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Abstract. Multiaffine hybrid automata (MHA) represent a powerful
formalism to model complex dynamical systems. This formalism is par-
ticularly suited for the representation of biological systems which often
exhibit highly non-linear behavior. In this paper, we consider the prob-
lem of parameter identification for MHA. We present an abstraction of
MHA based on linear hybrid automata, which can be analyzed by the
SpaceEx model checker. This abstraction enables a precise handling of
time-dependent properties. We demonstrate the potential of our app-
roach on a model of a genetic regulatory network and a myocyte model.

1 Introduction

Hybrid automata can model systems from a wide range of real-world domains.
Due to its behavioral complexity, the biological domain can particularly bene-
fit from the expressiveness of hybrid automata [4]. However, biological models
mostly have highly non-linear dynamics.

Parameter identification is the problem where we want to find a parame-
ter set for which a given property is satisfied by the system. In the biological
domain, this problem is of large importance considering the current limitations
on experimental measurement techniques [17].

In this paper, we present a novel approach to solve the parameter identifi-
cation problem for the class of multiaffine hybrid automata (MHA). We reduce
the parameter identification problem to solving multiple verification problems.
In short, the algorithm consists of the following steps: We partition the parame-
ter space into a number of equivalence classes. Given an equivalence class, we
show how the system behavior can be approximated with a linear hybrid automa-
ton (LHA), which can be analyzed by the hybrid model checker SpaceEx [11].
In addition, we utilize a hierarchical search to start the analysis with coarser
regions and iteratively refine the partition based on the model structure. We
are also able to prune the search when we detect that our analysis will not find
any parameters in a subregion. We have implemented our approach and show
its potential on a genetic regulatory network and a myocyte model.
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Outline. The rest of the paper is organized as follows. In Sect. 2, we introduce
some preliminary notions. Then we present our new approach, first the construc-
tion of the relevant parts in Sect. 3, followed by the hierarchical search procedure
in Sect. 4. In Sect. 5, we evaluate the approach on two biological models. We dis-
cuss related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

In this section, we introduce the notions used in the rest of the paper.

Multiaffine function. A multiaffine function f : Rn → R
q(n, q ∈ N) is a polyno-

mial in the variables x1, . . . , xn with the property that the degree of f in any of
the variables is less than or equal to 1 [15]. Formally, f has the following form:

f(x1, . . . , xn) =
∑

i1,...,in∈{0,1}
ci1,...,inxi1

1 · · · xin
n ,

with ci1,...,in ∈ R
q for all i1, . . . , in ∈ {0, 1} and the convention that x0

k = 1.

Hybrid automaton. A hybrid automaton (HA) [1] is a mathematical model with
both continuous and discrete behavior. It is represented by the tuple H =
(Loc,Var , Inv ,Flow ,Trans, Init). Loc is a set of discrete locations. Var is a set
of real-valued variables x1, . . . , xn. Each � ∈ Loc is associated with a set of dif-
ferential equations (or inclusions) Flow(�) that defines the time-driven evolution
of the continuous variables. A state s ∈ Loc ×R

n consists of a location and val-
ues of the continuous variables x1, . . . , xn. The set of discrete transitions Trans
defines how the state can jump between locations when inside the transition’s
guard set. The system can remain in a location � while the state is inside the
invariant set Inv(�). All behavior originates from the set of initial states Init . A
trajectory is a function which defines the state of the HA for every time moment.
In the verification setting, we are interested in whether there exists a trajectory
from the set Init to a set Bad which defines the bad states to be avoided.

Let x(t) ∈ R
n denote the values of the continuous variables at time t. We

consider continuous dynamics Flow of the following two forms. If ẋ(t) = f(x, t)
where f(x, t) is a multiaffine function, then the HA is called a multiaffine hybrid
automaton (MHA). If ẋ(t) ∈ P where P is a polytope, then the HA is called a
linear hybrid automaton (LHA). We always consider convex polytopes and omit
the dependence of f on t in what follows.

Genetic regulatory network. A genetic regulatory network [5] is defined by the
dynamics of the following form:

ẋi = fi(x, p) =
∑

j∈Pi

κij rP
ij(x) −

∑

j∈Di

γij rD
ij (x)xi, i = 1, . . . , n (1)

Here xi is the i-th component of the state vector x ∈ X ⊂ R
n. Pi and Di

are sets of indices. κij and γij are production and degradation rate parameters,
respectively. We assume that some parameters are uncertain, i.e., are defined on
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proper intervals. We denote the number of uncertain parameters by m. Therefore,
the system is parametrized by the vector p = (p1, ..., pm) ∈ D, where D is the
hyper-rectangular domain of uncertain parameters.

The terms rij are continuous piecewise-multiaffine functions arising from
products of ramp functions r+ and r− of the form shown in Fig. 1(a). Each rij

captures the combined impact of several regulatory proteins in the sets Pi and
Di, respectively, on the control of the production or degradation of protein i.
Assuming protein i does not regulate its own degradation, i.e., xi does not occur
in rD

ij (x) for j ∈Di, function f = (f1, . . . , fn) is multiaffine in x and affine in p.

r−(xi, θi, θi)
+(xi, θi, θi)

θi xi0 θi

1

θi xi0 θi

1

(a)
ba

A
B

(b)

Fig. 1. (a) Ramp functions r+ and r−. (b) The two-genes network model.

