
Chapter 2
Graph Edit Distance

Abstract Graph edit distance measures distances between two graphs g1 and g2 by
the amount of distortion that is needed to transform g1 into g2. The basic distortion
operations of graph edit distance can cope with arbitrary labels on both nodes and
edges as well as with directed or undirected edges. Therefore, graph edit distance
is one of the most flexible dissimilarity models available for graphs. The present
chapter gives a formal definition of graph edit distance as well as some basic prop-
erties of this distance model. In particular, it presents an overview of how the cost
model can be chosen in a certain graph edit distance application. Moreover, the exact
computation of graph edit distance based on a tree search algorithm is outlined. In
the last section of this chapter, three general approaches for graph edit distance-based
pattern recognition are briefly reviewed.

2.1 Basic Definition and Properties

The basic idea of edit distance is to derive a dissimilarity measure from the number
as well as the strength of the distortions that have to be applied to transform a source
pattern into a target pattern. Originally, the concept of edit distance has been proposed
for string representations [1, 2]. Eventually, the edit distance has been extended from
strings to more general data structures such as trees [3] and graphs [4–8] (see [9] for
a recent survey on the development of graph edit distance).

Given two graphs, the source graph g1 = (V1, E1, μ1, ν1) and the target graph
g2 = (V2, E2, μ2, ν2), the basic idea of graph edit distance is to transform g1 into g2
using some edit operations. A standard set of edit operations is given by insertions,
deletions, and substitutions of both nodes and edges. Note that other edit operations
such as merging or splitting of both nodes and edges might be useful in some appli-
cations but not considered in the present book (we refer to [10] for an application
of additional edit operations). We denote the substitution of two nodes u ∈ V1 and
v ∈ V2 by (u → v), the deletion of node u ∈ V1 by (u → ε), and the insertion of
node v ∈ V2 by (ε → v), where ε refers to the empty node. For edge edit operations
we use a similar notation.
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30 2 Graph Edit Distance

Definition 2.1 (Edit Path) A set {e1, . . . , ek} of k edit operations ei that transform
g1 completely into g2 is called a (complete) edit path λ(g1, g2) between g1 and g2.
A partial edit path, i.e., a subset of {e1, . . . , ek}, edits proper subsets of nodes and/or
edges of the underlying graphs.

Note that the definition of an edit path perfectly corresponds to the definition of
an error tolerant graph matching stated in Chap.1 (see Definition1.9). Remember
that the matching of the edge structure is uniquely defined via operations which are
actually carried out on the nodes (see the discussion about implicit edge mappings
derived from node mappings in Sect. 1.3.2). The same applies for edit operations.
That is, it is sufficient that an edit path λ(g1, g2) covers the nodes from V1 and V2

only. Thus, from now on we assume that an edit path λ(g1, g2) explicitly describes
the correspondences found between the graphs’ nodes V1 and V2, while the edge edit
operations are implicitly given by these node correspondences.

Example 7 In Fig. 2.1 an edit path λ(g1, g2) between two undirected and unlabeled
graphs g1 and g2 is illustrated. Obviously, this edit path is defined by

λ = {(u1 → ε), (u2 → v3), (u3 → v2), (u4 → v1)}.

This particular edit path implies the following edge edit operations:

{((u1, u2) → ε), ((u2, u3) → (v3, v2)), ((u3, u4) → (v2, v1)), ((u2, u4) → ε)}.

Let Υ (g1, g2) denote the set of all complete edit paths between two graphs g1 and
g2. To find the most suitable edit path out of Υ (g1, g2), one introduces a cost c(e) for
every edit operation e, measuring the strength of the corresponding operation. The
idea of such a cost is to define whether or not an edit operation e represents a strong
modification of the graph. Clearly, between two similar graphs, there should exist an
inexpensive edit path, representing low-cost operations, while for dissimilar graphs
an edit path with high cost is needed. Consequently, the edit distance of two graphs
is defined as follows.

