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Abstract. Hardware Trojan has emerged as a major security concern for
integrated circuits. This paper presents a novel design obfuscation scheme
against hardware Trojan attacks based on chaos finite state machine (FSM) and
delay chains array physical unclonable function (PUF). We exploits the
pseudo-random characteristics of the M-sequences to propose a chaos FSM
design method which can generate exponentially many random states and
transitions to obfuscate the chip’s functional states with low overhead. The
chip’s functionalities are locked and obfuscated and would not be functional
without a unique key that can only be computed by the designer. We also
propose a new PUF construction method, named delay chains array PUF
(DAPUF), to extract the unique power-up state for each chip which is corre-
sponding to a unique key sequence. We introduce confusions between delay
chains to achieve avalanche effects of the PUF outputs. Thus the proposed
DAPUF approach can provide large number of PUF instances with high accu-
racy and reverse-engineering resistant. Through the proposed obfuscation
scheme, the designer can control the IC’s operation modes (chaos mode and
normal mode) and functionalities, and can also remotely disable the chips when
hardware Trojan insertion is revealed. The functional obfuscation prevents the
adversary from understanding the real functionalities of the circuit as well as the
real rare events in the internal nodes, thus making it difficult for the adversary to
insert hard-to-detect Trojans. It also makes the inserted Trojans become invalid
since the Trojans are most likely inserted in the chaos mode and will be acti-
vated only in the chaos mode. Both simulation experiments on benchmark
circuits and hardware evaluations on FPGA show the security, low overhead and
practicality of the proposed method.
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1 Introduction

Hardware Trojan attacks have emerged as a major threat for integrated circuits
(ICs) [1–3]. A design can be tampered in untrusted design houses or fabrication
facilities by inserting hardware Trojans. Hardware Trojans can cause malfunction,
undesired functional behaviors, leaking confidential information or other catastrophic
consequences in critical systems. Methods against hardware Trojan attacks are badly
needed to ensure trust in ICs and system-on-chips (SoCs).

However, hardware Trojans are stealthy by natures which are triggered under rare
conditions or specific conditions that can evade post-manufacturing test. Moreover,
there are large number of possible Trojan instances the adversary can exploit and many
diverse functions of Trojans which makes hardware Trojan detection by logic testing
extremely challenging.

Many side-channel signal analysis approaches [4–6] have been proposed to detect
hardware Trojans by extracting the parameters of the circuits, e.g. leakage current,
transient current, power or delay. However, these methods are very susceptible to process
variations and noises. Moreover, the detection sensitivity is greatly reduced for small
Trojans in modern ICs with millions of gates. A few regional activation approaches were
proposed to magnify Trojan’s contributions [7, 8]. However, large numbers of random
patterns were applied during detection, while computationally consuming training pro-
cesses were also used for pattern selection. Besides, these approaches need to alter the
original design and add more circuits during design phase which will increase the
complexity of the design process and produce a considerable overhead for large designs.

Most of the existing works require golden chips to provide reference signals for
hardware Trojan detection. However, obtaining a golden chip is extremely difficult [9].
The golden chips are supposed to be either fabricated by a trusted foundry or verified to
be Trojan-free through strict reverse engineering. Both methods are prohibitively
expensive. In some scenarios, the golden chips even don’t exist, e.g., if the mask is
altered at the foundry. Recently, a rare few methods are proposed to detect HT without
the golden chips by using self-authentication techniques [9–11]. However, these
methods are not without limitations [12]. They always need expensive computations,
sophisticated process variation models and a large number of measurements to ensure
accuracy for large deigns.

R.S. Chakraborty et al. propose an application of design obfuscation against
hardware Trojan attacks [13, 14]. However, the key sequence is the same for all the
chips from the same design which makes the approach itself vulnerable to various
kinds of attacks, e.g. the fab can use the key to unlock all the chips and then tamper or
overbuild the chips arbitrarily. The fab or the user can also release the key sequence of
the design in the public domain which makes the chip vulnerable to reverse-
engineering attacks. Besides, the procedure of determination of unreachable states is
also time consuming and computationally complex.

