
Chapter 2
Incentives for Repair in Self-Repair
Networks

Abstract This chapter discusses when selfish agents begin to cooperate instead of
defect, focusing on a specific task of self-maintenance. To consider the incentive for
repair in a game theoretic framework, the Prisoner’s Dilemma is introduced in a
two-nodes model for the network cleaning problem where a collection of agents
capable of repairing other agents by modifying their contents can clean the col-
lection. With this problem, cooperation corresponds to repairing other agents and
defect to not repairing. Although both agents defecting is a Nash equilibrium—no
agent is willing to repair others when only the repair cost is involved in the payoff
—agents may cooperate with each other when system reliability is also incorpo-
rated in the payoff and with certain conditions satisfied. The incentive for coop-
eration will be stronger when a system-wide criterion such as availability is
incorporated in the payoff.

Keywords Reliability engineering � Game theory � Mechanism design � Nash
equilibrium � Prisoner’s dilemma � Hamilton’s rule � Kin selection � Multi-agent
systems � Mutual repair � Autonomous distributed systems

2.1 Introduction

If von Neumann had worked on introducing active elements (assuming repairing
capability) in his research on biological robustness (e.g., probabilistic logic), reli-
ability theory would be more tailored for recent artificial systems involving net-
worked machines. But he left a fundamental framework for active agents, namely
game theory. The first step toward a self-repair network is assumed to be a
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capability of repair other than classical assumptions for each agent subject to failure
and hence passive elements of being repaired. Thus, the fundamental difference
from the conventional reliability theory is the assumption of the active aspect in
addition to the passive aspect in the nodes. This can be captured as an extension of
reliability theory and at the same time as a specialization (for networked computer
systems) of the theory. This is made possible by modeling self-involvement of the
self-action models (Chap. 1) as follows:

• Self-involvement;
• Autonomous and distributed systems with selfish agents;
• Asymmetry of existence and non-existence.

The model in this chapter is related to asymmetry of existence and non-existence,
for it deals with availability and reliability, which are concepts reflected from the
real existence space to the functional space. Indeed, the concept of availability is a
matter of survival not only for each machine but also for a cooperative collective of
machines. In order to consider selfish agents, we need to confirm incentives for the
selfish agents to seek. We use the word “agent” when we need to note that the entity
is autonomous and hence capable of actions such as repairing and capable of
becoming selfish. We also use the word “node” when we need to consider the
network structure.

For the self-repair networks, the first question is: even if a framework of
self-repair is available, are there any nodes (computers) which would repair other
nodes by sacrificing their own resources? Thus, the problem of this chapter is:

Are there any incentives for a node of the self-repair network to repair other
nodes by sacrificing their own resources?

This chapter explores possible incentives by extending the interest of the
self-node in space and time. A hint can be gained from the theory of altruism found
in social insects (Hamilton 1963). Hamilton noted: “The theory of kin selection
defines how an individual values the reproduction of a relative compared with its
own reproduction (Hamilton 1964).” With regard to self-repair networks, the
remark can be interpreted as: how each node values the assignment of its resources
to related nodes compared with its own use. This may be a matter of “exchange
rate” as acutely pointed out in an economic theoretical grounding of social evo-
lution by Frank (Frank 1998). We will revisit an evolutionary framework in Chap. 4
involving strategies but this chapter concentrates on incentives for repairing.

Technically, we intend to extend measures of reliability and availability in
reliability engineering [e.g., (Shooman 1968; Barlow and Proschan 1975; Anderson
and Randell 1979)] so that those of mutually cooperative (repair and being repaired)
machines may be measured.

Unexpected growth of large-scale information systems such as the Internet
suggests that an open and evolutionary environment for selfish agents will lead to
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collective phenomena. The Internet is undoubtedly one of the most complex and
large-scale artifacts that humans have ever invented. An examination on how the
Internet has been built and grown suggests that systems of this complexity may be
built not by a usual design but by its own growing logic that not even the designer
foresaw before its maturation: a synthetic view that a self-repair network could be
embedded in the field.