Definition 2.2 (Graph Edit Distance) Let g1 = (V1, E1, μ1, ν1) be the source and
g2 = (V2, E2, μ2, ν2) the target graph. The graph edit distance dλmin(g1, g2), or dλmin

for short, between g1 and g2 is defined by

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei ∈λ

c(ei ), (2.1)

Fig. 2.1 An edit path λ between two graphs g1 and g2
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where Υ (g1, g2) denotes the set of all complete edit paths transforming g1 into g2,
c denotes the cost function measuring the strength c(ei ) of node edit operation ei

(including the cost of all edge edit operations implied by the operations applied on
the adjacent nodes of the edges), and λmin refers to the minimal cost edit path found
in Υ (g1, g2).

Clearly, there might be two (or more) edit paths with equal minimal cost in
Υ (g1, g2). That is, the minimal cost edit path λmin ∈ Υ (g1, g2) is not necessarily
unique.

2.1.1 Conditions on Edit Cost Functions

From the theoretical point of view, it is possible to extend a complete edit path
{e1, . . . , ek} ∈ Υ (g1, g2) with an arbitrary number of additional insertions (ε →
v1), . . . , (ε → vn) followed by their corresponding deletions (v1 → ε), . . . , (vn →
ε) (where {vi }i=1,...,n are arbitrary nodes). Hence, the size of the set of possible
edit paths Υ (g1, g2) is infinite. In practice, however, three weak conditions on the
cost function c are sufficient such that only a finite number of edit paths have to
be evaluated to find the minimum cost edit path among all valid paths between two
given graphs. First, we define the cost function to be nonnegative, i.e.,

c(e) ≥ 0, for all node and edge edit operations e. (2.2)

We refer to this condition as non-negativity. Next we aim at assuring that only
substitution operations of both nodes and edges have a zero cost, i.e.,

c(e) > 0, for all node and edge deletions and insertions e. (2.3)

Given this condition, edit paths containing an insertion of a node or edge followed
by its subsequent deletion can be safely omitted. Finally, we want to prevent unnec-
essary substitutions to be added to an edit path. This is achieved by asserting that the
elimination of such unnecessary substitutions from edit paths will not increase the
corresponding sum of edit operation cost [11]. Formally,

c(u → w) ≤ c(u → v) + c(v → w)

c(u → ε) ≤ c(u → v) + c(v → ε) (2.4)

c(ε → v) ≤ c(ε → u) + c(u → v)

for all nodes u, v, w and corresponding node substitutions, deletions, and insertions.
We refer to this condition as triangle inequality. For instance, instead of substituting
u with v and then substituting v with w (line 1), one can safely replace the two
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Fig. 2.2 The combinatorial explosion of edit paths between two graphs g1 and g2

right-hand side operations by the edit operation (u → w) on the left and will never
miss out a minimum cost edit path. The same accounts for unnecessary substitutions
of edges, of course. Therefore, each edit path {e1, . . . , ek} ∈ Υ (g1, g2), containing
superfluous substitutions of both nodes and edges, can be replaced by a shorter edit
path with a total cost that is equal to, or lower than, the sum of cost of the former
edit path.

Given the above stated conditions 2.2, 2.3, and 2.4 on the edit cost function, it
is guaranteed that adding edit operations to an edit path {e1, . . . , ek} ∈ Υ (g1, g2)
containing operations on nodes or edges, which are neither involved in g1 nor in g2,
will never decrease the overall edit cost of the edit path. Consequently, in order to
find the minimum cost edit path λmin among all possible edit paths Υ (g1, g2), we
have to consider the |V1| node deletions, the |V2| node insertions, and the |V1|× |V2|
possible node substitutions only.1 In other words, the size of Υ (g1, g2) is bounded
by a finite number of edit paths.