We note that the ramp functions induce a partition of the state space X into
a grid of hyper-rectangular regions H. The values of the separating hyperplanes
are called thresholds θ. Let θ̄i be the number of thresholds in dimension i.

Definition 1. Let H :=
{
Hc | c = (c1, . . . , cn), ci ∈ {1, . . . , θ̄i − 1}, i = 1, . . . , n

}

be the set of hyper-rectangles Hc with coordinates c in the grid. Furthermore, let
coord :H → ∏n

i=1{1, . . . , θ̄i − 1} map hyper-rectangle Hc to its coordinate c.

Problem statement. A property ϕ specifies the desired system behavior. In this
paper, we consider properties of the form RInit → ¬♦RBad where the region
RInit denotes the initial system states and the region RBad denotes the states
to be avoided. Note that ϕ belongs to the class of safety properties. Our goal is
to identify a subset of the parameter domain D which ensures that the property
ϕ holds for a given MHA, i.e., RBad is avoided when starting in RInit .

Note that an MHA provides a semantically equivalent representation of the
dynamics (1). We consider an abstraction of a parametric MHA M(p) to an
infinite transition system.

Definition 2. Let Hx be the hyper-rectangle strictly containing x. Given a para-
meter p and an MHA M(p), the embedding transition system TM (p) is defined
as follows. The states X are the same as the continuous states of M(p). There is
a transition x → x′ iff: (1) Hx and Hx′ are either equal or adjacent. (2) There
is a solution ξ of (1) and time points t0 < t1 such that ξ(t0) = x, ξ(t1) = x′ and
for all t in [t0, t1], ξ(t) stays within Hx or Hx′ .
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Almost all trajectories in M(p) are represented in TM (p). The exception are
trajectories not passing through a common facet of two hyper-rectangles. In
what follows, we consider the representation of the system TM (p).

Example (two-genes network). In the following, we illustrate our approach on
the two-genes network [6] (also called toggle switch or cross-inhibition network).

ẋa = κa · r−(xa, θ4a, θ5a) · r−(xb, θ
2
b , θ3b ) − γaxa κa ∈ [0, 30], γa = 1

ẋb = κb · r−(xa, θ2a, θ3a) − γbxb κb ∈ [0, 40], γb = 2

(θ1a, θ2a, θ3a, θ4a, θ5a, θ6a) = (0, 8, 12, 18, 22, 30) (θ1b , θ2b , θ3b , θ4b ) = (0, 8, 12, 20)

Here xa and xb define the concentrations of the proteins A and B, respectively.
The uncertain parameters κa and κb define the range of their production rates in
the given intervals. As Fig. 1(b) shows, protein A inhibits the production of both
proteins A and B, while protein B only inhibits the production of protein A. We
are interested in checking whether the protein concentrations cannot reach some
specific threshold values when starting in a given initial region.

In addition, we consider an extended version of the dynamics (1) which fea-
tures a stimulus. The stimulus is a time-dependent function which models an
external influence on the system.

Example (two-genes network with stimulus). We extend the previous example
with the first equation now featuring some stimulus u:

ẋa = κa · r−(xa, θ4a, θ5a) · (1 − r+(xb, θ
2
b , θ3b ) · (1 − u)) − xa

u̇ = r−(t, t2, t3) (t1, t2, t3, t4) = (0, 0.29, 0.3, 1)

We use a stimulus which is 1 at the beginning up until 0.29 ms and then
drops linearly to 0 within 0.01 ms, expressed by the ramp function of time
r−(t, 0.29, 0.3). This stimulus regulates the production of the protein A together
with the protein B. The term (1 − r+(xb, θ

1
b , θ2b ) · (1 − u)) encodes the logical

formula ¬(xb∧¬u), which is equivalent to ¬xb∨u. Thus, this term contributes to
the production of the protein A whenever the protein B is absent or the stimulus
is present. Since the stimulus is time-dependent and decreasing, this means that
the inhibitory effect of the protein B is only relevant for the production of the
protein A after 0.29 ms.

3 Abstraction of MHA

In this section, we first introduce an LHA LM (p) which overapproximates the
behavior of the transition system TM (p) for a particular parameter value p ∈ D.
In order to provide efficient exploration of the parameter state space, we then
lift this definition to parameter sets. We use the two-genes model as a running
example throughout this section.
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3.1 Pointwise LHA Abstraction

State space and invariants. We use the same continuous variables for LM (p)
as in the MHA M(p). Thresholds θ partition the continuous state space into a
grid of hyper-rectangular regions, which naturally induces a discrete structure of
the LHA and location invariants. In particular, we map every hyper-rectangular
region to a location in the LHA and use the bounds on the regions as invariants.
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Fig. 2. (a) From state space partition to transition system. Example for κa = 10 and
κb = 15 (arrows normalized). (b–c) Flow computation for P = [8, 12] × [15, 20] (Color
figure online).

