
A Framework for Fast Service Verification
and Query Execution for Boolean Service Rules

Soumi Chattopadhyay1(B), Saikat Dutta2, and Ansuman Banerjee1

1 Indian Statistical Institute, Kolkata, India
soumi61@gmail.com

2 Jadavpur University, Kolkata, India

Abstract. The problem of service rule verification has attracted some
attention in recent years. In this paper, we consider service rules in sim-
ple Boolean logic and present a new method for business rule verification
using simultaneous minimal support set computation. As we show here,
the problem is similar in flavor to the problem of prime implicant genera-
tion of a given Boolean function which has alluded researchers for several
decades and significant efforts in this direction have been reported in lit-
erature, with proposals of widely varying algorithms and data structures.
In this paper, we revisit this problem in the context of business rules
and present a new method that aids in rule verification and also in query
execution at runtime. Our method builds on the classical binary decision
diagram data structure for representing business rules and generates the
test scenarios by a simple traversal algorithm. Experimental results on
simulated benchmark rules show the efficacy of our approach.

1 Introduction

In recent years, the services ecosystem has seen a steady emergence of business
rule management systems (BRMS) which allow enterprise architects to separate
the concerns in an aspect-oriented way and easily define, manage, update and
run the decision logic that directs enterprise applications in a Business rule
engine (BRE) without needing to write code or change the business processes
calling them [1–4]. This enables modern businesses to change their business rules
dynamically in order to adapt to a rapidly changing business environment, and
they contribute to agility in a service-oriented architecture paradigm by enabling
reduced time to automate, easier change and maintenance for business rules.

In this services execution paradigm with business rules, the overall perfor-
mance of the enterprise services delivered depends critically on the functional
correctness and performance of the rule repository used for handling the business
use cases. Bugs in rule encoding or implementation may create functional errors
in service delivery, which may critically affect business performance. With web
services and e-commerce being the order of the day like never before, ensuring
correctness of a business rule set before deployment is becoming a critical man-
date. In recent years, the problem of business rule verification has emerged as a
problem of immense importance, due to failure scenarios of business cases that
c© Springer International Publishing Switzerland 2015
L. Yao et al. (Eds.): APSCC 2015, LNCS 9464, pp. 17–32, 2015.
DOI: 10.1007/978-3-319-26979-5 2

18 S. Chattopadhyay et al.

have been reported by customers in interacting and working with several web
services. This paper addresses this specific problem of business rule verification
in a services ecosystem.

Business rules can be described in a declarative style [5,6] (using Declare
models), or through a set of logical formulas (in Boolean/temporal logic [7] or
their domain-specific variants). In this work, we have adopted a simple intuitive
style for modeling business rules, using Boolean logic with predicates over arbi-
trary variables. Our motivation in this work is to address the problem of business
rule verification, by which we can detect violations of business rules from the
intended deployments or service level agreements. Indeed, this is of extreme
importance, since the business rules form the critical component in a service
delivery model. A number of research articles [8,9,14,15] have been reported in
recent literature on this problem. These typically model business rules in either
the declarative or the procedural style and attempt to use standard web ser-
vice testing and formal verification methods to check for rule violations. While
testing methods have their own limitations in terms of exhaustiveness of the
scenarios covered, formal verification methods often fail to scale to the size and
complexity of the business rule database that we are looking at. Moreover, most
of these methods have restricted modeling styles for modeling business rules.
In contrast, we attempt to present in this paper, a foundational framework for
business rule verification by delineating the problem from the domain specifics,
and instead adopting a simple intuitive classical logical style for expressing busi-
ness rules. For the sake of simplicity and ease of illustration, we adopt Boolean
logic with predicates for expressing business rules, and show that the problem
of business rule verification can be cast as a simple instantiation of the classical
prime implicant generation problem for Boolean functions. In this paper, we cast
the problem of business rule verification as the task of extraction of test scenar-
ios/queries for which the business rule is expected to evaluate to true (these are
the ones in which a given business rule is supposed to trigger) and to false (sce-
narios where the rule is expected not to be exercised). Indeed, these constitute
the scenarios that a business rule logic implementation need to be put against,
since any violation of the expected outcomes on these scenarios is undesirable.
The ability to extract and test against all the true and false scenarios gives us an
added confidence of exhaustiveness akin to formal methods, while at the same
time, makes our approach scalable and relevant in practice, since we do not suffer
from any computational bottlenecks.

Computation of prime implicants for a Boolean function is one of the fun-
damental problems of Boolean algebra. Several approaches have been proposed
in the literature that deal with this problem [10–13]. For business rule verifica-
tion, we map the minimal support set generation problem as a simple variant
of the classical prime implicant generation problem. Not only are we interested
in extracting the scenarios in which a given business rule is expected to be trig-
gered (which maps exactly to the prime implicant generation problem), we are
also interested in extracting the use cases where the rule is expected to remain
unexercised. This corresponds to another run of the prime implicant generation
problem, for the negation of the given rule. In this work, we present a mechanism

