Chapter 2
Mathematical Machinery

The purpose of this chapter is to introduce the necessary background from the
semigroup theory, particularly, the Yosida approximations and their properties, anal-
ysis and probability in Banach spaces, including It6 stochastic calculus, stochastic
convolution integrals, among others. As pointed out before, no attempt has been
made to make the presentation self-contained as there are many excellent books
available in the literature.

2.1 Semigroup Theory

Let (X, || - ||x) be a Banach space.

Definition 2.1 A one parameter family {S(z) : 0 < ¢ < o} of bounded linear
operators mapping X into X is a semigroup of bounded linear operators on X if

(i) S(0) =1, ({ is the identity operator on X),
(i) S(t+s) =S(r)S(s) for every t,s > 0 (the semigroup property).

A semigroup of bounded linear operators, {S(¢) : t > 0}, is uniformly continu-
ous if

lim||S(¢) —I]| =0.
tlw [IS(r) —1]]
The linear operator A defined by

D(A)={xeX: nfg&):_x exists} 2.1)
I
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and

_ +
Ax = lim S(t)x—x _d S(t)x

—o T D(A 22

is the infinitesimal generator of the semigroup {S(z) : > 0}, where D(A) is the
domain of A.

Theorem 2.1 A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

Proof See Pazy [1, Theorem 1.2]. O

Definition 2.2 A semigroup {S(¢) : ¢ > 0} of bounded linear operators on X is a
strongly continuous semigroup of bounded linear operators if

lﬂrgS(t)x =x forevery xe€X. (2.3)
L.

A strongly continuous semigroup of bounded linear operators on X will be called a
Co-semigroup. A Cp-semigroup {S(¢) : t > 0} is called compact if it is a compact
operator.

Theorem 2.2 Let {S(z) : t > 0} be a Cp-semigroup. There exist constants o > 0
and M > 1 such that

IS(1)]| < Me®™  for 0 <1< oco. (2.4)

Proof See Ahmed [1, Theorem 1.3.1]. O

Corollary 2.1 If {S(¢) : t > 0} is a Cp-semigroup then for every x € X, t — S(¢)x is
a continuous function from R™ into X.

Proof See Ahmed [1, Corollary 1.3.2]. O

Theorem 2.3 Let {S(¢) : t > 0} be a Cyp-semigroup and let A be its infinitesimal
generator. Then

(a) Forx e X,

1 [tth
lim — S(s)xds = S(1)x.

h—0h Jy

(b) Forx e X,
/ "S()xdxeD(4) and A < / tS(t)xdx) — S(1)x—x.
0 0
(c) Forxe D(A),S(t)x € D(A) and

d
aS(r)x = AS(t)x = S(1)Ax.
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(d) Forxe D(A),

S(6)x— S(s)x = / ' S(t)Axdt = / ' AS(t)xdt.

Proof See Pazy [1, Theorem 2.4]. [

Corollary 2.2 If A is the infinitesimal generator of a Co-semigroup {S(¢) : r > 0},
D(A) is dense in X and A is a closed linear operator.

Proof See Pazy [1, Corollary 2.5]. [

2.1.1 The Hille-Yosida Theorem

Let {S(¢) : t > 0} be a Cy-semigroup. It follows from Theorem 2.2 that there exist
constants o > 0 and M > 1 such that ||S(#)|| < Me™ fort > 0.If e =0, {S(¢) : t > 0}
is called uniformly bounded and if moreover M = 1 it is called a Cp-semigroup of
contractions. If M = 1, {S(¢) : # > 0} is called a pseudo-contraction semigroup. A
semigroup {S(¢) : ¢ > 0} is said to be of negative type, or is exponentially stable
if ||S(#)|| < Me™ %t > 0 for some constants M > 0 and & > 0. This subsection is
devoted to the characterization of the infinitesimal generators of Cp-semigroups of
contractions. Conditions on the behavior of the resolvent of an operator A, which are
necessary and sufficient for A to be the infinitesimal generator of a Cy-semigroup of
contractions, are given.

Recall that if A is a linear, not necessarily bounded, operator in X, the resolvent
setof A, p(A), is the set of all complex numbers A for which A7 — A is invertible, i.e.,
(A1 —A)~!is a bounded linear operator in X. The family R(,A) = (A1 —A)"!,4 €
p(A) of bounded linear operators is called the resolvent of A.

Theorem 2.4 (Hille-Yosida) A linear (unbounded) operator A is the infinitesimal
generator of a Cy-semigroup of contractions {S(¢) : ¢ > 0} if and only if

(i) Aisclosed and D(A) = X, and
(ii) the resolvent set p(A) of A contains R™ and for every A > 0,

1
IRGL A< 5 2.5)

Proof (Necessity) If A is the infinitesimal generator of a Cy-semigroup then it is
closed and D(A) = X by Corollary 2.2. For A > 0 and x € X let

R(A)x= /0 " e M8 (1)xdt 2.6)
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Since t — S(f)x is continuous and uniformly bounded, the integral in (2.6) exists
as an improper Riemann integral and defines the bounded linear operator R(A) that
satisfies

< 1
IR < [ e MIs(o)xldr < 5|4 X
Moreover, for & > 0,
h)—1 1 /=
St R(A)x = — / e M (S(t+ h)x — S(1)x)dt
h hJo
Ah 1 7
=° / e M S(t)xdt
h Jo
Ah ok
[ e M) xdr. (2.8)
h Jo

As h | 0, the RHS of (2.8) converges to AR(A)x — x. This implies that for every
xeXand A >0,R(A)x € D(A) and AR(L) = AR(A) —1, or

(AI—A)R(A) =1. (2.9)

For x € D(A) we have

R(A)Ax = /m e MS(1) Axdt
0

= / e MAS(t)xdt
0

=A ( /0 B e’“S(t)xdt)

= AR(A)x, (2.10)

where we used Theorem 2.3 (c¢) and the closedness of A. From (2.9) and (2.10) it
follows that

R(A)(AI—A)x=x for xe D(A). (2.11)

Thus, R(2) is the inverse of AT — A, it exists for all L > 0 and satisfies the desired
estimate (2.5). Conditions (i) and (ii) are therefore necessary. [J

Next, in order to prove that the conditions (i) and (ii) are also sufficient for A to
be the infinitesimal generator of a Cy-semigroup of contractions we will need some
lemmas and Yosida approximations.

The proofs of the following two lemmas can be found in Pazy [1, pp. 9—10].
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Lemma 2.1 Let A satisfy the hypothesis of Theorem 2.4 and let R(A,A) =
(A1 —A)~!. Then

lim AR(A,A)x=x for xeX. (2.12)

A—roo
We now define, for every A > 0, the Yosida approximation of A by
Ay = AAR(A,A) = A*R(A,A) — Al (2.13)

A, is an approximation of A in the following sense:

Lemma 2.2 Let A satisfy the hypothesis of Theorem 2.4. If A, is the Yosida
approximation of A, then

Jim A;x=Ax for x€D(A). (2.14)
—o0

Lemma 2.3 Let A satisfy the hypothesis of Theorem 2.4. If A, is the Yosida
approximation of A, then A is the infinitesimal generator of a uniformly continuous
semigroup of contractions {e”A2 : t > 0}. Furthermore, for every x € X, A, u > 0 we
have

€2 x — x| < t]|Azx — Ayx]|. (2.15)
Proof From (2.13) it is clear that A; is a bounded linear operator and hence is
the infinitesimal generator of a uniformly continuous semigroup {e"4z : ¢ > 0} of
bounded linear operators (see Theorem 2.1). Moreover,

HetAw :e—zAHemR(A,A)” < e—tletlzuR(LA)H <1 (2.16)

and therefore {¢"42 : ¢ > 0} is a contraction semigroup. It is clear from the definitions
that ¢4, eu A, and A, commute with each other. Consequently,

bd
||€tAAX—€tA”x|| _ ||/ 7(etsA/let(lfs)Aux)dsH
o ds

1
< / 1||e"4% "1 =5)4u (A x —Ayx)||ds
0
<t|Axx—Apx|[. O
Proof of Theorem 2.4 (Sufficiency) Let x € D(A). Then

e — x| < t]lAjx— Ay

< 1||Ayx — Ax|| +1]|Ax — Apux]]. (2.17)
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From (2.17) and Lemma 2.2 it follows that for x € D(A), e%x converges as A — oo
and the convergence is uniform on bounded intervals. Since D(A) is dense in X and
[le2]| < 1, it follows that

lim ¢ix = §(r)x forevery xcX. (2.18)

A—oo

The limit in (2.18) is again uniform on bounded intervals. From (2.18) it follows
readily that the limit S(r) satisfies the semigroup property, i.e., S(0) = I and
that ||S(7)|| < 1. Also, r — S(#)x is continuous for ¢ > 0 as a uniform limit of
the continuous functions ¢t — e2x. Thus {S(¢) : t > 0} is a Cp-semigroup of
contractions on X. To conclude the proof we need to show that A is, in fact, the
infinitesimal generator of {S(¢) : 7 > 0}. Let x € D(A). Then using (2.18) and
Theorem 2.3 we have

