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Abstract. In these years, computerization has been more and more
important in the financial area. The computational intensity and real-
time constraints of those financial models require high-throughput par-
allel architectures. In this paper, optimization of widely-used binomial
option pricing model has been implemented on the worlds largest super-
computer, Tianhe-2. In our work, we employ several optimizing tech-
niques to efficiently utilize the architecture of Intel MIC heterogeneous
system to improve the performance. The experimental results show that,
compared with the serial implementation, the optimized binomial option
pricing achieves 33X speedup on one Intel Xeon CPU and 61X speedup
on one Intel Xeon Phi coprocessor. Further experiments on Intel MIC
heterogeneous system indicate that our implementation attains a speed-
up factor of 254 on one Tianhe-2 computing node.

Keywords: Binomial option pricing - MIC - Parallel process - Hetero-
geneous system + Optimization

1 Introduction

An option is a contract that gives right to the owner to buy or sell a financial asset
or instrument at a specified strike price on or before the expiry date. Binomial
option pricing is one of the most popular approaches that values an option using
a time-step model [10]. With larger scale of financial problem, the number of
option grows rapidly which makes the computation becomes very expensive.
This issue often happens when a great number of real-time options need to be
revaluated with live data. Hence, it is significant to improve the efficiency of
binomial option pricing.

Related work mainly focuses on implementing the binomial option pricing on
CPU. Previous researchers have presented parallel solution for binomial option
pricing with low performance [17]. Gerbessiotis et al. [8] achieved high speedup
with proposed algorithm on Intel Pentium CPU cluster. But it only achieves less
than 2% of peak performance of one single node and the performance decreases
when scaling to multiple nodes. Zubair et al. [18] and John et al. [16] proposed
another algorithm considering the memory hierarchy system to achieve 60 % of
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the peak performance on 8 UltraSPARCIIIi processors. But it is not easy to
optimize and extend to large CPU cluster. Other works deploy binomial option
pricing on GPU. Matthew et al. [6] proposed a GPU-based market value-at-
risk estimation algorithm which is suitable for Nvidia GPGPU. But it can only
process small-scale Europe options. Although Qiwei et al. [12] and Mehmet et al.
[9] also provided other GPU-based solutions for binomial option pricing, it does
not get enough efficiency from the hardware.

In this paper, we implement and optimize the binomial option pricing on
Intel MIC heterogeneous system which contains Intel Xeon CPU and Intel Phi
coprocessor. Our method includes several optimizing techniques such as optimiz-
ing compiler options, OpenMP parallelization, vectorization by SIMD and mod-
ification of the serial algorithm to efficiently utilize Intel hardware’s architecture
to further improve the performance. The experimental results demonstrate that,
compared with the CPU serial code, the optimized version of binomial option
pricing achieves 33X speedup on one Intel Xeon CPU and 61X speedup on one
Intel Xeon Phi. Further experiments on heterogeneous system of Tianhe-2 [7]
indicate that our implementation attains a speedup of 254 times on one Tianhe-
2 computing node.

The rest of the paper is organized as follows. We review the binomial option
pricing model in Sect. 2 and introduce the architecture and programming model
of Intel MIC heterogeneous system in Sect. 3. In Sect. 4, we present and imple-
ment several optimization strategies for binomial option pricing on Intel Xeon
CPU and Intel Xeon Phi coprocessor. Detailed experimental results and analysis
are provided in Sect.5 and conclusions of our work is shown in Sect. 6.

2 The Binomial Option Pricing Model

2.1 Binomial Option Pricing Model Theory

The flowchart of the binomial option pricing is illustrated in Fig. 1. The bino-
mial pricing model traces the evolution of the option’s key underlying variables
in discrete time which is done by a binomial tree [5]. Each node in the tree rep-
resents a possible price at a given point of time. The computation is performed
iteratively, beginning at each of the leave nodes and then computing backwards
through the tree towards the root node. The value of each node which depends
on the values of its two child nodes is computed at each stage at that given
point of time. In the end, the value of root node is the final result of binomial
option pricing.