Example. In the two-genes example we get a 2D-partition by the planes at xa =
θi

a and xb = θj
b . Parts of the state space and the associated locations are shown

in Fig. 2(a). The invariant of location H3 is θ1a ≤ x1 ≤ θ2a ∧ θ2b ≤ x2 ≤ θ3b .

Discrete transitions. We use the quotient of TM (p) with respect to the state
space partition to define the discrete transitions.

Definition 3. Let H� and H�′ be the regions associated with the location � and
�′, respectively. LM (p) has a transition from location � to �′ if

– � and �′ are adjacent,
– there is a solution ξ of (1) and time points t0 < t1 < t2 such that

ξ(t) ∈ Inv(�) for all t in [t0, t1], and ξ(t) ∈ Inv(�′) for all t in [t1, t2].

We do not add any guards on the transitions as the chosen invariants already
ensure that a transition between two locations can only be taken on the common
facet of two adjacent regions H� and H�′ .

In order to effectively construct the transitions, we use the facts that the
dynamics f(x, p) are multiaffine in x and we consider only hyper-rectangular
regions for the locations in LM (p). In the following, let hull denote the convex
hull operator.
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Theorem 1. [7] Let f : Rn → R
n be a multiaffine function and H ⊂ R

n be a
hyper-rectangle with corner set CH . Then

f(H)⊆ hull({f(v) | v ∈ CH}).

Intuitively, this theorem says that the behavior of f inside a hyper-rectangle
H is completely determined by the behavior of f in the corners of H. As a
consequence, the following proposition along the lines of a similar proposition
for Kripke structures [5] can be proven.

Proposition 1. LM (p) has a transition from location � to �′ associated with
hyper-rectangles H� and H�′ only if the projection of f(x, p) on the H� → H�′

direction is positive in at least one corner of the facet separating H� from H�′ .

Direction and strength of the derivative ẋi = fi(x, p) in a corner v of a hyper-
rectangle depends linearly on parameter vector p. As a consequence, fi(v, p) = 0
is the hyperplane separating parameter values p where ẋi is positive from the ones
where ẋi is negative. Thus, Proposition 1 allows us to construct the transitions of
LM (p) based on the sign of the function f at the vertices of the hyper-rectangles.

Example. The transitions for the excerpt shown in Fig. 2(a) are determined by
the direction of the derivatives in the corners (shown in blue). For instance, we
add a transition from H1 to H2 because there is a corner, e.g., (θ2a, θ1b ), which
point to this direction, but there is no transition from H2 to H1.

Continuous flows. For computing the flows of the LHA we again use the multi-
affine dependence of f(x, p) on x and the affine dependence on p.

For a fixed hyper-rectangle H with corner set CH and a fixed parameter
vector p, by Theorem 1 we know that f(x, p) is included in the convex hull of
the hyper-rectangle corners v ∈ CH . Therefore, we can bound the flow of LM (p)
by a polytope, i.e., the dynamics can be represented in the form of differential
inclusion.

Definition 4. The flow of LM (p) is defined as Q(p) := hull({f(v, p) | v ∈ CH}).

3.2 Set-Based LHA Abstraction

In order to handle infinite sets of parameters, we lift the pointwise definition of
LM (p) to sets of parameters. In particular, given a parameter polytope P , we
introduce an LHA L∃

M (P ) which overapproximates the behavior of LM (p) for
all p ∈ P . Therefore, if L∃

M (P ) satisfies a property ϕ, we can conclude that P
is a valid parameter set. Otherwise, we partition the parameter set P into two
subsets P1 and P2 and proceed with their analysis. In order to prune the parts
of the parameter space where our analysis will not provide any valid parameters,
we introduce a further LHA called L∀

M (P ) which underapproximates the LHA
LM (p) for the parameter class P . In the following, we assume a parameter p ∈ P .

State space and invariants. We use the same state space and invariants for both
L∃

M (P ) and L∀
M (P ) as defined for LM (p).
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Discrete transitions. The theorem below provides an effective way to compute
the image of f(v, p) for a particular state space corner v and a parameter vector
p ∈ P .

Theorem 2. [14] Let f : Rm → R
m be an affine function and P ⊂ R

m be a
convex polytope with corner set CP . Then

f(P )= hull({f(d) | d ∈ CP }).

Now, L∃
M (P ) has a transition from location � to �′ if there is a transition

from � to �′ in LM (p) for some p ∈ P . Analogously, L∀
M (P ) has a transition

from location � to �′ if there is a transition from � to �′ in LM (p) for all p ∈ P .

Definition 5. Let c := coord(H) and c′ := coord(H ′) be the coordinates of two
adjacent hyper-rectangles. Furthermore, let V := CH ∩ CH′ be the corners on
the separating facet and let � and �′ be the locations associated to H and H ′,
respectively.

