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Abstract. In the era of post peta scale computing, high-performance
and reliable storage systems have become much more important. Close
cooperation between network and storage is an emerging issue. This
paper proposes a network-based data processing architecture to build
reliable and high-performance distributed storage system using future
programmable network devices. Distributed storage systems use repli-
cation or erasure coding for ensuring reliability. However, they require
additional data transfer and computing resources. Satisfying both relia-
bility and performance is an important issue for storage systems. Recent
studies related to Software Defined Networking (SDN) imply that pro-
grammable network switch will become more functional. Currently, SDN
intends to provide a flexible routing mechanism. Network switches are
starting to have intelligent mechanisms and are expected to have a capa-
bility for data processing. In our proposed architecture, storage controller
functionality is offloaded to a programmable network switch to elimi-
nate additional data transfer. We conducted experiments to show an
advantage of the proposed network-based data processing mechanisms
for erasure coding and show an optimized design for distributed storage
systems. With the proposed method, the performance gain of a reliable
data storage system is 44 % compared with a client compute case.

1 Introduction

1.1 Background

Next generation distributed storage systems have to meet the demands of exa-
scale computing systems. In particular, high-performance and reliable data han-
dling mechanisms are critical problems. In order to add reliability to network
storage systems, replication [1] and erasure coding are commonly used. How-
ever, when a writer node stores data to a storage system, amount of traffic
from the writer node increases by the additional data. This additional data
degrades the performance because of the bandwidth limitation of a client node.
Figure 1 describes how the parity blocks increase the traffic and cause the per-
formance degradation. In this case, a parity block is added to striped blocks.
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Fig. 1. Parity blocks increase traffic and degrade write throughput.

It causes 50 % traffic increase and 33 % degradation of write throughput. In
order to avoid this performance degradation, we need additional mechanisms to
eliminate performance bottlenecks.

The target of this paper is optimization of network storage systems which
use erasure coding. The optimization utilizes the functions of a programmable
network switch.

Existing systems provide reliability through use of the computational power
of storage or client nodes. However, as typified by Software Defined Network-
ing (SDN), network hardware has started to shift toward programmable devices.
This movement suggests the possibility of implementing a data processing mech-
anism on the storage network. This study assumes future network devices with
programmable functions and proposes a method for utilizing them.

1.2 Owur Contribution

This study proposes an architecture design for utilizing data processing mecha-
nism on the network in order to improve the performance of reliable distributed
storage systems. The architecture off-loads parity generation processes to a net-
work switch to eliminate the overhead of reliable storage systems. Our proposal
includes a design of network storage system and a methodology for utilizing
programmable network switches.

The proposed method achieves zero-overhead with erasure-codes generation
whereas existing systems degrade performance because of additional data trans-
fer and computing. In preparation for next-generation programmable network
devices, this paper shows an efficient way for using them.

Write performance reaches to 5,548 MB/s with redundant data, which is
almost same as the network throughput. Performance gain is 14 % to 44 %.
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Although we added additional data blocks for reliability, performance does not
change. This means that our proposed method realizes the “zero-overhead” reli-
able network storage system.

2 Related Work

The main focus of our study is a methodology for utilizing programmable net-
work switches to eliminate bottlenecks from reliable network storage systems.

There are existing storage/file systems which use replication and erasure cod-
ing in order to improve reliability. RAID [2,3] is a well-known example of reli-
able storage systems. However, ordinary RAID systems cover only disk failures
and cannot recover from node-level failures. In contrast, our proposal intends
to provide node-level redundancy for network storage systems. GlusterF'S [4],
Gfarm [5], Ceph [6], and HDFS [7,8] are network storage/file systems and have
a replication mechanism. However, as mentioned before, replication uses twice
or more storage space and should be avoided with exa-scale systems. Ceph and
HDF'S also support Reed-Solomon [9] based erasure coding. HDFS supports era-
sure coding using the HDFS-RAID [10] module. The most important thing is
that all of them does not support “on-the-fly” replication/encoding because of
performance issues. Our proposed method generates parity block (erasure code)
on an “on-the-fly” basis, hence they are different from our work.

In order to build a zero-overhead reliable storage system, we propose a new
architecture which utilizes programmable abilities of a network switch. There are
several studies related to this issue that are not only limited to the optimization
of storage systems. [11] is a study to optimize MPI collective operations using
network switches equipped with FPGA, which utilized NetFPGA [12] and Open-
Flow switches and improved the performance of MPI operations. The optimiza-
tion target is not the same as our work; however, the idea of improving network
communication performance using specialized hardware functions is common.

From the perspective of existing network devices, Mellanox provides the func-
tion [13] for optimizing MPI communication operations. The target of this hard-
ware is to optimize MPI operations; however, this is only an example of an HPC
communication layer accelerated by hardware. Hardware functions that optimize
the network of storage systems are in extension of this type of idea. This is the
reason we expect that having hardware functions to optimize erasure codes in
network storage systems.

