
Chapter 2
Variance Contracts: Fixed Income Security
Design

2.1 Introduction

Variance swaps are contracts in which the seller pays the amount by which the
realized variance of some variable of interest exceeds a threshold predetermined at
contract origination. The pricing of variance swaps on equities is well-understood.
Decades’ worth of financial theory suggests that these contracts can be cast in a
“model-free” fashion—the only ingredient that is required for pricing is the price of
at-the-money (ATM) and out-of-the-money (OTM) options referencing the stock or
stock index of interest.

This model-free methodology still relies on some assumptions, such as absence
of arbitrage in frictionless markets. Nevertheless, it is an appealing methodology,
which the Chicago Board Options Exchange adopted with a change in the definition
of its VIX index in September 2003 to incorporate financial theory developed after
the seminal efforts that led to the initial launch of the index in 1993 (see Whaley
1993).

This chapter develops theoretical foundations for variance swaps in the fixed in-
come space. As in the equity case, we seek contract designs that admit model-free
pricing. The designs need to be internally consistent in that the contracts’ value
collapses to a constant, the Black (1976) implied variance, under the hypotheti-
cal circumstance of markets with constant uncertainty. The next chapters are self-
contained but rely on much of the analysis in this chapter. We shall identify situa-
tions where fixed income volatility can be priced in this fashion, and point to cases
where it cannot be due to the complex nature of the assets underlying the markets
we study.

For example, it is well known that the prices of options on S&P futures can
be used to construct an equity-like VIX index. In contrast, Chap. 4 explains that
aggregating the prices of options expiring strictly before the expiry of their under-
lying bond futures (a practically relevant case) results in a model-dependent gov-
ernment bond volatility index; that is, a model-dependent bias arises once a model-
free expression is utilized to approximate the true index. A similar bias comes into
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existence when constructing basis point volatility indexes for rates in time-deposit
markets (see, again, Chap. 4).

To fully understand the nature of these biases, we start by focusing on ideal situ-
ations where these biases do not arise in the first place. We shall establish a connec-
tion between this issue and the theory of market numéraires. Market numéraires are
conceptual tools that allow us to deal with the various complexities arising whilst
evaluating interest rate derivatives. It is well known that absence of arbitrage in fric-
tionless markets is equivalent to the property that asset prices, once rescaled by the
money market account, are martingales under the risk-neutral probability. While this
result is a powerful tool for the analysis of equity derivatives, numéraires other than
the money market account are useful when pricing interest rate derivatives, as ini-
tially explained by Geman (1989), Jamshidian (1989), and Geman et al. (1995) and,
then, further developed by Jamshidian (1997) and Schönbucher (2003, Chap. 7).

The connection we make in this chapter is that the price of fixed income variance
swaps is model-free only once the relevant payoffs are rescaled by the numéraire
appropriate for each market of interest. We show how to incorporate different market
numéraires into the early theory of “spanning contracts” developed over the years
in the equity case by Neuberger (1994), Dumas (1995), Demeterfi et al. (1999a,
1999b), Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), and Carr
and Madan (2001), among others.

There are additional complications arising in fixed income markets, such as the
notion of basis point volatility, which does not arise in equity markets. Basis point
volatility is actually not a mere matter of quoting convention, and highlights a fun-
damental difference between interest rate and equity volatility. The concept of basis
point volatility naturally arises because absolute changes describe risk more effec-
tively than relative changes in the context of yields and spreads. A rate increase
from 10 bps to 15 bps shares the same percentage change as one from 100 bps to
150 bps, but, all else equal and accounting for convexity, the latter is a nearly ten-
fold P&L and risk event. In this basic example, it is more useful for rates traders
to know whether a position is likely to experience 5 bps moves or 50 bps moves
over a given horizon, and a basis point formulation of the problem addresses this
by model-free pricing of a variance swap on arithmetic changes in the fixed income
instrument of interest instead of logarithmic changes as in the more standard case
of equity variance swaps.

Dealing with basis point variance contracts in a context with random interest
rates and numéraires leads to issues that have not been considered in the equity
literature. We shall deal with these complications through an insight, a linkage be-
tween a class of spanning contracts known as “quadratic” to a notion of basis point
variability. This insights allows us to price basis point volatility in a model-free and
consistent fashion with the notion of numéraire prevailing in each market of inter-
est. The ensuing fixed income volatility indexes in this and the following chapters
originate from these dedicated contract designs.

The plan of this chapter is as follows. The next section provides definitions of
the risks we wish to price, and the notions of market numéraires needed to achieve
this purpose. Section 2.3 introduces dedicated contract designs leading to model-
free pricing, and Sect. 2.4 deals with indexes constructed upon these contracts.
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Section 2.5 develops further properties of basis point variance swaps, contains in-
dications on how to implement them in the presence of shrinking maturities, and
provides estimates of variance risk-premiums based on CBOE’s SRVIX index for
interest rate swap market volatility. Section 2.6 unveils theoretical properties of ba-
sis point and percentage volatility indexes, and compares them in cases in which a
limited number of options are available for calculating these indexes. Section 2.7
extends the analysis to markets with discontinuities. Appendix A provides technical
details omitted from the main text.

The reader who is not interested in the unified theory may skip the present chapter
and directly access the subsequent chapters, in which variance swaps and accompa-
nying model-free volatility indexes are dealt with in a self-contained fashion for
various fixed income asset classes.

2.2 Market Numéraires and Volatilities

Consider a forward starting agreement, originated at time t , with a payoff ΠT at
time T equal to

ΠT ≡ NT × (XT − K), (2.1)

where both XT and NT are measurable with respect to the information set at time T ,
FT , and K is chosen at t , so that the value of the contract is zero at inception.
Let Q denote the risk-neutral probability, and Et (·) the expectation under Q, taken
conditionally on Ft , and let rt denote the short-term rate at t . We assume that Nτ is
the price of a tradeable asset for each τ ∈ [t, T ], and that it is strictly positive.

It is well known (e.g., Mele 2014, Chap. 4) that under regularity conditions, there
exist (i) a probability QN , and (ii) a martingale process Xτ under QN that clears the
agreement, i.e. Xt = K , so that the value of ΠT is zero at t . Accordingly, we refer
to Xτ as the forward risk process, and NT as the value of a market numéraire at T ,
so that any asset price process St normalized by Nt is a martingale under QN ,

St

Nt

= E
QN

t

(
ST

NT

)
,

where E
QN

t denotes the conditional expectation under QN . We call QN the mar-
ket numéraire probability. The money market account is the standard notion of
numéraire, for which QN collapses to the risk-neutral probability.

Examples 2.1 In Chap. 3, Nt is the present value of an annuity of one dollar, QN is
the annuity, or swap, probability, and Xt is the forward swap rate; accordingly,
the payoff ΠT in Eq. (2.1) is that of a forward starting swap. In Chap. 4, Xt can
be either the forward price of a coupon bearing bond or the forward price of time
deposits such as Eurodollars; in both cases, Nt is the price of a zero coupon bond
expiring at time T , so that NT = 1, and QN is the forward probability. Finally, in
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Chap. 5, Nt is the present value of a defaultable annuity of one dollar, QN is the
survival contingent probability and, finally, Xt is the loss-adjusted forward default
swap index, so that the payoff ΠT in Eq. (2.1) is that of an index default swap.

It is the volatility of Xτ that we are interested in pricing. Unless otherwise stated,
we assume that Xτ is a strictly positive diffusion process with stochastic volatility.
Section 2.7 contains extensions to jump-diffusions. Let Wτ denote a multidimen-
sional Wiener process under QN . Since Xτ is strictly positive, there exists a process
στ adapted to Wτ , such that

dXτ

Xτ

= στ · dWτ , τ ∈ [t, T ]. (2.2)

We consider two notions of realized variance. One, based on arithmetic, or basis
point (BP henceforth), changes of Xt in Eq. (2.2), and another based on the logarith-
mic, or percentage, changes of Xt . Accordingly, let V bp(t, T ) and V (t, T ) denote
the realized BP variance and percentage variance in the time interval [t, T ],

V bp(t, T ) ≡
∫ T

t

X2
τ‖στ‖2dτ and V (t, T ) ≡

∫ T

t

‖στ‖2dτ. (2.3)

While the concept of percentage variance is widely known and used in equity
markets, we also consider pricing BP variance to match the fixed income market
practice of quoting implied volatilities both in percentage and basis point terms.
The aim of the next section is to search for variance swap contract designs, based
on V bp(t, T ) and V (t, T ), for which the fair value may be expressed in a model-
free fashion in a sense to be made precise below. Indexes of expected volatility can
then be formulated based on these variance contract designs. We shall return to the
definition and properties of V bp(t, T ) in Sect. 2.5.

2.3 Interest Rate Variance Swaps

The risks we study in this book are spanned by interest rate derivatives with pay-
offs such as those in Eq. (2.1). These payoffs have two components: (i) the forward
risk, Xτ at τ = T , which we want to price the volatility of, and (ii) the market
numéraire, NT , which links to the very nature of the derivative involved in the mar-
ket of interest. We aim to design variance swaps corresponding to the two variances
in Eqs. (2.3) so that component (ii) does not affect model-free pricing of these con-
tracts.

2.3.1 Contracts and Model-Free Pricing

We introduce a class of forward contracts for which we replace the standard unit
notional with a stochastic notional, as in the following definition:
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Definition 2.1 (Forward Contract with Stochastic Multiplier) A forward contract
with stochastic multiplier is a contract originated at time t , which promises to pay
the following payoff at T > t : ΦT ≡ YT × (Ψ ({Xs}s∈[t,T ]) − KY ), where Ψ (·) is a
functional of the entire path of Xt in Eq. (2.2), Yτ is Fτ -measurable for τ ∈ [t, T ],
and the strike KY is set so that the value of the contract is zero at inception. YT is
referred to as stochastic multiplier of the security design.

We want to express the fair value, KY , as the conditional expectation of the pay-
off, Ψ (·), taken under an appropriate probability. If interest rates were constant or
deterministic, this probability would be the risk-neutral probability once we assume
YT ≡ 1. In the general case, which is relevant to problems arising in fixed income
markets, the appropriate probability is obtained once we impose the usual condition

that Et (e
− ∫ T

t ruduΦT ) = 0, yielding the expression recorded in the next proposi-
tion, given without proof. We shall refer to this probability as the forward multiplier
probability.

Proposition 2.1 (Forward Multiplier Probability) The fair value of the strike in the
forward contract of Definition 2.1 is

KY = E
QY

t

(
Ψ

({Xs}s∈[t,T ]
))

, (2.4)

where E
QY

t (·) denotes the time t conditional expectation under QY , and the Radon–
Nikodym derivative of QY with respect to Q is

dQY

dQ

∣∣∣∣
FT

= e− ∫ T
t ruduYT

Et (e
− ∫ T

t ruduYT )
.