S(t)x—x = lim (e"2x —x)
A—oo

i i
= lim eSAlAlxdx:/ S(s)Axds. (2.19)
A—3e0J0 0

The last equality follows from the uniform convergence of ¢*42A;x to S(f)Ax on
bounded intervals. Let B be the infinitesimal generator of {S(¢) : > 0} and let
x € D(A). Dividing (2.19) by ¢ > 0 and letting ¢ | 0 we see that x € D(B) and that
Bx = Ax. Thus B D A. Since B is the infinitesimal generator of {S() : ¢ > 0}, it
follows from the necessary conditions that 1 € p(B). On the other hand, we assume
(Hypothesis (ii)) that 1 € p(A). Since BD A, (I—B)D(A) = (I —A)D(A) = X which
implies D(B) = (I — B)~'X = D(A) and therefore A=B. [

Hille-Yosida theorem has some simple consequences which are stated next.
Corollary 2.3 Let A be the infinitesimal generator of a Cp-semigroup of contrac-

tions {S(r) : t > 0}. If A, is the Yosida approximation of A, then

S(H)x = lim ™4 x for xeX.
A—roo

Proof See Pazy [1, Corollary 3.5]. O

Corollary 2.4 Let A be the infinitesimal generator of a Cp-semigroup of contrac-
tions {S(#) : ¢t > 0}. The resolvent set of A contains the open right half-plane, i.e.,
p(A) D {A :ReA >0} and for such A,

1
< —F.
IR A<

Proof See Pazy [1, Corollary 3.6]. [J
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Corollary 2.5 A linear operator A is the infinitesimal generator of a Cy-semigroup
satisfying ||S(¢)|| < e* if and only if

(i) Aisclosed and D(A) =X,
(ii) The resolvent set p(A) of A contains the ray {A : ImA =0, A > o} and for
such A

1
IR A < =

Proof See Pazy [1, Corollary 3.8]. O

2.1.2 Yosida Approximations of Maximal Monotone Operators

Let X be a Banach space and X* its dual space. Let G(A) denote the graph of the
operator A.

Definition 2.3

(1) A multivalued operator A : X — 2X" is said to be monotone if
x+ (V1 —y2,%1 —x2)x 20, Vx;,y; € §(A), i=1,2.
(i) A monotone operator A : X — 2X" is said to be maximal monotone if there exists

no other proper monotone extension A of A, i.e., G(A) ¢ G(A).

We now introduce Yosida approximation of a multivalued operator on Banach
spaces. Let us assume that X is uniformly convex with uniformly convex dual
X*. Hence, by Theorem D.1, the duality mapping J is single-valued in view of
Remark D.2.

For every x € X and A > 0 let us consider the following resolvent equation:

0€J(xy —x)+ AAx, . (2.20)

Proposition 2.1 For all x € X, there exists a unique solution x to (2.20).

Proof By Corollary D.1, AA is maximal monotone. By Proposition D.1 (i), J is
monotone and demicontinuous (see Section 2.4). Further, let {x,} be a sequence
such that lim,,_,e ||x,|| = e°. Since

x(Jx=y)x=yx=|x—) Vv xyeX,
we obtain

T T N [P |
e Tl w2 [l
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Therefore, the map y — J(y — X) is coercive. Hence, applying Corollary C.1 it
follows that the mapping A : X — 2% defined by x; +— J(x; — x) + AAx;, is maximal
monotone.

Claim For xy € D(A) the mapping A : x; — J(x; —x0) +Ax;, is coercive.

Proof Take a sequence {x,} C D(A) such that lim,,_,. ||x,|| = e and fix y, € A(x,),
i.e., yn = J(xy —x0) + Avy, for some v, € A(x,). Then

x* (Vs Xn — X0)x
[[2a] |
_ x> (I (o —X0),%0 —X0)x PRS (Vs Xn — X0)x
Al |1 X

_ | —xol? 5 X (= wiy —xox | xe (w, 2 — o) x
x| A A

b

for w € A(xp).
Clearly, ||x, — x0||?/||xx|| — o as n — . By the monotonicity of A we get

PRS (Vn — W, X, — X0)x

>0.
{2

Further,

[x= (w0 —x0)x|_ [[wl |Pen — ol

< <eo
[ el Al

Hence, lim, s x+(Vn,%:, — X0)x ||[Xn||”' = . By Proposition C.3, we obtain
surjectivity of the map x; — J(x3 — %) + AAx;. Thus, there exists a solution x;
to (2.20).

To show the uniqueness of the solution, let x,x; be two solutions of (2.20), i.e.,
0 =J(x; —X) 4+ Av;, for some v; € A(x;),i = 1,2. Setting X%; := x; —X,i = 1,2 by
monotonicity of A and J we obtain

0=x(J(X1)—J(X2),X1 —F2)x + A x+(vi —v2,%1 —X2)x
> x+ (J(F1) —J(%2), %1 —F2)x > 0.
Hence x=(J(%;) —J(X2),%1 — X%2)x = 0. Since J is strictly monotone (see Proposi-
tion D.1 (iii)), we conclude that ¥; = %, or equivalently, x; =x,. [
Proposition 2.1 justifies the following definition.
Definition 2.4

(i) The resolvent J, : X — X of a maximal monotone operator A is defined by
Jyx = x;, where x, is the unique solution to (2.20).
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(ii)) The Yosida approximation Ay : X — 2X" s given by

1
Ayx= ZJ(x—Jxx), A>0, xeX.

We have the following properties of the resolvent and the Yosida approximation.
Proposition 2.2

(i) A, is single-valued, maximal monotone, bounded on bounded subsets and
demicontinuous from X to X*.
(i) ||Azx|| < [|A%(]| for every x € D(A), A > 0.
(iii) J, is bounded on bounded subsets, demicontinuous and
limJyx=x, Vxé&co{D(A)},
A—0
where co{-} denotes the closed convex hull of {-}.

(iv) For A — 0, A3x — A% for all x € D(A).
(v) Forall x € X, we have

Ay (x) € A(J;(x)).
(vi) If 4, — 0,x, — x weakly, A, x, — y weakly and

limsup x+(Ay, X0 — A, Xms Xn — Xm)x < 0,
n,m—yoo

then [x,y] € §(A) and

nﬁ%rl}lw X* <A;Lnx,, 7A)mem,xn 7xm>x =0.

Proof (i) According to Barbu [1, Section 2.1, Proposition 1.3], A; is single-
valued, monotone, bounded on bounded subsets and demicontinuous. Applying
Theorem C.1 it follows that Aj is maximal monotone.

(i1)—(iv), (vi) See Barbu [1, Proposition 1.3].

(v) From (2.20) and the definition of J, , we conclude that

—J(J(x)—x) € L A(J (x)) V¥xeX.
Since J is odd, by the definition A; we obtain

1 1
Aylx) = I](x—J;L(x)) = _XJ(J}”(X) —x)€A(J,(x)) VxeX. O
Instead of the implicit definition of the Yosida approximation as an oper-
ator depending on the resolvent which is implicitly defined via the resolvent
equation (2.20), one can explicitly express the Yosida approximation in the follow-
ing way.



20 2 Mathematical Machinery
Lemma 2.4 Let A, be the Yosida approximation of A. Then
Ap(x)= (A" +l]71)71x, xeX.
Proof Fix x € X and let J, (x) be the resolvent of A defined by (2.20). Then, by
the definition of the Yosida approximation and the homogeneity of the duality
mapping J !, we have J) (x) = x — AJ~1(A (x)). Inserting this into the resolvent
equation (2.20), we obtain A (x) € A(x — AJ (A, (x))) or equivalently,
xe (AT + A (AL ).

Since A, is single-valued, we conclude that A; (x) = (A~ +AJ")"'x. O

The following lemma plays a fundamental role in the proof of existence and
uniqueness of multivalued stochastic differential equations. It states that the coerciv-
ity of a maximal monotone operator is carried forward to its Yosida approximation.

Lemma 2.5 Let o € (1,2], A : X — 2% be a maximal monotone operator and A
its Yosida approximation. If for some constants C; > 0 and C, € R,

x(vxX)x > Ci||x||*+C2 VxeD(A), YveA(x),
then there exist Ag > 0 and C > 0 such that for all 0 < A < A,
x{(Ayx,x)x > C127%||x||+C VxeX.

