected from around 10, 700 taxis in BeiJing in 2012.
We pick up about 1, 300 trajectories from the dataset and asked volunteers to
manually label whether each trajectory is abnormal or not. This labeled dataset
is used to evaluate the accuracy of TPRO.

The road network in our experiment contains about 165, 000 vertices and
226, 000 edges. And the road network is split into 120×130 grids in the grouping
step1. Each grid’s size is about 1.5 km × 1.5 km.

Our algorithm is implemented in cpp. The machine we use to accomplish the
experiment has a quadcore Inter Core i5 CPU (3.2 GHz) and 8G memory. The
operating system is Linux 3.13.0 x 86 64 and the compiler is g++ 4.8.2.
1 That’s to say m is set to 120 and n is set to 130 in the grouping step.
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Algorithm 2. TPRO
Input: road network G, dataset T , grid number m and n, popular routes number k,

score threshold θ, TTG time interval Δt
Output: outlier set T

′

1: //DATASET GROUPING
2: grid = CreateGrid(G, m, n); // create m × n grids on the road network
3: groups = φ;
4: for ecah τ ∈ T do
5: srcGrid = grid.getLocatedGrid(τ.s);
6: destGrid = grid.getLocatedGrid(τ.d);
7: groups[srcGrid, destGrid].add(τ); // add trajectory to corresponding group
8: end for
9: //DETECTING IN EACH GROUP

10: for each T ∗ ∈ groups do
11: ttg = CreateTTG(T ∗, Δt); // construct time-dependent transfer graph
12: for each τ ∈ T ∗ do
13: sτ = 0;
14: routes = GetTopKRoutes(ttg, k, τ.ts, τ.td); // query popular routes
15: for each γ ∈ routes do
16: sτ+ = wγ · δ(τ, γ); // compare trajectory with each route
17: end for
18: if sτ > θ then
19: T

′
.add(τ); // add to outlier set

20: end if
21: end for
22: end for
23: return T

′
;

4.2 Evaluation Criteria

In practice, detection rate (the fraction of anomalous trajectories that are suc-
cessfully detected) and false alarm rate (the fraction of normal ones that are
predicted to be anomalous) are two important measures to evaluate the per-
formance of an anomaly detection method. Obviously, a good outlier detection
method should have a high detection rate and a low false alarm rate. After we
plot the detection rate on y-axis and the false alarm rate on x-axis, we can get a
curve called Receiver Operating Characteristic (ROC) [10] curve. The AUC [11]
value is defined as the area under the ROC curve. For a randomly chosen normal
trajectory τn and a randomly chosen anomalous trajectory τa, the AUC value is
equal to the probability that sτa > sτn . Obviously, if the AUC value is close to
1, the outlier detection method is of high quality.

4.3 Results

In this section, we first analysis how the parameters affect the experiment result.
Then we give a comparison between TPRO, TRAOD and IBAT from the accu-
racy and efficiency.



Time-Dependent Popular Routes Based Trajectory Outlier Detection 27

Varying Parameters. There are mainly three parameters in the detecting step
of TPRO: score threshold θ, popular routes number k and TTG time interval
Δt. So this paragraph elaborates how these three parameters affect the detection
rate, false alarm rate and the process time2.

Figure 4(a) shows how θ affects the detection rate, false alarm rate and
process time when k = 5 and Δt = 600 s. As θ increasing, which means that the
detection criterion becoming more conservative, the detection rate and the false
alarm rate will fall. But the process time is stable. When θ ≈ 1.0, we have a
high detection rate and a low false alarm rate.

k represents how many popular routes will be used to judge if a trajectory
is an outlier. Of course, more popular routes are used, more accurate the result
will be. But the process time will grow linearly because we must compare each
trajectory with each popular route. Figure 4(b) shows how k affects the detection
rate, false alarm rate and the process time when θ = 1.0 and Δt = 600 s. It shows
that as k increasing, the false alarm rate will fall and the process time will go
up. But it has a small effect on the detection rate. When k = 5, we can have a
high detection rate and a low false alarm rate. Meanwhile, the process time is
acceptable.

Figure 4(c) shows how Δt affects the detection rate, false alarm rate and
process time when k = 5 and θ = 1.0. If Δt is too small, TPRO will overstate the
temporal cost when calculating the distance between a trajectory and a route.
So the false alarm rate is very high and will fall as Δt increasing. But more
smaller Δt is, more accurate the selected popular routes are. But the popular
routes query time will be more longer. So as Δt increasing, detection rate and
the process time will both fall, too. When Δt = 600 s, we can have a low false
alarm rate and a less process time. Meanwhile, the detection rate is acceptable.
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Fig. 4. Detection rate, false alarm rate and time cost under varying θ (Left), k (Middle)
and Δt (Right)

TPRO vs. TRAOD and IBAT. This paragraph give a comparison between
TPRO, TRAOD and IBAT. All of the three algorithms are tested in their best
parameters, which are listed in Table 1.