2.2 Serial Algorithm

Algorithm 1 presents the pseudocode of the serial kernel in binomial option pric-
ing program. There are two main parts: the first one is a loop that initialize each
leave node’s value in the binomial tree (line 2 — 4); the second one is a nested
loop (line 6 — 10). The outer loop is procedure of calculation following the time
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Fig. 1. The flowchart of the binomial option tree.

step from leave node to root node. The inter loop indicates that in each time
step, all nodes of that stage will calculate its value by using its two child nodes’
values. [13]

Algorithm 1. Serial algorithm of binomial option pricing
1: for all options do

2: for all leave nodes do

3: Initialize its value

4: end for

5:

6:  for each time step do

T for nodes of each stage do
8: Calculate its value

9: end for

10: end for

11: end for

3 Overview of Intel Many Integrated Core (MIC)

3.1 MIC Architecture

Figure2 shows the microarchitecture of the Intel MIC. The main components
of Intel Xeon Phi coprocessor are processing cores, caches, memory controllers,
PCle client logic, and a bidirectional ring interconnect with very high bandwidth.
Each core directly connects with a private L2 cache. The memory controllers and
the PCle client logic respectively provide a direct interface to the GDDR mem-
ory on the coprocessor and the PCle bus. In general, all these components are
linked together by the ring interconnect [1]. Each core in the Intel Xeon Phi
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coprocessor is designed like an x86 processor and providing good programmabil-
ity [11]. Another important feature of the MIC core is the 512 bit wide vector
processing unit (VPU) which supports up to 8 double precision or 16 single
precision floating point operations in a single vector instruction.
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Fig. 2. The MIC microarchitecture.

3.2 MIC Programming Model

Execution of program normally begins on the host CPU and when it reaches
some user-defined sections of the code, the corresponding parts are offloaded
by the host CPU to the accelerators (MICs). The Intel MIC is based on x86
architecture and therefore standard parallel programming models like OpenMP
[3] and MPT [2] can be seamlessly ported to MIC. There are three programming
models in MIC: Native mode, symmetric mode and offload mode. Our work only
use the offload mode [15]. In the MIC offload mode, the part of code which will
be executed on the accelerators is following the offload pragma.

4 Optimizing Strategies

4.1 Optimization on Single CPU

In this section, we propose and implement several optimizing methods to effi-
ciently utilize the features of Intel software and hardware environment.
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Optimizing the Compiler Options. Because all the value in the binomial
tree is float type or double type, large amount of floating-point data calculation
will be performed during the runtime. For Intel CPU’s architectures, compilation
option -fp-model can allow the user to control the optimizations on floating-point
data. When the option is turned on, the compiler optimizer removes redundant
moves from the FPU registers to memory and back, leaving intermediary results
in the FPU stack. With elaborately choosing the level of -fp-model option, it will
always have good effect on compute-intensive applications’ performance with
guarantee of the values’ safety [4].

Parallelization and SIMD. Because there is no data dependence between all
the options. We can simply parallelize the outmost loop in the Algorithm 1 by
using OpenMP parallel programming model. After that, we vectorize the inner
loop by using AVX-256 SIMD instruction sets to overwrite the corresponding
codes which aim at initialize the values of all leave nodes. Because the length
of vector process unit (VPU) in Intel Xeon CPU is 256 bit, we can process 4
nodes (each node contains a double-precision floating point number) in one time
by using SIMD instructions. In addition, some common factor which will be
repeatedly computed in each iteration of the inner loop can be extracted out of
the loop to be computed once instead. After the vectorization of the inner loop,
we may further unroll the innermost loop. 8 is chosen as the unrolled factor
based on some experiments.

Blocking Cache Memory. We can efficiently improve the reuse of data from
cache by blocking the accessed data in the innermost loop. The core compute
kernel of binomial option pricing is shown in Algorithm 2. The procedure of the
core kernel begins from the leave nodes and moves backward in each time step
which the values of Call array is updated by being computed at a previous step.
Eventually, Call[0] contains the option price as the final result. Although the
compiler is able to automatically vectorize and unroll the j loop of the reference
code for Intel Xeon CPU, the resulting code still has troubles with unaligned load
and loss of SIMD efficiency. Besides, frequently memory access of Call array may
cause high miss rate in L1 cache which can be monitored from Intel Vtune [14].

Algorithm 2. Compute kernel of binomial option pricing
1: for n=0to N do
2: fori=TSto1ldo
for j=0toi—1do
opt[n].Call[j] < puByDf  opt[n].Calllj + 1] + puByD f * opt[n].Call[j]
end for
end for
optn].Result < optn].Call[0]
end for
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Fig. 3. Cache blocking algorithm.