Proof Fix x € X. By the definition of A and a property of J we have

Since A (x) € A(J;x) (see Proposition 2.2 (v)) and A is coercive we deduce that
k(A 2)x = (A o)+ o b Tl
> Cullax|+ 2 b=l + €
> Cillpal| 4 5 e | - €

for some C > 0 since a € (1,2]. Further, for 4y := C% we have (1/A —Cy) >0 for
all 0 < A < Ap. Hence, we get
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1
xeldaxx)x = CLVx][" 4 (5 = Collx = x| + Culx = Jpx]|* + €
> C(|[ax]|* + [lx = Jox]|*) + C
> C27 x|+ C, VA < Ao,
by using 2%~ (a* +b%) > (a+b)* for o > 1,a,b>0. O

Note that in the Hilbert space case, the Yosida approximation is Lipschtiz
continuous. However, in the Banach space case this is not necessarily true as the
following example shows:

Example 2.1 Let A :=J. Using Lemma 2.4, we derive its Yosida approximation:
Ay =+ )
= {rexy=(1+1)7") 'x
={yeXx |(1+A)J 'y=x}

= {yex*|y21(1ix>}: 1+1/11(x)‘

Since the duality map J is Lipschitz continuous, so is its Yosida approximation.

2.2 Yosida Approximations and The Central Limit Theorem

Paulauskas [1] proposed a new idea to obtain bounds for errors for some approxi-
mations of semigroups of operators using some methods and results of probability
theory related to the central limit theorem. Bentkus [1] introduced a new approach
for analysis of errors in central limit theorem and in approximations by accompany-
ing laws. Bentkus and Paulauskas [1] demonstrated that this approach is also useful
to get optimal convergence rates in some approximation formulas for operators.
Vilkiene [1] used this method to obtain asymptotic expansions and optimal error
bounds for Euler’s approximations of semigroups.

In this section, we use this method to obtain optimal error bounds and asymptotic
expansions for Yosida approximations of bounded holomorphic semigroups.

Our objective is to present here some recent results as an interesting connection
between semigroup theory and probability theory for an interested reader. This
section can be skipped without losing continuity from further reading of the book.
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2.2.1 Optimal Convergence Rate for Yosida Approximations

Let A;,VA > 0 be the Yosida approximation of A as defined earlier in (2.13). By
Lemma 2.3, A, is the infinitesimal generator of a uniformly continuous semigroup
of contractions {S; (¢) : t > 0}. Moreover, by Corollary 2.3,

S(t)x = lim Sy (t)x, for xeX. (2.21)

A—soo

We call S, (¢),A > 0 Yosida approximations of contraction semigroup {S(z) : r > 0}.

Definition 2.5 Let {S(¢) : r > 0} be a Cp-semigroup on a Banach space X. The
semigroup {S(¢) : ¢ > 0} is said to be differentiable if for every x € X, the function
t — S(t)x is differentiable for > 0. A semigroup S(7) is called differentiable if it is
differentiable for > 0.

One can show that the n-th derivative satisfies S") (r) = A"S(r).

Definition 2.6 Let X9 = {z: |argz| < 6} be a sector in the complex plane for some
0 >0and for z € g, let S(z) € L(X). The family S(z),z € Z is called a holomorphic
semigroup in Xg if:

(i) the function z +— S(z) is analytic in Zg,
(i) $(0) =1 and lim, .5, S(z)x = x for every x € X, and
(iii) S(z1 +z2) = S(z1)S(z2) for z1,22 € Zg.

A semigroup {S(¢) : t > 0} is called holomorphic if it is holomorphic in some sector
X containing the nonnegative real axis.

A semigroup {S(z) : t > 0} is called bounded holomorphic semigroup in Zg
if it has a bounded holomorphic extension to Xy for each 6’ € (0,0). We call
{S(¢) : t > 0} a bounded holomorphic semigroup if it is a bounded holomorphic
semigroup in some sector Xg, 6 > 0. Note that if S(¢) is a bounded semigroup which
is holomorphic, then it is not necessarily a bounded holomorphic semigroup (see
W. Arendt, et al [1, p. 153]).

Assume that there exists a positive constant K independent of n, 4 and ¢ such that

|[7AS(1)]] < K, (2.22)
and
(n+D[JAAY A —A) | <K, n=0,12,..., (2.23)
forall A >0,¢>0.

Note that bounded holomorphic semigroups satisfy (2.22) by Theorem 5.2 (see
Pazy [1, p. 61]) and (2.23) by Theorem 5.5 (see Pazy [1, p. 65]).
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Lemma 2.6 Let A be the infinitesimal generator of a contraction semigroup {S(¢) :
t > 0}. Suppose that the conditions (2.22) and (2.23) are satisfied. Then the Yosida
approximations satisfy

11438, (|| <K, VYA >0, t>0. (2.24)
Proof We have

Ay =AAAI—A) P =A2(A—A) 1= AL
Expanding exp{tA%(AI —A)~'} as a Taylor series, we obtain
1Ay ), (l‘) = l‘A)LetA}b

n+1
—ltz lt An Al — A) 1.

From (2.23), we get

;Lt)n+1

A < Ke ™™

|[2A285 ()] Z (1 1)1
= k(1—e ) <K,

forallA >0and¢r>0. O
If (2.22) and (2.24) hold, then

[(:A)"S(1)]| < m™k™  and
[1(2A2)" S (D)]| < m™K™, (2.25)

forallz>0,A >0and, m=1,2,... see Lemma 2.1 (see Vilkiene [1]).
In the next subsection, we shall prove the integro-differential identity

S)L(I)X_S() +7L+ﬁ+ +/’Lk

+ Dy, (2.26)
where {S, (¢) : t > 0} is the Yosida approximation of the semigroup {S(7) : ¢ > 0}
and the coefficients a,, do not depend on A.

In what follows we obtain the optimal bound for the convergence rate

[IS(2) x = Sy, (1) .



24 2 Mathematical Machinery

Theorem 2.5 Let the semigroups {S(¢) : t > 0} and {S,(¢) : t > 0} satisfy the
conditions (2.22) and (2.24). Then the following integro-differential identity holds:

Do = S, () — S(1)x = % /0 AL, (1 — 1))S(x0)xd, 2.27)

for all A > 0. Moreover, the following inequality holds

(080 < KU .29)

where C is some absolute positive constant.
Proof The proof is based on an application of Newton-Leibnitz formula along a
smooth curve y(T) connecting two close objects a and b such that b —a = (1) —

7(0) = Jy ¥ (t)dt. We choose ¥ in the following form

1(7) =S5 (1 - 1)0)S(10). (2.29)
Then a = Sy (t),b = S(¢) and
7(2) = (Sa((1=0)1))'S(zr) + 5, (1 = 2)1) (S(zr))
= —A;18, (1= 71)1)S(t1) + A1S; (1 — 7)1)S(71)
= (A~ AL)¥(T) =~ 1AAL ().
So, we get
Dy =S, (x—S(t)x=a—b
(2.30)

1
= %/0 1AA, y(T)xdT.

Substituting (2.29) into (2.30), we obtain (2.27).
To obtain (2.28), we denote

1/2
J1 :/ IAA;L’)/(T)xdT. and
0

1
JZ:/ tAA, y(T)xdT.
1/2

Then the convergence rate

1
[1Doll < (M1l +[121])-
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Next, we estimate ||J;|| and ||/2][:

1/2
Wil < [ Nl v(jas

1/2
< / 9% 0
0

1—-7

where 61 = ||AS(7f)x|| and 0, = ||(1 — 7)tA;. S, ((1 —T)¢)||. Since {S(z) : >0} isa
semigroup of contractions, we have §; < ||Ax|| and from (2.24) we also have &, < K.
Thus

/2 1
Wil <Kl [ = dv = log (K] lax @31)
and

1
ball < [ laaa(@xlas

1
S @d17
12 T

where 8 = ||[A352 ((1 — 7)1)x|| and & = ||77AS(77)||. By Hille-Yosida theorem
[|[A(AI—A)~1|| <1 for all A > 0. It follows that ||A;x|| = ||[AA(Al —A)x|| =
[|[A(A1 —A)~'Ax|| < ||Ax|| and & < ||Ax||. From condition (2.22) we have & < K.
Hence

11
I172]] < K]lAx] /1 ) 747 = oe.GIKIjAx]| (232)
Substituting (2.31) and (2.32) into

1
[1Doll < (M1l +112]]),

we obtain (2.28). [

Note that using the same approach as above we can obtain the inverse expansion,
i.e., expansion of the semigroup S(¢) in terms of the Yosida approximations S (¢),
and also the optimal convergence rate.

Consider the integro-differential identity

b

S() = 5(6)+ 7

+Ly, (2.33)

where the coefficient b; is bounded with respect to 4.
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First a bound for the optimal convergence rate ||S(7)x — S (7)x|| is obtained. The
expansion (2.33) will be considered in the next subsection.