In addition, our prototype implementation uses Remote Direct Memory
Access (RDMA) to minimize the overhead of network communication by elim-
inating unnecessary memory copies. Advantages of applying RDMA commu-
nication to network storage systems are shown in existing studies. NFS over
RDMA [14] is an example of adding RDMA support to NFS [15]. [16] shows
performance gain by adding RDMA support to PVFS [17].
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3 System Design

3.1 Network-Based Data Processing Architecture

Network-based data processing architecture moves parity generation processes
from storage servers to programmable switches. This paper describes a design
for data processing architecture for parity generation processes and shows a
prototype implementation.

Our target is not a dedicated hardware based large-scale block storage device
but a system which consists of multiple storage servers. Conventional network
storage systems use computing resources of servers to provide mechanisms for
reliability. In that type of system, network only transfers the data between stor-
age servers.

As discussed in Sect. 1.1, bottlenecks come from the reliability issues are
owing to the increased amount of data and the limitation of network bandwidth.
Utilizing programmable abilities of network switches is a good solution to solve
these problems because network switches have enough bandwidth to spread the
increased data. At this time, we do not have a network switch (in production
and not an FPGA based devices) that has programmable function to implement
a mechanism for erasure coding. However, we can propose a method for utilizing
the ability of future network switches for reliable storage systems and provide
evaluation results with a proof of concept system. The proof of concept system
consists of computing nodes with multiple network devices. Following sections
describe the proof of concept system of the network-based data processing archi-
tecture and the method for reliable storage systems.

3.2 Overview of the System

This study targets network storage systems with parity (erasure coding) data.
The aim of this paper is to propose a method to utilize network data processing
functions and to show evaluation results of the proof of concept system.

Figure 2 describes the architecture of the target system. A writer node sends
the data blocks (Stripes #0 and Stripes #1) to a network switch. This switch
has programmable functions and calculates a parity block from Stripe #0 and
Stripe #1. The switch sends stripe and parity blocks to storage nodes.

3.3 Data Layout

Figure 3 describes the data layout of the target system. In this figure, the original
data blocks are #0 to #5. Two storage nodes store those data blocks and another
stores the exclusive OR (XOR) value (parity) of each original data block.

3.4 Switch Architeture

Figure4 shows how network-based data processing architecture works. The
writer node sends data blocks to the switch, which then splits data blocks into
striped blocks and calculates their XOR value. Each parity block is sent to stor-
age nodes for striped blocks and a parity node stores the parity blocks.
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Fig. 2. Target architecture of network storage systems. Our proposal is a method for
utilizing a programmable network switch for erasure-coded network storage systems. A
writer node sends source data blocks to a programmable switch. The switch generates
parity blocks and sends them to storage nodes.

Data blocks #0 #1 #2 #3 #a4 #5
Storage node #0 #0 #2 #4
Storage node #1 #1 #3 #5
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Fig. 3. Data layout of striped blocks and parity block(s). Data blocks are split into
striped blocks. Parity blocks are xor value of striped blocks. We can recover missing
data blocks by calculating xor value of another block.

3.5 Fallback Mode

Current our experiment environment is only for prototype purpose. However,
when we apply the method to a large-scale environment, switch failures become
a major trouble.

The system should have a fallback mode in preparation for switch failures.
Figure5 describes the fallback mode of a storage system. If the switch loses
programmable functions (left in the figure), the writer node can split the data
blocks into striped blocks and calculate the parity blocks. Next, the writer node
sends all blocks to storage nodes. In the case of complete network failure (right
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Fig. 4. Architecture of a programmable network switch. A writer sends source data
blocks. A switch has a splitter and an XOR calculation module. The splitter splits
the source data blocks into striped blocks. The XOR calculation module calculates the
XOR value of the striped blocks. Then, the switch sends all data blocks to storage
servers.

in the figure), another network mechanism is required. If there is an available
network path, the writer can use it to apply the fallback mode.

3.6 Prototype Implementation Overview

Currently, we do not have actual hardware for the programmable network
switch; therefore we implemented it with a computer and multiple network cards.
Figure 6 describes the connection of each component.

The node has multiple network cards (in this figure, network cards are Infini-
Band HCAs). Because of the limitation of the number of PCI Express lanes, we
added three InfiniBand HCAs to the node. Figure 7 describes the data transfer
mechanism and parity generation process. We utilized the RDMA function of
the InfiniBand HCAs to optimize the data transfer processes and save memory
space. The data structure and data processing mechanism are described in the
next subsection.