In order to address the problem above, we present a auto-tuning cache block-
ing algorithm which shown in Algorithm 3 based on L1 cache size. The algorithm
reduces both the working data set and instruction overhead of the computer
kernel. First we chose a small or medium input size for this method in order
to improve efficiency because we need to run the program more than one time.
Then as shown in the outermost loop (line 2), we repeatedly run the compute
kernel with increasing block size BS based on the size of a block array which
can be allocated in a processors L1 cache. Figure 3 illustrates the key computing
kernel (line 5 — 15), we separate the computation into two parts: in the first
part (line 6), we read the first blocks values from the Call array and reduce
it within the memory size of cache (see the lower triangular portion in Fig. 3).
Time taken by this part is considered to be negligibly small; in the second part
(line 7 — 16), the successive values are read and reduced by BS time steps from
the Call array, then stored back to Call[i-BS] (the trapezoidal portion in Fig. 3).
Some temporary variable like b1, b2, b3 are used to improve reuse of data. So
we read each value of Call array and store it back only once for every BS time
step. In order to take advantage of Intel Xeon CPU’s hardware features, we
can use extra instructions to prefetch the data that we need during each itera-
tion of inner loop which can further improve the cache’s utilization. The entire
computation during each BS time step occurs only within the cache which effi-
ciently improves the arithmetic intensity of the code. At the end of each auto-
tuning run, the computation time will be recorded and the minimum of all run
(line 18 — 21) represents the corresponding best block size which will be chosen
as the right parameter to run our compute kernel with normal input size. By
applying the cache blocking algorithm with chosen best block size, the miss rate
of L1 cache is lower than before which is monitored from Intel Vtune [14]. Over-
head brought by this cache blocking algorithm is rather small compared to the
benefit of its improvement of data reuse which we can see in further experiments
shown in Sect. 5.
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Algorithm 3. Auto-tuning cache blocking algorithm
1: minTime = minBS = MAXINT, btime, etime

2: for BS = 16, 32,64... to CacheSize/ValueType do
3. VectorType Block|BS],bl,b2,b3

4:  btime — gettime()
5. forn=N,N—-BS,...to BS do
6: .../ /Calculate lower triangular portion
T for i = BS to n do
8: bl — Call[i]
9: for j=BS—1to0do
10: b2 «— puByD f x bl + puByD f * Block][j]
11: Block[j] < bl
12: bl «— b2
13: end for
14: Callli — BS] < bl
15: end for
16:  end for
17:  etime «— gettime()
18: if etime — btime < minTime then
19: minTime «— etime — btime
20: minBS «— BS
21:  end if
22: end for

23: return minBS

4.2 Porting to Single MIC

Because Intel Xeon Phi coprocessor (MIC) have more core and longer SIMD
width than Intel Xeon CPU, it is obvious that the performance will be signif-
icantly improved by porting the computing codes to MIC. So we rewrite the
corresponding AVX-256 instruction sets to AVX-512 instruction sets which fits
the architecture of MIC. Additionally, MIC provide multiplication-subtraction
operation instruction which can increase some degree of the arithmetic intensity
of the code. We implement this part with the offload mode of MIC Program-
ming Model.

4.3 Communication Optimization Between CPU and MIC

When the program is applied on the Intel MIC heterogeneous system, commu-
nication and cooperative problem between CPU and MIC cannot be neglected.
Thanks to no data dependence between the options, the binomial option pric-
ing model is highly scalable. The key communication problem becomes the task
partition between CPU and MIC. If the task distribution is unbalanced, the
synchronization problem will cause serious bottleneck in performance. To solve
this problem, our solution is fine-grained tuning the task partition ratio between
CPU and MIC by running the application multiple times with various task par-
tition ratios. In the experiment, we set the ratio of the whole task for CPU from
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Fig. 4. Performances of different task partition ratio.

0.1 to 0.9 and run the program repeatedly. As we can see in Fig. 4, the optimal
ratio is 0.3 when the wall time of whole application is the minimum.

When it comes to large heterogeneous system containing multiple CPUs and
multiple MICs, we can deduce the optimal task partition ratio of each CPU
and MIC based on the experimental result of Fig.4. Let e denote the optimal
partition ratio for CPU in the system containing one CPU and one MIC and
e can be easily got through experiments above. If an Intel MIC heterogeneous
system has M CPUs and N MICs, each CPU’s best task ratio is r. and each MIC’s
best task ratio is r,,. The relationship of 7. and r,, should be represented by:

Mr.+ Nr,, =1 (1)

Equation 1 indicates that all CPUs’ ratio is the same and so does MICs. The
sum of all ratio is 1. Equation?2 is based on the optimal task partition ratio
of between one CPU and one MIC. In order to balance the work load between
multiple CPUs and MICs, 7. and r,, must meet by:

= @)

Tm 1—e

We can get 7. and r,, after solving the linear equations containing Egs. 1

and 2. B
(3)

- Me+ N(1—e)
- 1-e
"™ Me+ N(1—e)

(4)

5 Experimental Results and Analysis

In this section, we first describe the configuration of our hardware platform.
And then we present and analysis the performance of binomial option pricing



Optimization of Binomial Option Pricing 25

on one single Intel Xeon CPU with different optimizing strategies. Furthermore,
we show the performance on MIC heterogeneous system.