Since the Internet has formed itself as a field that allows many selfish activities,
several utilities and protocols have converged on what may be called the “Nash
equilibrium” fromwhichnoplayerswant to deviate (Nash1951, 1953;Nash1950a, b).
In Papadimitriou (2001), a problem for the network protocol is explained, which will
lead to economicmodels that allow the current Internet to exist as an equilibrium point
becauseof its simplicity inpermittingdistributed and free joining to thenetwork.These
studies shednew lighton computational intelligence.That is, rather than implementing
an intelligent program, design a field in the Internet that allows intelligent systems to
emerge as the Nash equilibrium of the Internet field.

Further, the game theoretic approaches to the Internet reveal that obtaining some
Nash equilibrium is computationally hard. This fact, looked at from the opposite
side, would indicate that a computationally difficult task may be solved by selfish
agents. Resource allocation, for example, which is computationally tough, may be
solved by a market mechanism in which many selfish agents participate.
Mechanism Design, a subfield of economics, has been studied (Hurwicz and Reiter
2006; Maskin 2008; Myerson 1988, 2008) and has been extended to Algorithmic
Mechanism Design (Hershberger and Suri 2001; Nisan and Ronen 1999) and to
Distributed Algorithmic Mechanism Design (Feigenbaum et al. 2001; Feigenbaum
and Shenker 2002; Feigenbaum et al. 2002).

This chapter makes an initial attempt at embedding a computational intelligence
in the Internet field by selfish agents; that is, whether selfish agents can ever
cooperate and even converge on some tasks. Selfish routing and task allocation
have been studied extensively in the computational game community, but can
agents ever take care of themselves in the first place? We first pose the problem of
self-maintenance in an agent population, and then a game theoretic approach will be
tested to determine whether or not cooperation would occur or under what condi-
tions cooperation would occur.

While this chapter amounts to a microscopic analysis focusing on conditions
when two interacting agents have an incentive to cooperate (i.e. mutually repair),
Chap. 4 amounts to a macroscopic study on a network with many interacting
agents.

Section 2.2 discusses the motivations and a paradigm of the present research,
and describes the problem of cleaning a self-repair network. Section 2.3 discusses
the incentives for selfish agents to cooperate based on system reliability and
availability of mutually repairing agents that do not have recognition capability.
Section 2.4 discusses when and how the selfish agents will cooperate based on the
result of Sect. 2.3.
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2.2 Economic Theory for Selfish Agents

The game theoretic approach has demonstrated its power in the field of economics
and biology. The Internet has already reached a level of complexity comparable to
economic systems and biological systems. Moreover, an agent approach permits a
structural similarity where selfish individuals (in the economic system of the free
market) and selfish genes (in biological systems) cooperate or defect in an open
network where many things have been left undetermined before the convergence.

Economic approaches have been actively studied in the distributed artificial
intelligence community [e.g. (Boutilier et al. 1997; Walsh and Wellman 1998)], and
their application to auction may be a successful domain [e.g. (Parkes and Ungar
2000)]. Economic approaches, and a game theoretic approach in particular, have
been extensively studied in the algorithm and computation community and are
having an impact on network applications. Rigorous arguments with the equilib-
rium concepts, the Nash equilibrium among others, are building a basic theory for
economic aspects of the Internet. The cost of selfish routing has been estimated by
using the extent to which the selfish routing might be degraded at the equilibrium
(Nash equilibrium from which no one wants to deviate) relative to the optimal
solution, as imagined from the traffic congestion caused by most cars want to use
the one shortest path. Protocols such as TCP (Akella et al. 2002), Aloha, CDMA
and CSMA/CA have been studied. Packet forwarding strategies in wireless Ad Hoc
Networks can also be recast in the framework. Network intrusion detection has also
been investigated (Kodialam and Lakshman 2003) in the framework of a
two-players game: Intruder and Defender.

What has been computed by a market mechanism or more generally by a col-
lection of selfish agents turned out to be hard to obtain by computation (as a typical
example: prices of commodities as an index for resource allocation). This fact
indicates that the market economy, or more generally free and hence selfish agents
properly networked, has the potential for computing something that could be hard
when approached otherwise. Also, the fact that the eradication of the planned
economy by the market economy and that the market economy remains in spite of
perturbations suggests that the market economy may be “evolutionarily stable”
(Maynard Smith 1982) within these economic systems.