This paper presents a novel design obfuscation scheme against hardware Trojan
attacks based on chaos finite state machine (FSM) and delay chains array physical
unclonable function (PUF). The obfuscation scheme is realized by hiding and locking the
original FSM using exponentially many chaotic states. We exploits the pseudo-random
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characteristics of theM-sequences [15] to propose a chaos FSM design method which can
generate many random states and transitions with low overhead. The chip is obfuscated
and would not be functional without a unique key that can only be computed by the
designer. We also propose a new PUF construction method, named delay chains array
PUF (DAPUF), to extract the unique signature of each chip. Each chip has a unique
key sequence corresponding to the power-up state. We introduce confusions between
delay chains to achieve avalanche effects of the PUF outputs. Thus the proposed DAPUF
can provide large number of PUF instances with high accuracy and reverse-engineering
resistant. Through the proposed scheme, the designer can control the IC’s operation
modes (chaos mode and normal mode) and functionalities, and can also remotely disable
the chips when hardware Trojan is revealed. The functional obfuscation prevents
the adversary from understanding the real functionalities of the circuit as well as the real
rare events in the internal nodes, thus making it difficult for the adversary to insert
hard-to-detect Trojans. It also makes the inserted Trojans become invalid since the
Trojans are most likely inserted in the chaos mode which will be activated only in the
chaos mode. Both simulation experiments on benchmark circuits and hardware evalua-
tions on FPGA platforms show the security, low overhead and practicality of the pro-
posed method.

2 Overall Flow

First, the designer exploits the high level design description to form the FSM. Then, the
original FSM is modified based on the nonlinear combination of the M-sequences to
generate the chaos FSM which adds exponentially many random states and transitions
to obfuscate the functional states. Then, the DAPUF module is constructed to generate
the unique signature of each IC. After the subsequent design procedures are performed,
the foundry will receive necessary information to fabricate the chips. Each chip is
locked upon fabrication. In the proposed chaos FSM construction scheme, up to 220

chaotic states are added, so the functional states of the chip are submerged in a large
number of chaotic states. When the chip is powered on, it will be a great probability to
fall into the chaotic states thus is non-functional, named chaos mode.

Then, the foundry applies the set of challenge inputs to the PUF unit on each chip
and sends the PUF response to the designer. Each PUF response is corresponding to a
unique power-up state. The designer who masters the M-sequences and transition table
is the only entity who can compute the passkey to make the chip enter into functional
states. After applying the passkey, the locked IC will traverse a set of transitions and
reach to the functional reset state. Then the IC is unlocked and becoming functional,
called normal mode.

Figure 1 shows the proposed design obfuscation scheme. In this sample, there are 8
states in the original FSM. 24 chaotic states are generated adding to the original FSM.
4 black hole states are introduced to enable the designer to disable the chips when
needed. The DAPUF module generates a unique identifier for each chip corresponding
to a unique power-up state. The power-up state is most likely to fall into the chaos FSM
making the chip nonfunctional until an IC-unique passkey is applied. The passkey can
make the chip traverse through a set of transitions and reach to the functional reset state.
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3 Chaos FSM Construction

We define the following symbols for discussion:

In this paper, we nonlinearly combine the outputs of the M-sequences to generate
exponentiallymany random states and transitions with low overhead. First, we exploit the
M-sequences to construct a circular state transition graph (STG). A simple illustration is
shown inFig. 2. For simplicity, there are only seven chaotic states andone reset state in this
illustration while the original FSM are omitted. The state transition paths are denoted as
C12;C23. . .;Ciiþ 1, where i is the ith state of the chaotic states generator. There are no states
in the original FSMof the design.We assume the order of the chaotic states generator has a
large value L to ensure 2L [ [ no, thus there are no þ 2L states in total. When the chip is
powered on, it only has a probability of no

no þ 2L to fall into the functional states. Obviously,
this probability is nearly zero.