We define g(�, �′) :=
⋃

v∈V {p ∈ P | fi(v, p) · (c′
i − ci) > 0}, where i ∈

{1, . . . , n} such that c′
i − ci 
= 0. A transition � → �′ belongs to the LHA

– L∃
M (P ) if g(�, �′) 
= ∅, and to

– L∀
M (P ) if g(�, �′) = P .

Note that Theorem 2 allows us to construct the parameter set satisfying the
constraint fi(v, p) · (c′

i − ci) > 0 by only considering the vertices of P . The term
c′
i − ci = ±1 is used to express the direction of the transition. The construction

uses the union operation and test for equality and emptiness for polytopes.

Continuous flows. For L∃
M (P ) to be an overapproximation of all LM (p) and

L∀
M (P ) to be an underapproximation, the tightest definition we can find is the

union and intersection of all Q(p), respectively. Let Q∗
∃(P ) :=

⋃
p∈P Q(p) and

Q∗
∀(P ) :=

⋂
p∈P Q(p). Computing Q∗

∃(P ) and Q∗
∀(P ) is, however, infeasible.

Therefore, similarly to the transition construction, we propose an approximation
which relies on the values of the derivatives in the corners of state space partitions
H and parameter sets P .

Theorem 3. Let f(x, p) : R
n × R

m → R
n with x ∈ R

n and p ∈ R
m be a

multiaffine function which is affine in p, H ⊂ R
n be a hyper-rectangle with a

corner set CH and P ⊂ R
m be a convex polytope with a corner set CP . Then the

following holds:

–
⋃

p∈P Q(p) ⊆ hull
(⋃

d∈CP
Q(d)

)
,

–
⋂

p∈P Q(p) ⊆ ⋂
d∈CP

Q(d).

Note that the left-hand sides are Q∗
∃(P ) and Q∗

∀(P ), respectively. Based on
this theorem, we define the flows in the following way.

Definition 6. The flow of L∃
M (P ) is defined as Q∃(P ) := hull

(⋃
d∈CP

Q(d)
)
.

The flow of L∀
M (P ) is defined as Q∀(P ) :=

⋂
d∈CP

Q(d).
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We obtain an algorithm for computing Q∃(P ) and Q∀(P ) by first traversing
all vertices v ∈ CH and d ∈ CP and collecting f(v, d) in order to compute the
polytope Q(d). In the end, we take the finite union and intersection of those
polytopes. Note that similar to LM (p) we end up with LHA whose dynamics are
defined by differential inclusions.

The following proposition relates the flow representations we have introduced.

Proposition 2. The sets Q(p), Q∗
∃(P ), Q∗

∀(P ), Q∃(P ) and Q∀(P ) are related
as follows.

– Q∗
∀(P ) ⊆ Q∀(P ).

– Q∗
∀(P ) ⊆ Q(p) ⊆ Q∗

∃(P ) ⊆ Q∃(P ) for all p ∈ P .

Thus, Q∃(P ) is indeed an overapproximation of LM (p) as required. However,
while Q∗

∀(P ) is an underapproximation of LM (p), Q∀(P ) is not necessarily an
underapproximation of LM (p) for p ∈ P . We discuss this issue in the next section.

We define the automaton L∃∗
M (P ) by replacing Q∃(P ) with Q∗

∃(P ) in the
continuous flow of the automaton L∃

M (P ). We derive L∀∗
M (P ) from L∀

M (P ) in the
analogous way, i.e., by replacing Q∀(P ) with Q∗

∀(P ).

Example. Consider the state space rectangle H and the parameter space rectangle
P in Fig. 2(b). Recall that the state equation ẋ= f(x, p) is given as

ẋa = fa(x, p)= κa − xa ẋb = fb(x, p)= κb − 2xb.

Hence the dynamics f(v, d), for v and d in the corner sets CH and CP of H
and P , respectively, are of the form (κi

a − θj
a, κk

b − 2θ�
b).

Let the corners of the parameter space rectangle P be denoted in anti-
clockwise order as d1, d2, d3 and d4. Now construct the state space rectangles
Q(d1), Q(d2), Q(d3) and Q(d4). The intersection of all these rectangles results in
the rectangle Q∀(P ), while the union is the rectangle Q∃(P ). Since it is already
convex, hull is the identity operation in this case. The results are visualized in
Fig. 2(c).

We observe that, by construction, LM (p) is a conservative abstraction of
TM (p), and L∃

M (P ) is a conservative abstraction of LM (p), i.e., if L∃
M (P ) satisfies

a safety property, then so does TM (p). This fact ensures the soundness of our
approach.

Proposition 3. L∃
M (P ) is an overapproximation of TM (p) for any p ∈ P .