A Framework for Fast Service Verification and Query Execution 19

by which we are able to unify the two tasks and address both the scenario gen-
eration problems in one pass. This is indeed an explicit novelty that we add on
in this paper, and we contrast our approach through simulations on business
rules, to show how much effort we save, in contrast to the two pass approach.
Additionally, we address another interesting piece in this work. Not only are
we interested in extracting the test scenarios, we also address the problem of
computing the minimal cardinality valuations that can make a given rule true
or false. This ensures that redundant scenarios are not used in our validation
process and we indeed test a given business rule repository against a minimal
relevant scenario set, while not compromising on the exhaustiveness of the veri-
fication process. The test scenarios synthesized by our approach are expected to
be used by a rule logic implementation team to test their deployment models.
Additionally, we can also take up these scenarios to check whether any of them
leads to violations of the service level agreements. this serves as a key component
in the rule verification process in a services deployment ecosystem, and we can
use the rules to generate sample queries for the testing task. Another important
aspect is the fact that this analysis can expedite the rule execution procedure.
If we preprocess the rules and store the minimal support sets of the rule in an
efficient manner, the queries can be answered at run time, without even execut-
ing the rule set, but using a simple look-up table. This in turn can expedite the
query execution procedure as well. This paper has three key contributions, as
outlined below:

– We address the problem of business rule verification, with rules expressed in
extended Boolean logic and model it as an instantiation of the simultaneous
test scenario generation problem.

– We discuss how we can expedite the process of run time query execution using
a look-up table.

– We also present an innovative approach for simultaneously computing the
exhaustive set of positive and negative test scenarios using a one-pass method,
with the help of a novel data structure. This makes our proposition scalable
and exhaustive and usable in practice.

2 Motivation for This Work

In this section, we illustrate the motivation of our work using a simple exam-
ple. We consider an example business decision rule R in an online shopping
framework defined as follows:

Example 1. Rule: If the brand is ADIDAS (p1) and any of the following con-
ditions is true:

– It is Christmas time (p2)
– For other times of the year (p̄2), if the customer is a valuable ADIDAS cus-

tomer (p3)
– On purchase from the old stock (p4)
– On purchase above $ 150 (p5)

20 S. Chattopadhyay et al.

Then announce 10 % discount on every shopping from ADIDAS.

For convenience of notation and simplicity of expression, we introduce the pred-
icates p1, p2, . . . , p5 in the ruleset above that express the different conditions
and use them in the following discussion throughout this paper. The triggering
condition of the above rule can be expressed as the following Boolean expression.

A = p1.(p2 + p̄2.p3 + p4 + p5)

A simple analysis of the antecedents of the rules reveals the following scenarios
where the rule is always true: {the brand is ADIDAS, this is Christmas time},
{the brand is ADIDAS, the customer is valuable}, {the brand is ADIDAS, pur-
chase is done from the old stock}, {the brand is ADIDAS, purchase is more than
$ 150}. If we notice these scenarios carefully, we can observe that all the condi-
tions are not present in every scenario, but still we can decide the rule as true
and can actuate the corresponding consequent (discount announcement) of the
rule. In fact these scenarios are minimum in cardinality, i.e., if we remove any
of the conditions from inside any of the scenarios (comma separated list), the
rule cannot be decided for a truth value. Similar is the situation for scenarios for
which the rule is always false: {the brand is not ADIDAS}, {it is not Christmas
time, the customer is not a valuable ADIDAS customer, the purchase is not done
from the old stock, the purchase is less than or equal to $ 150}.

If we can pre-process the antecedents of a given rule as discussed above,
we can generate the sample queries to guide the functional testing of the rule
set. A lot of approaches exist in literature which attempt to find these scenarios,
using methods based on, test generation using support sets for Boolean function.
Karnaugh map (K-map) [10] is one such popular method which can generate
support sets, but it does not scale with the number of variables. Another popular
method is the one proposed by Quine McCluskey [11]. The main disadvantage
of this approach is, we cannot use this approach for a large number of inputs,
because all minterms of a function need to be stored simultaneously in memory
and to generate both the scenarios discussed above, we need to execute this
method twice. Our proposed method, on the other hand, is able to generate
both the scenarios simultaneously.

Another important use case, as already discussed is that our preprocess-
ing proposal helps to expedite the run time service execution against incoming
queries as well. When the actual query (valuation of the variables appearing in
the rule) comes at run time, without even executing the rule set, we can decide
which rules are true by simply using a look-up table, which can be used to store
the support set valuations for which the rule evaluates to true or false. This
greatly expedites the query evaluation process, since we do not need to explic-
itly evaluate a query for every input scenario. The support sets can guide us
here as well. We explain in the following section, the technical details.

3 Detailed Methodology

In this section, we formally discuss our methodology. Figure 1 shows the different
components of our method. The input of our method is the set of service rules.

A Framework for Fast Service Verification and Query Execution 21

The rule has two parts an If part and the Then part. In this paper, we assume
that the If part is expressed in simple Boolean logic. Then part is the consequent
part of the rule, it is actuated when the If part of the rule is evaluated as true.
From here onwards, in our discussions, we consider the If part of the rule and we
show how we can compute the supporting and refuting scenarios for the If part
simultaneously that can expedite rule execution. The preprocessor preprocesses
the rules and generate exhaustive set of positive and negative test cases which
are stored in a lookup table. On one hand, this lookup table is used to verify the
services, on the other side it is used for faster query execution at run time. We
discuss both of these later in this section.

Service Rules

Preprocessor Lookup
Table

Verification
Service Query

Execution

(Generate minimal suppot
set of the rules)

Fig. 1. Component diagram of our method

Before going into the details of the algorithm, we define a few terminologies
that are necessary to develop our algorithm. We begin with some background
concepts.