Second, we perform chaos process of the STG which needs to satisfy the following
principles: (1) for any chaotic state Sk, there is at least one transition path Cak to ensure
that all the chaotic states are reachable, where a is an arbitrary value; (2) there is a set of
transition paths Cpi1 ;Ci1i2 ; . . .;Cimq to ensure that any two chaotic states Sp; Sq can be
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Fig. 1. The chaos FSM and DAPUF based design obfuscation scheme against hardware Trojans

O0;O1;O2. . .;Ono�1 The original FSM states (O0 is the reset state)
Sno ; Sno þ 1; . . .; Sn0 þ 2L�1 The added chaotic states
Kij The required key for traversing from state i to state j
Cij The connected transition path from state i to state j
Dij The disconnected path from state i to state j

Security Against Hardware Trojan Attacks 17



connected; (3) there is at least one chaotic state can reach the reset state O0 through one
transition CiO0 .

The first step of the chaos process is to add new random transition paths to the
existing circular STG. In Fig. 2, that is, adding new Cij where j 6¼ iþ 1, such as
C15;C24;C36;C72. The second step is to disconnect several transition paths randomly,
that is, replacing Cij with Dij, such as D12 and D34. Each time a Dij is added, we should
check the connectivity between state i and state j, which means, there is at least one
transition path Cii1 ;Ci1i2 ; . . .;Cimj to connect state i and state j. Otherwise, one need to
add the corresponding Cinim to ensure the connectivity.

Suppose the power-up state is Sn, there is one transition path CSni1 ;Ci1i2 ; . . .;CimO0

to ensure that the power-up state and the reset state O0 is connected. We can get
O0 ¼ FfF. . .fFfSn;Cni1 ;KSni1gCi1i2 ;Ki1i2g. . .CimO0 ;KimO0g. To unlock the chip, the
transition key KSni1 ;Ki1i2 ; . . .;KimO0 is needed. The designer can increase the number of
required transition keys to increase the complexity of the key space. Since there is a
huge number of chaotic states, adding one transition path will exponentially increase
the key space while the added overhead is negligible.

In the chaos FSM construction, the designer can also create black hole states to
disable the chip when needed [16]. Black hole states are the states that can’t return to
functional states regardless of the input sequences. When the fab provide the power-up
state to the designer asking for the unlock passkeys, the designer may deliberately
provide a specific input sequence to make the chip enter into black hole states rather
than reset state once hardware Trojan insertion is revealed.

4 Delay Chains Array PUF Implementation

The changes of chip’s operating conditions, including temperature and voltage, etc.,
will affect physical characteristics of the chip, thus affecting the PUF. The traditional
solution is to add redundancy or use the error correcting codes. Two advantages of the
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Fig. 2. The state transition graph of the chaos FSM
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proposed DAPUF construction method compared to traditional PUF approaches are:
(1) exploiting relative value algorithm rather than absolute value to analyze the results,
thus can overcome the impact of chips’ working conditions; (2) introducing confusions
between delay chains which can result in avalanche effects of the PUF output, thus can
generate large number of PUF instances with reverse-engineering resistant.

Zou J. et al. use the delay chain to obtain FPGA gate-level timekeeping and the
precision of such delay chain can reach to 1 ns [17]. In this paper, we propose a PUF
implementation approach based on delay chains array, named DAPUF.

First, let’s consider the one-dimensional delay chain PUF (DPUF). As shown in
Fig. 3, the DPUF is constructed by cascading the buffers and the D flip-flops. We use
symbol start to represent the high level of the D flip-flop’s input signal, while using
symbol end to represent the high level of the buffer’s input signal. The delay of the
buffer is denoted as tB and the delay of the D flip-flop is denoted as tD, thus the delay
difference between the D flip-flop and the buffer is Dt ¼ tD � tB (note that tD [ tB).
At the beginning, both the input of the D flip-flop chain and the input of the buffer
chain are at low level. When the first high level signal start comes, this high level
signal will propagate through the D flip-flop chain. After a certain delay T , the end
signal will come and propagate along the buffer chain. Because of the delay difference
Dt between the D flip-flop and the buffer, when propagating through every stage, the
propagation time difference between the start signal and the end signal will reduce Dt.
At a certain time, the end signal will catch up with and surpass the start signal.