However, the upper bound on the number of edit paths inΥ (g1, g2) is exponential
in the number of nodes of the involved graphs. Let us consider n nodes in g1 (V1 =
{u1, . . . , un}) and m nodes in g2 (V2 = {v1, . . . , vm}). By starting with an arbitrary
node u1 from V1, (m + 1) different edit operations have to be considered to build the
following initial set of partial edit paths of size 1:

{(u1 → v1)}, {(u1 → v2)}, . . . , {(u1 → vm)}, {(u1 → ε)} (2.5)

The next (arbitrarily chosen) node u2 ∈ V1 can now be substituted with one of
the remaining nodes of V2 or deleted. These edit operations applied on node u2 ∈ V1

can be appropriately combined with the (m + 1) partial edit paths from list 2.5
resulting in O(m2) partial edit paths in total. This combinatorial process has to be
continued until all nodes of both graphs are processed and thus, the set of possible edit
paths Υ (g1, g2) contains O(mn) edit paths. In Fig. 2.2 the combinatorial explosion
of possible edit paths between two graphs is illustrated.

Note that graph edit distance is not necessarily a metric. However, by adding
the following two conditions to the above stated conditions of non-negativity and

1Remember that the source graph g1 is edited such that it is transformed into the target graph g2.
Hence, the edit direction is essential and only nodes in g1 can be deleted and only nodes in g2 can
be inserted.
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triangle inequality (Conditions 2.2 and 2.4, respectively), the graph edit distance
becomes metric [7]. First, we define identical substitutions to have zero cost, i.e.,

c(e) = 0, (2.6)

if, and only if, edit operation e is an identical node or edge substitution (identity of
indiscernibles). Second, we define the cost function c to be symmetric, i.e.,

c(e) = c(e−1), (2.7)

holds for any edit operation e on nodes and edges, where e−1 denotes the inverse edit
operation to e (Symmetry).

2.1.2 Example Definitions of Cost Functions

The effectiveness of edit distance-based pattern recognition relies on the adequate
definition of cost functions for the basic edit operations. In [12] an extensive review
on different cost functions for graph edit distance can be found. In the present section,
some important classes of cost functions for common label alphabets are defined.

In case of unlabeled graphs, the cost is usually defined via unit cost for all deletions
and insertions of both nodes and edges, while substitutions are free of cost. Formally,

c(u → ε) = c(ε → u′) = c((u, v) → ε) = c(ε → (u′, v′)) = 1

c(u → u′) = c((u, v) → (u′, v′)) = 0

for all nodes u, v ∈ V1 and u′, v′ ∈ V2 as well as all edges (u, v) ∈ E1 and
(u′, v′) ∈ E2.

In general, however, the cost c(e) of a particular edit operation e is defined with
respect to the underlying label alphabets LV and L E . For instance, for numerical
node and edge labels, i.e., for label alphabets LV , L E = R

n , a Minkowski distance
can be used to model the cost of a substitution operation on the graphs (referred to
as Minkowski cost function from now on). The Minkowski cost function defines the
substitution cost proportional to the Minkowski distance of the two corresponding
labels. The basic intuition behind this approach is that the more dissimilar the two
labels are, the stronger is the distortion associated with the corresponding substitu-
tion.

Formally, given two graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2),
where μ1, μ2 : V1, V2 → R

n , the cost for the three node edit operations can be
defined by
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c(u → ε) = τ

c(ε → v) = τ

c(u → v) = ||μ1(u) − μ2(v)||p

where u ∈ V1, v ∈ V2, and τ ∈ R
+ is a positive constant representing the cost

of a node deletion/insertion.2 Note that ||μ1(u) − μ2(v)||p refers to the Minkowski
distance of order p between two vectors μ1(u), μ2(v) ∈ R

n . A similar cost model
can be defined for edges, of course.

Note that any node substitution having a higher cost than 2τ can be safely replaced
by a composition of a deletion and an insertion of the involved nodes (the same
accounts for the edges). This behavior reflects the basic intuition that substitutions
should be favored over deletions and insertions to a certain degree. A substitution
cost for numerically labeled nodes (or edges) that is guaranteed to be in the interval
[0, 2τ ] can be defined, for instance, by

c(u → v) = 1
1
2τ + exp(−α||μ1(u) − μ2(v)||p + σ)

.