Theorem 2.6 Let the semigroups {S(¢) : t > 0} and {S,(¢) : t+ > 0} satisfy the
conditions (2.22) and (2.24). Then the convergence rate in (2.21) satisfies

|1S5.(1) =S(2)|| < TS (2.34)

for all > 0 and A > 0. Moreover, for all x € X, we have the following inequality

K||Ax
152 (s — (0 < K12 .35)
forallt >0and A > 0.
Proof Proceeding as in Theorem 2.5, we take
(1) :=8),.(1) = ex ZA& &IfA B
Y1) :=04/:\I) = exp \7
= exp{tAAL (Al —TA)"!} (2.36)

Then y(1) = S, (¢) and y(0)x =limy |9 Sy /(t)x = S(¢)x for all x € X. Differentiating,
we get

V(1) = tA*A (Al — TA) 28 (1)
= %tAﬁ/T(I)Sl/T(t).

So, we obtain

1
Dox = S, (1)x — S(1)x = /0 Y (1)xdt

-1

1
= ﬂ/() (IAA/T)ZSA/T(I)XCZ’T. (2.37)

From (2.25) we have
1(t42,2)?Sa /< (0)x]] <4K||x]| VT € (0,1).
Then

AK2[|x||

Dox|| <
Ipox < =5

Vx e X, (2.38)
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and hence

4K?
D
Dol < —— e

Further, from (2.24) we have
[tA2/eSa /(DI <K VT €(0,1).

From the definition of A) we obtain

AL -
sl <[5 (51-4)

By Hille-Yosida theorem, we have ||A(AI —A)~!|| < 1 for > 0 >, so that

[[Ax]].

HA}JQCH < ||AXH fort € (0,1)

Hence

K
D0 < 1 [ 1A e eliag extiz < K20 vex o

2.2.2 Asymptotic Expansions for Yosida Approximations

In this subsection we consider the expansions (2.26) and (2.33).
Let us introduce some notations:

dpis =1, m=12...,

dm.m,j: 1 m:1727 '7j:1727 , 1,
' m:
J
dugj = Ydu gy m=23,... k=12, .m—1, (2.39)
i=1
j=12,...k

Theorem 2.7 Let {S(¢) : t > 0} be a differentiable semigroup. Then the coefficients
ap, in (2.26) are given by

m
an =Y, dp it A"TES(1)x, (2.40)
k=1
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and the remainder terms D,, are

Dm = Dm,l +Dm,2a (241)
where
1 m k ) .
Dy = sz‘l Z‘;dmvkijlkAer]A];rl jS(t)x,
=1j=
and

1 Lgm
Dy = W/O E(fAAk)m+ISA((l — T)Z)S(Tt)xdf,

where coefficients d, «; are given in (2.39).

Proof From (2.27) we have
Sy (H)x = S(1)x+ Do,

where

1
Dy = %/0 tAA; y(T)xdT.

Integrating Dy by parts, we have

1
Dy = %tAA;LS(t)er %/0 T(tAA;)*y(T)xdT. (2.42)

It is easy to prove the identity A, = A + AA, /A. Substituting this into the first term
on the RHS of (2.42), we obtain

tA? 1A%A;,
D() = TS(I)X‘i’ ),2

S(t)x

l 1 2 aq
+p/0 (1A )*y(e)xds = LD,

This proves (2.40) and (2.41) for m = 1. Using induction on m, we obtain the general

result. O

For instance, the first three coefficients of the expansion are

a; = tA%S(1)x,
244

t°A
ay = tA3S(1)x + — S0,



2.2 Yosida Approximations and The Central Limit Theorem 29

346

r’A
az = tAYS(t)x + A S(1)x + —S()x.

Theorem 2.8 Let the semigroups {S(¢) : t > 0} and {S,(¢) : t > 0} satisfy the
conditions (2.22) and (2.24). Then the remainder terms D,, in (2.26) satisfy

Cm(l —‘erH)HAmeH
)Lm+1 ’

|[Di]| < m=1,2,...

for A > 0 and some positive constant C,, depending only on m.

Proof From the definition of Yosida approximations (2.13) and (2.22), it follows
that

||Dm,1H < C,n’l[(m||Am+1x|‘/lerl7
where C,, 1 is some positive constant depending only on m, The bound
HDm,ZH < Cm,ZKm+1|‘Am+1xH

can be obtained in a similar manner as the bound for ||Dy|| in the proof of
Theorem 2.5. [
We now consider the asymptotic expansion (2.33).
Theorem 2.9 Let the semigroup {S(7),7 > 0} and {S, (¢),7 > 0} satisfy the condi-
tions (2.22) and (2.24), Then the coefficient b; in (2.33) is given by
by = —tA%S; (1), (2.43)

and the remainder term L satisfies

CK3(1+K)

e

t>0,K>0,

where C is a positive constant independent of A and .
Proof From the proof of Theorem 2.6, we have

S(t)x = S, (t)x — Dox,
where Dox = fol Y (7)xdt. Integrating by parts, we obtain

b

7 x+Lx,

Dox =

where by = 1A% 5 (1), and
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— _W/ol 18,2(0) (1A /2)* +2(tAy ) ) xd.
From (2.25) we have
1645, /2)* Sy ()| < 47K,
and
1643/ 2 (0x]] < 3°K7 |

forall 7 € (0,1). Then

CK3(1+K
e ¢
and hence
CK3(1+K)
||L1H§T U

2.3 Almost Strong Evolution Operators

This section is needed to study time-varying stochastic evolution equations.

Definition 2.7 (Mild evolution operator) Let A(T) = {(¢,5) : 0 <s <t < T}, then
U(t,s) : A(T) — L(X) is a mild evolution operator if

(@ Ut =1, tel0,T],

(b) U(t,r)U(r,s)=U(t,s), 0<s<r<t<T,

(c) U(-,s) is strongly continuous on [s,T] and U(t,-) is strongly continuous on
[0,T].

A consequence of (c) is that esssupy 7y ||U(#,5)|| < oo. Clearly, if {S(z) : # > 0}
is a strongly continuous semigroup, then S(7 — s) is a mild evolution operator.
A mild evolution operator, if in addition, satisfies

(d) For every T > 0 there is a constant Cz such that
U s)lpx)y <Cry, 0<s<t<T,

then U(z,s) is an evolution operator.
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Definition 2.8 (Quasi-evolution operators) A quasi-evolution operator U(t,s) is a
mild evolution operator such that there exists a nonzero xo € X and a closed linear
operator A(s) on X for almost all s € [0, 7] satisfying

Ul(t,s)xo—x0 = /Yt U(t,r)A(r)xodr.

We denote the set of xg € X for which (a) is valid as D(A(¢)) and we call A(¢) the
quasi-generator of U(t,s).

Those quasi evolution operators which are also differentiable in the first variable
are also important in applications and so we define

Definition 2.9 (a) (Almost strong evolution operator) An almost strong evolution
operator is a mild evolution operator on X for which there exists an associated
closed linear operator A(#) on X for almost all 7 € [0, T] such that

(i) U(t,s):D(A(s)) = D(A(r)) forall 1 > s € [0, T],
(i) [JA(r)U(r,s)xodr = (U(t,s) —I)xo for xo € D(A(s)).

Note that (i) implies

%U(I,s)xozA(t)U(t,s)xo a.e. for xp€ D(A(2)).

(b) (Strong evolution operator) A strong evolution operator is an evolution operator
for which there exists a closed, linear, densely defined operator A(z),t > 0, with
the domain D(A(r)), such that

(a) U(t,s):D(A(s)) — D(A(r)) fort > s,
(b) LU(t,s)h=A(t)U(t,s)h for h € D(A(s)), t > s.

2.4 Basics from Analysis and Probability in Banach Spaces

Let (X,]||-||x) be a real Banach space and (X*, || - ||x+) be its dual space. We mean
by x+(-,-)x the duality pairing between X and X* and is defined by

x(x x)x :=x"(x) for x*eX' xeX.

If X is a Hilbert space, then (-,-)x denotes the inner product in X, and 2X stands for
the family of all subsets of X.

In the following, let {x,} be any sequence in X and T : X — Y is any operator,
where Y is another real Banach space. Then

(a) T is said to be continuous at x if

X, — x0 = Tx, — Txp.
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(b) T is said to be demicontinuous at x if
Xp — x9 = Tx,, — Txg weakly.

(c) T is said to be hemicontinuous at xy if for any sequence {x,} converging to xo
along a line, the sequence {Tx,} converges weakly to Txg. That is,

Tx, = T(xp +t,x) = Txo weaklyas 7, -0 forall xeX.

Note that demicontinuity implies hemicontinuity. Conversely, if a hemicontinu-
ous operator is monotone, then it is demicontinuous.

An operator T : X — Y is said to be Fréchet differentiable at x if there exists a
continuous linear operator A : X — Y such that

T(x+h)—T(x) = Ah+w(x,h)
where

lim ||w(x,h h||=0.
Jim (el ]

A is called the Fréchet derivative of T at x and is denoted by T’ (x).
A Banach space X is said to be separable if it has a countable subset that is

everywhere dense.
The following lemma will be crucial in the subsequent analysis.