This fact further indicates that a problem-solving framework by properly net-
worked selfish agents may have some advantage over other usual problem-solving
frameworks such as those organized by a central authority. Also, solutions can be
obtained almost for free or as a byproduct of the problem solving mechanism, or
solutions are almost inseparably embedded in the solving mechanism. The above
two observations encourage the recasting of problems which have been known to
be computationally hard or problems difficult to even define properly and approach,
such as attaining self-repair systems.

Studies with agents usually assume that agents can be autonomous, hence
allowing different rules of interactions: heterogeneous agents. We further assume
that agents are selfish in the sense that they will try to maximize the payoff for the
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agent itself. Thus, agents can be broader than the program or software and they
involve users that are committed to the agents. Agents may include not only pro-
grams but also humans (end-point users and providers running autonomous systems
for the Internet) behind the programs. Mutually supporting collectives may emerge
as a result of the interplay among agents. Spam mail, computer viruses and worms
may be called (malicious) agents, but they are not mutually supporting collectives;
they are rather parasitic lone wolves. However, DDoS (Distributed Denial of
Service) attacks and some distributed viruses and worms, however, can be con-
sidered collectives.

The idea developed here can apply not only to the Internet but also to other
information networks such as sensor networks, as long as they can be placed in the
model.

The models presented in this chapter have the following components:

M1. States: Agents have two states (0 for normal; 1 for abnormal). The state will be
determined by the action and state of interacting agents.

M2. Actions: Agents have two actions (C for cooperation; D for defection).
M3. Network: Agents (nodes) are networked and agents can act only on the con-

nected (and directed by arcs) agents (neighbor nodes).

Actions may be controlled uniformly or may be determined by the acting agent
itself in a selfish agent framework so that the payoff assigned to each agent will be
maximized. The network may be defined (and visualized as well) explicitly with a
graph or implicitly by specifying the neighbor agents (e.g., the lattice structure as in
cellular automata and the dynamical network as in scale-free networks).

The network cleaning problem considered here assumes a self-repair network
composed of nodes capable of repairing other nodes by modifying the state of the
target node (such as resetting, overwriting memory content or even the possibility
of re-programming as long as it can be done through the network). Since agents
throughout this book are assumed not to have recognition capability, source nodes
(repairing agents) can be abnormal and target nodes (agents being repaired) can be
normal. Hence mutual repairing without recognition could cause spreading rather
than eradication of abnormal states.

Since we focus on the self-maintenance task by mutual repair, cooperation and
defection correspond to repairing and not repairing, respectively.

In the agent based approach, we place the following restrictions similar to
immunity-based systems (Ishida 2004):

• Local information: For each immune cell mounting a receptor or a receptor itself
(antibody), only matching or not (some quantitative information on degree of
matching is allowed) can be provided as information.

• No a priori labeling: For an immune cell or antibody, an antigen is labeled
neither as “antigen” nor as “nonself.”

Because of these two restrictions, we face the “double-edged sword” in this
chapter (and throughout the book), since the effectors part (repairing by copying)
could harm rather than cure based on local information. This double-edged
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sword problem (Ishida 2005) (Chap. 3) may be more significant than that the
self-recognition model of immunity-based systems because we do not assume
recognition capability (that could avoid adverse effects) here as assumed in
immunity-based systems. Actions of agents are motivated by selfishness (payoff)
rather than the state of the target.

In the following sections, we use a Markov model used for reliability theory as a
microscopic model that incorporates M1, M2 and M3 above. The microscopic
model focuses on the incentive for cooperation while keeping the network simple
with only two interacting agents.

2.3 A Microscopic Model: Negotiation Between Agents

The microscopic model of self-repair networks is based on the concepts of relia-
bility theory such as fault probability, reliability, system reliability and availability.
The model also uses a game theoretical framework to consider the network cleaning
problem raised in Chap. 1. The model assumptions are as follows:

• Fault: Each node becomes abnormal independently and randomly at a
constant rate in a unit time.

• Repair: Each node will repair other nodes at a constant rate in a unit time.
Repairing involves consumption of resources of the repairing node. Only
normal nodes can repair successfully. Abnormal nodes can also repair
successfully but at a constant rate smaller than one.

We need the following game theoretic concepts before defining the microscopic
model (two-nodes model).