The probability QY is the forward multiplier probability.

Proposition 2.1 contains a simple but general result, yet our motivation lies in the
pricing of interest rate volatility based on V bp(t, T ) and V (t, T ) in (2.3). Accord-
ingly, we now only consider the two cases, Ψ (·) = V bp(t, T ) and Ψ (·) = V (t, T ).

Our next step is to identify necessary and sufficient conditions such that KY in
Eq. (2.4) is model-free and begin with a definition of “model-free” pricing for our
context.

Definition 2.2 (Model-Free Pricing) The strike price KY in Eq. (2.4) is model-free
if we can find a numéraire with value Nτ such that Xτ is a martingale under QN

as in Eq. (2.2), and a stochastic multiplier YT such that KY equals the value of a
portfolio of European call and options with strike K , say Callt (K) and Putt (K),
where:

Callt (K)

Nt

= E
QN

t

(
max{ΠT ,0}

NT

)
,

Putt (K)

Nt

= E
QN

t

(
max{−ΠT ,0}

NT

)
, (2.5)

and ΠT is as in Eq. (2.1).
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Absence of arbitrage in frictionless markets implies that there exists a numéraire
such that option prices can be expressed as in Eq. (2.5). The additional requirement
of the previous definition is that we need to find a stochastic multiplier YT such
that the value of a variance swap is model-free. We emphasize that our definition of
“model-free” pricing does not rely on the replicability of a variance swap. We only
require that the value of the variance swap equals the market value of a portfolio
of tradeable securities. Section 2.3.3 below contains a more detailed discussion of
these issues.

The question arises as to how the two expectations in (2.4) and (2.5) relate to
each other. We have:

Proposition 2.2 (Model-Free Contracts) The fair value of KY in the forward con-
tract of Definition 2.1 is model-free if and only if the Radon–Nikodym derivative of
the forward multiplier probability QY with respect to the market numéraire proba-
bility QN is uncorrelated with V bp(t, T ) and V (t, T ). For Ψ (·) = V bp(t, T ), it is
given by:

KY = Vbp
t ≡ 2

Nt

(∫ Xt

0
Putt (K)dK +

∫ ∞

Xt

Callt (K)dK

)
(Basis Point pricing);

(2.6)
for Ψ (·) = V (t, T ), it is given by:

KY = Vt ≡ 2

Nt

(∫ Xt

0

Putt (K)

K2
dK +

∫ ∞

Xt

Callt (K)

K2
dK

)
(Percentage pricing).

(2.7)

The previous proposition is proven in Appendix A.1. It generalizes Mele and
Obayashi (2012), who provide a model-free expression for interest rate variance
swaps in the interest rate swap space. The focus of Proposition 2.2 is wider.

First, it provides guidance for model-free pricing of variance swaps regarding
other fixed income securities. Notably, it suggests choices for the random multi-
plier YT for each market of interest where different numéraires arise (see, e.g., the
previous Examples 2.1).1

Second, Proposition 2.2 identifies both necessary and sufficient conditions under
which interest rate variance swaps can be priced in a model-free fashion. The most
intuitive case arises when the stochastic multiplier of Definition 2.1 coincides with
the value of the market numéraire, YT = NT , in which case the Radon–Nikodym
derivative of QY against QN is obviously constant and equal to one, and uncorre-
lated with the realized variance, V bp(t, T ) and V (t, T ). Intuitively, tilting an interest
rate variance swap through the market numéraire, NT , leads to a market space where
both the strike KY and the price of all available options are expectations under QN ,

1Proposition 2.2 also covers the standard equity case with constant interest rates. In this case, Nt is
the price of a zero-coupon bond expiring at T , i.e. e−r̄(T −t), where r̄ denotes the constant interest
rate.
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with no additional information required to price the contract. The market numéraire
is indeed the benchmark in this book. Note, however, that Proposition 2.2 points to
a larger set of stochastic multipliers. For example, in Appendix A.2, we show that
the following stochastic multiplier is also in the set of those identified by Proposi-
tion 2.2, YT = NT εT , where εT is any FT -measurable random variable satisfying
covQN

(V bp(t, T ), εT ) = 0.
Finally, we check the internal consistency of the contract design, namely that the

variance strikes in Proposition 2.2 collapse to a constant, assuming uncertainty is
constant. The notion of uncertainty depends on the assumptions we make regarding
the data generating process in Eq. (2.2). Consider the highly idealized case of a
constant basis point variance, in which case the risk Xτ could now take on negative
values, according to the following Gaussian, or “Bachelier market,” model

dXτ = σn · dWτ , (2.8)

for some vector of constants σn. This assumption is the obvious counterpart to that
of a constant percentage volatility underlying the standard Black–Scholes market
for equity options. In Appendix A.3, we show that in this case, the variance strike
in Eq. (2.6) collapses to

KY = 2

Nt

(∫ Xt

−∞
Putt (K)dK +

∫ ∞

Xt

Callt (K)dK

)
= ‖σn‖2(T − t). (2.9)

One can verify that an analogous result holds in the percentage case in Eq. (2.7),
using results in Carr and Lee (2009).2

Note, finally, that this result relies on the Gaussian assumption in Eq. (2.8). Al-
ternatively, consider a Black–Scholes market, viz

dXτ

Xτ

= σbs · dWτ , (2.10)

for some vector of constants σbs. In this case, an index of expected annualized BP
volatility (not variance) is easily seen to equal,

√
KY

T − t
= Xt

√
e‖σbs‖(T −t) − 1

T − t
. (2.11)

Equation (2.11) reveals the intuitive property that expected BP volatility is the
product of the forward, Xt , times a pure volatility component. In Sect. 2.4 (see

2The assumption in Eq. (2.8) that basis point volatility is constant is quite stylized, and is only
made for the purpose of neatly illustrating the differences between basis point and percentage
volatility. In general, the variance of forward risks in fixed income markets is time-varying. For
example, Vasicek (1977) predicts that the basis point volatility of government bond forward prices
is time-varying, albeit deterministically (see Chap. 4), σ 2

v,n(τ ) say, so that Eq. (2.9) would read,

KY = ∫ T

t
σ 2

v,n(τ )dτ .
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Proposition 2.3), we generalize the previous formula to the more general case in
which Xτ has stochastic volatility.

We now turn to explaining two important features of the variance swap strikes
KY in Proposition 2.2: (i) their connection to contracts with payoffs linked to the
realization of the forward risk at time T , XT , and hedging issues arising therefrom
(Sects. 2.3.2 and 2.3.3); and (ii) the weighting schemes applying to the OTM op-
tions, which differ, according to the concept of variance involved—the basis point
variance, in Eq. (2.6), and the percentage variance, in Eq. (2.7) (Sect. 2.3.4).

2.3.2 Log Versus Quadratic Contracts

The first part of Proposition 2.2 hinges upon a key insight, namely that the price of
a BP variance swap relates to that of a “quadratic contract,” one with a payoff equal

to NT X2
T and fair value NtE

QN

t (X2
T ). To establish this link, note, heuristically, that

by Itô’s lemma,

V bp(t, T ) = X2
T − X2

t − 2
∫ T

t

Xτ dXτ , (2.12)

so that, by the martingale property of Xτ under QN ,

E
QN

t

(
V bp(t, T )

) = E
QN

t

(
X2

T − X2
t

)
. (2.13)

That is, up to an affine transformation, the BP variance of the forward risk and the
quadratic contract on XT have the same value as claimed.

Therefore, to hedge against BP variance swaps, we need quadratic contracts in-
stead of log-contracts (Neuberger 1994), i.e. those with a payoff equal to NT lnXT .
To illustrate, set for simplicity Nτ ≡ 1 for all τ , an assumption we relax in each
of the next chapters (and in Sect. 2.3.3 below) whilst dealing with the market
numéraires of interest. The payoff of a quadratic contract can be approximated by
the sum of (i) the payoff of two forwards, and (ii) the payoff of two portfolios com-
prising OTM options and one ATM option,

X2
T − X2

o ≈ 2Xo(XT − Xo)

+ 2

( ∑
j :Kj <Xo

(Kj − XT )+ +
∑

j :Kj ≥Xo

(XT − Kj)
+
)

�K ≡ P̂
q
T ,

(2.14)

where Xo ≡ Xt is the forward and �K is the interval between the strikes Kj . The
previous approximation turns into an equality when we consider a continuum of
options (see Eq. (A.4) in Appendix A.1). In contrast, the payoff of a logarithmic
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Fig. 2.1 Hedging quadratic contracts with options. In both panels, the solid line depicts the ter-
minal value of a quadratic contract, X2 − X2

o , with Xo = 2, and the dashed line depicts that of a
replicating portfolio, P̂

q
T in Eq. (2.14), comprising: (i) two forwards struck at Xo = 2; and (ii) two

additional equally weighted portfolios, with �K = 1
10 , each including one ATM option and a num-

ber of OTM put and call options. The dashed line in the left-hand panel is obtained with a total of
5 puts and 5 calls, and the right-hand panel is with a total of 10 puts and 10 calls

contract can be approximated as

ln
XT

Xo

≈ 1

Xo

(XT − Xo)

−
( ∑

j :Kj <Xo

1

K2
j

(Kj − XT )+ +
∑

j :Kj ≥Xo

1

K2
j

(XT − Kj)
+
)

�K ≡ P̂T .

(2.15)

Not only do the portfolio weightings in P̂
q
T and P̂T differ, in that we require (i) 2Xo

forward contracts in Eq. (2.14) and 1
Xo

in Eq. (2.15), and (ii) �K options in

Eq. (2.14) and �K

K2
j

in Eq. (2.15). We also require to go long the option portfolio in

the case of the quadratic contract, and short the option portfolio in the log-contract
case.3

The portfolio payoff P̂T has been known to approximate the log-contract pay-
off quite closely since Demeterfi et al. (1999a, 1999b). Figure 2.1 depicts the
quadratic contract payoff and the portfolio payoff P̂

q
T , assuming that the forward,

3Note, however, that for the percentage variance contract, we have, E
QN

t (V (t, T )) =
−2EQN

t (ln XT

Xt
), so that the option positions have the same sign both when it comes to hedge

the basis point and the percentage realized variance, as further clarified in the next chapters. Still,
the forward positions have opposite signs as Eq. (2.14) and Eq. (2.15) reveal.
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Xo = 2, interpreted as an interest rate (say, e.g., a forward swap rate), and that the
equally weighted option portfolio has 10 (left panel) and, then, 20 (right panel)
out-of-the-money options, with equidistant strikes and distance �K = 1

10 , such that
minj Kj = 1.5 and maxj Kj = 2.5 (left panel) and minj Kj = 1 and maxj Kj = 3
(right panel). Naturally, the quality of the approximation of the portfolio payoff
P̂

q
T to the quadratic contract improves as we increase the number of options in the

portfolio. Yet even in the case with fewer options, depicted in the left-hand side of
Fig. 2.1, the approximation is still remarkably accurate over a wide range of values
of XT around the forward, Xo = 2.