4 Hierarchical Parameter Search

In this section, we first show that by using sampling techniques we can compute
the automaton L∀∗

M (P ) with arbitrary precision. Afterwards, in order to lever-
age different levels of abstractions during the parameter space exploration, we
introduce a discrete abstraction of MHA. Finally, we describe an abstraction-
based parameter search procedure which explores the parameter domain in a
hierarchical fashion.
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4.1 Computation of Underapproximative Abstractions

As outlined in the previous section, the role of the underapproximation L∀∗
M (P )

is to detect parameter regions which our approach cannot classify as valid ones.
The LHA L∀

M (P ), an overapproximated version of L∀∗
M (P ), does not generally

underapproximate LM (p) for all p ∈ P . The reason is that the flows Q∀(P ) do
not necessarily underapproximate the flows Q(p) of all LM (p). In particular, as
we take an intersection only over corner points of a considered parameter set,
there might exist some p ∈ P such that Q∀(P ) 
⊆ Q(p).

Note that as we only use L∀
M (P ) for pruning purposes, soundness of our

approach is not affected by imprecision. We might at most ignore some parameter
region which could have been classified as valid by our approach. Still, in order
to improve the precision of L∀

M (P ), we can randomly sample parameter vectors
p ∈ P and consider the intersection of Q(p) with Q∀(P ).

The following theorem describes the possible improvements by sampling. For
notational convenience, let ‖·‖ denote the Euclidean norm, ∂S denote the border
of a closed set S, d(t, S) := mins∈S ‖t−s‖ denote the distance of t to the border
of S, and Ker ε(S) := {s ∈ S | d(s, ∂S) ≥ ε}.

Theorem 4. Let f(x, p) : R
n × R

m → R
n with x ∈ R

n and p ∈ R
m be a

multiaffine function which is affine in p, H ⊂ R
n be a hyper-rectangle and P ⊂

R
m be a convex polytope. Then the following formulae hold:

∀p, p′ ∈ P. lim
‖p−p′‖→0

Q(p) = Q(p′) (2)

∀p ∈ P, ε > 0.∃δ > 0.∀p′ ∈ P. ‖p − p′‖ < δ (3)
=⇒ Ker2ε(Q(p)) ⊆ Q(p) ∩ Q(p′) ∧ Ker2ε(Q(p′)) ⊆ Q(p) ∩ Q(p′)

This theorem asserts that if we sample sufficiently many points in a uniform
way in parameter space, then we can approximate L∀∗

M (P ) infinitely closely for
non-degenerate cases, i.e., when Ker2ε(Q(p)) 
= ∅ for all p ∈ P . However, for
practical purposes, sampling can clearly shrink the overapproximation even in
degenerate cases.

LM (p)L∀∗
M (P )L∀

M (P ) L∃∗
M (P ) L∃

M (P )

K∀
M (P ) KM (p) K∃

M (P )

TM (p)

Fig. 3. Relations of the systems presented in this paper. Let p ∈ P . An arrow S1 −→ S2

indicates that S2 is an overapproximation of S1.

Figure 3 shows the relationship between the systems considered in this paper.



28 S. Bogomolov et al.

4.2 Discrete Abstraction of MHA

For later discussion, it is useful to define the induced Kripke structures (KS) of
the LHA LM (p), L∃

M (P ) and L∀
M (P ). Basically, we drop the continuous behavior

and map initial and bad states to the locations with non-empty intersection.

Definition 7. Given an LHA H with set of locations Loc, let S be a set of
discrete states with |S| = |Loc| and let disc : Loc → S be a bijection which maps
every location to a discrete state. In addition, let Bad be the bad states of H.

The pair (H,Bad) induces a Kripke structure K = (S, S0, SB , T ), where
S = {disc(�) | � ∈ Loc} is the set of states, S0 = {disc(�) | inv(�) ∩ Init 
= ∅}
is the set of initial states, SB = {disc(�) | inv(�) ∩ Bad 
= ∅} are the bad states,
and T = {disc(�) →K disc(�′) | � →H �′ ∈ Trans} is the set of transitions.

We denote by KM (p), K∃
M (P ), K∀

M (P ) the Kripke structures induced by
LM (p), L∃

M (P ), L∀
M (P ), respectively. Clearly, the induced Kripke structure is a

conservative abstraction of the LHA as it allows for additional trajectories to
the bad states for two reasons. The behavior in the states is unconstrained due
to the absence of flows, and the initial and bad states of the Kripke structure
overapproximate their LHA counterparts.

Proposition 4. KM (p) (K∃
M (P ), K∀

M (P ), respectively) is an overapproxima-
tion of LM (p) (L∃

M (P ), L∀
M (P ), respectively) for any p ∈ D (P ⊆ D, respec-

tively).

We incorporate the Kripke structures into our approach in the following way.
Whenever we analyze an LHA, we first analyze the respective KS. If the KS
satisfies the given property, we skip the LHA analysis. This is justified because
by Proposition 4 we know that the respective LHA will also satisfy the property.
In this way, we improve analysis performance as the reachability problem for
LHA is computationally harder to solve. We note that the construction of the
KS does not impose any further computational efforts since we need to construct
the locations and transitions for the LHA anyway.

4.3 Parameter Identification

Given an MHA M with ẋ= f(x, p), a safety property ϕ and the domain of
uncertain parameters D, we explore the parameter space in a hierarchical way.
Recall from the construction of the transitions that the constraints f(x, p) = 0
are the separating hyperplanes responsible for adding transitions. Based on those
constraints, the instantiation of f(x, p) in every corner v of the state space leads
to a parameter space partition into polytopes.