Due to the intrinsic process variations, each chip has different tB and tD. Even within
one chip, the delays of different D flip-flops (or buffers) also have tiny differences. Thus,
we can define tBn as the inherent delay of the nth buffer while t

0
Bn is the difference

between tBn and the expected mean value tB. Similarly, we define tDn as the inherent
delay of the nth D flip-flop while t

0
Dn is the difference between tDn and the expected mean

value tD. Denote r as the random noise. Generally, Dtn, r satisfy the normal distribution
with a certain expectation, thus we can get tBn ¼ tB þ t

0
Bn þ r and tDn ¼ tD þ t

0
Dn þ r

under noise condition. Further more, we can get:

XkB
n¼1

ðtB þ t
0
Bn þ rÞþ T ¼

XkD
n¼1

ðtD þ t
0
Dn þ rÞ ð1Þ

In which, kB and kD are the number of propagated buffers and the number of
propagated D flip-flops when the end signal catches up with the start signal. We can
obtain the tuple (kB, kD) through the time discriminator. This tuple (kB, kD) is unique for
each chip and physically stochastic.

We define m groups of input signals as fX1; Y1; T1g; . . .; fXm; Ym; Tmg, where
X1;X2; . . .;Xm represent the high level input signals of the D flip-flop, Y1; Y2; . . .; Ym
represent the high level input signals of the buffer, and T1; T2; . . .; Tm represent the time
difference between input signal Xg and Yg, 1� g�m. Let’s define:

ðkgB; kgDÞ ¼ WfXg; Yg; Tgg ð2Þ
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where WfXg; Yg; Tgg represents the delay chain’s response to the gth group of input
signals. kgB and kgD are the number of propagated buffers and the number of propagated
D flip-flops when the signal Yg catches up with the signal Xg. Thus, we can obtain a
group of tuples fðk1B; k1DÞ; ðk2B; k2DÞ; . . .; ðkmB; kmDÞg based on the response of the
DPUF. Then, we can extract the PUF characteristic vector:

E
* ¼ ½ðk2B; k2DÞ � ðk1B; k1DÞ; ðk3B; k3DÞ � ðk2B; k2DÞ; . . .; ðkmB; kmDÞ

� ðkðm�1ÞB; kðm�1ÞDÞ� ð3Þ

In which, E
*

is the power-up state of the chip. Generally, one can consider that the
working conditions of different regions within one chip are the same. We use relative
value for characterization can eliminate the effect of working conditions.

However, there are some shortages if we only use one-dimensional delay chain
PUF (DPUF). Since the precision is only 1 ns, the physical unique characteristic of
each chip is quantified by this precision. Thus, the number of possible PUF instances is
reduced due to this limitation. However, less PUF instances may cause the collision
problem, which means two chips with different characteristics may have the same
DPUF after quantified. Therefore, this paper proposes delay chains array PUF
(DAPUF) which can magnify the delay differences thus significantly increase the
number of PUF instances.

The block diagram of the proposed DAPUF is shown in Fig. 4. I1; I2; . . .; I2h
represent the rising edges of the input signals, in which, h is the number of delay
chains. We add confusions between delay chains by the configuration of Conij. Conij
represents whether the node in row i column j is connected. In other words, it satisfies:

Conij ¼
1 connected

0 disconnected

(
. Obviously, the coming moment of the rising edge in each

node Pi0j0 depends on the values of all Conijði\i0; j\j0Þ. It’s illustrated in a simple
example, as shown in Fig. 4, since Con11;Con22;Con31 are 1, the time of the rising
edge in node P23 is affected by I1, I2 and I3. The time discriminator will detect the first
(kB, kD) rising edges of each delay chain, and extract the corresponding characteristic

vector E
*

. The final DAPUF characteristic vector is fE1
*

;E2
*

; � � � ;Eh
* g. Obviously, the

configurations of the Conij significantly magnify the delay differences between delay
chains and greatly increases the number of PUF instances with avalanche effects.
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Fig. 3. The structure of the one-dimensional delay chain PUF (DPUF)
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5 Simulation and Hardware Implementation Evaluation

Simulation experiments are performed on a set of ISCAS89 benchmark circuits while
the hardware evaluations are based on the CC1200 wireless transmitter control circuit
implemented on Altera EP2C8Q208C8 FPGA platforms.