Note that P̂
q
T only aims to hedge the payoff of the quadratic contract. To hedge

the BP variance, V bp(t, T ), we also need to hedge the additional term 2
∫ T

t
Xτ dXτ

in Eq. (2.12). The next chapters contain details on these issues for each market and
numéraire of interest. We provide preliminary intuition on these details in Sect. 2.3.3
below.

A final issue pertains to the reasons for the constant weights in Eq. (2.6). These
weightings follow by spanning arguments that generalize the theory in Bakshi and
Madan (2000, Appendix A.3) and Carr and Madan (2001, Eq. (1)) (see, also, Lee
2010) to the case of general numéraires. Section 2.3.4 provides further results and
intuition on the origins of these weightings.

2.3.3 Hedging

While our derivations rely on the assumption that the forward risk is a continuous-
time process, we can illustrate the main issues arising in our context while relying
on a simple discrete-time example. Define the realized annualized variance over n

trading days as

varX,n ≡ N

n

n∑
t=1

(Xt − Xt−1)
2

= N

n

(
X2

n − X2
0

) − 2
N

n

n∑
t=1

Xt−1(Xt − Xt−1), (2.16)

where N denotes the number of trading days over the year. Equation (2.16) is the
discrete-time counterpart to Eq. (2.12) and its first term can be expanded just as in
Eq. (2.14). In particular, we have:

varX,n = N

n
2X0(Xn − X0) + N

n
(Xn − X0)

2 − 2
N

n

n∑
t=1

Xt−1(Xt − Xt−1), (2.17)

where the second term can be replicated through a static position in out-of-the-
money options and one at-the-money options as explained. Carr and Corso (2001)
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consider the variance of price changes rather than returns based on this approach,
while only focusing on the second and third term in Eq. (2.17), and markets with
constant interest rates.4 Our work in this book is distinct as we explicitly take into
account the first term in Eq. (2.17) and, importantly, consider markets in which
interest rates are obviously random. Random interest rates naturally lead to random
numéraires, as opposed to the assumption in this section that Nt ≡ 1; rescaling by
Nt is crucial to model-free evaluation of variance contracts as Eqs. (2.6) and (2.7)
reveal.

To summarize, the realized variance, varX,n, cannot be replicated when the mar-
ket numéraire is a random process. We shall see that within the continuous time
setting of the following chapters, we can, instead, replicate the realized variance
rescaled by NT , provided the forward risk Xt is actually traded (or could be repli-
cated), and under additional conditions applying to the specific fixed income secu-
rities traded in each market of interest.

To illustrate the reasons varX,n cannot be replicated in the presence of random
numéraires, let us set up the arguments we would use to replicate the last term
in Eq. (2.17) in a hypothetical case in which the numéraire is deterministic but
not necessarily constant. Suppose we are long an amount θt of a forward starting
agreement at time t and strike Kt such that the value of this agreement at t right
after the trade is πt+ ≡ θtNt (Xt − Kt) and the value at t + 1 before the trade is
πt+1 ≡ θtNt+1(Xt+1 − Kt). Choosing the strike Kt that clears πt+ delivers the for-
ward risk, Kt = Xt , such that πt+1 = θtNt+1(Xt+1 − Xt). Therefore, the portfolio
strategy

θt−1 = Xt−1

Nt

, (2.18)

implies that its overall value at the end of the period is

n∑
t=1

πt =
n∑

t=1

Xt−1(Xt − Xt−1),

indicating that the last term in Eq. (2.17) could be replicated.5 Of course, the crucial
assumption underlying the strategy θt in Eq. (2.18) is that the market numéraire is
deterministic.

If Nt is random and only measurable with respect to the information set at time t ,
a replication argument based on Eq. (2.18) breaks down. Note that Carr and Corso
(2001) deal with markets with constant interest rates and where Nt is just the money
market account, such that replication of varX,n is possible in their setup. Naturally,
hedging requires not only dealing with the third term in Eq. (2.17) but also with
the first and the second. Still, Proposition 2.2 establishes that in a continuous time

4Martin (2013) has also recently considered the same setup in Carr and Corso (2001) assuming
constant interest rates.
5Note that this replication argument hinges upon the forward starting agreement in Eq. (2.1), not
the underlying risk Xt , as the latter is not necessarily traded.
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setting, the price of interest rate variance swaps is model-free once the realized
variance is re-scaled by the value of an appropriate market numéraire.

In some cases, the realized variance can be replicated by incorporating the
numéraire into the replicating portfolio strategies. Replication is possible through
replication of the forward risk Xt , rather than by trading the forward agreement
through Eq. (2.18). Yet Xt may not be traded in situations of interest. For example,
in Chap. 3, Xt is the forward swap rate, which cannot be perfectly hedged (it is
not traded). However, we show that a model-free expression for the fair value of a
variance swap is available under certain conditions, even when the risk Xt cannot
be replicated.

This point underlies our notion of model-free contracts in Definition 2.2, which is
less stringent than one requiring that a variance swap must be perfectly hedged. We
simply require that the fair value of a variance swap equals the value of a portfolio
of tradeable securities rescaled by the value of a market numéraire. Regarding the
previous interest rate swap example, Chap. 3 shows that while the underlying risk
(the forward swap rate) is not traded, variance swaps are priced in a model-free
fashion in terms of Definition 2.2. Finally, note that there are additional instances of
markets in which the underlying risks cannot be perfectly hedged; for example, the
underlying risks can exhibit jumps as in the credit markets studied in Chap. 5.

When hedging is difficult, modeling assumptions are important. Merener (2012)
develops an approach for hedging against interest rate swap volatility by relying on
a set of assumptions regarding the yield curve. He shows how to replicate the third
term in (2.17) (with Xt being the forward swap rate) under the model assumptions.
He utilizes positions in forward-starting interest rate swaps in which gains are rein-
vested in LIBOR accounts at the end of each trading period. His approach does not
focus on model-free indexes of expected interest rate volatility, but is an alternative
to our hedging strategies of interest rate variance swaps on interest rate swaps ex-
plained in Chap. 3. We now turn to provide intuition regarding the option weights
in Eq. (2.6).

2.3.4 Constant Gamma Exposure

The weighting in the option portfolio leading to BP expected variance differs from
that underlying percentage variance, which is the standard scheme underlying the
CBOE VIX index for equity volatility. A basic intuition behind the uniform weight-
ing in Eq. (2.6) is that the instantaneous realized BP variance simply equals that
of the logarithmic changes of the forward risk rescaled by the squared forward risk,
‖στ‖2 ×X2

τ . The implied BP variance shares a similar property: comparing Eq. (2.6)
with Eq. (2.7) reveals that for the BP variance, each option price i carries the same
weight as dKi

K2
i

(i.e., the contribution of each option price to the implied percentage

variance), rescaled by the squared strike K2
i , i.e. dKi

K2
i

× K2
i .

We can illustrate the proportional weighting in Eq. (2.6) from a different angle.
In their derivation of the fair value of equity variance swaps, Demeterfi et al. (1999a,
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1999b) develop an intuitive approach relying on the Black and Scholes (1973) mar-
ket. They explain that a portfolio of options has a vega that is insensitive to changes
in the stock price only when the options are weighted inversely proportional to the
squared strike. This property obviously holds in our context with the general market
numéraire (see Eq. (2.7)). We develop a similar approach to gain intuition regarding
the uniform weightings in Eq. (2.6).

Assume a Gaussian market, i.e. one where the forward risk Xτ in Eq. (2.2) is
the solution to Eq. (2.8), and denote the price of an option (be it a put or a call) at
time t when the forward risk is X with Ot (X,K,T ,σn). We create a portfolio with
a continuum of these options having the same maturity, and denote the portfolio
weights with ω(K), which are taken to be independent of X. The value of this
portfolio is

πt (Xt , T ,σn) ≡
∫

ω(K)Ot (Xt ,K,T ,σn)dK. (2.19)

We require that the vega of the portfolio, defined as νt (X,T ,σ ) ≡ ∂πt (X,T ,σ )
∂σ

, be
insensitive to changes in the forward risk,

∂νt (X,T ,σ )

∂X
= 0. (2.20)

In Appendix A.3, we show that under regularity conditions, a portfolio of an ATM
and all of the OTM options, has vega independent of X if and only if the weightings
are independent of K , consistently with Eq. (2.9),

Eq. (2.20) holds true ⇐⇒ ω(K) = const. (2.21)

That is, a portfolio aiming to replicate the BP volatility, σn, which is immune to
changes in the underlying forward swap rate, is an equally weighted portfolio of
out-of-the-money and at-the-money options. In Appendix A.3, we also explain that
under the same conditions, the gamma exposure of the options portfolio is constant
across different realizations of the forward risk Xt , a result that Bibkov and Misra
(2012) illustrate numerically in the case of CBOE’s SRVIX index based on the next
chapter.

2.4 Implied Volatility Indexes

2.4.1 Model-Free Indexes

Model-free indexes of expected volatility related to the market numéraire Nt follow
from Proposition 2.2 in a natural fashion. We define the two indexes,

VXj
t (T ) ≡

√
(T − t)−1Vj

t , j ∈ {bp,p}, (2.22)

where Vbp
t is the strike KY for the basis point variance in Eq. (2.6), and Vp

t is the
strike KY for the percentage in Eq. (2.7).
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2.4.2 Comparisons to Model-Based Log-Normal and Normal
Implied Volatility

2.4.2.1 Skews

The indexes of percentage and basis point volatility in Eq. (2.22) link to the fair
value of dedicated interest rate variance swaps in a model-free fashion. As such,
they generalize special instances of markets we now describe.

Consider the price of a European call option:

Callt (K) = Et

(
e− ∫ T

t rτ dτNT (XT − K)+
) = NtE

QN

t (XT − K)+, (2.23)

where the second equality follows by the usual change of probability.
We consider two benchmark option pricing models that are derived from specific

assumptions on the dynamics of the forward risk.
The first benchmark relies on the Black–Scholes assumption in Eq. (2.10) that

the percentage volatility is constant and equal to σbs (a scalar, say). In this market,
the expression for the expectation under the numéraire probability in Eq. (2.23) is
given by the Black (1976) formula:

E
QN

t (XT − K)+ = XtΦ(dt ) − KΦ(dt − √
T − tσbs),

where

dt ≡ ln Xt

K
+ 1

2 (T − t)σ 2
bs√

T − tσbs
,

and Φ(·) denotes the cumulative standard normal distribution. The log-normal skew
is defined as the mapping K �−→ IV(K) where IV(K) denotes the value of σbs such
that the option price implied by Black’s model coincides with the market price.