We now explain the algorithm with the help of the pseudocode given in Fig. 4.
In a preprocessing step, the algorithm examines the corners of the state space

partition and collects the constraints Ψ over the parameters in the function
CollectConstraintsList (line 3) such that f(x, p) = 0.



Abstraction-Based Parameter Synthesis for Multiaffine Systems 29

1 (M, ϕ, D )
2 % M : MHA, ϕ : property , D : unce r ta in parameters
3 Ψ := (M, D ) ;
4 global V := ∅ ;
5 (ε, Ψ, M, ϕ, D, �) ; % s t a r t at root (ε = empty l i s t )
6 return V ; % found va l i d parameters

6 (CL, Ψ, M, ϕ, D, b) % CL : l i s t o f cur rent c on s t r a i n t s
7 P := (CL, D ) ;

8 K∃
M , K∀

M , L∃
M , L∀

M = (M, P ) ;

9 i f (b ∧ ¬ (K∃
M , ϕ) )

10 V := V ∪ P ; return ; % va l i d s e t found by the KS ana l y s i s

11 e l s e i f (¬ (L∃
M , ϕ) )

12 V := V ∪ P ; return ; % va l i d s e t found by the LHA ana l y s i s

13 e l s e i f (¬b ∨ (K∀
M , ϕ) )

14 b := ⊥ ; % no fu tu r e va l i d s e t s f o r the KS ana l y s i s

15 i f ( (L∀
M , ϕ) )

16 return ; % no fu tu r e va l i d s e t s f o r the LHA ana l y s i s
17 % pa r t i t i o n P and descend to ch i l d nodes in the search t r e e
18 c := (Ψ ) ; Ψ := (Ψ ) ;
19 ( (CL, c ≥ 0), Ψ, M, ϕ, D, b) ;
20 ( (CL, c ≤ 0), Ψ, M, ϕ, D, b) ;

Fig. 4. The algorithm in pseudocode.

Next, the algorithm moves on to the function Explore (line 5) which actually
implements the search in the parameter space. This function successively builds
a number of abstractions of the MHA for a considered parameter set in order to
find valid subsets. It takes a list CL of constraints which encodes hyperplanes
used to define the current parameter set. We initially call the function with
CL = ε as we first consider the whole parameter space. Now we look at the
function Explore in more detail.

We start by calling the function PolytopeFromConstraintsList (line 7)
which builds a parameter polytope P based on the provided list CL of constraints
over parameters and the parameter space domain D. In line 8 we compute the
KS K∃

M (P ), K∀
M (P ) and the LHA L∃

M (P ), L∀
M (P ). Note that on the implemen-

tation level we compute them only on demand. The computed approximations
are analyzed in the following way:

1. If the property ϕ holds for the KS K∃
M (P ) already (line 9), we conclude

that the current parameter set P is valid. Therefore, we add P to the set of
valid parameters V and stop considering the current branch in the search tree
(line 10).

2. If the discrete abstraction K∃
M (P ) was too coarse to prove the validity of P ,

we continue with the finer analysis using L∃
M (P ) (line 11). Similar to step 1,

in the case of property satisfaction we add P to the valid parameters (line 12).
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3. If the parameter set validity has not been shown up to now, we proceed to the
pruning phase by considering K∀

M (P ) and L∀
M (P ). If both of them violate the

property ϕ, we prune the search tree as we expect that no valid parameter
sets can be found for any subset of P .
Note that due to efficiency reasons we first analyze K∀

M (P ) (line 13) and move
on to L∀

M (P ) (line 15) only if the KS is not safe with respect to the property
ϕ. If L∀

M (P ) is not safe either, we prune the current subtree. However, if
L∀

M (P ) is safe, we continue with the search. In this case, we can omit the KS
analysis for all nodes in the current subtree as it will always give the same
result. We assume the conditions in lines 9 and 13 are evaluated in a lazy
fashion and therefore we only use the KS analysis based on the value of the
Boolean switch b.

4. If K∀
M (P ) or L∀

M (P ) are safe, we partition the parameter set P into two
subsets by considering a further constraint from the list Ψ (line 18). Those
two subsets correspond to the positive and negative values of the chosen
constraint, respectively. We proceed by recursively analyzing both subsets
(lines 19–20).

Pε

≤ 0 ≥ 0

P0 P1

≤ 0 ≥ 0

P00 P01
...

≤ 0 ≥ 0

P10 P11
...

...

Fig. 5. Search tree in the parameter space. yellow: L∃
M (P ) satisfies the property ϕ

while K∃
M (P ) violates it. blue: L∀

M (P ) satisfies the property ϕ while K∀
M (P ) violates

it. gray: The node is only explored by the LHA analysis. red: The node is only explored
by the KS analysis (Color figure online).