Bellman-Gronwall’s Lemma

(a) If g > 0 and & are integrable on [7p, T] (0 < T < o) and if
§0 <hO+¢ [ go)ds, n=i<T,
0
for £ > 0, then
g(r) <h(r) —&—E/Iteg(t*“‘)h(s)ds, 1h<t<T.
0

(b) Let g(7) and h(¢) be nonnegative functions and let k be a positive constant such
that for t > s,

o(t) <k+ / h(1)g(1)dx.
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Then for t > s,

g(1) < kexp { / th(r)dr}.

The following Cauchy’s formula will be used in the sequel.

Cauchy’s Formula

Let g : [to,T] — R be integrable. Then, for ¢ € [to, T},

t h—1 1 t (t— s)n—l
/ / / g(s)dsdty ...dt,— :/ g(s)————ds, n=1,2,3---.
1o J1o ) ) (n—=1)!

Let Q be a nonempty abstract set, whose elements @ are termed elementary
events. J is a g-algebra of subsets of Q; that is F is a nonempty class of subsets of
Q satisfying the following conditions: (i) Q € F, (ii) if A € F, then A° € F, and (iii)
ifA, € F,n=1,2,..., then U;_|A, € F. The elements of J are called events. P is
a probability measure on the measurable space (€,5); that is, P is a set function,
with domain J, which is nonnegative, countably additive, and such that P(A) € [0, 1]
for all A € F, with P(Q) = 1. We call (Q,F, P) a probability measure space. Let us
assume throughout this book that P is a complete probability measure; that is, P is
such that the conditions A € F, P(A) =0, and A9 C A imply P(Ag) =0.

Let (X,B(X)) be a measurable space, where B(X) is the c-algebra of all Borel
subsets of X. A sequence {x,} of elements in X converges strongly, or converges
in the strong topology to an element x if lim,_,« ||x, — x||x = 0, x called the strong
limit of {x,}. A sequence {x,} of elements in X converges weakly, or converges in
the weak topology, to an element x if (i) the norms ||x,|| are uniformly bounded,
that is, ||x,||x <M, and (ii) lim, .. x*(x,) = x*(x) for every x* € X*. If a sequence
{xn} of elements in a Banach space X converges strongly to an element x € X, then
{xn} also converges weakly to x.

Definition 2.10 A mapping x : Q — X is said to be a random variable with values
in X if the inverse image under the mapping x of every Borel set B € F; that is,
x !(B) € Fforall Bc B.

Definition 2.11 A mapping x :  — X is said to be a finitely valued random variable
if it is constant on each of a finite number of disjoint sets A; € F and equal to 0
(the null element of X on Q\ (U?_,A;), and a simple random variable if it is finitely
valued and P{® : ||x(®)||x > 0} < . A mapping x : Q — X is said to be a countably
valued random variable if it assumes at most a countable set of values in X, assuming
each value different from 6 on a set in J.

Definition 2.12 A mapping x : Q — X is said to be a strong (or Bochner) random
variable if there exists a sequence {x, } of countably valued random variables which
converges to x, P-a.s., that is, there exists a set Ay € F, with P(Ap) = 0 such that
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lim ||x, (@) —x(w)||[x =0 forevery w € Q\Ay.
n—oo

Since P(Q) = 1, we can replace countably valued in Definition 2.11 by simple.

Definition 2.13 A mapping x : Q — X is said to be a weak (or Pettis) random
variable if the functions x*(x) are real-valued random variables for each x* € X*.

The concepts of weak and strong random variables coincide in separable Banach
spaces.

Definition 2.14 x is said to be a Bochner integrable if and only if there exists a
sequence of simple random variables {x, } converging P-a.s. to x such that

lim / ||x2 — x||dP = 0.
n—se |

By definition

n—yoeo

/ xdp = tim [ x,dP
A A

forevery A € 3 and A = Q.

It is clear from the above definition that every Bochner integrable random
variable is a strong random variable.

Let x be a strong random variable. The expectation of x, denoted by E(x), or
simply Ex, is defined as the Bochner integral of x over Q; that is,

E(x) = /Q xdP.

For some properties of expectation we refer to Hille and Phillips [1, Section 3.7].
The variance of a Banach space-valued random variable is defined as

V(x) = Ellx— E(x)|[x

= | k= E@)3ap.

Let x: Q — X be a square-integrable random variable, i.e., x € I? (Q,F,P;X), where
X is a Hilbert space. The covariance operator of x is defined by

Cov(x) =E(x—E(x)) ® (x —E(x))
and ® is the tensor product. g ® h € L(X) for any g, € X is defined by
(g@hk=g(hk), keX.

Cov(x) is a self-adjoint nonnegative trace class (or nuclear) operator and
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tr Cov(x) = El|jx— E(x)||%
= Ellxlx — [|IE®)| %

where tr denotes the trace. If P; € L(X), then

tr Py Cov(x) = trCov(P;x,x)
= E(P1(x—E(x)),x = E(x)),

where Cov(x,y) = E(x— E(x)) ® (y — E(y)) is the joint covariance of x and y. A

random variable x € L2(Q,J, P;X) is Gaussian if (x,e;) is a real Gaussian random

variable for all i, where {¢;},i=1,2,..., is a complete orthonormal basis for X.
The following result yields the definition of the conditional expectation.

Proposition 2.3 Let X be a separable Banach space and let x be a Bochner
integrable X-valued random variable defined on (Q,J,P). Suppose that A is a
o-algebra contained in F. There exists a unique, up to a set of probability zero,
integrable X-valued random variable z, measurable with respect to A such that

/de: /zdP, VAEA.
A A

The random variable z will be denoted as E(x|A) and called the conditional
expectation of x given A.

Proof See Da Prato and Zabczyk [1, Proposition 1.10]. [

We now give the definition of independence. Let {F;};c; be a family of sub-o-
algebras of J. These o-algebras are said to be independent if, for every finite subset
J C I and every family {A;};c; such that A; € F;,i € J,

P(ﬂAl) =[]r@).

ieJ ieJ

Random variables {x; };c; are independent if the o-algebras { o (x;) }ic; are indepen-
dent, where o(x;) is the smallest o-algebra generated by x;, i € I.

Let I be a subinterval of [0,e). Let X be a separable Banach space and B(X)
its Borel o-algebra. A stochastic process in X is a family of random variables
{x(¢),t € I'} in X. Functions x(-, ®) are called the trajectories or sample paths of x(¢).
A stochastic process {x(¢),t € I} is a modification or a version of y(r) if for each
t €I, x(t) = y(t) P-a.s. If two processes are a modification of each other, we regard
them as equivalent. The process x(f) is measurable if x is measurable relative to
B(I) x F, where B(I) is the Borel o-algebra of subsets of I. Let F;, 1 € I, be a family
of increasing sub o-algebras of F. A stochastic process {x(¢),t € I} is adapted to F;
if x(¢) is F;-measurable for all # € 1. {x(¢),¢ € I} is called progressively measurable
with respect to F, if, for every 7 € I, the map (s,®) — x(s,) from [0,7] x Q
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into (X,B(X)) is B([0,]) ® F,-measurable. A progressively measurable process
is adapted. Conversely, any adapted process with right or left-continuous paths is
progressively measurable. An X-valued right-continuous process {x(z),z € I} with
paths having left limits is called cadlag. A nondecreasing process {N(z),t > 0} is
a real-valued process that is J;-adapted and has positive, nondecreasing and finite
paths, P-a.s.

A stochastic process {x(¢),t € I} is called a martingale with respect to {JF;} if it
is adapted to F; with properties:

(a) E||x(t)]| <o foralltel,
(b) E(x(2)|Fs) = x(s) P-a.s.

for all s < t, 5,7 € I, where E(-|F;) denotes the conditional expectation with respect
to &Fs.
In what follows, we state some fundamental results.

Proposition 2.4 If x(¢) is a martingale in X relative to JF;, then ||x(¢)|| is a real
submartingale, i.e.,

E(|x@[1F5) > |Ix(s)l|  P-a.s.

foralls <t s,tel
Proof See Ichikawa [3]. O
Theorem 2.10 The following statements hold:

(i) If {x(¢),t € I} is an X-valued martingale, / a countable set and p > 1, then for
arbitrary A > 0,

1
P(supl|x(1)[| 2 A) < 7 sup E[[x(r)[”.
tel tel
(i) If, in addition, p > 1, then,

P
Blsup (0)1P) < (-2 ) supEllco

tel

(iii) The above estimates remain true if the set / is uncountable and the martingale
x(t) is continuous.
Proof See Da Prato and Zabczyk [1, Theorem 3.8]. [

Let us fix a number T > 0 and denote by M%(X) the space of all X-valued
continuous, square integrable martingales x.
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Proposition 2.5 The space MZ(X) equipped with the norm

1/2
lelhn) = (£ sop 1012

t€[0,T]

is a Banach space.
Proof See Da Prato and Zabczyk [1, Proposition 3.9]. [

If x € M2(R) then there exists a unique, increasing, and adapted process {(x(-))),
starting from 0, such that the process x*(¢) — ((x(¢))), ¢ € [0,T], is a continuous
martingale. The process ({x(-))) is called the quadratic variation of x.