The second benchmark relies on the assumption of a Gaussian–Bachelier market
with constant basis point volatility σn (a scalar, say) (see Eq. (2.8)). In this market,
the expectation in the second equality of Eq. (2.23) is

E
QN

t (XT − K)+ = (Xt − K)Φ(δt ) + σn
√

T − t√
2π

e− 1
2 δ2

t , (2.24)

where

δt ≡ Xt − K

σn
√

T − t
.

The normal skew is defined as the mapping K �−→ IVbp(K), where IVbp(K) is the
value of σn such that the option price in this Gaussian market equals the market
price.

Clearly, the log-normal skew is flat at σbs when the forward risk is as in Eq. (2.10)
and the normal skew is flat at σn should the forward risk be as in Eq. (2.8). In the
former case, the index VXp

t (T ) in Eq. (2.22) equals σbs and in the latter, the index

VXbp
t (T ) in Eq. (2.22) collapses to σn, as explained in Sect. 2.3.1.
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2.4.2.2 Estimating Expected Volatility from ATM Implied Volatilities

It is well known (see Brenner and Subrahmanyam 1988) that the price of ATM
options are approximately linear in volatility. For example, consider the price of an
ATM call option in the Black–Scholes market:

Callbs
t (K)|K=Xt

Nt

= Xt

(
2Φ

(
1

2

√
T − tσbs

)
− 1

)

≈ Xt

(
2

(
Φ(0) + φ(0)

1

2

√
T − tσbs

)
− 1

)

= Xt

1√
2π

√
T − t · σbs, (2.25)

with obvious notation. One can easily recover σbs from the previous formula. Simi-
larly, in Bachelier’s market,

Callnt (K)|K=Xt

Nt

= 1√
2π

√
T − t · σn,

where the L.H.S. of this equation is the expectation of the L.H.S. of Eq. (2.24)
evaluated at K = Xt .

Carr and Wu (2006, Appendix A) rely on these insights and provide an estima-
tor for the expected variance under the risk-neutral probability, assuming that the
instantaneous changes in the standard deviation of a forward risk are independent
of those of the forward risk, just as in the seminal paper of Hull and White (1987):
in terms of Eq. (2.2), the instantaneous standard deviation, στ (taken to be a scalar),
is independent of the entire path of Xτ , up to maturity. Under this assumption, and
in terms of the model of this chapter, their results imply that the price of an ATM
option, Callsv

t (·) is given by

Callsv
t (K)|K=Xt

Nt

≈ Xt√
2π

E
QN

t

(√
V (t, T )

)
, (2.26)

where V (t, T ) denotes the percentage variance, defined as in the second of
Eqs. (2.3). Note also that by Eq. (2.25),

Call$t (K)|K=Xt

Nt

≈ Xt√
2π

√
T − t · IV(Xt ), (2.27)

where Call$t (K) denotes the market call price, and IV(Xt ) is the implied volatility
for strike K = Xt . Therefore, setting Callt (K) = Callsv

t (K), and then comparing
Eq. (2.26) and Eq. (2.27), leaves:

E
QN

t

(√
V (t, T )

T − t

)
≈ IV(Xt ).
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The authors explain that the approximation is accurate. The assumption under-
lying this approximation is that the forward risk volatility is independent of the
forward risk path over the life of the option.

2.4.3 Index Decompositions

Let σ(X,K) denote Black’s implied volatility, defined as usual as σ(·, ·) :
Callt (K) = Ct (Xt ,K,σ (Xt ,K)), where Ct (X,K,σ) is the price of a call given
by the Black (1976) formula when the forward risk is X, the strike is K and the
volatility στ in Eq. (2.2) is constant and equal to σ . The next proposition provides
basic properties of the indexes in Eq. (2.22), which rely on a standard assumption
on implied volatility.

Proposition 2.3 (Index Skew Factors) Suppose the implied volatility surface has
the sticky delta property, or that implied volatilities are homogeneous of degree zero
in X and K , i.e. σ(X,K) = σ(λX,λK), for any constant λ > 0. Then, (i) there
exists a function ξ(t, T ) independent of X, such that Vbp

t in Eq. (2.6) can be written

as Vbp
t = X2

t × ξ(t, T ), and (ii) Vp
t in Eq. (2.7) is independent of Xt .

Appendix A.4 provides a proof of this proposition. A well-known example of
models for which the zero homogeneity property of σ(X,K) holds are diffusion
processes such that the volatility στ in Eq. (2.2) is a Markov process (see, e.g.,
Renault 1997), as is the case for the celebrated Heston (1993) model. For example,
in the special case of a Black–Scholes market (e.g., Eq. (2.10)), expected volatility
is as in Eq. (2.11), consistently with the previous Proposition 2.3. More generally,
this proposition provides novel characterizations of the indexes in Eq. (2.22), which
are potentially useful in empirical analyses as discussed below. For example,

VXbp
t (T ) = Xt ×

√
(T − t)−1ξ(t, T ) ≡ Xt × ξ̂ (t, T ). (2.28)

Proposition 2.3 tells us that under mild conditions, the function ξ̂ (t, T ) in
Eq. (2.28) is independent of the forward Xt , and can be time-varying, subsuming
movements in fundamental uncertainty unrelated to the level of Xt , a “skew factor.”
Therefore, a BP volatility index moves linearly with the forward, holding uncer-
tainty constant. In contrast, a percentage volatility index, such as VIX, should not
change with the forward risk, provided uncertainty remains the same. In this sense,
the rescaled skew factor, ξ̂ (t, T ), shares similarities (and orders of magnitude) with
a percentage index.

Mele et al. (2015a) perform an empirical analysis of CBOE’s SRVIX, the interest
rate swap BP volatility index developed in the next chapter. They document that this
index is at times led by movements of the forward swap rate, and at other times by
uncertainty (see Fig. 2.2). For example, the surge in expected BP rate volatility over
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Fig. 2.2 Top panel: The
CBOE SRVIX index relating
to the 1Y-10Y forward swap
rate, and the 1Y-10Y forward
swap rate. Bottom panel: The
CBOE SRVIX index relating
to the 1Y-10Y forward swap
rate, and the skew factor,
ξ̂ (t, T ) in Eq. (2.28)

the global financial crisis in 2008 is led by uncertainty, whereas the decline in the
same volatility over 2012 is partially explained by the extraordinarily low interest
rate climate. Mele and Obayashi (2015) provide additional empirical properties of
this index.

2.5 Implementing Basis Point Variance Swaps

The realized variance V bp(t, T ) in Eq. (2.3) is a notion that captures the up and
down movements the forward risk (e.g., the forward swap rate) might experience
over a given period. It measures the dispersion of interest rate changes as the sum
of the dispersions occurring over each trading period. It is the relevant notion in the
context of volatility trading and risk management for its potential to track episodes
of sustained and prolonged uncertainty. In Sect. 2.5.1, we provide one additional
definition of realized variance, and in Sect. 2.5.2 we provide estimates of variance
risk-premiums based on these two notions of realized variance.

2.5.1 Incremental Versus Point-to-Point Realized Variance

2.5.1.1 Basis Point

Mele et al. (2015a) consider an additional definition of realized basis point volatility

V
bp
p-t-p(t, T ) ≡

√
(XT − Xt)2

T − t
, (2.29)

which they label “point-to-point” basis point volatility. While V bp(t, T ) in Eq. (2.3)
is “incremental” in nature, point-to-point volatility captures the dispersion of
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changes in the forward risk over two distinct points in time. For example, regarding
swap markets, point-to-point volatility measures the distance of the future forward
rate from the current one, thereby ignoring anything that occurs during the trading
period—it may take a small value even after a prolonged period of market turbu-
lence.

While incremental and point-to-point basis point realized variance are obviously
not the same, they have the same expectation under the market probability. Consider,
for example, basis point variance contracts in swap markets, in which the relevant
probability is the annuity. Thus, while the fair values of basis point variance swaps
in Sect. 2.3 correctly track the expected variance relevant for trading purposes (i.e.
V bp(t, T ) in Eq. (2.3)), they can also be interpreted in terms of numéraire-adjusted
expected dispersion of the relevant risk, XT .

The claim that the expectation of the point-to-point variance under the market
probability is the same as that of V bp(t, T ) follows by the so-called isometry prop-
erty of Itô integrals (e.g., Øksendal 1998; p. 26), i.e. the second of the next equalities:

E
QN

t (XT − Xt)
2 = E

QN

t

(∫ T

t

Xτστ · dWτ

)2

= E
QN

t

(∫ T

t

X2
τ‖στ‖2dτ

)

= E
QN

t

(
V bp(t, T )

)
, (2.30)

where the first equality follows by Eq. (2.2), and the last is the definition of the
incremental basis point variance in Eq. (2.3).

Note, then, that we may define a new variance contract, delivering the following
payoff,

Π∗
T = NT × (

(XT − Xt)
2 − K∗),

where the fair value, K∗, is:

K∗ = 1

Nt

Et

(
e− ∫ T

t ruduNT (XT − Xt)
2) = E

QN

t (XT − Xt)
2 = KY ,

and the last equality follows by Eq. (2.30), with KY defined as in Eq. (2.6) of Propo-
sition 2.2. That is, the fair values of point-to-point and basis point variance swaps
are the same. Mele et al. (2015a) rely on this property and calculate approximate
confidence bands for the forward swap rate forecasts, based on the CBOE SRVIX,
reproduced in Fig. 2.3.6

2.5.1.2 Percentage

The previous equivalence property—two distinct variance contracts with the same
price—does not hold in the case of percentage variance contracts. Consider a con-
tract with payoff referenced to the variance of the cumulative log-return on an asset

6The forward swap rate is a martingale under the swap market probability but is not necessarily
Gaussian. Therefore, the bands in Fig. 2.3 are approximate.
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Fig. 2.3 Forward swap rate ∓1.96 times the CBOE-SRVIX volatility index for the 3m-10Y for-
ward swap rate (left panel) and 1Y-10Y forward swap rate (right panel)

price with process Xτ solution to Eq. (2.2), (ln XT

Xt
)2. Such a contract links to the

second moment of the cumulative return ln XT

Xt
, rather than the percentage variance.