2.3.1 Prisoner’s Dilemma

In solving the problem of cleaning the contaminated network by mutual copying,
another problem (other than the double-edged sword) is that each autonomous (and
hence selfish) node may not repair others and thus fall into a deadlock waiting for
other nodes to repair. This situation is similar to that of the Prisoner’s Dilemma that
has been well studied in game theory and has been applied to many fields.

The Prisoner’s Dilemma (PD) is a game played just once by two agents with two
actions (cooperation, C, or defect, D). Each agent receives a payoff R, T, S, P
(Table 2.1) where T > R > P > S and 2R > T + S. Because of the inequality
T > R > P > S, each player will take action D no matter what action the adversary
takes, for the player will get the higher payoff. Since the situation is symmetrical for
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both players, they will take action D, resulting in payoff P which is lower than
payoff R when both players cooperate. The inequality 2R > T + S prevents one
player and another from taking actions C and D respectively (and dividing the
payoff equally afterward) whose averaging payoff is (T + S)/2.

In the Iterated Prisoner’s Dilemma (IPD) (Axelrod 1987, 1984), each iterated
action is evaluated many times. In the spatial Prisoner’s Dilemma (SPD) (Nowak
and May 1992) (Chap. 4), each site in a two-dimensional lattice corresponding to an
agent plays PD with its neighbors, and changes its action depending on the total
score it received.

When the above inequalities are satisfied, the case where both players take action
D is a Nash equilibrium from which neither player wants to deviate. In our model,
no agent wants to repair other agents. When trapped in this Nash equilibrium, all
agents remain silent, and hence all the agents will eventually enter the abnormal
state. With this state of all agents abnormal, there will be no hope of recovering.
Incorporation of a system theoretic framework will reveal not only the Nash
equilibrium with all agents taking D actions, but also the absorbing state with all
agents abnormal from which no recovery can happen.

Other than the prisoner’s dilemma with the structure of a payoff matrix satisfying
T > R > P > S and 2R > T + S, other structures such as the Hawk-Dove game (Smith
and Price 1973) have been discussed. We mainly focused on PD, for it often applies
to society and even to information systems where selfish agents mainly seek their
own interest. However, adopting other game structures such as Hawk-Dove and the
public goods game (agents not willing to repair other agents may be called
free-riders) will be interesting challenges.

2.3.2 Models of System Reliability by Birth-Death Process

Models of system reliability consider how the component reliability and the system
structure affect the system reliability. Reliability is an essential probabilistic concept
(which is complementary to fault probability) in reliability theory. Reliability of the
system can be defined as the probability of being normal (not being faulty or
abnormal) at a snapshot, or as the rate of being fault-free during a unit time as a
probabilistic process. For a repairable system, yet another probabilistic concept of
availability is important, which is related not only with the fault rate but also with the
repair rate. Probability (probabilistic measure) is not directly related to time and is
meant to indicate the tendency of an event to occur relative to other events (hence, it
has no dimension). Rate in a probabilistic process (a Markov process, the birth-death

Table 2.1 The payoff matrix
of the Prisoner’s Dilemma (R,
S, T, P are payoffs to agent 1)

Agent 1 Agent 2

C D

C R (Reward) S (Sucker)

D T (Temptation) P (Punishment)
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process in particular), on the other hand, is related to time, and is meant to indicate a
tendency of occurrence during a unit of time. Although the probability is normalized
as values ranging from 0 to 1, the rate can be larger than 1.

Here we face the intrinsic problem of mapping probability to time again. In
reliability engineering, the mapping is carried out based on an experimental
knowledge of statistical data such as how often a component of interest failed
during a specific time interval. In this chapter, we mainly use the rate instead of the
probability.

Using conventional notations in reliability theory, λ and μ indicate the failure
rate (rate of becoming abnormal) and the repair rate respectively. For example, if
the system has only one component which fails with the rate λ, the transition rate
from normal state to abnormal state during time Δt is λ Δt (death). Likewise, the
state transition rate from abnormal state to normal state is μ Δt (birth). Thus, this
simplest model with one component being abnormal as well as being normal
(repaired) has the following state transition matrix and state transition diagram
(Fig. 2.1).