Definition 1. Support Set: A set U = {(u1, x1), (u2, x2), . . . , (ul, xl)} is said
to be a support set of a service rule Φ defined over a set of Boolean propositions
P = {p1, p2, . . . , pn}, where xi ∈ {0, 1} and ui ∈ P ∀i = 1, 2, . . . , l, if Φ evaluates
to either 0 or 1, when u1 = x1, u2 = x2 . . . , ul = xl. �
Example 2. Consider a service rule Φ = p1.(p2 + p3 + p4.p5 + p6.p7.p8). {(p1, 1),
(p2, 1), (p4, 1), (p5, 1)} is a support set of Φ, since Φ evaluates to 1 on the assign-
ment p1 = 1, p2 = 1, p4 = 1, p5 = 1. �
A support set of a service rule Φ for which Φ evaluates to true is called a positive
support set and a support set for which Φ evaluates to false is called a negative
support set .

Definition 2. Minimal Support Set: For a service rule Φ, a support set U is
said to be a prime, if no proper subset of U is a support set of Φ. �
It is worth noting that we redefine the classical notion of minimal support set
by including the minimal support set with its valuation.

Example 3. For the function given in Example 2, {(p1, 1), (p2, 1)} is a minimal
support set of Φ. However, {(p1, 1), (p2, 1), (p4, 1), (p5, 1)} is not a minimal sup-
port set of Φ, since it is a superset of {(p1, 1), (p2, 1)}, which is a minimal support
set of Φ. �
We now define the co-factor of a service rule.

22 S. Chattopadhyay et al.

Definition 3. Co-factor: The positive (negative) co-factor of a service rule Φ
defined over a set of Boolean propositions P = {p1, p2, . . . pn} with respect to a
proposition pi ∈ P is obtained by substituting 1 (true) / 0 (false) in Φ. �

The positive co-factor, denoted by Φpi
is obtained by substituting the variable

pi with 1 in Φ, i.e., Φpi
= Φ(p1, p2, . . . , pi = 1, . . . , pn). Similarly, the negative co-

factor, denoted as Φp̄i
is obtained as Φ(p1, p2, . . . , pi = 0, . . . , pn). The co-factors

are independent of the proposition pi with respect to which they are computed.
We now define the concept of decomposition of a service rule. This follows as a
straightforward application of Shannon’s expansion [16].

Definition 4. Service Rule Decomposition: The decomposition of a service
rule Φ with respect to a proposition p ∈ P is obtained as:

Φ = p.Φp + p̄.Φp̄,

where Φp and Φp̄ are respectively the positive and negative cofactors of Φ with
respect to p. �

Service rule decomposition can be extended to multiple propositions as well.
From the definition of a minimal support set, it is trivial to observe that the
co-factor of a service rule Φ with respect to its minimal support sets is always
constant, i.e., either 0 or 1. Essentially, if {(p1, 1), (p2, 0)} is a minimal support
set of a service rule Φ, then Φp1p̄2 = constant, i.e. 1 or 0. We now define a few
concepts which are important for our methodology and serve as the foundation.

Definition 5. Strong Proposition: A proposition u is said to be a strong
proposition with respect to a minimal support set U of a service rule Φ, where,
U = {(u1, x1), (u2, x2), . . . , (uk, xk)} and (u, x) ∈ U , if Φp=x̄ is independent of
{u1, u2, . . . , uk}. �

Example 4. Consider the service rule Φ = p1.p2+p3.(p4.p5+p6). {(p1, 1), (p2, 1)}
is a positive minimal support set of Φ. p1 is a strong proposition with respect to
{p1, p2}, since, Φp1=0 (i.e. Φp̄1) is independent of p2. On the other hand, {(p1, 0),
(p3, 0)} is a negative minimal support set of Φ. It is easy to see that Φp1=1 (i.e.
Φp1) is not independent of p3. Therefore, p1 is not a strong proposition with
respect to {(p1, 0), (p3, 0)}. �

Definition 6. Strong Minimal Support Set: A minimal support set U is
said to be a strong minimal support set with respect to a service rule Φ, if all the
propositions appearing in U are strong. �

Example 5. Consider Φ = p1.p2+p3.p4. Here, {(p1, 1), (p2, 1)} is a strong minimal
support set, since, Φp̄1 is independent of p2 and Φp̄2 is independent of p1. �

It is intuitively obvious that a minimal support set with cardinality 1 is trivially
a strong minimal support set.

A Framework for Fast Service Verification and Query Execution 23

Definition 7. Derivative: The derivative of a service rule Φ with respect to a
proposition pi is defined as the exclusive-or of the positive and negative co-factors
of Φ with respect to the proposition pi, i.e., ∂Φ/∂pi = Φpi

⊕ Φp̄i
. �

In order to determine whether a proposition is strong with respect to a function Φ,
we use the concept of the derivative.