By Itô’s lemma, its expectation equals,

E
QN

t

[(
ln

XT

Xt

)2]
= E

QN

t

[
2
∫ T

t

ln

(
Xτ

Xt

)
dXτ

Xτ

+
∫ T

t

(
1 − ln

Xτ

Xt

)(
dXτ

Xτ

)2]
,

and can be expressed in a model-free format as

E
QN

t

[(
ln

XT

Xt

)2]

= 2

Nt

(∫ Xt

0

1

K2

(
1 − ln

K

Xt

)
Putt (K)dK +

∫ ∞

Xt

1

K2

(
1 − ln

K

Xt

)
Callt (K)dK

)
,

(2.31)

with the usual notation.7

7The expression in Eq. (2.31) was first derived by Bakshi et al. (2003) in the equity case and
constant interest rate r̄ (i.e. for Nτ = e−r̄(T −τ)), in their attempt to determine model-free measures
of skewness.
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A percentage variance swap based on a cumulative, point-to-point notion is un-
usual at the time of writing—the standard notion one typically relies on is the incre-
mental realized variance,

∫ T

t
( dXτ

Xτ
)2, rather than the point-to-point realized variance,

(ln XT

Xt
)2. However, the fair value of basis point variance swaps based on the previ-

ous two notions coincide.

2.5.2 Volatility Risk Premiums

Volatility risk premiums measure how much investors are willing to pay to hedge
against volatility rising above a given threshold. Roughly, they are the difference
between the expectation of future volatility under the physical and market proba-
bilities. While the literature on equity volatility risk premiums is large (see, e.g.,
Bollerslev et al. 2009; Carr and Wu 2008; or Corradi et al. 2013, and references
therein), relatively little is known about volatility risk premiums in fixed income
markets. Mele et al. (2015a) undertake an empirical study pertaining to swap mar-
kets based on the CBOE SRVIX, and here we extend some of their findings by
calculating variance risk premiums for both incremental and point-to-point formu-
lations of basis point volatility.

We use realized variance as a proxy for the expectation of future realized variance
under the physical probability. Accordingly, we define the incremental and point-to-
point variance risk premiums as follows:

π incr
t+S ≡ SRVIX2

t (S) − Vol2t+S and π
p-t-p
t+S ≡ SRVIX2

t (S) − Vol2p-t-p,t+S,

where SRVIXt (S) denotes the CBOE SRVIX for tenor equal to 10 years, maturity
S expressed in fraction of years, and the two realized volatilities, Volt and Volp-t-p,t ,
are defined below. Note the following important interpretation of π incr

t+S and π
p-t-p
t+S :

they are P&Ls at time t +S of a short position in a variance swap contract originated
at time t .8

The realized basis point (incremental) volatility in Eq. (2.3) is estimated as the
annualized “quadratic variation” of the daily changes in the forward swap rate,

Volt ≡
√√√√ 251

21 · n
21·n∑
i=1

�F 2
t+1−i ,

where �Ft denotes the change at t of the forward swap rate for a n-month forward
starting swap with 10-year tenor.

8In the equity literature, one usually defines a variance risk premium as the difference between the
expectation of future realized variance under the risk-neutral and the physical probabilities (see,
e.g., Bollerslev et al. 2009). Our notion of variance risk premium is consistent with the purpose of
defining payoffs that have zero value under the market probability, as is the case with π incr

t+S . The

expectation of π incr
t+S under the physical probability is the variance risk premium as usually defined

in the literature, although we shall keep on referring to π incr
t+S as variance risk premium.
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Fig. 2.4 Price of insurance in the interest rate swap volatility space (CBOE SRVIX), realized
basis point incremental volatility, and swap volatility premiums for three month (left panels) and
one year (right panels) horizons

Estimating asset price volatility is one of the most important and studied top-
ics in financial econometrics (Engle 2004). Andersen et al. (2010) and Aït-Sahalia
and Jacod (2014) survey the literature on realized variance and related measurement
methods. One complication arising whilst dealing with fixed income market volatil-
ity is that the squared changes of variables of interest, such as forward swap rates,
may be unobservable due to the lack of constant maturity contracts. To calculate re-
alized volatility, we follow Mele et al. (2015a), and estimate missing forward swap
rates through linear interpolation.

The annualized realized point-to-point volatility in Eq. (2.29) is simply

Volp-t-p,t+S ≡
√

(Rt+S − Ft(S))2

S
,

where Ft (S) denotes the forward swap rate at t for a forward starting swap at t + S

with ten year tenor, and Rt+S = Ft+S(0) is the spot swap rate at time t + S.
Figures 2.4 and 2.5 plot the price of volatility (SRVIX) and realized volatil-

ity, along with volatility risk premiums defined as π̂ incr
t+S ≡ SRVIXt (S) − Volt+S

and π̂
p-t-p
t+S ≡ SRVIXt (S) − Volp-t-p,t+S . For comparison, Fig. 2.6 depicts equity

counterparts, in percentage, utilizing data on the VIX and the three-month horizon
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Fig. 2.5 Price of insurance in the interest rate swap volatility space (CBOE SRVIX), realized basis
point point-to-point volatility, and swap volatility premiums for three month (left panels) and one
year (right panels) horizons

VXV.9 Finally, Fig. 2.7 provides volatility risk premiums in the Treasury space
based on the CBOE/CBOT TYVIX index (see Chap. 4) and realized volatility of
the underlying 10-year Treasury Note future price.

Note that the persistence of the volatility risk premium increases with the horizon
length in both interest rate and equity cases. Figures 2.4 and 2.6 suggest that at a
three month horizon, volatility risk premiums in swap and equity markets display
similar persistence properties, although they do not quite react in the same way in
times of distress. Mele et al. (2015a) provide further analysis of these issues in swap
and equity markets.

2.6 Skew Shifts and the Dynamics of Volatility Indexes

In practice, there are only a finite number options for calculating a volatility index.
This section analyzes theoretical properties of the index in the presence of unavoid-
able truncations. It also develops a few basic numerical experiments that illustrate
these properties.

9Fornari (2010) documents early estimates of volatility risk premiums in the interest rate swap
space. His estimates regard percentage volatility, not basis point as in this section, and rely on
proxies for model-free implied volatility based on the standard equity methodology instead of the
interest rate methodology, which was subsequent to his work.
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Fig. 2.6 Price of insurance in the equity volatility space (CBOE VIX and VXV), realized percent-
age volatility, and equity volatility premiums for one month (left panels) and three month (right
panels) horizons

Fig. 2.7 Price of insurance in
the government bond
volatility space
(CBOE/CBOT TYVIX),
realized percentage volatility,
and volatility premiums for
one month horizons. The
TYVIX is referenced to one
month volatility in the
10-year Treasury Note Future
price

2.6.1 Truncations

Consider the following approximations to the expressions for Vbp and V in Eq. (2.6)
and Eq. (2.7),

Vbp
� ≡ 2

N

(∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK +

∫ X+�

X

Call
(
X,K,σ(X,K)

)
dK

)
,

(2.32)
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and

V� ≡ 2

N

(∫ X

X−�

Put(X,K,σ(X,K))

K2
dK +

∫ X+�

X

Call(X,K,σ(X,K))

K2
dK

)
,

(2.33)
where � ∈ (0,X) is a constant, and σ(X,K) is Black’s implied volatility introduced
in Sect. 2.4.

The indexes in Eqs. (2.32) and (2.33) are calculated with a strip of options cen-
tered at X over a range equal to 2�. In Appendix A.5, we show that for all � ∈ (0,X):

∂Vbp
�

∂X
= 2

X
Vbp

� − 2�

NX

(
Put

(
X,K,σ(X,K)

)∣∣
K=X−�

+ Call
(
X,K,σ(X,K)

)∣∣
K=X+�

)
, (2.34)

and

∂V�

∂X
= − 2�

NX

(
Put(X,K,σ(X,K))|K=X−�

(X − �)2
+ Call(X,K,σ(X,K))|K=X+�

(X + �)2

)
.

(2.35)
According to Proposition 2.3 in Sect. 2.4, the theoretical percentage index is un-

responsive to movements in the forward. Instead, Eq. (2.35) shows that its approx-
imation based on a finite strip of option prices, V� in Eq. (2.33), moves inversely
with X: that is, V� moves even if the skew remains the same. We now discuss these
issues in detail.

2.6.1.1 The Effects on the BP Volatility Index

How does the weighting scheme affect the index behavior in the presence of approx-
imations? It is instructive to analyze the basis point index first. Consider a market in
which uncertainty is constant but the forward X increases from X0 to X1, say, with
X1 − X0 < �. The usable strip of option prices is then re-centered towards the right
tail of the available strike distribution, with (i) a new set of call prices entering into
the index calculations (those with strikes between X0 + � and X1 + �), (ii) a set of
call prices leaving the index basis (those with strikes between X0 and X1), (iii) a new
set of put prices entering into the index (those with strikes between X0 and X1), and,
finally, (iv) a set of put prices leaving the index basis (those with strikes between
X0 − � and X1 − �). The index value changes due to the options entering and leav-
ing the index as described and due to the change in value of the options remaining
in the index. Marginally, when X1 − X0 is small, we have that

N

2

∂Vbp
�

∂X
=

new puts (iii)︷ ︸︸ ︷
Put

(
X,K,σ(X,K)

)∣∣
K=X

−
old puts (iv)︷ ︸︸ ︷

Put
(
X,K,σ(X,K)

)∣∣
K=X−�

+
∫ X

X−�

∂XPut
(
X,K,σ(X,K)

)
dK
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+ Call
(
X,K,σ(X,K)

)∣∣
K=X+�︸ ︷︷ ︸

new calls (i)

− Call
(
X,K,σ(X,K)

)∣∣
K=X︸ ︷︷ ︸

old calls (ii)

+
∫ X+�

X

∂XCall
(
X,K,σ(X,K)

)
dK, (2.36)

where ∂X denotes the total derivative, e.g. ∂XPut(X,K,σ(X,K)) =
PutX(X,K,σ(X,K))+Putσ (X,K,σ(X,K))σX(X,K), and subscripts denote par-
tial derivatives. Naturally, the two sets in (ii) and (iii) collapse to ATM call and put
prices; therefore, their combined effect is zero.

In Appendix A.5, we show that if the skew has the sticky delta property,
Eq. (2.36) is indeed consistent with Eq. (2.34). Equation (2.34) shows that the sign

of
∂Vbp

�

∂X
depends on two terms. The first is always positive, and is intuitively so

because Vbp
� is proportional to X2 just like its theoretical counterpart (see Proposi-

tion 2.3 in Sect. 2.4). Consistent with this intuition, in Appendix A.5 we show that
the approximating BP variance index, VXbp

�,t (T ), is

VXbp
�,t (T ) = X ×

√
(T − t)−1ξ�,X, (2.37)

for a function ξ�,X of the forward risk (see Eq. (A.12) in Appendix A.5). Instead,
the second term in Eq. (2.34) is negative, although it is likely significantly less than
the first term in absolute value.