1� kDt kDt
lDt 1� lDt

� �

Let us consider a Markov model with the continuous time variable. Letting
pi(t) be a probability of being a state i (i = 0 for normal and 1 abnormal) at a
continuous time t, the following equations describe the state transition:

p0ðtþDtÞ ¼ ð1� kDtÞp0 tð Þþ lDt p1 tð ÞþOðDtÞ
p1ðtþDtÞ ¼ kDtp0 tð Þþ ð1� lDtÞp1 tð ÞþOðDtÞ

where O(Δt) denotes all the terms with second order or higher of Δt.
In the limit of Δt converging on 0 (denoted by Δt→ 0), the above equations may

be written as a differential (Kolmogorov) equation:

dP tð Þ=dt ¼ P tð ÞMt

where the time dependent vector variable

P tð Þ ¼ ðp0 tð Þ; p1 tð ÞÞ;

1- tλΔ
tλΔ

1- tμΔ
tμΔ

Fig. 2.1 State-transition diagram for one component to be abnormal (faulty) and to be normal
(repaired). The white circle indicates a normal node and the black one an abnormal node
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and Mt is the transpose of the following matrix M:

M ¼ �k l
k �l

� �
:

Stationary distribution P(∞) = (p0(∞), p1(∞)) can be obtained by making dP(t)/
dt = 0, hence solving the linear equation P(∞) Mt = 0. In this simplest example of
the birth-death process, P(∞) = (μ/(λ + μ), λ/(λ + μ)), however the stationary
distribution itself simply follows from the symmetry of the model (death and birth
is just a matter of labeling the different symbols λ and μ, and the exchange sym-
metry holds).

2.3.2.1 Mutual Repairing with Selfish Agents

Consider a model with only two agents i (i = 1, 2) that are capable of repairing the
other agent. Using conventional notations again in reliability theory, λ and μ
indicate the failure rate (rate of becoming abnormal) and the repair rate respectively.
In considering two agents, a repair action must be considered as an interaction from
the repairing agent to the agent being repaired, while the failure event (of normal
agents becoming abnormal) occurs within an agent. The double-edged sword
framework allows agents that are capable of repairing other agents, but when the
repairing agents are themselves abnormal they will cause the target agents to be
abnormal (spread contamination) rather than repairing. Thus the state-transition
diagram as a Markov model is as shown in Fig. 2.2. Let μi denote the repair rate
done by agent i, and let α (<1) indicate the repair success rate when repair is done
by an abnormal agent. This repair success rate is in fact a probability, for it switches
the successful repairs with the rate α μi and the failed repair with the rate (1−α)μi.
Repairs by normal agents are assumed to be always successful. For simplicity, both
a failure event and a repair action do not occur simultaneously. The corresponding
Kolmogorov equation is:

dPðtÞ
dt

¼ MPðtÞ

where the time dependent vector variable

PðtÞ ¼ ðp00ðtÞ; p01ðtÞ; p10ðtÞ; p11ðtÞÞT

comprises a component ps1s2ðtÞ denoting a probability of agent 1 being S1 and agent
2 being S2 at time t where S1; S2 2 0; 1f g (0: normal; 1: abnormal).M is a transition
matrix corresponding to the state-transition diagram shown in Fig. 2.2.

2.3 A Microscopic Model: Negotiation Between Agents 27



M ¼
�2k l1 l2 0
k �k� ðl1 þð1� aÞl2Þ 0 al2
k 0 �k� ðð1� aÞl1 þ l2Þ al1
0 kþð1� aÞl2 kþð1� aÞl1 �aðl1 þ l2Þ

0
BB@

1
CCA

For a game theoretic argument, it is further assumed that an agent must decide
whether it will repair others or not, corresponding to cooperation and defection in
the Prisoner’s Dilemma. For agent i, Ci = 1 if it repairs another agent, and 0
otherwise. Let Pi (C1, C2) denote a probability of agent i being normal when agent
i’s action is Ci. A simple calculation yields the steady-state probability of
Pi (C1, C2) as listed in Table 2.2.

When abnormal agents are assumed to do nothing and remain silent as in the
case of mechanical systems, then both agents in the abnormal state is the absorbing
state, and hence the steady-state probabilities of Pi (C1, C2) are all 0. In this model,
all agents will be abnormal eventually no matter whether cooperation takes place or
not. Thus, we assume that even abnormal agents may repair when they take action
C. When one agent repairs another agent, the repairing rate is assumed to be the
same one: μ. That is, if both agents cooperate (repair), then μ1 = μ2 = μ. If agent 1
cooperates, but agent 2 does not, then μ1 = μ but μ2 = 0.