Definition 8. Critical Proposition: A proposition p is said to be a critical
proposition with respect to a service rule Φ, if the derivative of Φ with respect to
the proposition p is 1, i.e., ∂Φ/∂p = 1. �

3.1 Algorithm for Minimal Support Set Generation

In this section, we discuss our algorithm for simultaneous generation of positive
and negative minimal support sets for a given service rule. Consider a service rule
Φ defined over a set of Boolean propositions P = {p1, p2, . . . , pn}. A naive app-
roach for computing the minimal support sets of a service rule Φ is as follows: We
choose a combination C = {(p1, x1), (p2, x2), . . . , (pk, xk)}, where, xi ∈ {0, 1},
∀i ∈ {1, 2, . . . , k}. We compute the co-factor of Φ with respect to C and check
whether Φ evaluates to a constant. We start with a combination of cardinality
1 and then gradually increase the cardinality. While doing so, we keep track of
the combinations for which Φ evaluates to a constant and do not consider any
super set of such a combination. For each proposition pi in the service rule Φ,
there are three possibilities, either (pi, 0) ∈ C or (pi, 1) ∈ C or pi does not belong
to the propositions appearing in C. Therefore, this naive procedure will lead us
to explore all 3n − 1 combinations, which is very inefficient. We propose below
our modified approach that does the same job in a more efficient way. We use
the reduced ordered binary decision diagram (ROBDD) [17] data structure rep-
resentation for Boolean functions as the backbone of our method. Algorithm1
presents our approach for generating the minimal support sets of a service rule.
It is an iterative algorithm. We gradually build up a tree T to find out the
minimal support sets. Each step of the algorithm is discussed below.
We now explain the detail of each step below. We start with a dummy node S
and incrementally iteratively build the complete minimal support set tree.

Simplify: In this step, we simplify the service rule Φ by removing all the critical
propositions of the function. We identify all the critical propositions with respect
to Φ and substitute them by 0 in Φ. The simplified function is used in the later
steps of the algorithm.

Consider the propositions u1, u2, . . . , ul such that ∂Φ/∂uj = 1, for j =
1, 2, . . . , l. Then Φ can be written as, Φ = u1 ⊕ u2 ⊕ . . . ⊕ ul ⊕ Φū1.ū2.....ūl

.
Consider Φ1 = Φū1.ū2.....ūl

. We find the minimal support sets of Φ1 and then
combine them with the 2l combinations of u1, u2, . . . , ul to obtain the minimal
support sets of Φ. Lemma 1 expresses the correctness of this step.

Lemma 1. If ∂Φ/∂p = 1, every minimal support set of Φ has (p, 0) or (p, 1). �

24 S. Chattopadhyay et al.

Algorithm 1. GenerateMinimalSupportSet

1: Input: A service rule Φ; Output: Set of minimal support sets
2: Construct the ROBDD(B) for Φ;
3: Simplify Φ; Create a start node S;
4: while Φ is not constant do
5: Generate partial minimal support set and construct T ;
6: Substitute and simplify Φ;
7: end while
8: Back propagate from leaf node to start node;

Proof. Using Shannon’s expansion we have, Φ = p.Φp + p̄.Φp̄. Since ∂Φ/∂p = 1,
Φp = Φ̄p̄. Φ = p.Φ̄p̄+ p̄.Φp̄ = p⊕Φp̄. Φp̄ is independent of p. The positive minimal
support set of Φ = positive minimal support set of Φp̄ ∪ {(p, 0)}, since positive
minimal support set of Φp̄ makes it 1 and if we substitute p by 0 then we get 0
and XOR of 0 and 1 is 1. As a result we get the positive minimal support set
of Φ. Similarly positive minimal support set of Φ = negative minimal support
set of Φp̄ ∪ {(p, 1)}. On the other hand, negative minimal support set of Φ =
positive minimal support set of Φp̄ ∪ {(p, 1)}, or negative minimal support set
of Φp̄ ∪ {(p, 0)}. Hence, every minimal support set of Φ contains either (p, 1) or
(p, 0). �

The advantage of this step is, if a service rule Φ contains only those propositions,
with respect to which the derivative of the function is 1, we do not need to
proceed further. Each combination of the propositions gives a minimal support
set of Φ in such a situation.

Example 6. Consider Φ = p1⊕(p2+p3). Since, ∂Φ/∂p1 = 1, the minimal support
sets of (p2 + p3) are {{(p2 = 1)}, {(p3 = 1)}, {(p2 = 0), (p3 = 0)}}. The minimal
support sets of Φ are {{(p1 = 1, p2 = 1)}, {(p1 = 0, p2 = 1)}, {(p1 = 1), (p3 = 1)},
{(p1 = 0, p3 = 1)}, {(p1 = 1, p2 = 0, p3 = 0)}, {(p1 = 0, p2 = 0, p3 = 0)}}.

Partial Minimal Support Set Generation: In each iteration of the algo-
rithm, we modify the original service rule Φ. In the next step, we discuss the
modification of Φ. In this step, we generate the minimal support set of the mod-
ified service rule, we call it its partial minimal support set. Later, when we back
trace through the minimal support set tree T , we modify the partial ones to
get the minimal support set of Φ. Algorithm 2 shows the formal procedure to
generate a partial minimal support set. There may be multiple partial minimal
support sets at this step. However, we generate one and proceed to the next
step.