That is, the substitution cost for two nodes u ∈ V1 and v ∈ V2 is defined via a
Sigmoid function of the (weighted) Minkowski distance between the corresponding
labels μ1(u) and μ2(v). Note that we have two meta parameters in this cost function,
viz., α and σ , which control the gradient and the left–right shift of the Sigmoid curve,
respectively.

In some applications, it might be that the edges are attributed by an angle that
specifies an undirected orientation of a line. That is, the angle value ν(e) of every
edge e might be in the interval (−π/2,+π/2]. Because of the cyclic nature of
angular measurements, a Minkowski-based distance would not be appropriate for
the definition of a substitution cost. The following cost model for edges e ∈ E1 and
e′ ∈ E2 could be used in this case

c(e → e′) = min(π − |ν(e) − ν(e′)|, |ν(e) − ν(e′)|).

In other applications, the node and/or edge labels might be not numerical and
thus nonnumerical distance functions have to be employed to measure the cost of a
particular substitution operation. For instance, the label alphabet can be given by the
set of all strings of arbitrary size over a finite set of symbols. In this case a distance
model for strings, as for instance the string edit distance [1, 2], could be used for
measuring the cost of a substitution. In other problem domains, the label alphabet
might be given by a finite set of n symbolic labels LV/E = {α1, α2, . . . , αn}. In
such case a substitution cost model using a Dirac function, which returns zero when
the involved labels are identical and a nonnegative constant otherwise, could be the
method of choice.

2For the sake of symmetry, an identical cost τ for deletions and insertions is defined here.
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Note that also combinations of various cost functions are possible. This might be
particularly interesting when the nodes (or edges) are labeled with more than one
attribute, for instance with a type (i.e., a symbolic label) together with a numerical
measurement. For identically typed nodes, a Minkowski cost function could then
be employed, for instance. In case of nonidentical types on the nodes, however,
the substitution cost could be set to 2τ , which reflects the intuition that nodes with
different types of labels cannot be substituted but have to be deleted and inserted,
respectively.

The definition of application-specific cost functions, which can be adopted to the
peculiarity of the underlying label alphabet, accounts for the flexibility of graph edit
distance. Yet, prior knowledge about the labels and their meaning has to be available.
If in a particular case this prior knowledge is not available, automatic procedures for
learning the cost model from a set of sample graphs are available as well [13–17].

In [13], for instance, a cost inference method that is based on a distribution esti-
mation of edit operations has been proposed (this particular approach is based on an
idea originally presented in [18]). An Expectation Maximization algorithm is then
employed in order to learn mixture densities from a labeled sample of graphs and
derive edit costs. In [14] a system of self-organizing maps (SOMs) is proposed. This
system represents the distance measuring spaces of node and edge labels and the
learning process is based on the concept of self-organization. That is, it adapts the
edit costs in such a way that the similarity of graphs from the same class is increased,
while the similarity of graphs from different classes decreases. In [15] the graph edit
process is formulated in a stochastic context and a maximum likelihood parameter
estimation of the distribution of edit operations is performed. The underlying distor-
tion model is also learned using an expectation maximization algorithm. From this
model the desired cost functions can be finally derived. The authors of [16] present
an optimization method to learn the cost model such that the Hamming distance
between an oracle’s node assignment and the automatically derived correspondence
is minimized. Finally, in [17] another method for the automatic definition of edit
costs has been proposed. This approach is based on an assignment defined by a spe-
cialist and an interactive and adaptive graph recognition method in conjunction with
human interaction.

2.2 Computation of Exact Graph Edit Distance

In order to compute the graph edit distance dλmin(g1, g2) often A*-based search tech-
niques using someheuristics are employed [19–23].A* is a best-first search algorithm
[24] which is complete and admissible, i.e. it always finds a solution if there is one
and it never overestimates the cost of reaching the goal.