Fig. 2.2 State-transition diagram for the mutual repairing two agents system. White circles
indicate normal nodes and black ones abnormal nodes

Table 2.2 Steady-state
reliability of each agent when
mutual repairing is involved
q ¼ k

l

C2 = 1 C2 = 0

C1 = 1 P1(1, 1) = a
qþ a P1(1, 0) = 0

P2(1, 1) = P1(1, 1) P2(1, 0) = P1(0, 1)

C1 = 0 P1(0, 1) = a
qþ 1 P1(0, 0) = P2(0, 0) = 0

P2(0, 1) = P1(1, 0)
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Table 2.2 can be regarded as a payoff matrix of the two-players game. If we
simply regard Pi (C1, C2) as agent i’s payoff when actions C1, C2 are taken, mutual
repairing may happen because of the inequalities:

P1ð1; 1Þ[P1ð0; 1Þ[P1ð1; 0Þ ¼ P1ð0; 0Þ;
P2ð1; 1Þ[P2ð1; 0Þ[P2ð0; 1Þ ¼ P2ð0; 0Þ:

While the action does not make any difference (e.g. for the agent 1,
P1(1, 0) = P1(0, 0)) when another agent does not cooperate, the agent should cer-
tainly cooperate when another agent cooperates (e.g. for agent 1, P1(1, 1) > P1(0, 1)).
This is because by raising the reliability of others, the repairing by them to the self
becomes more effective, a circular effect.

Let us take the cost of repairing into consideration. Although both D is a Nash
equilibrium when there is a positive repair cost, the agents do not have an incentive
to remain in the both D when the repair cost is negligible.

Let us focus on the payoff. Then agent 1, for example, will choose its action C1

to maximize:

P1ðC1;C2Þ � c � C1;

where c is a cost of repairing relative to the benefit measured by the reliability of
itself. Incorporating a cost for cooperation would naturally bias the situation toward
more defect-benefiting. When the adversary agent defects, an agent simply loses the
cost for cooperation if it cooperates. However, there is still a chance for mutual
cooperation when the opponent cooperates: P1(1, 1) − c > P1(0, 1) holds when the
cost relative to benefit satisfies:

að1� aÞ
ðqþ 1Þðqþ aÞ [C:

Selfishness of an agent is reflected on the objective function that the agent will
maximize, and the reflection is not a trivial task. The above agents are shortsighted
in implementing the selfishness. Foresighted agents would consider the event of
another agent’s failure as losing the chance of being repaired by the agent, and the
extinction of all normal agents as a fatal event that should be avoided by paying a
high cost. If the repairing by abnormal agents does not happen, extinction of normal
agents is an absorbing state from which no other normal state will arise when the
repair success rate by abnormal agents α is close to 0 (repairs by abnormal agents
do not virtually succeed).

Figure 2.3 plots the difference P1(1, 1) − P1(0, 1) when the repair success rate by
abnormal agent α changes from 0 to 1 and λ = 10−4, μ = 102 λ are fixed. There is a
strong incentive for agent 1 to cooperate when the success rate α is about 0.1. The
incentive decreases almost linearly when the rate exceeds 0.2 in this case, which
indicates that reliable repairs by abnormal agents would not promote cooperation.
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Let us consider the availability (the probability that the system is available at the
time, hence in our model, the probability that at least one agent remains normal).
Let AV(C1, C2) denote the availability when agent i’s action is Ci. Technically, we
use limiting average availability (e.g., (Barlow and Proschan 1975)) as a payoff for
each agent, then there will be a stronger incentive to cooperate when the other
agents cooperate, since the difference AV(1, 1) − AV(0, 1) is larger than the dif-
ference P1(1, 1) − P1(0, 1) as shown in Table 2.3.

This indicates that even selfish agents will be more likely to cooperate if they
take a systemic payoff that evaluates cost and benefit in a more system-wide fashion
and a longer-term basis: the beginning of self-organization of mutually supporting
collectives.