Once we obtain a strong minimal support set of the modified service rule, we
create a leaf node L and an intermediate node I of the tree in the same level,
i.e., both of them have the same parent. The parent node of the first level is
the start node S. The leaf node L contains two parameters: the strong minimal
support set of the modified service rule and the corresponding functional value,

A Framework for Fast Service Verification and Query Execution 25

Algorithm 2. GeneratePartialMinimalSupportSet

1: Input : ROBDD for the modified function Φ1

2: Output : A strong minimal support set
3: for each proposition p associated with Φ1 do
4: loop
5: Find a positive minterm M1 associated with p from B;
6: Find a minimal support set P1 from M1;
7: if p belongs to the proposition set of P1, then break;
8: end loop
9: if P1 is a strong minimal support set, then return P1;

10: loop
11: Find a negative minterm M2 associated with p from B;
12: Find a minimal support set P2 from M2;
13: if p belongs to the proposition set of P2, then break;
14: end loop
15: if P2 is a strong minimal support set, then return P2;
16: end for
17: return NULL;

i.e., 1 if it is a positive minimal support set and 0 if it is a negative one. The
intermediate node also has two entries.

– A set of Boolean propositions assigned with a value, combined using OR.
– An assigned value, either 0 or 1.

Algorithm 3 shows the formal procedure to create an intermediate node. Initially,
we pass S in Algorithm 3 as the parent node. The intermediate node(s), obtained
from the current level, is (are) going to be the parent node(s) in the next level.
The interpretation of an intermediate node is as follows:

– If the assigned value of an intermediate node is 0, it implies that the content
of the intermediate node is combined with a positive minimal support set
generated at any of the levels lower than the one to which the intermediate
node belongs to.

– Similarly, if the assigned value of an intermediate node is 1, it implies the
content of the intermediate node is combined with a negative minimal support
set generated at any of the levels lower than the one to which the intermediate
node belongs to.

If we do not obtain any strong minimal support set in this step, instead of
creating a single intermediate node, we create two intermediate nodes. The first
intermediate node contains (p, 0) in its first field and X (unknown) in its second
field while the second intermediate node contains (p, 1) in its first field and X
in its second field, where p is a proposition associated with Φ1. If the assigned
value of an intermediate node is X, it implies that whether the content of the
intermediate node is combined with a minimal support set generated at any
of the levels lower than the one to which the intermediate node belongs to is

26 S. Chattopadhyay et al.

Algorithm 3. CreateIntermediateNode

1: Input : Strong minimal support set of Φ1: U , parent Node P
2: if U is NULL then � No strong minimal support set exists
3: Create two intermediate nodes I1 and I2;
4: Choose a proposition p associated with Φ1; � preferably first node of the

ROBDD of Φ1

5: Assign (p, 0) to the first field of I1 and X to the second field;
6: Assign (p, 1) to the first field of I2 and X to the second field.
7: Add two edges from P to I1 and from P to I2;
8: else
9: Create an intermediate node I;

10: Assign tuples (ui, x̄i) corresponding to each tuple (ui, xi) ∈ U combined using
OR, to the first entry of the intermediate node.

11: if U is a positive minimal support set then
12: Assign 1 to the 2nd field of the intermediate node;
13: else if U is a negative minimal support set then
14: Assign 0 to the 2nd field of the intermediate node;
15: end if
16: Add an edge from P to I;
17: end if

decided after verification, i.e., we have to verify whether the minimal support set
generated at any of the levels lower than the one to which the intermediate node
belongs to, is a minimal support set of this level or not. This step is justified by
the following lemmas.

Lemma 2. If U = {(u1, x1), (u2, x2), . . . , (uk, xk)} is a positive (negative) min-
imal support set of Φ, where, xi ∈ {0, 1}, i = 1, 2, . . . , k, every negative (positive)
minimal support set contains at least one (ui, x̄i), such that, (ui, xi) ∈ U . �

Proof. To prove this lemma, we need to prove two things: The set of propo-
sitions in a negative minimal support set U1 of Φ has a non empty intersec-
tion with the set of propositions in U and every negative minimal support set
contains at least one (u, x̄), such that, (u, x) ∈ U . We prove both the claims
by contradiction. Let us first consider a negative minimal support set of Φ,
U1 = {(w1, y1), (w2, y2), . . . , (wl, yl)}, where, yi ∈ {0, 1} for i = 1, 2, . . . , l and
wi /∈ {u1, u2, . . . , uk}, ∀i ∈ {1, 2, . . . , k}. Therefore the truth table of Φ con-
tains at least one row satisfying U and U1 simultaneously, since the intersection
of the proposition set in U and U1 is empty. This contradicts the fact that
wi /∈ {u1, u2, . . . , uk}, ∀i ∈ {1, 2, . . . , k}. So, the proposition set of U1 con-
tains at-least one ui ∈ U , for i = 1, 2, . . . , k. Now we consider the fact U1 does
not contain any (u, x̄), such that, (u, x) ∈ U . Hence, we assume U1 contains
{(ui1 , xi1), (ui2 , xi2), . . . , (uil , xil)} ⊆ U . Now if we merge the elements of U and
U1, it remains a support set, say W. It is easy to see that, U and U1 are both
subsets of W, but U is a positive minimal support set of Φ and U1 is a negative
support set of Φ. This contradicts our assumption. �

A Framework for Fast Service Verification and Query Execution 27

Lemma 3. If U = {(u1, x1), (u2, x2), . . . , (uk, xk)} is a strong positive (nega-
tive) minimal support set of Φ, where xi ∈ {1, 0}, i = 1, 2, . . . , k, every neg-
ative (positive) minimal support set of Φ contains exactly one (ui, x̄i), where
(ui, xi) ∈ U . Also no other positive (negative) minimal support set of Φ contains
any (ui, xi) or (ui, x̄i) where (ui, xi) ∈ U . �

Proof. We present the proof for the positive minimal support set case and the
proof for the negative minimal support set is similar. The proof is as follows:
Since U = {(u1, x1), (u2, x2), . . . , (uk, xk)} is a strong positive minimal support
set of Φ, Φui=x̄i

is independent of {u1, u2, . . . , ui−1, ui+1, . . . , uk}. If another
minimal support set contains (ui, x̄i), it cannot contain any proposition from
{u1, u2, . . . , ui−1, ui+1, . . . , uk}.