The basic idea of A*-based search methods is to organize the underlying search
space as an ordered tree. The root node of the search tree represents the starting point
of the search procedure, inner nodes of the search tree correspond to partial solutions,
and leaf nodes represent complete—not necessarily optimal—solutions. In case of
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graph edit distance computation, inner nodes and leaf nodes correspond to partial
and complete edit paths, respectively. Such a search tree is dynamically constructed
at runtime by iteratively creating successor nodes linked by edges to the currently
considered node in the search tree.

Algorithm 1 Exact Graph Edit Distance Algorithm
Input: Non-empty graphs g1 = (V1, E1, μ, ν) and g2 = (V2, E2, μ, ν),

where V1 = {u1, . . . , un } and V2 = {v1, . . . , vm }
Output: A minimum cost edit path from g1 to g2

e.g. λmin = {u1 → v3, u2 → ε, . . . , ε → v2}

1: initialize OPEN to the empty set {}
2: For each node w ∈ V2, insert the substitution {u1 → w} into OPEN
3: Insert the deletion {u1 → ε} into OPEN
4: loop
5: Remove λmin = argminλ∈OPEN{g(λ) + h(λ)} from OPEN
6: if λmin is a complete edit path then
7: Return λmin as the solution
8: else
9: Let λmin = {u1 → vϕ1 , · · · , uk → vϕk }
10: if k < n then
11: For each w ∈ V2 \ {vϕ1 , · · · , vϕk }, insert λmin ∪ {uk+1 → w} into OPEN
12: Insert λmin ∪ {uk+1 → ε} into OPEN
13: else
14: Insert λmin ∪ ⋃

w∈V2\{vϕ1 ,··· ,vϕk }{ε → w} into OPEN

15: end if
16: end if
17: end loop

In Algorithm1, the A*-based method for optimal graph edit distance computation
is given. The nodes of the source graph g1 are processed in fixed, yet arbitrary,
order u1, u2, . . . , un . The substitution (line 11) and the deletion of a node (line 12)
are considered simultaneously, which produces a number of successor nodes in the
search tree. If all nodes of the first graph have been processed, the remaining nodes
of the second graph are inserted in a single step (line 14). The set OPEN contains the
search tree nodes, i.e., (partial or complete) edit paths, to be processed in the next
steps.

In order to determine the most promising (partial) edit path λ ∈ OPEN, i.e., the
edit path to be used for further expansion in the next iteration, a heuristic function is
usually used (line 5). Formally, for a (partial) edit pathλ in the search tree,we use g(λ)

to denote the accumulated cost of the edit operations ei ∈ λ, and we use h(λ) ≥ 0
for denoting the estimated cost to complete the edit path λ (several heuristics for
the computation of h(λ) exist [19–23]). The sum g(λ) + h(λ) gives the total cost
assigned to an open node in the search tree. Given that the estimation of the future
cost h(λ) is lower than, or equal to, the real cost, the algorithm is admissible. Hence,
this procedure guarantees that if the current edit path λmin removed from OPEN is
complete (line 6), then λmin is always optimal in the sense of providing minimal cost
among all possible competing paths (line 7).
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Note that the edge operations implied by the node edit operations can be derived
from every partial or complete edit path λ during the search procedure given in
Algorithm1. The cost of these implied edge operations are dynamically added to the
corresponding path λ ∈ OPEN and are thus considered in the edit path assessment
on line 5. Formally, for every node edit operation (u → v), which is included in λ,
it is verified whether there are adjacent nodes to u and/or v which have been already
edited in λ. If this is the case, the corresponding edge edit operations can be instantly
triggered and the resulting edge edit cost added to the overall cost g(λ) (the same
accounts for the estimation h(λ)).