Proposition 2.6 (Lévy’s Theorem) If x € MZ(R),x(0) = 0 and ((x(1))) =t,t €
[0,T], then x(-) is a standard Wiener process adapted to F, and with increments
x(s) —x(t), s > t independent of JF;, for every ¢ € [0, T].

Proof See Da Prato and Zabczyk [1, Proposition 3.10]. See also Ikeda and Watanabe
[1]. O

Let (X,(-,-)x) and (Y,(-,-)y) be two real separable Hilbert spaces.

Definition 2.15 A probability measure P on (Y, B(Y)) is called Gaussian if for all
v € Y the bounded linear mapping

V:Y—R
defined by
u— (u,v)y, ucy,

has a Gaussian law, i.e., for all v € Y, there exists m := m(v) € R and 0 := 6 (v) €
[0,°0) such that, if o(v) > 0,

(Po(v)™)(A) = P(v € A)
1 2

—(x—m)
_ 22
= 27r0'2/Ae 202 dx VA € B(R),

and if o(v) =0,

Theorem 2.11 A measure P on (Y,B(Y)) is Gaussian if and only if

o(u) = /Y S p(y)
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i 1
— pilmu)y _ E<Qu,u>Y7 uey,

where m € Y and Q € L(Y) is nonnegative, symmetric, and with finite trace.

In this case P will be denoted by N(m,Q) where m is called mean and Q is
called the covariance operator. The measure P is uniquely determined by m and Q.
Furthermore, for all h,g € Y,

[ myyp(an) = mi)y,
[ty = m ) (. g)y — (mghy)P(dx) = (@),
/Hx—mH%/P(dx) _—

Proof See Prévot and Rockner [1, Theorem 2.1.2]. [

2.4.1 Wiener Processes

We next define the standard Q-Wiener process. We fix an element Q € L(Y),
nonnegative, symmetric, and with finite trace and a positive real number 7'

Definition 2.16 A Y-valued stochastic process {w(z), € [0,T]}, on a probability
space (Q, 5, P) is called a standard Q-Wiener process if

(i) w(0) =0,

(ii) w(t) has a continuous trajectories P-a.s.,
(iii) w(r) has independent increments,
(iv) the increments have the Gaussian laws:

= N(0,(t—s)Q), t>s>0.

Proposition 2.7 (Representation of a O-Wiener process) Assume that w(z) is a Q-
Wiener process with trQ < ee. Then the following statements hold:

(i) w(¢) is a Gaussian process on Y and

Ew(t) =0, Cov(w(t)) =10, t>0.
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(ii) For arbitrary ¢, w(r) has the expansion

=Y /4B (2.44)
j=1

where

1
V4
are real-valued Brownian motions mutually independent on (Q,F, P) and the series
in (2.44) is convergent in L*>(Q, 7, P).

Proof See Da Prato and Zabczyk [1, Proposition 4.1]. U

ﬁj(t): <W(t)7ej>v j=12,...,

Definition 2.17 (Normal filtration) A filtration &,z € [0, 7], on a probability space
(Q,F,P) is called normal if

(i) Fo contains all elements A € F with P(A) = 0 and
(ii) F; =F4 =Ny, Fy forall ¢ e€0,T].

Definition 2.18 (Q-Wiener process with respect to a filtration) A Q-Wiener process
{w(t),t € [0,T]}, is called a Q-Wiener process with respect to a filtration F;, 1 €
[0,T], if:

(i) w(t) is F-measurable ¢ € [0, 7], and
(ii) w(r) —w(s) is independent of F; forall 0 <s <7< T.

In fact, it is possible to define a Wiener process when Q is not necessarily of
finite trace. This leads to the concept of a cylindrical Wiener process. In this case
the convergence of the series (2.44) is lost.

It is useful, at this moment, to introduce the subspace Yy = Ql/ 2(Y ) of Y which,
endowed with the inner product

oo

2 uek (v, ex)

k=1
< 1/2u Q—1/2 >

is a Hilbert space. We will need a further Hilbert space (¥1,(-,-)1) and a Hilbert-
Schmidt embedding

J (Yo, {-)0) = (Y1,(-,)1)-
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Remark 2.1 (Y1,(:,-)1) and J as above always exist, e.g., choose Y; := U and a; €
(0,00), k € N, such that 35, a3 < . Define J : Yo — ¥ by

J(u) = ar(u,ex)oex, u€Yp.

TM:

Then J is one-to-one and Hilbert-Schmidt.
The process given by the following proposition is called a cylindrical Wiener
process in Y.

Proposition 2.8 Let {e;} be an orthonormal basis of ¥y and B,k € N, a family of
independent real-valued Brownian motions. Define Q := JJ*. Then Q € L(Y}), 0,
is nonnegative definite and symmetric with finite trace and the series

M

w(t) = D, B(t)Jer, t€]0,T],

k=1

converges in M%(Y 1) and defines a Q;-Wiener process on Y;. Moreover, we have

that Q}/2(Y1) = J(Yo) and for all uy € Yo,

~1/2
ol o = 1107 21l |y =11 u0) | oy,
. . /2, - .
ie,J: Yy — Q7Y is an isometry.

Proof See Prévot and Rockner [1, Proposition 2.5.2]. 0

2.4.2 Poisson Random Measures and Poisson Point Processes

Let (Q,F, P) be a complete probability space and (S,8) a measurable space. Let Z,,
be the set of nonnegative integers. Suppose that M is the space of Z U{+oe}-valued
measures on (S,8) and

By :=0c(M>uw— u(B)|BeES).

Definition 2.19 (Poisson random measure) A random variable u : (Q,5) —
(M, B(M)) is called Poisson random measure if the following conditions hold:

(i) For all B € 8,u(B) : Q — Z, U {+oo} is Poisson distributed with parameter
Elu(B)], ie.,

P(u(B)=n) = e*E[#(B)]W7 n=0,1,2,3,--.

n!

If E[i1(B)] = o, then [ (B) = oo P-a.s.
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(ii) If By,...,By € 8 are pairwise disjoint, then p(By),.. ., (By,) are independent.
Let (Z,2) be another measurable space and set
(S,S) = ([Ov‘x’) X Z’B([O’w)) ® Z’)
Definition 2.20 A point function p on Z is a mapping p : D, C (0,e0) — Z where

the domain D,, of p is countable.

Remark 2.2 The point function p induces a measure u(dr,dy) on ([0,e0) x
Z,B([0,00)) ® Z) in the following way:

Define pp : D, — (0,0) x Z, 1+ (t,p(t)) and denote by c the counting measure on
(Dp,P(Dp)), i.e., c(A) :=#A for all A € P(D),). Here, P(D,) denotes the power set
of D,,. For (A x B) € B([0,°)) ® Z, define the measure

W(A X B) :=c(P~1(Ax B)).
Then, in particular, for all A € B([0,0)) and B € Z we obtain
U(AXB)=#{re Dy|t € A,p(t) € B}.
Fort > 0, B € Z we write
u(t,B) := p((0,1] x B).
Let P be the space of all point functions on Z and
By, :=0(Pzop— u(t,B)|t>0,Be€2).

Definition 2.21

(i) A point process on Z and (Q,F,P) is a random variable p : (Q,F) —

(Pz,Byp,).

(i1) A point process p is called stationary if for every ¢ > 0, p and 6;p have the same
probability law. Here, 6; is given by 6; : (0,00) — (0,00),5 > s +1.

(iii) A point process p is called o-finite if there exists {B, },en € Z such that B, T Z
asn — oo and E[u(t,B,)] < oo forallt >0andn € N.

(iv) A point process p on Z is called Poisson point process if there exists a Poisson
random measure fi on ((0,°0) ® Z, B((0,°0) ® Z) such that there exists a P-zero
set N € JF such that for all @ € N and all A x B € B((0,)) ® Z,

H(0)(A x B) = [i(0)(A x B).
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Proposition 2.9 Let p be a o-finite Poisson point process on Z and (Q, F, P). Then,
p is stationary if and only if there exists a o-finite measure m on (Z,2) such that

E[u(dt,dy)] = dt @ m(dz)

where dt denotes the Lebesgue-measure on (0,c). In that case, the measure m is
uniquely determined.

Proof See Knoche [1, Proposition 2.10]. [
The measure m in Proposition 2.9 is called the characteristic measure of .

Definition 2.22 Let F;, ¢ > 0, be a filtration on (Q,F,P) and p a point process on
Z and (Q,F,P).