Figure 5 shows the test waveforms of the one-dimensional DPUF. The rising edges
are the start signal propagating in the D flip-flop chain and the end signal in the buffer
chain, respectively. Obviously, at a certain moment, the end signal catches up with and
surpasses the start signal. We can get the tuple (kB, kD) of this moment through the time
discriminator.

There are m groups of input signals in each delay chain thus there are m groups of

(kB, kD) and we can calculate E
*

of the DPUF. For the delay chains array PUF
(DAPUF), there are h delay chains in total and we can obtain m � h groups of (kB, kD)

through the time discriminator and we can calculate the characteristic vector fE1
*

;

E2
*

; � � � ;Eh
* g. The characteristic vector is corresponding to the unique power-up state of

the chip.
Figure 6 shows the test waveforms of the proposed obfuscation scheme. Note that,

the state transition waveform is only a simple illustration to show the chaotic states
transitions, which contains only seven chaotic states and one reset state. The real chaos
FSM is much bigger than this sample thus is not convenient to present in this wave-
form. As shown in the figure, when the chip is powered on, it falls into a chaotic state

11Con 12Con 13Con

21Con 22Con 23Con

31Con 32Con 33Con

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

delay
chain
PUF

delay chain PUF

delay chain PUF

delay chains array PUF

delay
chain
PUF

I1

I2

I3

I4

P23

T
im

e discrim
inator

Fig. 4. The structure of the proposed delay chains array PUF (DAPUF)

Security Against Hardware Trojan Attacks 21



and will traverse in the chaos FSM. The states of the chaos FSM are chaotic and
unpredictable. When a wrong passkey is applied, the module starts to perform passkey
identification. Since this is a wrong passkey, after the passkey identification, the chip
continues to traverse in the chaos FSM until the correct passkey (00010100100100
001100111100000001) is applied. Then the module performs passkey identification
again. The chaos FSM will traverse to the reset state “000” through several transition
paths and the chip is unlocked. Then, the chip will enter into the normal mode.

Table 1 shows the overhead of the proposed scheme on ISCAS89 benchmark
circuits as well as the CC1200 wireless transmitter control circuit. The overhead has
two main parts, the DAPUF construction and the chaos FSM implementation.
The DAPUF module in our experiments consists of 28 delay chains with each delay
chain contains 10 buffers and 8 D flip-flops. The results show that this DAPUF module
costs 156 logic elements (LE). We use a large scale DAPUF in the experiment to
ensure obtaining massive PUF instances and strong avalanche effects. The overhead of
the chaos FSM implementation mainly comes from the polynomial coefficients of the
M-sequences, the added transition paths table, and the storage of the passkeys. In this
paper, there are 220 chaotic states and the unlocking process needs 4 passkeys with each
key is 128 bit long. Note that, in related works, the PUF weren’t included in the
evaluations. If we remove the overhead of the DAPUF, the overhead of the scheme is
rather small. It is shown that when the circuit’s size becomes larger, the overhead
becomes much smaller. For modern circuits with millions of gates, the overhead of the
scheme is negligible.
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Fig. 5. The test waveform of the DPUF
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Fig. 6. The test waveform of the proposed obfuscation scheme
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6 Conclusion

We have developed a novel design obfuscation scheme against hardware Trojan attacks
based on chaos FSM and DAPUF. We propose a chaos FSM design method which can
generate many random states to obfuscate the original FSM. We also propose a new
PUF construction method obtaining large number of PUF instances with avalanche
effects. Through the proposed scheme, the designer can control the IC’s operation
modes and functionalities, and can remotely disable the chips. The obfuscation pre-
vents the adversary from understanding the real function and the real rare events of the
circuit, thus making it difficult to insert Trojans. It also makes the inserted Trojans
become invalid since they are most likely inserted in the chaos mode which will be
activated only in the chaos mode.
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