Example 8 In Fig. 2.3 a part of a search tree for graph edit distance computation
between two undirected graphs g1 and g2 is shown. The nodes are labeled with
integers, while the edges are unlabeled. We use unit cost for deletions and insertions
of both nodes and edges. Edge substitutions are free of cost, while the cost for
substituting a node u ∈ V1 with a node v ∈ V2 is defined via c(u → v) = |μ1(u) −
μ2(v)|.

The total cost g(λ) of (partial) edit paths λ is computed by the node edit operation
cost plus the cost of all edge operations that can be triggered according to the node
operations carried out so far (we set h(λ) = 0 for all edit paths, i.e., no heuristic
information is employed in this example). The accumulated edit costs are indicated
in the tree search nodes.

Regard, for instance, the edit path displayed with dotted arrows. When (u1 → v2)
and (u2 → v1) have been added to λ, the cost amounts to 2 (both node substitutions
have a cost of 1 and the implied edge edit operation ((u1, u2) → (v1, v2)) has zero

Fig. 2.3 Part of the search tree for graph edit distance computation between two graphs g1 and g2
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cost). The next node substitution added to λ is (u3 → v3) with a cost of 1. This
operation implies two edge edit operations, viz., the deletion of (u2, u3) ∈ E1 and
the insertion of (v2, v3) ∈ E2. Hence, we have a total cost of 5 for this partial edit
path. Finally, by adding (u4 → ε) to the edit path, we add a cost of 3 to the overall
cost (one node deletion and two implied edge deletions). That is, this edit path offers
a total cost of 8.

The edit path displayed with bold arrows, i.e.,

λmin = {(u1 → ε), (u2 → v3), (u3 → v2), (u4 → v1)}

corresponds to a minimal cost edit path with a total cost of 4.

2.3 Graph Edit Distance-Based Pattern Recognition

2.3.1 Nearest-Neighbor Classification

The traditional approach to graph edit distance-based pattern recognition is given by
the k-nearest-neighbor classification (k-NN). In contrast with other classifiers such
as artificial neural networks, Bayes classifiers, or decision trees [25], the underlying
pattern space need not be rich in mathematical operations for nearest-neighbor clas-
sifiers to be applicable. More formally, in order to use the nearest-neighbor classifier,
only a pattern dissimilarity measure must be available. Therefore, the k-NN classifier
is perfectly suited for the graph domain, where several graph dissimilarity models,
but only little mathematical structure, are available.

The k-NN classifier proceeds as follows. Let us assume that a graph domain G ,
an appropriate definition of a graph edit distance d : G × G → R, a set of labels
Ω , and a labeled set of N training graphs {(gi , ωi )}1≤i≤N ⊆ G × Ω is given. The
1-nearest-neighbor classifier (1-NN) is defined by assigning an input graph g ∈ G to
the class of its most similar training graph. That is, the 1-NN classifier f : G → Ω

is defined by

f (g) = ω j , where j = argmin
1≤i≤N

d(g, gi ).

If k = 1, the k-NN classifier’s decision is based on just one graph from the
training set, no matter if this graph is an outlier or a true class representative. That is,
the decision boundary is largely based on empirical arguments. To render nearest-
neighbor classification less prone to outlier graphs, it is common to consider not
only the single most similar graph from the training set, but evaluate several of the
most similar graphs. Formally, if {(g(1), ω(1)), . . . , (g(k), ω(k))} ⊆ {(gi , ωi )}1≤i≤N

are those k graphs in the training set that have the smallest distance d(g, g(i)) to an
input graph g ∈ G , the k-NN classifier f : G → Ω is defined by
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f (g) = argmax
ω∈Ω

|{(g(i), ω(i)) : ω(i) = ω}|.

Nearest-neighbor classifiers provide us with a natural way to classify graphs by
means of graph edit distance. However, the major restriction of nearest-neighbor
classifiers is that a sufficiently large number of training graphs covering a substantial
part of the graph domain must be available.