Therefore a minimal support set can contain at most one (ui, x̄i) ∈ U .
From Lemma 2, it follows that each negative minimal support set contains at
least one element from the positive minimal support set with opposite polarity.
Therefore, every negative minimal support set contains exactly one (ui, x̄i) for
i = 1, 2, . . . , k.

Now we prove the second claim, i.e., no other positive minimal support set
of Φ contains any (ui, xi)or(ui, x̄i) where (ui, xi) ∈ U .

Case 1: Consider a positive minimal support set W = (w1, y1), (w2, y2), . . . ,
(wl, yl) of Φ such that (ui, x̄i) ∈ U and (ui, x̄i) ∈ W. wj /∈ {u1, u2, . . . ,
ui−1, ui+1, . . . , uk} for j = 1, 2, . . . , l, since U is a strong minimal support set.
Consider a tuple (uj , xj) ∈ U and uj �= ui. Clearly, when we substitute uj by
x̄j , the function Φ does not become independent of ui which contradicts the fact
that U is a strong minimal support set.

Case 2: Consider a positive minimal support set W = (w1, y1), (w2, y2), . . . ,
(wl, yl) of Φ such that (ui, xi) ∈ U and (ui, xi) ∈ W. Then there exists, at-least
one (uj , xj) ∈ U such that uj �= ui and (uj , xj) /∈ W, otherwise W would not
be a minimal support set. If (uj , x̄j) ∈ W, then this case would be similar to
Case 1. We can conclude that uj does not belong to the proposition set of W.
Therefore, when we substitute any uj by x̄j , the function Φ does not become
independent of ui, which again contradicts the fact that U is a strong minimal
support set. �

Substitution and Simplification of Φ: Once the intermediate node is cre-
ated, we modify the service rule, which we have now, say Φ1 for the sub tree
rooted at the intermediate node. Consider a strong minimal support set{U} gen-
erated in the current iteration. Assume, U = {(u1, x1), (u2, x2), . . . , (uk, xk)}. Let
us consider a tuple (ui, xi) from U . We substitute (ui = x̄i) in Φ1 and simplify
the function to get the modified Φ1.

Back Tracing Through the Minimal Support Set Tree T: Once the entire
minimal support set tree is created using the steps discussed above, we back trace
through this tree to compute the minimal support sets. All the minimal support
sets of Φ1 generated in this step, have to be modified in order to get the minimal

28 S. Chattopadhyay et al.

support set of Φ. For that, we need to back trace through the intermediate
nodes till the start node is obtained. If we consider the positive minimal support
set of Φ1, while traversing backward we consider only the intermediate nodes
which have assigned value 0. On the other hand, if the minimal support set of
Φ1 is negative, we similarly consider only the intermediate nodes with assigned
value 1. If the assigned value of an intermediate node is X, we verify whether the
minimal support set is going to be combined with the content of the intermediate
node, in order to be a minimal support set of the service rule corresponding to
the step to which the intermediate node belongs to.

3.2 A Complete Example

In this subsection, we explain the working of Algorithm1 using an example.
Consider the following rule:

Rule: If the brand is ADIDAS (p1) and any of the following conditions is true:

– It is Christmas time (p2)
– The customer is a new ADIDAS customer (p3) and he purchases above $ 150

(p4)
– The customer is a frequent ADIDAS customer (p5) and he purchases from

new stock (p̄6)
– The customer is a infrequent ADIDAS customer (p̄5) and he purchases from

old stock (p6)
– The customer is a frequent ADIDAS customer (p5) and he purchases above $

100 (p7)

Then announce 10 % discount on every shopping from ADIDAS.
The If part of the rule can be expressed as:

Φ = p1.(p2 + p3.p4 + p5.p̄6 + p̄5.p6 + p5.p7)

We wish to find all the minimal support sets (positive and negative) for Φ.

[Step 1:] (Simplify Φ): We construct the ROBDD for Φ. We find the derivative
of Φ with respect to all the propositions appearing in Φ. We create a start node
S of the minimal support set tree T .

[Step 2:] The aim of this step is to find a strong minimal support set of Φ1 and
create one/two intermediate node(s) of T as needed. The iteration is started
from this step. Let us assume the first proposition we consider here is p1. It is
easy to observe that (p1, 0) is a strong minimal support set of Φ1. We find a
positive and a negative minterm from the ROBDD of Φ1 which contain p1 and
from these two minterms, we find a positive and a negative minimal support set
containing p1 as described in Algorithm 2. This has already been substantiated
in Lemma 3. Eventually, we get a strong minimal support set (p1, 0). We create
a leaf node L containing (p1, 0) in its first field and 0 in its second field. We
also create an intermediate node I containing (p1, 1) in its first field and 0 in its
second field as shown in Fig. 2.