5.1 Hardware Platform Setup

We used one compute node of Tianhe-2 as the experimental hardware platform,
which has two Intel Ivy Bridge E5-2692 CPUs and three Intel Xeon Phi 31S1P
coprocessors. Each E5-2692 CPU has 12 cores and each 31S1P coprocessor has
57 cores. One compute node of Tianhe-2 can theoretically provide about 5.0
GFLOPs performance.

5.2 Single-CPU Performance

We test the single-CPU performance on the Intel Ivy Bridge CPU with different
large problem size. We measure the speedup and Gflops rating of binomial option
pricing with different optimizing strategies to the serial algorithm. In the exper-
iment, each optimizing strategy is on the basis of the previous. The performance
results are shown in Fig. 5.
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Fig. 5. Speedup and Gflops rating of binomial option pricing with different optimizing
strategies.

We can observe from the Fig. 5 that optimizing compiler options improves a
little (about 10 %) in performance and parallelization with OpenMP can provide
linear speedup (13X) corresponding to the number of cores in CPU. In addition,
SIMD offers a very high performance which can achieve extra 10X speedup. As
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elaborated in Sect. 4, block size of the cache blocking algorithm has an impact
upon the performance. To determine the optimal block size, we test performance
of the proposed algorithm for different block sizes which can be seen in Fig. 6.
We found the optimal block size to be 128 for N=4 K, 16 K, and 64 K which N is
the number of options. By employing the auto-tuning cache blocking algorithm,
we can obtain 33X speedup which surpasses previous version by over 10X. From
Intel Vtune, we also monitor the L1 cache miss rate decreasing from 0.016 to
0.008, which demonstrates that the cache blocking optimization does really work.

140
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16 32 64 128 256 512 1024 2048
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—e—4k —@—16k 64k

Fig. 6. Performance of cache blocking algorithm for different blocking sizes.

Table1 lists percentage of the peak performance we are getting for these
optimizing methods. N is the number of options. Each optimizing strategy is on
the basis of the previous. For large problem sizes, we observe over 50 % of the
peak performance, which typically demonstrates that there is a good match of
the optimizing algorithm with the underlying architecture of Intel Xeon CPU.

Table 1. Percentage of the peak performance

N Compiler options | OpenMP | SIMD | Cache block
1k 1.7% 6.7 % 11.8% | 23.7%
4k 2.3% 11.9% 19.3% | 30.1%
16k 123% 30.4% 33.2% |35.7%
64k |2.3% 31.5% 35.8% | 44.5%
256k |2.4% 33.3% 42.1% | 49.6 %
1024k | 2.4% 35.1% 44.6% | 54.8%
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5.3 MIC Heterogeneous System Performance

We first conduct the performance on one single Intel Xeon Phi 31S1P coprocessor
with MIC offload mode. When it comes to heterogeneous system, task distribu-
tion between host (CPU) and device (MIC) becomes important. Our solution is
based on the fine-grained tuning the task partition ratio between CPU and MIC
which is explained in Sect. 4. One compute node of Tianhe-2 contains two CPUs
and three MICs and the optimal task partition ratio of one CPU is 0.11 and one
MIC is 0.26 which is conducted by the conclusions of Eqs.3 and 4 in Sect. 4.
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Fig. 7. Performance of Intel MIC heterogeneous system.

The experimental results is illustrated in Fig. 7 and we can explain something
from it. The performance on one MIC is almost twice as that on one CPU (61X).
Because of good scalability of binomial option pricing, it can get approximate
linear performance improvement on multi-CPU or multi-MIC. When it comes to
MIC heterogeneous system, the speedup is 93X for one CPU and one MIC, which
cannot reach ideal performance provided by one CPU and one MIC because of
the overhead caused by synchronization. In the end, we get 254X speedup on
one compute node of Tianhe-2 containing two CPUs and three MICs.

6 Conclusion

In this paper, we have proposed a parallel implementation of binomial option
pricing based on Intel MIC heterogeneous system. We have deployed several
optimizing strategies including optimizing compiler options, paralleling with
OpenMP and rewrite the key codes with SIMD instructions in order to make
the best use of performance of Intel Xeon CPU and Intel Xeon Phi coprocessor.
We also present a auto-tuning cache blocking algorithm to deal with the high L1
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cache miss rate problem. The experimental results indicates that, our solution
achieves 33X speedup on one Intel Xeon CPU and 61X speedup on one Intel
Xeon Phi and on a compute node of Tianhe-2 our solution can achieve over
250-fold speedup compared with original serial algorithm.

In the future, we plan to extend our work to multiple compute nodes and
find some ways to reduce the negative impact by the problem of synchronization
and communication between CPUs and MICs.
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