2.3.2 Kernel-Based Classification

Kernel methods have become one of the most rapidly emerging subfields in pattern
recognition and related areas (see [26, 27] for a thorough introduction to kernel
theory). The reason for this is twofold. First, kernel theorymakes standard algorithms
for pattern recognition (originally developed for vectorial data) applicable to more
complex data structures such as strings, trees, or graphs. That is, kernel methods
can be seen as a fundamental theory for bridging the gap between statistical and
structural pattern recognition. Second, kernel methods allow one to extend basic
linear algorithms to complex nonlinear ones in a unified and elegant manner.

The key idea of kernel methods is based on an essentially different way how the
underlying data is represented [28]. In the kernel approach, an explicit data represen-
tation is of secondary interest. That is, rather than defining individual representations
for each pattern, the data is represented by pairwise comparisons via kernel functions
[27, 29].

Definition 2.3 (Positive Definite Kernel) Given a pattern domainX , a kernel func-
tion κ : X ×X → R is a symmetric function, i.e., κ(xi , x j ) = κ(x j , xi ), mapping
pairs of patterns xi , x j ∈ X to real numbers. A kernel function κ is called positive
definite3 if, and only if, for all N ∈ N,

N∑

i, j=1

ci c jκ(xi , x j ) ≥ 0

for all {c1, . . . , cN } ⊆ R, and any choice of N objects {x1, . . . , xN } ⊆ X .

Kernel functions that are positive definite are often called valid kernels, admissible
kernels, or Mercer kernels.

Kernels can be seen as pattern similarity measures satisfying the condition of
symmetry and positive definiteness. Hence, graph edit distance becomes particularly
interesting as it provides us with a symmetric graph dissimilarity measure, which
can be readily turned into a similarity measure. In [30] monotonically decreasing
transformations have been proposedwhichmap lowdistance values to high similarity

3Note that positive definite functions according to the definition given in this section are sometimes
called positive semi-definite since

∑n
i, j=1 ci c j κ(xi , x j ) can be zero and need not be strictly positive.
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values and vice versa. Formally, given the edit distance d(g, g′) of two graphs g and
g′, the following similarity kernels can be defined, for instance (the list makes no
claim to be complete).

• κ(g, g′) = −d(g, g′)2
• κ(g, g′) = −d(g, g′)
• κ(g, g′) = tanh(−d(g, g′))
• κ(g, g′) = exp(−γ d(g, g′)2), where γ > 0

In [31] the fourth similarity kernel from the above-listed similarity functions is
explicitly suggested for classifying distance-based data. Note that these kernel func-
tions are not positive definite in general. However, there is theoretical and empirical
evidence that using indefinite kernels may be reasonable if some conditions are ful-
filled [11, 31].

Note that other, in particular more sophisticated, graph kernels have been pro-
posed in conjunction with graph edit distance [11]. For instance, kernel functions
that measure the similarity of two graphs by considering the node and edge substi-
tutions from an optimal edit path λmin only (i.e., omitting the deletions/insertions
of both nodes and edges). The similarity of the substituted nodes and edges is then
individually quantified and appropriately combined (by means of a multiplication).
Moreover, also standard graph kernels such as convolution kernels, random walk
kernels, or diffusion kernels have been substantially extended by means of graph edit
distance in [11].

The following theorem gives a good intuition what kernel functions actually are
(for proofs we refer to [26, 27]).

Theorem 2.1 [26, 27] Let κ : X × X → R be a valid kernel on a pattern space
X , then there exists a possibly infinite-dimensional Hilbert space F and a mapping
φ : X → F such that

κ(x, x ′) = 〈φ(x), φ(x ′)〉,

for all x, x ′ ∈ X where 〈·, ·〉 denotes the dot product in F .

In otherwords, kernelsκ can be thought of as a dot product 〈·, ·〉 in some (implicitly
existing) feature space F , and thus, instead of mapping patterns from the original
pattern spaceX to the feature spaceF and computing their dot product there, one
can simply evaluate the value of the kernel function in X [11].