Search tree implications. In Fig. 5, we illustrate the potential impact of the LHA
L∃

M (P ) and L∀
M (P ) on the structure of the search tree compared to an approach

only using the KS analysis. We observe that L∃
M (P ) satisfies the property ϕ in

the node P1, whereas K∃
M (P ) violates the property. The LHA analysis benefits

in two ways from this result. Firstly, it finds a large parameter set P1, whereas
the KS analysis can at most find valid sets in some of the child nodes, which are
subsets of P1. Secondly, the LHA analysis does not explore the children of P1 in
the search tree, which improves the algorithm performance. Moreover, L∀

M (P )
satisfies the property ϕ in the node P0, whereas K∀

M (P ) violates the property.
Therefore, the KS analysis prunes the subtree P0, but a valid parameter set P00

can be found by the LHA analysis.

5 Evaluation

We have implemented the algorithm in MATLAB in the tool Hydentify. We
use the library PPL [2] for the operations on polytopes and the SpaceEx model
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checker [11] for the analysis of the LHA. Note that the default version of SpaceEx
does not stop immediately after having found a property violation. Therefore,
we have modified the version of SpaceEx so that it stops as soon as a prop-
erty violation has been detected. This adjustment lets us improve the analysis
performance. We apply the PHAVer scenario of SpaceEx which uses constraint
polytopes to represent reachable regions to precisely analyze LHA.

Batt et al. [5] have presented a parameter identification approach for mul-
tiaffine systems implemented in a tool called RoVerGeNe. They approximate
the system on the level of the induced Kripke structures. In the following eval-
uation, we compare the parameter identification results of our approach and
RoVerGeNe. The integration of the induced KS into our algorithm allows for
both a qualitative and a quantitative comparison of the two approaches. The
implementation and models we used for the evaluation are available online1.

Two-genes network model. We evaluate our tool on a number of models from the
class of genetic regulatory networks. The experiments have been performed on
a notebook with an Intel Core 2 Duo @ 2.26 GHz processor and 4 GB RAM.

For the evaluation purpose, we consider two classes of the two-genes network
model introduced in Sect. 2. The first model class is the original system, while
the second class is augmented by a stimulus. Note that our LHA framework
enables an easy modeling and analysis of models with time dependent stimuli.
In particular, we model a stimulus as a ramp function of an auxiliary variable t
defined by the differential equation ṫ = 1. For every model class, we present two
model instances. We look for parameters which lead to the repression of a given
protein. For every instance and parameter identification algorithm, we report
the following data: the coverage of the parameter domain, the number of the
valid parameter sets found, the number of nodes in the search tree considered,
the number of KS and LHA analyzed, and the runtime in seconds. By the term
parameter coverage we denote the relation of the volume of the found valid
parameters to the volume of the whole parameter domain D. The results are
provided in Table 1. The instances 1–2 correspond to the model class without a
stimulus, whereas the other two instances belong to the class with a stimulus.

We first observe that the valid parameter regions found by our algorithm are
usually much larger than the ones found by RoVerGeNe for both the models
with and without the stimulus. Instance 2 provides a particularly illustrative
example for the difference. Here, RoVerGeNe does not find any valid parameters,
whereas our approach discovers valid parameter regions covering 38 % of the
whole parameter domain. This behavior can be justified as follows. On the one
hand, RoVerGeNe reports that both K∃

M (P ) and K∀
M (P ) at the root level reach

the bad states. This results in analysis termination of RoVerGeNe. On the other
hand, our algorithm proceeds in-depth with the analysis of the parameter space
and detects 5 valid parameter regions. In instance 3, we see similar impact of
taking LHA into account. In particular, both approaches consider 5 K∀

M (P ).
However, our approach additionally considers 3 L∀

M (P ) which allow to extra
unfold the parameter space. In this way, our approach analyzes 15 nodes and
1 http://swt.informatik.uni-freiburg.de/tool/spaceex/hydentify.

http://swt.informatik.uni-freiburg.de/tool/spaceex/hydentify
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Table 1. model ID: 1–2: without stimulus; 3–4: with stimulus; % valid: percentage of
parameter space verified; # sets: number of parameter sets found; # nodes: number
of nodes in the search tree; # ∃-KS/∃-LHA: number of K∃

M/L∃
M analyzed; # ∀-

KS/∀-LHA: number of K∀
M/L∀

M analyzed; runtime: runtime in seconds

% valid # sets # nodes # ∃-KS/∃-LHA # ∀-KS/∀-LHA runtime [s]
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1 60 85 7 5 23 23 23 9 21 16 5 10 11 32

2 0 38 0 5 1 79 1 1 79 1 1 62 2 95

3 65 73 3 5 9 15 9 9 12 5 5 3 6 22

4 60 84 4 3 13 9 13 7 7 9 4 1 8 18

finds 5 valid regions compared to 9 nodes and 3 valid regions for RoVerGeNe,
respectively. At the same time, the refined precision of LHA can shrink the search
space. For example, in instance 4, the new algorithm achieves the parameter
coverage of 84 % vs. 60 % by RoVerGeNe having considered only 9 nodes vs.
13 nodes in case of RoVerGeNe. We note that the valid parameter sets which
are near the search tree root lead to larger parameter coverage with only a few
parameter sets. This fact is confirmed by instance 4 where our approach finds 3
valid sets which cover a bigger region than the 4 valid sets found by RoVerGeNe.