(i) The process p is called F;-adapted if for every r > 0 and B € Z, u(z,B) is F;-
measurable.

(i) The process p is called an JF;-Poisson point process if it is an JF;-adapted,
o-finite Poisson point process such that {g((¢,¢+ h] X B)|h > 0,B € Z} is
independent of J; for all > 0.

We define the set I', := {B € Z|E[u(t,B)] < e°,Vt > 0}.

Definition 2.23 Let F, be a right-continuous filtration on (Q,F,P) and p a point
process on Z. The process p is said to be of class (QL) with respect to F; if it is
F,-adapted and o-finite and for all B € Z there exists a process fL(¢,B),t > 0, such
that

() for Be Ty, [i(t,B),t >0, is a continuous F;-adapted increasing process with
(0,B) =0 P-a.s.,
(ii) forallz>0and P-a.s. ® € Q,{i(®)(¢,-) is a o-finite measure on (Z,Z).
(iii) forB €Ty,

ﬂ(th) = u(laB) _ﬂ<th)v 120,

is an F;-martingale.

Here fi is called compensator of u and fi is called compensated Poisson random
measure of U.

Proposition 2.10 Let F,,¢ > 0, be a right-continuous filtration on (Q,, P) and let
m be a o-finite measure on (Z,Z) and p a stationary F;-Poisson point process on
Z with characteristic measure m. Then p is quasi-leftcontinuous with respect to J;
with compensator {1(¢,B) =t-m(B),t > 0,B € Z.

Proof See Knoche [1, Corollary 2.18]. [
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2.4.3 Lévy Processes

Definition 2.24 Let {X(z),7 > 0} be a stochastic process with values in Y.
(i) The process X(7) is said to be stochastically continuous if for every ¢ > 0 and

e>0

lim P(||X(s) — X(1)||y > &) = 0.

s—t

(ii) The process X(#) has independent increments if X(¢) — X(s) is independent of
Fs, forall 0 <s <t < oo,

(iii) If the distribution of X(¢) — X(s) depends only on the difference t — s we say
that X() has stationary increments.

(iv) The process X(7) is a called Lévy process, if it has stationary independent
increments and is stochastically continuous and X(0) = 0.

Theorem 2.12 (Lévy-Khinchine formula) Let X(7) be a cadlag Lévy process on Y
and let g, be the law of X(#). Then, there exists a unique triple (y,Q,v) where y€ Y,
Q € L (Y), v is a nonnegative measure satisfying v({0}) = 0 and

J bl A1) <o
such that

where
1
W(x): = *i<%x>Y+§<Qx,x>Y
+/Y (1 — ey 1{},|<1}(y)i<x,y,>y> v(dy).

Proof See Peszat and Zabczyk [1, Theorem 4.24]. O

Definition 2.25 We call the operator Q appearing in Theorem 2.12 the covariance
of X(¢), the measure u the jump intensity measure of X(¢) and the triple (v,Q, V)
the characteristics of X(z).

Defining

N(t,A) :=#{s € (0,7]]AX(s) € A}, A e B(Y\{0}),
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where

X9 - X(s—), 530,
AX(s) = {X«)), =0,

the Lévy process X(#) induces a Poisson random measure. We define the cor-
responding compensated Poisson random measure N(t,A) := N(t,A) —tv(A),A €
B(Y\ {0}), where v is the intensity measure of X(¢).

Theorem 2.13 (Lévy-Itd decomposition) Let X(#) be a Lévy process on Y with the
characteristics (v, Q, V). Then, for every ¢ > 0,

X(t) = ty+w(t) +/ xN(t,dx) +/ xN(t,dx),
{lxlly<1} {Ilxlly>1}

where w(t) is a Wiener process with covariance Q independent of N(-,A) for all
A e B(Y\{0}).

Proof See Albeverio and Riidiger [1, Theorem 4.1]. [
Definition 2.26 A Y-valued cadlag process X(#) is called quasi-left-continuous if
for every increasing sequence of stopping times {7, },en

lim X(7,) = X(lim 7,) on  {lim 7, < o}.

Proposition 2.11 Every Lévy process is quasi-left-continuous.

Proof See Bichteler [1, Lemma 4.6.7, p. 258]. O

2.4.4 Random Operators

Definition 2.27 A mapping T(w) : Q x X — Y is said to be a random operator if
{w:T(w)x € B} € F for all x € X, B € B(Y), where (Y,B(Y)) is a measurable
space.

In other words, the above definition simply states that 7(®) is a random operator
if T(w)x = y(w), say is a Y-valued random variable for every x € X.

Let X and Y be separable. Let L(X,Y) denote the space of bounded linear
operators mapping X into Y. Let T(®) be a random operator with values in L(X,Y).
The inverse 7~ () of T(®) from Q x Y — X is defined if and only if () is one
to one P-a.s., which is the case if and only if T(®)x = 6, P-a.s. implies x = 0, P-a.s.

Definition 2.28 If T(w) is a random operator with values in L(X,Y), then T~!(®)
is the random operator with values in L(Y,X) which maps T(w)x into x, P-a.s.
Hence, T~ ()T (w)x = x, P-a.s., x € D(T(®)), and T(0)T ' (®)y =y, P-a.s.,
y € R(T(w)). T(w) is said to be invertible if 7~! () exists.

The following result is from Hans [1].
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Theorem 2.14 Let 7(®) be an invertible random operator with values in L(X,Y),
where X and Y are separable. Then 7~ ! (®) is a random operator with values in
L(Y,X).

2.4.5 The Gelfand Triple

Definition 2.29 Let (H,(-,-)y) be a real separable Hilbert space identified with its
dual space H* via the Riesz isomorphism R. Let V be a Banach space with dual V*
such that the embedding V C H is continuous, i.e.,

[Vl < Cl|v]ly forall veV
and V is dense in H. (V,H,V*) is called the Gelfand triple.

It follows that H* C V* continuously and densely (see Zeidler [2, Proposi-
tion 23.13]). Consequently,

R
VCH=H"CV*
continuously and densely and
ve(z,V)y = (z,v)y forall zeH,veV.

Note that V* is separable since H C V* continuously and densely, hence this is true
for V as well.

2.5 Stochastic Calculus

This section is devoted to introducing stochastic calculus, more precisely, 1t6
stochastic integral and It6’s formula. To begin with, we define the It stochastic
integral

| /0 " (s)dw(s), 1€0,T],

where w(t) is a Q-Wiener process on Y and @ is a process with values that are
linear but not necessarily bounded operators from Y into X. Next, we define an It
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stochastic integral when w(z) is a cylindrical Wiener process. Subsequently, we also
define a stochastic integral with respect to a compensated Poisson measure of the
form

/(;t/%Q)(S’Z)N (ds, dz),

where N(dt,du) is the compensated Poisson measure.

2.5.1 It6 Stochastic Integral with respect to a Q-Wiener process

Let us fix 0 < T < . An L = L(Y,X)-valued process ®(¢), € [0,T], taking on a
finite number of values is said to be elementary if there exists a sequence 0 = 7y <
t) <...<ty =T and a sequence @y, Py,...,Dy_1, of L-valued random variables
taking only a finite member of values such that ®,, are J; -measurable and ®(t) =
®,,, for t € (ty,tm+1], m=0,1,...,k— 1. For elementary processes ® one defines
the stochastic integral as

ot k—1
[ @©)dnts) = 3 @ (o030 245)

m=0

and it is denoted by @ - w(z), r € [0,T].

In the construction of the stochastic integral for more general processes an
important role will be played by the space of all Hilbert-Schmidt operators L =
Ly (Yp,X) from Yy to X. The space Lg is also a separable Hilbert space, equipped
with the norm

=

H‘I’Hig = Y (Yenfi)l®
hk=1

= i Anl(Pen.fi)|*

hk=1

= [|PQ'?|* = u[PQ¥7,

where {g;}, with g; = \/A;ej, j = 1,2,, {¢;} and {f;} are complete orthonormal bases
in Yy, Y, and X, respectively. One can check that L C L9, but not all operators from Lg
can be regarded as restrictions of operators from L. The space Lg contains genuinely
unbounded operators on Y.
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Let ®(1), ¢ € [0, T], be a measurable LI -valued process. Let us define the norm

o= (2 [ o)
_ (E/Ottr(tb(s)Ql/z)(CD(s)Ql/z)*ds)1/27 re[0,7].

Proposition 2.12 If a process @ is elementary and ||®||r < oo, then the process
® - w(t) is a continuous, square integrable X-valued martingale on [0, T] and

E|®-w(t)|]> = ||®[f, 0<s<T. (2.46)

Proof See Da Prato and Zabczyk [1, Proposition 4.5]. [

Remark 2.3 Note that the stochastic integral is an isometric transformation from
the space of all elementary processes equipped with the norm || - ||7 into the space
M2(X) of X-valued martingales.