A Framework for Fast Service Verification and Query Execution 29

Start

(P1, 0) P1 = 1
(0)

(P2, 1) P2 = 0
(1)

(P4, 1)
(P3, 1)&

P4 = 0
P3 = 0|

(1)

P5 = 0
(X)

P5 = 1
(X)

(P6, 1) (P6, 0)
(1)

(P6, 0) (P6, 1)
(1)

(P7, 1) (P7, 0)
(1)

(P1, 1), (P2, 1)
(P1, 1), (P3, 1), (P4, 1)
(P1, 1), (P5, 1), (P6, 0)
(P1, 1), (P5, 0), (P6, 1)
(P1, 1), (P5, 1), (P7, 1)

(P1, 0)
(P2, 0), (P3, 0), (P5, 0), (P6, 0)
(P2, 0), (P4, 0), (P5, 0), (P6, 0)
(P2, 0), (P3, 0), (P5, 1), (P6, 1), (P7, 0)
(P2, 0), (P4, 0), (P5, 1), (P6, 1), (P7, 0)

Positive PI :

Negative PI :

Φ = 0

Φ = 1

Φ = 1

Φ = 1

Φ = 0

Φ = 1

Φ = 1

Φ = 0

Fig. 2. Minimal support set computation for Φ1 = p1.(p2+p3.p4+p5.p̄6+ p̄5.p6+p5.p7)

[Step 3:] We substitute p1 by 1 and modify Φ1. Now the modified function is
Φ1

(1) = p2 + p3.p4 + p5.p̄6 + p̄5.p6 + p5.p7. For the sake of simplicity of illustra-
tion, we have used superscripts to differentiate the functions generated at each
iteration and differentiate from the ones generated in other iterations. In this
way, we create all the intermediate nodes corresponding to a strong minimal
support set as shown in Fig. 2. In iteration 4, we have the modified function as
Φ1

(2) = p5.p̄6 + p̄5.p6 + p5.p7. As we can see, the algorithm fails to find a strong
minimal support set. Therefore, we create two intermediate nodes in this step
I1 and I2. Assume the proposition which we consider in this step is p5. Hence,
I1 contains (p5, 0) in its first field and X in its second field. Similarly, I2 con-
tains (p5, 1) in its first field and X in its second field. The modified function for
the subtree corresponding to I1 is Φ1

(3) = p6 and the modified function for the
subtree corresponding to I2 is Φ1

(4) = p̄6 + p7. We again start to find the min-
imal support sets of Φ1

(3) and Φ1
(4) according to our algorithm. Once the tree

is constructed fully, we start back tracing in order to find the minimal support
sets of Φ1 = p1.(p2 + p3.p4 + p5.p̄6 + p̄5.p6 + p5.p7).

[Step 4:] (Back Propagation): Consider the shaded path in Fig. 2. The leaf node
indicates that we are going to construct a negative minimal support set, since the
leaf node contains Φ = 0. The assigned value of the previous intermediate node
is 1, hence we consider its first field (p6, 0). The next intermediate node contains
an assigned value X, therefore we have to verify whether we consider (p5, 0) as
follows. The service rule corresponding to this level is Φ1

(2) = p5.p̄6+p̄5.p6+p5.p7.
It is easy to see that we have to consider (p5, 0) in order to get a minimal
support set, since Φ1

(2) does not evaluate to constant, if we substitute (p6, 0)
in Φ1

(2). The next intermediate node contains 1 in its second field. Therefore
we have to consider its first field. Here we get two minimal support sets, one
combining (p3, 0) and another combining (p4, 0). Similarly we have to consider

30 S. Chattopadhyay et al.

Table 1. Results of our implementation (MSS stands for minimal support sets)

Rules Input variables Positive MSS Negative MSS Quine McCluskey

(ms)

Our method

(ms)

CUDD

(ms)

1 30 9936 13 Timeout 264.319 497.556

2 21 9 1296 Timeout 30.132 82.645

3 4 4 3 0.922 0.226 0.046

4 4 4 2 0.879 0.132 0.039

5 18 9 512 Timeout 6.814 23.527

6 36 64 87205 Timeout 30445 113824

7 3 1 3 0.333 0.111 0.033

8 3 1 3 0.331 0.079 0.029

9 3 1 3 0.33 0.1 0.042

10 2 1 2 0.04 0.066 0.021

11 4 1 4 4.029 0.09 0.041

12 7 5 3 4127.66 0.163 0.131

13 3 3 1 0.33 0.088 0.034

14 3 3 1 0.443 0.083 0.03

15 3 3 1 0.331 0.085 0.032

16 3 2 2 0.147 0.108 0.031

17 29 282 2196 Timeout 1219.72 1257.8

18 36 4434 11209 Timeout 155199 158713

19 35 1905 10228 Timeout 27078 62563.8

20 32 802 4692 Timeout 5333.16 9520.12

the next intermediate node as well. We do not need to consider the intermediate
node containing (p1, 1) since its second field contains 0. The next node is the
start node itself and therefore the back propagation terminates. In this step
we get two negative minimal support sets: {(p2, 0), (p3, 0), (p5, 0), (p6, 0)} and
{(p2, 0), (p4, 0), (p5, 0), (p6, 0)}. The final step is to combine either (p0, 0) or
(p0, 1) with each minimal support set in order to get the minimal support sets
of Φ.