Myocyte model. A fundamental question in the treatment of cardiac disorders,
such as tachycardia and fibrillation [8], is the identification of circumstances
under which such a disorder arises. Cardiac contraction is electrically regulated
by particular cells, known as myocytes. For each electric stimulus originating
in the sino-atrial node of the heart (its natural pacemaking unit), the myocytes
propagate this stimulus and enforce the contraction of the cardiac muscle, known
as a heart beat. Grosu et al. [13] have identified an MHA model for human
ventricular myocytes and recast the biological investigation of lack of excitability
to a computational investigation of the parameter ranges for which the MHA
accurately reproduces lack of excitability. We apply our algorithm to this model
and compare its performance with RoVerGeNe. The model has 4 continuous
variables and 4 parameters. In our setting, a valid parameter set ensures that
the myocyte is not excited.

We remark that our parameter identification approach has a large potential
with respect to parallelization as the LHA and KS can be analyzed indepen-
dently. We made use of this property and utilized a parallel version of our imple-
mentation for the analysis of the myocyte model. The experiments have been run
on a Linux cluster with 32 AMD @ 2.3 GHz cores and 256 GB RAM. The model
behavior is analyzed within a biologically reasonable time span of 1 ms. We note
that the stimulus and particularly its duration require a special treatment as it
strongly impacts the myocyte behavior. The stimulus in our model starts with
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the value 1 and linearly drops to 0. We explore the impact of the stimulus length
on the myocytes excitement.

Our approach empirically shows that the whole parameter domain is valid
for all stimuli of length up to approximately 0.12 ms. In other words, we can
provide a lower bound on the stimulus length which makes the myocyte model
excitable. For this purpose, we have discretized the stimulus length with a step
of 0.1 ms, i.e., we have considered stimuli of the length 0, 0.1, . . . , 1 ms. Having
identified an interval of interest [0.1; 0.2], we have discretized it in a finer way
with a step of 0.02 ms. The new analysis takes 187 s and detects that the whole
parameter domain is valid for the stimulus of length 0.12 ms, whereas RoVerGeNe
reports the coverage of 29 % after 48 s. The parameter coverage computed by our
algorithm drops to 30 % for the stimulus length of 0.14 ms and the analysis takes
1785 s. We note that the coverage computed by RoVerGeNe stays the same
for all stimulus lengths as it cannot reason about time. This is a conceptual
improvement over RoVerGeNe.

6 Related Work

A number of approaches have been developed to solve the parameter identification
problem for hybrid automata. First, as already outlined in the previous section,
Batt et al. [5] presented a parameter identification approach based on the abstrac-
tion of MHA by Kripke structures. By using our LHA abstraction, we improve the
abstraction precision and in this way find more valid parameters. Dang et al. [9]
introduced a “sensitive barbarian” approach. Bartocci et al. [3] consider a modular
version of this approach. The main idea is to combine numerical simulation with
sensitivity analysis to reduce the considered parameter space. A crucial difference
to our approach lies in the fact that we utilize a symbolic analysis of the reach-
able states. In a further approach, Dreossi et al. [10] provide a parameter synthesis
algorithm for polynomial dynamical systems. Their synthesis technique uses the
Bernstein polynomial representation and recasts the synthesis problem as a linear
programming problem. Note that they consider only discrete time dynamical sys-
tems, whereas we treat time as a continuous entity. The work by Liu et al. [16]
tackles the parameter synthesis problem using δ-complete decision procedures [12]
for first-order logic (FOL) formulae to overcome undecidability issues. In this set-
ting, a FOL formula describes the states reachable with a finite number of steps.
Therefore, the parameter identification problem is reduced to finding a satisfying
valuation of the parameters for this formula. This approach requires enumerating
all the discrete paths of a particular length,which leads to performance degradation
for large models. In our approach, we employ the symbolic model checker SpaceEx,
which prunes the state space exploration by checking whether the currently con-
sidered states have already been visited.
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7 Conclusion

We have presented a novel parameter identification algorithm for multiaffine
hybrid automata. In our algorithm, we compute equivalence classes in the para-
meter space and explore them in a hierarchical way. The approximation of the
system dynamics with linear hybrid automata lets us keep the timing information
in our abstraction. This allows us to precisely treat time-dependent properties
such as a stimulus.

Given a parameter polytope P , we compute an LHA which overapproximates
the system behavior for P . Furthermore, we compute another LHA which enables
us to prune the search tree. We have evaluated our approach on a model of a
genetic regulatory network and a myocyte model and demonstrated its improve-
ment over RoVerGeNe, a tool for parameter identification based on a purely
discrete abstraction.

In the future, we plan to investigate the application of hybrid model checkers
which support more expressive continuous dynamics. This enables approximat-
ing the parametrized system dynamics with a hybrid automaton class featuring
dynamics beyond the ones of LHA.
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