2.6.1.2 The Percentage Index

The percentage index behaves quite differently, as ∂V�

∂X
in Eq. (2.35) is always nega-

tive. That is, a percentage volatility index (such as the VIX or TYVIX (see Chap. 4))
can change (driven by movements of X) even while uncertainty is constant. Natu-
rally, a drop in the market level may well be accompanied by increased uncertainty,
but the analysis of this section identifies an additional, mechanical effect, arising
from the index reliance on a moving window of out-of-the-money option prices. We
now develop numerical experiments and illustrate these properties based on realistic
market data inputs.

2.6.2 Numerical Experiments and Interpretation of Actual Index
Behavior

We consider numerical experiments in which we take as given a log-normal skew,
representing hypothetical conditions in the swaption market as of December 21,
2011, and summarized by Table 2.1. Table 2.1 also provides the values of the per-
centage and BP volatility indexes, VX�,t (T ) and VXbp

�,t (T ), and the value of the BP
ATM implied volatility.
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Table 2.1 Black’s skew and volatility indexes

atm

K 0.305 1.305 1.805 2.055 2.305 2.555 2.805 3.305 4.305

Black Vol 79.7 52.9 47.5 45.7 44.4 43.5 42.9 42.2 41.7

VX�,t (T ) = 51.2536, VXbp
�,t (T ) = 108.3121, BP ATM = 102.3420

Fig. 2.8 The Black’s skew in
Table 2.1 (circles) along with
the cubic lines fit (dashed
line)

We fit the skew in Table 2.1 with a cubic spline, obtaining the results depicted
in Fig. 2.8 where the fitted skew in Fig. 2.8 is denoted by σ̂K , and is a continuous
function of the strike swap rate K .

In the first experiment, we fix uncertainty and vary the forward rate from 2.10
to 3. For each value of the forward X, we select a set of strikes centered at the
forward swap rate X and the same range and coarseness as those in Table 2.1, and
calculate a discretized version of Eqs. (2.32) and (2.33) using as an input the fitted
skew σ̂K .

The right panel of Fig. 2.9 shows that the approximating percentage volatility
index is inversely related to the forward, even though its theoretical value is not, as
established by Proposition 2.3. The left panel of Fig. 2.9 shows, instead, that the
approximating index VXbp

�,t (T ) in Eq. (2.37) increases roughly linearly with X, as
the theoretical value predicts in Eq. (2.28). The left hand panel also depicts the BP
ATM volatility, obtained as,

BP ATM ≡ 100 × (44.4 · X). (2.38)

Note that when uncertainty is fixed, the relative magnitude of the BP volatility
index vis-à-vis the BP ATM volatility could change. In this example, the BP volatil-
ity index is lower than the ATM only when the forward swap rate is relatively high.



2.6 Skew Shifts and the Dynamics of Volatility Indexes 45

Fig. 2.9 Left panel: A Basis Point expected volatility index, calculated as in Eq. (2.32), compared
to the Basis Point ATM volatility, depicted as a function of the forward. Right panel: A percentage
expected volatility index, calculated as in Eq. (2.33). The indexes in the left and right panel are
calculated using a strip of swaption prices and the skew in Table 2.1

Fig. 2.10 The forward swap
rate for 1 year maturity and
10 year tenor (1Y-10Y)
versus the CBOE SRVIX
index regarding expected
volatility of the 1Y-10Y
forward rate

We emphasize that this exercise is one of comparative statics. We would expect that
uncertainty also changes while the forward swap rate changes.

Accordingly, we consider an additional experiment in which we vary uncertainty,
assuming that the swaption market experiences a parallel and positive shift in the
skew of 35 percentage points, which is a realistic figure over periods of stress such
as those experienced during the 2007–2009 crisis (see Sect. 3.7 in Chap. 3).

A negative change in the forward swap rate coupled with increased uncertainty
can be interpreted as the result of an aggressive monetary policy action aimed at sta-
bilizing market expectations and liquidity conditions. An historical instance of these
events occurred in the last months of 2008 that followed Lehman Brothers’ collapse,
which culminated with a spike in both the CBOE SRVIX index (an upward spike)
and the forward swap rate (a downward spike) (see Fig. 2.10, which reproduces the
top panel of Fig. 2.2).
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Fig. 2.11 Left panel: A Basis Point expected volatility index, calculated as in Eq. (2.32), compared
to the Basis Point ATM volatility, depicted as a function of the forward. Right panel: A percentage
expected volatility index, calculated as in Eq. (2.33). The indexes in the left and right panel are
calculated using a strip of swaption prices and the skew in Table 2.1 increased by a positive parallel
shift of 35 percentage points

Finally, an increase in the forward swap rate associated with increased uncer-
tainty can be interpreted as the result of decreased risk appetite, a credit crunch, or
a combination of the two, such as during some periods in the early part of 2009.

Figure 2.11 illustrates that for each level of the forward, the expected volatility
indexes increase after a positive parallel shift in the skew underlying the calculations
in Fig. 2.9. Interestingly, the BP volatility index increases less than the ATM for
most of the possible range of variation of the forward. An increase in the skew and,
hence, an increase in the ATM implied volatility from a value of 44.4 to a value of
79.4, leads to a higher slope of 79.5 in the BP ATM of Eq. (2.38).

In contrast, Figs. 2.9 and 2.11 reveal that the BP expected volatility increases
simply through a positive parallel shift for each X. This property is to be expected
because, as Fig. 2.9 suggests in this example, VXbp

�,t (T ) in Eq. (2.37) increases
roughly linearly with X; that is, the term ξ�,X moves primarily through changes
in uncertainty. The behavior of the percentage index is quite different as it is always
higher than the ATM volatility in the examples depicted in Fig. 2.11 (right panel).
Figure 2.12 depicts the spread of the expected volatility indexes versus their ATM
counterparts. The experiments in this section predict that during periods of distress,
a percentage volatility spread (index minus ATM) peaks up as can be seen in the
right panel of Fig. 2.12. In contrast, assuming interest rates are relatively unrespon-
sive, a BP interest rate volatility can even change sign.
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Fig. 2.12 Left panel: The spread between the Basis Point volatility index calculated as in
Eq. (2.32) and Basis Point ATM volatility, depicted as a function of the forward. Right panel: The
spread between the percentage volatility index calculated as in Eq. (2.33) and ATM percentage
volatility, depicted as a function of the forward

2.7 Jumps

This section examines pricing and indexing of expected volatility in markets where
the forward risk is a jump-diffusion process with stochastic volatility:

dXτ

Xτ

= −(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ + στ · dWτ + (

ejτ − 1
)
dJτ , τ ∈ [t, T ], (2.39)

where στ is a diffusion component, adapted to Wτ , Jτ is a Cox process under QN

with intensity equal to ητ , and jτ is the logarithmic jump size.10 By applying Itô’s
lemma for jump-diffusion processes to Eq. (2.39), we have that

d lnXτ = (· · · )dτ + στ · dWτ + jτ dJτ , (2.40)

for a drift function given in Appendix A.6 (see Eq. (A.18)).
Next, define the realized variance of the arithmetic changes of the forward risk

over [t, T ], as

V
bp
J (t, T ) ≡

∫ T

t

X2
τ‖στ‖2dτ +

∫ T

t

X2
τ

(
ejτ − 1

)2
dJτ (2.41)

10See, e.g., Jacod and Shiryaev (1987, pp. 142–146), for a succinct discussion of jump-diffusion
processes.



48 2 Variance Contracts: Fixed Income Security Design

and the realized variance of the logarithmic changes of the forward risk over [t, T ]
as

VJ (t, T ) ≡
∫ T

t

‖στ‖2dτ +
∫ T

t

j2
τ dJτ . (2.42)

The definitions in Eqs. (2.41) and (2.42) generalize those in Eqs. (2.3). In Ap-
pendix A.6, we show the remarkable property that the fair value KY of the basis
point variance swaps in Proposition 2.2 is resilient to the presence of jumps, in that
KJ,Y = KY where KJ,Y denotes the fair value of the contract in a market with jumps
and KY is as in Eq. (2.6). Accordingly, the basis point index of expected volatility,
VXbp

J t (T ), is the same as that we derived in the absence of jumps:

VXbp
J t (T ) = VXbp

t (T ), (2.43)

where VXbp
t (T ) is as in Eq. (2.22).

In contrast, the fair value of a percentage variance swap is

KJ,Y ≡ KY − 2EQN

t

[∫ T

t

(
ejτ − 1 − jτ − 1

2
j2
τ

)
dJτ

]
, (2.44)

where KY is as in Eq. (2.7) of Proposition 2.2. Suppose, for example, that the distri-
bution of jumps is skewed towards negative values. The fair value KJ,Y should then
be higher than it would be in the absence of jumps.

To illustrate, assume that the distribution of jumps collapses to a single point,
j̄ < 0 say, and that the jump intensity equals some positive constant η̄, in which
case the fair value in Eq. (2.44) collapses to, KJ,Y = KJ + 2(T − t) · η̄J , where
J ≡ −(ej̄ − 1 − j̄ − 1

2 j̄2) > 0. In this example, the percentage volatility index is

VXp
J t (T ) =

√
VXp

t (T ) + 2η̄J ,

where VXp
t (T ) is as in Eq. (2.22).

Remark 2.4 Carr and Wu (2008) derive an expression for a percentage variance
swap strike incorporating information about jumps, which Eq. (2.44) generalizes
to general market numéraires. Mele and Obayashi (2012) derive the “jumps irrele-
vance result” in Eq. (2.43) in the context of interest rate swap markets. This result
is extended to general numéraires in this chapter.

Remark 2.5 Consider the definition of VJ (t, T ) in Eq. (2.42),

VJ (t, T ) ≡
∫ T

t

‖στ‖2dτ

︸ ︷︷ ︸
≡V(t,T )

+
∫ T

t

j2
τ dJτ︸ ︷︷ ︸

≡J (t,T )

.
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In the statistics literature, one usually refers to VJ (t, T ) as the total variation of
lnXτ over the interval of time [t, T ] (an analogous definition can be provided
regarding V

bp
J (t, T )). Thus, V(t, T ) is the contribution to the total variation of

lnXτ due to its continuous component, whereas J (t, T ) is the jump contribution.
In this book, we shall still refer to VJ (t, T ) as variance rather than variation to
keep the presentation simple. Aït-Sahalia and Jacod (2014) summarize the state
of the art regarding filtering methods for both the continuous and jump contribu-
tions of a process in a general context and in the presence of market microstructure
noise.

Appendix A: Appendix on Security Design and Volatility
Indexing

A.1 Proof of Proposition 2.2

We begin with the following preliminary result, from which Eqs. (2.6)–(2.7) follow
for Yt = Nt . Note that the arguments in this proof rely on spanning arguments simi-
lar to those utilized by Bakshi and Madan (2000) and Carr and Madan (2001) in the
equity case, although centered around the notion of a market numéraire. We then
provide the proof of the proposition with general stochastic multipliers.