2.4 Discussion

2.4.1 Nash Equilibrium

The worst-case analysis (Koutsoupias and Papadimitriou 1999) uses a Nash equi-
librium as a solution when tasks are left to selfish agents. The cost for the Nash
equilibrium relative to the optimized solution has been proposed to measure the cost
of “anarchy” (Koutsoupias and Papadimitriou 1999). This chapter rather focused on
the self-maintenance task, self-repairs by mutual copying in particular, and dis-
cussed when selfish agents begin to cooperate. Further discussions are needed on
when these selfish agents organize themselves into mutually supporting collectives.

0.2 0.4 0.6

α
0.8 1.0

0.2

0.4
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0.8

(1
,0
)

1
1

P
P

 (
1,
1)

−

Fig. 2.3 Plot of the
difference when the repair
success rate by abnormal
agents α changes from 0 to 1
and λ = 10−4, μ = 102 λ are
fixed

Table 2.3 Steady-state availability AV where availability is a probability that at least one agent is
normal

C2 = 1 C2 = 0

C1 = 1 AV(1, 1) = að2qþ 1Þ
ðqþ 1Þðqþ aÞ AV(1, 0) = a

qþ 1

C1 = 0 AV(0, 1) = a
qþ 1 AV(0, 0) = 0
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The present research has two significances: one engineering and another theo-
retical. For engineering, computing paradigms such as distributed computing sys-
tems (Farber and Larson 1970), grid computing (Foster and Kesselman 2001;
Foster and Kesselman 2003; Foster et al. 1998) and parasitic computing (Barabási
et al. 2001) provide a background. When grid computing becomes dominant for
large-scale computing, what we call agents (autonomous programs that can move
from nodes to nodes) will become like processes in the Unix operating system. One
important difference is that agents may be selfish, and will not be organized with a
central authority as is done in conventional operating systems. Then, the organi-
zation of selfish agents will become an organization with a weakest central
authority, or even with a distributed authority as seen in the free market economy.
Naturally, information processing with selfish agents will be imperative, thus
making the game theoretic approach and economic approach such as selfish task
allocation and routing important.

Another significance is that it will provide an organizational approach to arti-
ficial life (a life-like form which has some identity hence boundary).
Self-organization of selfish agents will be more than a mere collection of inde-
pendent agents, but rather a cluster of cooperative agents. This would reveal an
intrinsic logic and process that selfish agents form multi-agent organisms, similarly
to multi-cellular organisms. The game theoretic approach will provide a threshold
and a mechanism for selfish agents to develop into cooperative agents when payoffs
are recast in a broader context of time and space.

2.4.2 Hamilton Rule as a Condition for Altruism

In evolutionary biology, many theories have been proposed that explain the
altruistic behaviors of individuals. One of them is kin selection where altruistic
behaviors among relatives can be explained by extending fitness to inclusive fitness
with relatedness. Hamilton’s rule (Hamilton 1964) is formulated as follows:

r B[C

where the relatedness r (the kin selection coefficient of relatedness between altru-
istic agent and recipient agent) can be measured by genetic distance. B is the
reproductive benefit to the recipient by the altruistic behavior and C is the cost for
the altruistic behavior. Frank (Frank 1998) has applied Hamilton’s rule to social
evolution by extending this relatedness r to a measure generalized from the genetic
distance. The rule can explain the extraordinary sex ratio observed in social insects
such as honey bees (Hamilton 1963).

From a cost-benefit point of view, Hamilton’s rule can be a simple condition for
an action of an agent where the action will be carried out when the benefit exceeds
the cost. Let us borrow Frank’s understanding of relatedness in the framework of
economic optimization through exchange rate (Frank 1998). One notable point is
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that the benefit is not directly oriented toward the self but indirectly received, hence
the benefit must be discounted by multiplying by a discount rate r. Thus, the
relatedness can be regarded as a spatial version of discount rate (usually discount
rate is related to time; the value at a future time is discounted compared to the value
at the present time). In the model of this chapter, the indirect benefit (discounted by
relatedness r) from the interacting agent is measured by the difference of reliability:
P1(1, C2) − P1 (0, C2) or the difference of availability: AV1(1, C2) − AV1 (0, C2).
One challenge would be to compare the benefit by actions toward itself and actions
toward a neighbor, rather than comparing the benefit by actions toward the neighbor
with that of doing nothing.