Figure 5(a) shows the ROC curves of TPRO, TRAOD and IBAT. For better
illustration, the ranges of false alarm rate and detection rate are set to [0 ∼ 0.5]
and [0.4 ∼ 1]. We can see that TPRO has a larger area under the ROC curve
2 These three evaluating indicators are counted under the labeled dataset.
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Table 1. Parameter setting of TPRO, TRAOD and IBAT

Algorithm TPRO TRAOD IBAT

Parameters k = 5, Δt = 600 s D = 80, p = 0.95 m = 100, ψ = 256

than TRAOD and IBAT. It means that TPRO has a better performance than
TRAOD and IBAT in accuracy.
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Fig. 5. ROC curves of TPRO, TRAOD and IBAT (Left). Efficiency under the small
dataset (Middle) and large dataset (Right).

Figure 5(b) and (c) show the process time of TPRO, TRAOD and IBAT
under different scale dataset. Because the time complexity of TRAOD is O(n2),
which is very time consuming in larger dataset detection. So we only test it on
the small dataset. From these two figures, we can see that the time cost of TPRO
is between IBAT’s and TRAOD’s.

5 Related Work

Some related works are introduced in this part, which can be categorized into
two groups. The first one focuses on trajectory outlier detection and the second
one focuses on popular route mining.

Trajectory Outlier Detection: Some algorithms have been proposed to detect
trajectory outlier, but each addresses certain aspects of abnormality. Lee et al.
[7] put forward a group-and-detect framework and develop an algorithm called
TRAOD. TRAOD splits a trajectory into various subparts (at equal intervals),
then a hybrid of the distance-based and density-based approach is used to classify
each subpart is abnormal or not. Chen et al. [8] propose an isolation based
method, called IBAT. For a group of trajectories and a trajectory will be tested
in this group, they randomly pick a point from the test trajectory and remove
other trajectories which do not contain this point. This process is repeated until
no trajectory is left or all the trajectories left contain all the points the test
trajectory has. If the test trajectory is an outlier, this process will end very
soon. And Li et al. [12] emphasis on historical similarity trends between data
points. At each time step, each road segment checks its similarity with the other
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road segments, and the historical similarity values are recorded in a temporal
neighborhood vector at each road segment. Outliers are calculated from drastic
changes in these vectors [13]. Guan et al. [14] use a feature vector, such as
〈direction, speed, angle, location〉, to represent a trajectory segment and detect
the outliers according to these features. Mohamad et al. [15] take the speed and
turn directions into consideration. If a trajectory has an sudden speed change
or some unexpected turns, it is an abnormal trajectory. Recently, some studies
have used learning methods to identify anomalous trajectories [16,17]. But these
methods usually need training data, which is inconvenient to label. There are
also some works [18–20] have been done for the stream data detection or on-line
detection.

Popular Route Mining: Finding the most desirable path has been a hot
research topic for decades. Many works [21–23] have been done in finding the
shortest/fastest path. But the popular route does not mean the shortest or fastest
path. In most case, we prefer the most frequent path as the popular route. Lots
of algorithms have been proposed for popular route searching. Zaiben et al. [3]
introduce a transfer probability network to discover popular route from historical
trajectories. They derive the probability of transferring from every significant
location to the destination based on the historical trajectories, and the transfer
probability is used as an indicator of popularity. The popularity of a route is
defined as the product of transfer probabilities of all significant locations on the
route. Luo et al. [9] also construct a network graph (called footmark graph) to
mine frequent path. But they describe the edge frequency as the total number
of trajectories passing through the edge. Then they define a descending edge
frequency sequence to judge which path is more frequent. Another work, such
as [4], aims at deriving routes from uncertain trajectory data.

6 Conclusions

In this paper, we propose a time-dependent outlier detection algorithm which is
called TPRO. Given a trajectory dataset, we first divide the relevant trajectories
into same group. Then for each group, we propose a time-dependent transfer
graph to speed up querying time-dependent popular routes. We use a time-
dependent edit distance to represent the difference score between a trajectory
and a route. If a trajectory has a great difference with all of the selected popular
routes, it’s an outlier. We evaluate our method on a real-world dataset. The
experiment result shows that our method has a better performance than TRAOD
and IBAT.

In the future, we plan to enhance our algorithm in two directions. Firstly,
although TPRO is more efficient than TRAOD, but TPRO is slower than IBAT
in about ten times. So we want to improve TPRO on efficiency. Secondly, we
will improve TPRO for on-line outlier detection.
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