4 Implementation and Results

We implemented our methodology in C++. We ran our experiments on manually
created random service rules of varying sizes and complexity. On one side, we
obtain the positive and negative minimal support sets related to any proposition,
as required by Algorithm2 by iterating over the paths of our data structure. We
also implemented the Quine McCluskey algorithm in C++ to provide a con-
trast of its efficiency against ours, which is shown in Table 1. The CUDD [18]
Boolean function manipulation package provides several programmable inter-
faces for minimal support set generation, and we contrast our approach against
the CUDD routine as well in the same table. Table 1 presents the experimen-
tal results. Columns 5, 6 and 7 show the time taken by Quine McCluskey, our
method and CUDD Implementation respectively. As evident from Table 1, our

A Framework for Fast Service Verification and Query Execution 31

method takes much less time as compared to Quine McCluskey on all the bench-
marks. Quine McCluskey is inherently nonscalable, hence we obtained timeouts
on some of the larger cases. We also have comparative performance improvement
over the CUDD API as evident on some of the cases. As explained earlier, we
employed both the Quine McCluskey and CUDD API on the original function
and its negation and recorded the combined times. As it can be seen, the CUDD
implementation fails to generate all minimal support sets in many of the cases.

5 Conclusion and Future Work

In this paper, we address the problem of business rule verification and query exe-
cution, with rules expressed in extended Boolean logic. We discuss how we can
expedite the run time execution using a look-up table and finally we present an
innovative approach for simultaneously computing the exhaustive set of positive
and negative test scenarios using a one-pass method, with the help of a novel
data structure. This makes our proposition scalable and exhaustive. Experimen-
tal results on simulated benchmark shows the efficacy of our proposal. As evident
from the results, our method efficiently computes the positive and negative sce-
narios as well. We are currently working on real business decision rules to see
how our method works when put into real practice. Also we are experimenting
on query evaluation using our method.

References

1. Paschke, A., Teymourian, K., AG Corporate Semantic Web: Rule based business
process execution with BPEL+. In: I-SEMANTICS (2009)

2. Rosenberg, F., Dustdar, S.: Business rules integration in bpel-a service-oriented
approach. In: E-Commerce Technology, CEC 2005 (2005)

3. Weigand, H., van den Heuvel, W.-J., Hiel, M.: Rule-based service composition and
service-oriented business rule management. In: ReMoD (2008)

4. Paschke, A., Kozlenkov, A.: A rule-based middleware for business process execu-
tion. In: Multikonferenz Wirtschaftsinformatik (2008)

5. JRULEENGINE. http://jruleengine.sourceforge.net/
6. DROOLS. http://www.drools.org/
7. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-

dations of Computer Science. IEEE (1977)
8. Deutsch, A., et al.: Automatic verification of data-centric business processes. In:

Proceedings of the 12th International Conference on Database Theory. ACM (2009)
9. Shi, Y.-L., et al.: TLA based customization and verification mechanism of business

process for SaaS. Jisuanji Xuebao (Chin. J. Comput.) 33(11), 2055–2067 (2010)
10. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Am.

Inst. Electr. Eng. Part I: Trans. Comm. Electron. 72(5), 593–599 (1953)
11. McCluskey, E.: Minimization of Boolean function. J. Bell Syst. Tech. 35, 1417–1444

(1956)
12. Coudert, O.: Two-level logic minimization: an overview. Integr. VLSI J. 17(2),

97–140 (1994)

http://jruleengine.sourceforge.net/
http://www.drools.org/

32 S. Chattopadhyay et al.

13. Ron, R.: An SE-tree-based prime implicant generation algorithm. Ann. Math.
Artif. Intell. 11, 351–365 (1994)

14. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web
service compositions. In: Proceedings of the 18th IEEE International Conference on
Automated Software Engineering, 6–10 October 2003, pp. 152–161 (2003). doi:10.
1109/ASE.2003.1240303

15. Zhu, Y., Gao, H.: A novel approach to generate the property for web service veri-
fication from threat-driven model. Appl. Math. 8(2), 657–664 (2014)

16. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, Dordrecht (2000). ISBN:0792397460

17. Huth, M., Ryan, M.: Binary decision diagrams. In: Logic in Computer Science:
Modelling andReasoning About Systems, Chap. VI, pp. 316–374 (2000)

18. CUDD: CU Decision Diagram Package Release 2.5.0. http://vlsi.colorado.edu/
∼fabio/CUDD/cuddAllDet.html

http://dx.doi.org/10.1109/ASE.2003.1240303
http://dx.doi.org/10.1109/ASE.2003.1240303
http://vlsi.colorado.edu/~fabio/CUDD/cuddAllDet.html
http://vlsi.colorado.edu/~fabio/CUDD/cuddAllDet.html

http://www.springer.com/978-3-319-26978-8

	A Framework for Fast Service Verification and Query Execution for Boolean Service Rules
	1 Introduction
	2 Motivation for This Work
	3 Detailed Methodology
	3.1 Algorithm for Minimal Support Set Generation
	3.2 A Complete Example

	4 Implementation and Results
	5 Conclusion and Future Work
	References