3.7 Optimized Data Transfer and Processing with RDMA

Figure 7 describes the zero-copy data structure of the data processing mechanism.
Each node has ring buffer(s) to transfer and process the data blocks. In order to use
the RDMA data transfer functions, we have to register the memory to the hard-
ware in advance to the actual transfer process. If we use different buffer blocks,
each time RDMA transfer occurred, we would have to register it. However, this
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Fig. 5. Two cases of failure of a network switch.

requires considerable time and causes performance degradation [18]. Therefore, we
use ring buffer(s) for RDMA communication. Once the ring buffer is registered, we
do not require time for memory registration processes. In Fig. 7 the writer nodes
send data blocks to the switch. The switch splits the data into two striped blocks
and stores them to ring buffers. Then, the switch sends the striped blocks to stor-
age nodes and calculates the XOR value of these two blocks. Finally, the XOR
value is sent to the storage node (p).

PCle 3.0x8 PCle 3.0x8 PCle 3.0x8

IB FDR x4 IBFDR x4 IB FDR x4

Fig. 6. Components of computer with multiple network devices

4 Evaluation

4.1 Evaluation Target and Conditions

Our proposed method intends to optimize the performance of data write to
reliable storage systems.

We conducted an evaluation on the cluster nodes connected with InfiniBand
FDR 4x. To implement network-based data processing architecture, we used a
node equipped with multiple InfiniBand HCAs. In this evaluation, we installed
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Fig. 7. RDMA data transfer and parity generation. A writer send source data blocks
to a programmable switch. The switch splits source data blocks into striped blocks
(not described in the figure) and calculates parity blocks. Afterward, the switch sends
them to storage nodes using different InfiniBand HCAs. All data blocks are stored in
ring buffers and there is no memory copy.

up to three InfiniBand HCAs to a computing node. First, we evaluated the
throughput of the multiple InfiniBand HCAs to confirm that the test environ-
ment did not have any performance bottlenecks resulting from hardware spec-
ifications. Figure8 shows the results of the total bidirectional bandwidth eval-
uation. We used perftest tools (ib_write_bw) to evaluate network performance.
As can be seen from the graph, the results are in proportion to the number of
installed HCAs. We do not see any performance degradation caused by limitation
of the PCI Express bus or other interconnect issues.

In addition, we conducted the evaluation without writing to the actual disk
because of the limitation of existing storage hardware and the purpose of the
evaluation. The aim of the proposed method is optimization of the data transfer
mechanism.

All results are average of three measurements.

4.2 Evaluation Results

Figure 9 shows the results of the sequential write throughput evaluation. The X-
axis corresponds to stripe size and the Y-axis corresponds to the write through-
put from a client node. The blue graph is the result of optimization (using data
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Fig. 8. Bidirectional network (InfiniBand FDR 4x) throughput evaluation with
ib_write_bw (perftest tools).

processing architecture of a network switch) and the red graph is the result of
naive implementation (the client sends both striped and parity blocks). Perfor-
mance gain by the optimization was 14 % (8 KB stripe case) to 44 % (64 KB
stripe case). With the best case of the optimized implementation, the through-
put almost reaches network performance. This means that the proposed method
successfully eliminated the bottleneck of the reliable data write. The perfor-
mance of the fallback mode Sect. 3.5 will be the same as the results of the naive
method, provided that the system has the same back up network.
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Fig. 9. Write throughput comparison between optimized and naive method
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The evaluation results show that the proposed method improves the perfor-
mance of reliable data write by eliminating the bottleneck. In this evaluation, we
implemented the data processing architecture using the node equipped with mul-
tiple network devices. However, the method consists of data processing (XOR)
pipelines and can be implemented as hardware. This means that immediately
after obtaining a network switch with programmable functions, we can imple-
ment the proposed method and improve the performance of reliable network
storage systems.

5 Conclusion and Future Work

We proposed a methodology for utilizing programmable network switches to
eliminate the overhead of reliable network storage systems. Root cause of the
performance degradation of reliable network storage system was the increased
amount of traffic by additional parity data blocks. Our proposed design moves
the parity generation processes to a programmable network switch in order to
avoid congestion in a writer node’s network. We implemented a prototype system
using RDMA transfer operations and conducted evaluations.

The evaluation results showed that the performance gain by the proposed
method was 14 % to 44 %.

Currently, we implemented the proposed method using a computer equipped
with multiple network devices. However, the method can be implemented as a
hardware and can be applied to future programmable network switches.

Applying the method to existing systems and adding support of ran-
dom/stride write are important issues. In addition, a scalability issue is an impor-
tant future work when we apply the method to huge systems because this study
used a preliminary evaluation environment, which had a single network switch.

The target for the evaluation in this paper was the sequential write to storage
systems; however, the results showed good performance in case of 16 KB to 64 KB
stripe block size and thus we can expect good performance with real work loads.
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