In recent years, a huge amount of important algorithms has been kernelized, i.e.,
entirely reformulated in terms of dot products. These algorithms include support
vector machine, nearest-neighbor classifier, perceptron algorithm, principal compo-
nent analysis, Fisher discriminant analysis, canonical correlation analysis, k-means
clustering, self-organizing map, partial least squares regression, and many others
[26, 27]. Kernelized algorithms are commonly referred to as kernel machines.

Clearly, any kernel machine can be turned into an alternative algorithm by merely
replacing the dot product 〈·, ·〉 by a valid kernel κ(·, ·). This procedure is commonly
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referred to as kernel trick [26, 27]. The kernel trick is especially interesting for graph-
based pattern representation since a graph kernel value (for instance the transformed
graph edit distances defined above) can be fed into any kernelmachine (e.g., a support
vector machine). In other words, the graph kernel approach makes many powerful
pattern recognition algorithms instantly applicable to graphs.

2.3.3 Classification of Vector Space Embedded Graphs

The motivation of graph embedding is similar to that of the kernel approach, viz.,
making the arsenal of algorithmic tools originally developed for vectorial data
applicable to graphs. Yet, in contrast with kernel methods, which provide an implicit
graph embedding only, graph embedding techniques result in an explicit vectorial
description of the graphs.

The idea of a recent graph embedding framework [32] is based on the seminalwork
done by Pekalska and Duin [33]. The key idea of this graph embedding approach
is to use the distances of an input graph to a number of training graphs, termed
prototype graphs, as a vectorial description of the graph. That is, one makes use
of the dissimilarity representation for pattern recognition rather than the original
graph-based representation.

Definition 2.4 (Graph Embedding) Let us assume that a graph domain G is given.
If T = {g1, . . . , gN } ⊆ G is a set with N graphs and P = {p1, . . . , pn} ⊆ T is a
prototype set with n ≤ N graphs, the mapping

φP
n : G → R

n

is defined as the function

φP
n (g) = (d(g, p1), . . . , d(g, pn)),

where d : G × G → R is an appropriately defined graph edit distance.

Obviously, by means of this definition we obtain a vector space where each axis is
associated with a prototype graph pi ∈ P and the coordinate values of an embedded
graph g are the distances of g to the elements in P . In this way, we can transform
any graph g from the set T , as well as any other graph from G , into a vector of real
numbers. Note that graphs, which have been selected as prototypes before, have a
zero entry in their corresponding graph map.

The selection of the n prototypes P = {p1, . . . , pn} is a critical issue in the
embedding framework. That is, not only the prototypes pi themselves but also their
number n affect the resulting graph embedding ϕP

n (·), and thus the performance
of the pattern recognition algorithm in the resulting embedding space. In [32] the
selection of prototypesP = {p1, . . . , pn} is addressed by various procedures. Three
of them are briefly outlined in the next three paragraphs.
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First, a number of prototype selection methods have been presented [34–36].
These prototype selection strategies use some heuristics based on the underlying
dissimilarities in the original graph domain. Basically, these approaches select pro-
totypes from T that best possibly reflect the distribution of the graph set T or that
cover a predefined region of T . The rationale of this procedure is that capturing
distances to significant prototypes from T lead to meaningful dissimilarity vectors.

A severe shortcoming of prototype selection strategies is that the dimensionality
of the embedding space has to be determined by the user. Thus, a prototype selection
method that automatically infers the dimensionality of the resulting embedding space
has been proposed in [37]. This scheme is adopted from well-known concepts of
prototype reduction [38] originally used for the task of condensing training sets in
nearest-neighbor classification systems.

Finally, in [39, 40] the problem of prototype selection has been reduced to a fea-
ture subset selection problem. That is, for graph embedding, all available elements
from the complete setT are used as prototypes, i.e.,P = T . Next, various feature
selection strategies [41–44] are applied to the resulting large-scale vectors eliminat-
ing redundancies and noise, finding good features, and simultaneously reducing the
dimensionality of the graph maps.
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