The model proposed in this chapter recast a possible mechanism to promote
altruistic behavior among nodes in a network based on Hamilton’s rule where the
relatedness r can be measured by a distance in the network, that is, how close
the nodes are in the network (how direct the exchange of resources can be). In the
cost-benefit analysis of the previous Sect. 2.3, the relatedness r = 1 of Hamilton’s
rule when the node is in the neighbor (directed by an arc) and r = 0 otherwise. The
condition for mutual repair is also the cost-benefit condition for the action of
repairing the neighbor nodes where the benefit is measured by the increase of the
reliability (or availability) discounting the fact that the repairing effect is not directly
to the self but indirectly through the neighbors. Since the self-repair network uses a
network to express the structure, the benefit of being repaired is discounted if the
repaired node is far from the repairing node. But why would the repairing node (the
self-node) not use the entire resource for repairing itself (the self-node)? We sup-
pose the following rationale for the diversification of the risk specific to the
self-repair network: when the node repairs itself there are only two cases in the
repair pattern, i.e. a normal node repairs the normal node; or an abnormal node
repairs the abnormal node. When the node repairs the neighbor nodes, even though
the benefit is indirect (and hence discounted), there are two other cases in the repair
pattern, i.e., a normal node repairs an abnormal node; or an abnormal node repairs a
normal node. The former is an edge (advantage) for a custom repair of the
double-edged sword and the latter is another edge (disadvantage) that is inevitably
associated with mutual repair in the self-repair network without recognition. We
will compare mutual repair and self-repair in the self-repair network in Chap. 9.

Hamilton’s rule (the condition for altruism) may be viewed from another way,
that is, the self can be extended to a system connected by the mutual repair: quasi-
self. We will consider re-modification of the payoff called systemic payoff in
Chap. 5, which amounts to considering the availability (as a system) rather than the
reliability (of a node) in the theory of reliability.

Although this chapter focused on the incentive for a node to repair other nodes,
the mechanism of spreading the repairing trait will be considered in Chap. 4 (direct
mechanism where repairing is inevitably associated with copying of the repairing
strategy) and in Chap. 5 (indirect mechanism where the node copies the strategy of
the neighbor node who earned the largest payoff).
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2.5 Conclusion

For large-scale information systems, a game theoretic approach is important, since
it will give results concerning what would happen when selfish agents are involved.
However, what is “selfish” depends on the context and the environment. This
research assumes that selfish agents try to maximize their payoff. Then the next
problem is to set the payoff function reflecting the context and the environment. We
discussed the cases when only a repair cost, the system reliability, and a more
systemic evaluation such as the availability (limiting average availability) are
incorporated. Incentives to cooperation increase when a more systemic evaluation is
involved in the payoff. Specifically, if an agent sticks to a short-sighted payoff such
as the repair cost, the agent will lose the partner that would repair the agent when it
becomes abnormal, or even worse, all the agents will eventually become abnormal
and will forever lose the chance of being repaired.

The current research should be further developed through studies on how and
when mutually supporting collectives emerge in large-scale information systems
such as the Internet.

It is important to note that the models not only in this chapter but throughout this
book have limitations in directly applying them to real situations due to the fact that
they sacrifice reality for simplicity in order to focus on the problem in question. For
example, the model parameters are expressed as constant values, however, they
could change or adapt to the environment, or they may even be difficult to be
expressed as parameters. For the model in this chapter, the key parameter of repair
success rate and other parameters such as repair rate, could change over time. But
the essence of the self-repair network as a model resides in the asymmetry (of
existence and non-existence) that the repair success rate by abnormal agents is less
than that by normal agents.

While this chapter views the self-repair network from the nodes within it and
attributes incentives for cooperation (repair) to the relatedness of nodes reminiscent
of Hamilton’s theory of altruism, one can also view the self-repair network from
outside and attribute incentives for cooperation to the fact that the network is so
integrated that cooperation is the selfish act of helping the network itself.

Although we have shown that there is an incentive for a node of the self-repair
network to cooperate (repair other nodes) in terms of reliability engineering,
whether mutual repair can be realized or not is another story. We will further study
game theoretically with the spatial prisoner’s dilemma, and examine how and when
the strategy with cooperation remains or should remain, in Chap. 4. Before that, we
will investigate the network cleaning problem with mutual and non-strategic repair
(meaning uniform repairing carried out independently from neighbors’ actions) in
the following Chap. 3.
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