Lemma A.1 We have:

E
QN

t

(
V bp(t, T )

) = 2

Nt

(∫ Xt

0
Putt (K)dK +

∫ ∞

Xt

Callt (K)dK

)
, (A.1)

and

E
QN

t

(
V (t, T )

) = 2

Nt

(∫ Xt

0

Putt (K)

K2
dK +

∫ ∞

Xt

Callt (K)

K2
dK

)
. (A.2)

Proof We provide the proof of Eq. (A.1), as that of Eq. (A.2) follows as a spe-
cial case of the arguments leading to Eq. (A.19) and Eq. (A.20) in Appendix A.5
regarding the jump-diffusion case. By Itô’s lemma,

E
QN

t

(
V bp(t, T )

) = E
QN

t

(
X2

T − X2
t

)
. (A.3)

Moreover, by a Taylor expansion with remainder,

X2
T − X2

t = 2Xt(XT − Xt) + 2

(∫ Xt

0
(K − XT )+dK +

∫ ∞

Xt

(XT − K)+dK

)
.

(A.4)
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Multiplying both sides of the previous equation by e− ∫ T
t ruduNT , and taking expec-

tation under the risk-neutral probability leaves

Et

(
e− ∫ T

t ruduNT

(
X2

T − X2
t

)) = 2XtEt

(
e− ∫ T

t ruduNT (XT − Xt)
)

+ 2

(∫ Xt

0
Et

(
e− ∫ T

t ruduNT (K − XT )+
)
dK

+
∫ ∞

Xt

Et

(
e− ∫ T

t ruduNT (XT − K)+
)
dK

)

= 2

(∫ Xt

0
Putt (K)dK +

∫ ∞

Xt

Callt (K)dK

)
,

(A.5)

where the last line follows by a change of probability, from Q to QN ,

dQN

dQ

∣∣∣∣
FT

= e− ∫ T
t ruduNT

Nt

,

the martingale property of Xτ under QN , and the expressions for Putt (K) and
Callt (K) in Definition 2.2. By the assumption that Nτ is the price of a traded asset,
and Nτ > 0, dQN integrates to one. Similarly, by a change of probability,

Et

(
e− ∫ T

t ruduNT

(
X2

T − X2
t

)) = NtE
QN

t

(
X2

T − X2
t

)
. (A.6)

Combining Eqs. (A.5) and (A.6) with Eq. (A.3) yields Eq. (A.1). �

Next, we prove the claims of Proposition 2.2 regarding basis point variance,
V bp(t, T ); those for percentage variance V (t, T ) follow through a mere change
in notation. We only prove the “only if” part, as the “if” part is trivial from the
derivation of the proof to follow. Consider the Radon–Nikodym derivative of QY

against QN ,

ζT ≡ dQY

dQN

∣∣∣∣
FT

,

and suppose on the contrary that there exists a stochastic multiplier YT such that

covQN (
V bp(t, T ), ζT

) �= 0,

and that at the same time,

E
QY

t

(
V bp(t, T )

) = E
QN

t

(
V bp(t, T )

)
.
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In this case, Eqs. (A.3) and (A.5) would imply that the conclusions of Lemma A.1
hold. However, we also have:

E
QY

t

(
V bp(t, T )

) = E
QN

t

(
V bp(t, T )

) + covQN (
V bp(t, T ), ζT

)
.

Then, covQN
(V bp(t, T ), ζT ) = 0, a contradiction. Proposition 2.2 follows by Propo-

sition 2.1 in the main text and Lemma A.1. �

A.2 A Stochastic Multiplier Beyond the Market NumÉraire

Consider the following stochastic multiplier, YT = NT εT , where εT is FT -measurable,
and such that covQN

(V bp(t, T ), εT ) = 0. We have,

ζT ≡ dQY

dQN

∣∣∣∣
FT

= ct εT , with ct ≡ Et (e
− ∫ T

t ruduNT )

Et (e
− ∫ T

t ruduNT εT )
.

Heuristically,

ζT =
(

dQY

dQ
: dQN

dQ

)∣∣∣∣
FT

= e− ∫ T
t ruduYT

Et (e
− ∫ T

t ruduYT )
: e− ∫ T

t ruduNT

Et (e
− ∫ T

t ruduNT )
= εT ct .

Next, we claim that

covQN (
V bp(t, T ), ζT

) = ct · covQN (
V bp(t, T ), εT

) = 0,

as in the class of multipliers identified by Proposition 2.2. Indeed, we have:

E
QY

t

(
V bp(t, T )

) = ctE
QN

t (εT )E
QN

t

(
V bp(t, T )

) = E
QN

t

(
V bp(t, T )

)
,

where the first equality follows by the fact that εT is uncorrelated with V bp(t, T ),
and the second follows by the definition of ct ,

E
QN

t (εT ) = 1

Nt

Et

(
e− ∫ T

t ruduNT εT

) = 1

ct

.

A.3 Vega and Gamma in Gaussian Markets

We first show Eq. (2.9) (“Constant volatility”), then prove that the statement in
(2.21) is true (“Constant vega”) and, finally, validate our claims regarding the im-
plications on gamma of option portfolios (“Constant gamma exposure”). In what
follows, we assume that the portfolio weightings and their first order derivative
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are integrable with respect to the Gaussian distribution, (i) E(|ω(ỹ)|) < ∞ and
E(

∫ 0
−∞ |ω(u)u|Φ(u)du) < ∞, and (ii) E(|ω′(ỹ)|) < ∞, where ỹ is Gaussian. The

first two conditions are necessary for the existence of an abstract volatility index
based on at-the-money and out-of-the-money options in a Gaussian market (see
Eqs. (A.7) and (A.8) below). The second is a regularity condition needed while deal-
ing with boundedness of the sensitivity of vega with respect to the forward risk, Xt .

We shall rely on the following result. Consider the market in Sects. 2.2 and 2.3.
If the forward risk Xt is a solution to Eq. (2.8), the prices of put and call options are
given by the “Bachelier formulae” (see Eq. (2.24) in the main text):

OP
t (Xt ,K,T , σ̂n) ≡ Nt ·ZP

t (Xt ,K,T , σ̂n),

OC
t (Xt ,K,T , σ̂n) ≡ Nt ·ZC

t (Xt ,K,T , σ̂n),
(A.7)

where σ̂n ≡ √‖σn‖2,

ZP
t (X,K,T ,σ ) = (K − X)Φ

(
K − X

σ
√

T − t

)
+ σ

√
T − tφ

(
X − K

σ
√

T − t

)
,

ZC
t (X,K,T ,σ ) = (X − K)Φ

(
X − K

σ
√

T − t

)
+ σ

√
T − tφ

(
X − K

σ
√

T − t

)
,

and φ denotes the standard normal density.
CONSTANT VOLATILITY. Plugging Eq. (A.7) into Eq. (2.6) leaves, after substi-

tuting the expressions Putt (K)≡ OP
t (X,K,T , σ̂n) and Callt (K)≡ OC

t (X,K,T , σ̂n),
and extending the left limit of the first integral in Eq. (2.6) to −∞,

1

2
KY = σ 2(T − t) +

∫ X

−∞
(K − X)Φ

(
K − X

σ
√

T − t

)
dK

+
∫ ∞

X

(X − K)Φ

(
X − K

σ
√

T − t

)
dK

= σ 2(T − t)

[
1 + 2

∫ 0

−∞
uΦ(u)du

]

= σ 2(T − t)

[
1 + 2

(
−1

2

∫ 0

−∞
u2φ(u)du

)]

= 1

2
σ 2(T − t),

where the first equality follows by the property of the normal distribution that,∫ ∞
−∞ φ(X−K

ν
)dK = ν for ν > 0, and the second holds by a change in variables, the

third by an integration by parts, and the fourth by a basic property of the standard
normal distribution.

CONSTANT VEGA. We prove that in Gaussian markets, a portfolio with all out-
of-the-money and at-the-money European options has constant vega if and only
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if these options are equally weighted. The value of the portfolio we consider is a
special case of Eq. (2.19),

πt (X,T ,σ )

= Nt

(∫ X

−∞
ω(K)ZP

t (X,K,T ,σ )dK +
∫ ∞

X

ω(K)ZC
t (X,K,T ,σ )dK

)
,

(A.8)

where ZP
t and ZC

t are as in Eqs. (A.7).
Note that the vega of a put is the same as the vega of a call, and equals

Ntν
O
t (X,K,T ,σ ), where:

νOt (X,K,T ,σ ) ≡ ∂ZP
t (X,K,T ,σ )

∂σ
= ∂ZC

t (X,K,T ,σ )

∂σ

= √
T − tφ

(
X − K

σ
√

T − t

)
,

so that the vega of the portfolio is:

νt (X,T ,σ ) ≡ ∂πt (X,T ,σ )

∂σ
= Nt

√
T − t

∫
ω(K)φ

(
X − K

σ
√

T − t

)
dK. (A.9)

As for the “if” part in (2.21), let ω(K) = const., so that by Eq. (A.9), and the fact
that the Gaussian density φ integrates to one, we have that the vega is independent
of X:

νt (X,T ,σ ) = Nt

√
T − t · const.

As for the “only if” part, let us differentiate νt (X,T ,σ ) in Eq. (A.9) with respect
to X:

∂νt (X,T ,σ )

∂X
= − Nt

σ 2
√

T − t

∫
ω(K)φ

(
X − K

σ
√

T − t

)
(X − K)dK.

We claim that the constant weighting is the only function ω independent of X, and
such that ∂νt (X,T ,σ )

∂X
= 0. Suppose not, and note that ∂νt (X,T ,σ )

∂X
is zero if and only if,

X

∫
ω(K)φ

(
X − K

σ
√

T − t

)
dK =

∫
Kω(K)φ

(
X − K

σ
√

T − t

)
dK.

Let us moreover define a random variable ỹ ∼ N(μ,σ 2(T − t)). In terms of ỹ, the
previous equality is, by Stein’s Lemma,

μE
[
ω(ỹ)

] = E
[
ỹω(ỹ)

] = μE
[
ω(ỹ)

] + cov
[
ỹ,ω(ỹ)

]
= μE

[
ω(ỹ)

] + E
[
ω′(ỹ)

]
σ 2(T − t),

which is a contradiction unless ω(·) is constant.
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Remark A.1 By Proposition 2.2, and previous results in this appendix, the normal-
ized value of the portfolio in Eq. (A.8) is σ 2, in the special case ω(K) = 2,

√
πt (Xt , T ,σ )

Nt

= σ
√

T − t .

We illustrate this fact numerically. We set Xt = 5 %, T − t = 1 (one year) and
σ = 150 bps, and approximate the integral in Eq. (A.8),

1002 ×
√

π̂t (Xt , T ,σ )

Nt

≈ 1002 ×
√√√√2

( ∑
i:Ki<Xt

ZP
t (Xt ,Ki, T ,σ ) +

∑
i:Ki≥Xt

ZC
t (Xt ,Ki, T ,σ )

)
�K

≈ 150.3907,

where mini{Ki} = 0, maxi{Ki} = 10 %, �K = 0.0001.
CONSTANT GAMMA EXPOSURE. Our claim of a constant gamma exposure in a

Gaussian market follows because the option price in Eq. (A.7) satisfies,

∂2OU
t (X,K,T ,σ )

∂X2
= Nt

1

σ(T − t)
νOt (X,K,T ,σ ),

where OU
t (X,K,T ,σ ), U ∈ {P,C} denotes an out-of-the-money option price (see

Eq. (A.7)). Therefore, we have

∂2πt (X,T ,σ )

∂X2
=

∫
ω(K)

∂2OU
t (X,K,T ,σ )

∂X2
dK

= 1

σ(T − t)

∫
ω(K)

∂OU
t (X,K,T ,σ )

∂σ
dK

= 1

σ(T − t)

∂πt (X,T ,σ )

∂σ
. (A.10)

The L.H.S. of this equation is independent of X if and only if the R.H.S. is. That is,
the gamma exposure of the portfolio is constant if and only if the portfolio vega is
independent of X, as claimed in the main text.

A.4 Proof of Proposition 2.3

For simplicity, we suppress the dependence of all the variables and functions on
t and T . Assuming the zero homogeneity assumption is satisfied by the implied
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volatility σK ≡ σ(X,K), we have that the two Black pricers, P(X,K,σK) ≡
Put(K) and C(X,K,σK) ≡ Call(K), collapse to

P(X,K,σK) = Kϕ1
p(u) − Xϕ2

p(u), C(X,K,σK) = Xϕ1
c (u) − Kϕ2

c (u),

(A.11)
for some functions ϕi

p(x) and ϕi
c(x) of the moneyness u ≡ ln(K

X
). Substituting the

two expressions in Eqs. (A.11) into Eq. (2.6) of Proposition 2.2, and making the
change of variable K �→ u, leaves,

Vbp = X2 · ξ,

ξ ≡ 2

N

(∫ 0

−∞
(
euϕ1

p(u) − ϕ2
p(u)

)
eudu +

∫ ∞

0

(
ϕ1

c (u) − euϕ2
c (u)

)
eudu

)
,

where N is the market numéraire at t , and the function ξ is independent of X,
establishing Part (i) of the proposition. Part (ii) is similar. Substituting P(X,K,σK)

and C(X,K,σK) in Eq. (A.11) into Eq. (2.7) of Proposition 2.2, and by changing
the variable of integration to u = ln K

X
, leaves

V = 2

N

(∫ 0

−∞
(
ϕ1

p(u) − e−uϕ2
p(u)

)
du +

∫ ∞

0

(
e−uϕ1

c (u) − ϕ2
c (u)

)
du

)
,

which is independent of X. �

A.5 Approximating Indexes

We derive Eq. (2.34) and Eq. (2.35). We begin with Eq. (2.35). Substituting
Eq. (A.11) into Eq. (2.33) yields, for � ∈ (0,X),

V� = 2

N

(∫ 0

ln( X−�
X

)

(
ϕ1

p(u) − e−uϕ2
p(u)

)
du +

∫ ln( X+�
X

)

0

(
e−uϕ1

c (u) − ϕ2
c (u)

)
du

)
,

so that,

∂V�

∂X
= 2

N

(
−(

ϕ1
p(u) − e−uϕ2

p(u)
)∣∣

u=ln( X−�
X

)
· �

X(X − �)

+ (
e−uϕ1

c (u) − ϕ2
c (u)

)∣∣
u=ln( X+�

X
)
· −�

X(X + �)

)
.

Utilizing the expressions in Eq. (A.11) delivers Eq. (2.35). The proof of Eq. (2.34)
proceeds similarly: substitute Eq. (A.11) into Eq. (2.32) to obtain, for � ∈ (0,X),

VBP
� = X2 × ξ�,X, (A.12)
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where,

ξ�,X ≡ 2

N

(∫ 0

ln( X−�
X

)

(
euϕ1

p(u) − ϕ2
p(u)

)
eudu +

∫ ln( X+�
X

)

0

(
ϕ1

c (u) − euϕ2
c (u)

)
eudu

)
.

We have

∂ξ�,X

∂X
= 2

N

(
−(

euϕ1
p(u) − ϕ2

p(u)
)
eu

∣∣
u=ln( X−�

X
)
· �

X(X − �)

+ (
ϕ1

c (u) − euϕ2
c (u)

)∣∣
u=ln( X+�

X
)
· −�

X(X + �)

)

= − 2�

NX3

(
Put

(
X,K,σ(X,K)

)∣∣
K=X−�

+ Call
(
X,K,σ(X,K)

)∣∣
K=X+�

)
,

where the second equality follows by the expressions in Eq. (A.11). Equation (2.34)
follows by straightforward differentiation of Eq. (A.12).

Next we show that Eqs. (2.34) and (2.36) are mutually consistent. We have

∂

∂X

∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK

= Put
(
X,K,σ(X,K)

)∣∣
K=X

− Put
(
X,K,σ(X,K)

)∣∣
K=X−�

+
∫ X

X−�

∂XPut
(
X,K,σ(X,K)

)
dK

= Put
(
X,K,σ(X,K)

)∣∣
K=X

− Put
(
X,K,σ(X,K)

)∣∣
K=X−�

+ 1

X

∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK

− 1

X

∫ X

X−�

K · ∂KPut
(
X,K,σ(X,K)

)
dK, (A.13)

where the second equality follows by the assumption the implied volatilities are
homogenous of degree zero in (X,K), so that Put(·) = X · ∂XPut(·) + K · ∂KPut(·).
An integration by parts of the last term in Eq. (A.13) produces

∫ X

X−�

K · ∂KPut
(
X,K,σ(X,K)

)
dK

= X · Put
(
X,K,σ(X,K)

)∣∣
K=X

− (X − �) · Put
(
X,K,σ(X,K)

)∣∣
K=X−�

−
∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK.
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Substituting this term into Eq. (A.13) leaves

∂

∂X

∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK

= 2

X

∫ X

X−�

Put
(
X,K,σ(X,K)

)
dK − �

X
Put

(
X,K,σ(X,K)

)∣∣
K=X−�

. (A.14)

Similarly,

∂

∂X

∫ X+�

X

Call
(
X,K,σ(X,K)

)
dK

= 2

X

∫ X+�

X

Call
(
X,K,σ(X,K)

)
dK − �

X
Call

(
X,K,σ(X,K)

)∣∣
K=X+�

.

(A.15)

Equation (2.34) now follows by taking derivatives with respect to X in Eq. (2.32),
using Eqs. (A.14)–(A.15), and rearranging terms.

A.6 Jumps

We derive the expression for the fair value of KY in Proposition 2.2 under the as-
sumption that the forward risk Xt is a solution to the jump-diffusion process in
Eq. (2.39).

BASIS POINT. Apply Itô’s lemma for jump-diffusion processes to Eq. (2.39),
obtaining,

dX2
τ

X2
τ

= −2
(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ + 2στ · dWτ + ‖στ‖2dτ + (

e2jτ − 1
)
dJτ

= −2
(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ + 2

(
ejτ − 1

)
dJτ + 2στ · dWτ + ‖στ‖2dτ

+ (
ejτ − 1

)2
dJτ .

By integrating, taking expectations under QN , and using the definition of basis point
variance, V

bp
J (t, T ) in Eq. (2.41), leaves:

E
QN

t

(
X2

T − X2
t

)

= −2EQN

t

(∫ T

t

X2
τ

(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ

)
+ 2EQN

t

(∫ T

t

X2
τ

(
ejτ − 1

)
dJτ

)
︸ ︷︷ ︸

=0

+ 2EQN

t

(∫ T

t

X2
τ σ

2
τ · dWτ

)
︸ ︷︷ ︸

=0

+E
QN

t

[
V

bp
J (t, T )

]
, (A.16)



58 2 Variance Contracts: Fixed Income Security Design

where the first term is zero as,

E
QN

t

(∫ T

t

X2
τ

(
ejτ − 1

)
dJτ

)
= E

QN

t

(∫ T

t

E
QN

τ

(
X2

τ

(
ejτ − 1

)
dJτ

))

= E
QN

t

(∫ T

t

X2
τ

(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ

)
. (A.17)

Comparing Eq. (A.16) with Eqs. (A.5) and (A.6) and then (2.6) leads to the conclu-
sions of the main text, and in particular to Eq. (2.43).

PERCENTAGE. First, apply Itô’s lemma to Eq. (2.39), obtaining Eq. (2.40), viz

d lnXτ = −(
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ − 1

2
‖στ‖2dτ + στ · dWτ + jτ dJτ

= −1

2

(‖στ‖2dτ + j2
τ dJτ

) + στ · dWτ − (
E

QN

τ

(
ejτ − 1

)
ητ

)
dτ

+ jτ dJτ + 1

2
j2
τ dJτ , (A.18)

so that, by the definition of VJ (t, T ) in Eq. (2.42) and (by arguments similar to those
leading to Eq. (A.17)),

E
QN

τ

(
ejτ − 1

)
dJτ = (

E
QN

τ

(
ejτ − 1

)
ητ

)
dτ,

we obtain,

−2EQN

t

(
ln

XT

Xt

)
− 2EQN

t

[∫ T

t

(
ejτ − 1 − jτ − 1

2
j2
τ

)
dJτ

]
= E

QN

t

(
VJ (t, T )

)
.

(A.19)
Next, consider the standard Taylor’s expansion with remainder,

ln
XT

Xt

= 1

Xt

(XT − Xt) −
(∫ Xt

0

1

K2
(K − XT )+dK +

∫ ∞

Xt

1

K2
(XT − K)+dK

)
.

Taking the expectation under QN yields,

E
QN

t

(
ln

XT

Xt

)
= − 1

Nt

(∫ Xt

0

1

K2
Putt (K)dK +

∫ ∞

Xt

1

K2
Callt (K)dK

)
, (A.20)

where we have made use of the martingale property of Xτ under QN , and the
expressions for Putt (K) and Callt (K) in Definition 2.2. Combining Eq. (A.19)
and Eq. (A.20), and using Proposition 2.1, leaves the expression for KJ,Y ≡
E

QN

t [VJ (t, T )] in Eq. (2.44) of the main text.
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