The following c-algebra P.. of subsets of [0,0) x Q will play an important role
in what follows. P.. is the o-field generated by sets of the form:

(5, xF, 0<s<t<e, FeJF; and {0} xF, F €.

This c-algebra is called predictable c-algebra and its elements predictable sets. The
restriction of the o-algebra P.. to [0,7] x Q will be denoted by Pr. An arbitrary
measurable mapping from ([0,0) X Q,P..) or ([0,7] x Q,Pr) into (X;B(X)) is
called a predictable process. A predictable process is necessarily an adapted one.

To extend the definition of the stochastic integral to more general processes
it is convenient to regard integrands as predictable processes with values in Lg;
more precisely, measurable mappings from (Q.,P..) (respectively, (Qr,Pr)) into
(L9, B(LY)).

Proposition 2.13 The following statements hold:

(1) If a mapping ® from Q7 into L is L-predictable then ® is also Lg-predictable.
In particular, elementary processes are Lg-predictable.

(i) If @ is a L9-predictable process such that ||®||7 < oo, then there exists a
sequence {®, } of elementary processes such that ||® — ®@,||; — 0 as n — oo,

Proof See Da Prato and Zabczyk [1, Proposition 4.7]. [

We shall now extend the definition of the stochastic integral to all L-predictable
process @ such that ||®||; < e denoted by N2(0,7;L9) which is a Hilbert
space. This space is also denoted by N2 (0, T) for simplicity. By Proposition 2.13,
elementary processes form a dense set in N2(0,7) while by Proposition 2.12
the stochastic integral @ - w is an isometric transformation from this dense set
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into M%(X) Hence the definition of the integral can be extended to the whole
of N&,(O, T). Moreover, (2.45) holds and @ - w is a continuous square integrable
martingale.

As a last step, the definition of the stochastic integral can be extended to Lg-
predictable processes satisfying a weaker condition given by

{/ || (s Hods< } (2.47)

Such processes are called stochastically integrable on [0,7]. They form a linear
space denoted by N,,(0,T;L9), or simply N,,(0,T). This extension can be accom-
plished by the so-called localization procedure. To do so, we need the following
lemma.

A nonnegative random variable 7 defined on (Q, ) is said to be an F,-stopping
time if, for arbitrary t > 0, {0 € Q;7(0) <1} € F;.

Lemma 2.7 Assume that ® € N2(0,7;L9) and 7 is an F;-stopping time such that
P(t <T)=1.Then

/TI[O,T] ()@ (s)dw(s) =D-w(TAt), P-a.s.,te[0,T]. (2.48)
b D,

Proof See Da Prato and Zabczyk [1, Lemma 4.9]. [

Let us assume that the condition (2.47) hold. Define

ot
rn:inf{te [O,T]:/ ||q><s)||§0dszn}
JO 2

with the convention that the infimum of an empty set is 7. Then 7, is a sequence
such that

E / 70,7, ||L0ds<°° (2.49)

Consequently, stochastic integrals I} ;1 (s)®-w(t), ¢ € [0, T] are well defined for all
n=1,2,.... Further, if n < m, then P-a.s.

Lo, 1@ w(t) = (jo,z,) (L0,7,,] @) - w(1))
= (lj0,5,)P) - w(Ta A1), 1€[0,T]. (2.50)

Hence one can assume that (2.49) holds for all @ € Q, n < m. For arbitrary ¢ € [0, T],
define

D w(1) = Ijp 5, @ w(1), 2.51)
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when 7 is an arbitrary natural number such that 7, > r. Moreover, if 7,, > ¢ and
m > n, then

(I[O,T,,,]q)) w(t) = (I[O,rm](b) w(T, > 1)
= I[O,‘En]q)) -W(t).
Therefore the definition (2.51) is consistent. By analogous arguments if {7} * T
is another sequence satisfying (2.49) then the definition (2.51) leads to a stochastic
process identical P -a.s. for all ¢ € [0, T]. Note that for arbitrary n =1,2,..., 0 € Q,
t e [07 T]’
(OR W(Tn AN t) = I[O,T,,]CD . W(‘L’n A l)
=M,(t,N1), t€][0,T], (2.52)
where M, is a square integrable continuous X-valued martingale. This property is
referred to as the local martingale property of the stochastic integral.

Remark 2.4 It follows from the above construction that Lemma 2.7 is valid for all
® € N,,(0,T;L9).
We collect below some important properties for the stochastic integral.

Proposition 2.14 Let E foT [|®(r)] |iodr < eo. Then for some constant ¢ > 0,
2

t 1 T
P[ sup /(I)(r)dw(r) ‘>c] < EH/ O(r)dw(r
0<t<T||/0 0
trQ (°
< =5 [ Elow) R
T 2
[sup /<D Ydw(r ]§4E / D(r)dw(r)
0<t<T 0
T
<40 [ B0 Fydr,
0 2
T 1/2
{sup /CD Ydw(r H < 3EH/ tr®(r) QD" (r)dr
0<t<T 0

Proof See Ichikawa [3]. [

Proposition 2.15 Let fOTE | \d)(r)||1L’0dr < o for some integer p > 2, and let y(r) =
2

Jo @(r)dw(r). Then

p/2

Elly0lP < Bp(‘”— 1)],,/2 [ /O [E(rd(r) 00" (1) 0dr
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1 P p/th/Zfl ! P
< |5p-1| Q) | Bl

Proof See Ichikawa [3]. [

2.5.2 Ito Stochastic Integral with respect to a Cylindrical
Wiener Process

Let us fix Q € L(Y) nonnegative, symmetric but not necessarily of finite trace.
We now define a stochastic integral with respect to a cylindrical Wiener process,
precisely with respect to the standard Y;-valued Q;-Wiener process given by
Proposition 2.8. We consider a process @(r),# € [0, T that is integrable with respect

to this Q-Wiener process if it takes values in Lz(Qi/ 2(Y 1),X), is predictable and if

T
P @(s)||? ds < oo p=1. 2.53
{/0 1PN, 172y, 2% < } (2.53)

We have by Proposition 2.8 that Q'/2(¥;) = J(¥,) and that

(Jug,Jvo) = (02 Tug, 02wy,

0'72(vy)
= <M07V0>0

for all ug, vy € Y. In particular, it follows that Jeg, k € N is an orthonormal basis of
Q'/2(Y}). Hence

® e L) =1,(0"*(Y),X)

— ®oJ e L, (0"?(Y),X)

since
@20 = Y (Der, Pe)
2 keN
= Y (®oJ ! (Jex),@oT ! (Jex))
keN
= [|®oJ 1 .
e o
Now define

/ D)W (s) = / "D(s)os Ndw(s), 1€ [0,7], (2.54)
0 0
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where the class of all integrable processes is given by N,, = {(ID :Qr — L(2)|(I)

predictable and P ( Lo l|@(s)| |i0ds < oo) =1 } as in the case of a standard Q-Wiener
2

process w(t),t € [0,T] in Y.

Remark 2.5

(i) The stochastic integral defined in (2.54) is independent of the choice of
(Y1,<~,'>1) and J.

(ii) If O € L(Y) is nonnegative, symmetric, and with finite trace the standard Q-
Wiener can be considered as a cylindrical Wiener process by setting J =1 :
Yo — Y, where [ is the identity map. In this case the definition (2.54) coincides
with the definition of stochastic integral given in Section 2.5.1.

2.5.3 Stochastic Integral with respect to a Compensated
Poisson Measure

In this subsection, we shall define the stochastic integral with respect to a compen-
sated Poisson measure induced by a Poisson point process.

Let (X,(-,-)x) be a separable Hilbert space and (Z,Z) be a measure space with
a o-finite measure v. Further, let p be a stationary J;-Poisson point process Z with
characteristic measure V.

The Poisson point process p induces a Poisson random measure N on [0,7] X Z
(see Remark 2.2) and by Proposition 2.10, the compensator of N is given by dt @ v.
The measure N := N —dt ® v is called the compensated Poisson measure of N.

Remark 2.6 The integration theory in Knoche [1] is developed with respect to
an F,-Poisson point process of class (QL) (see Definition 2.23). However, by
Proposition 2.10, a stationary process is automatically of class (QL) and therefore,
all results of Knoche [1] apply to this special case. Throughout this book, we always
assume p being a stationary J;-Poisson point process.

Set

[:={BecZ|v(B) <o}
and define the predictable o-field

Pr(Z) :=o(g:[0,T] x Q x Z — R|gisF; ® Z — adapted and left-continuous)
= o({(s,f] x FsxB|0<s<t<T,F,e F,BcZ}
U{{0} x Fo x B|Fy € Fo,B € Z}).
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In the first step, we define the stochastic integral with respect to N for elementary
processes.

Definition 2.30

(i) An X-valued process @(7) : Qx Z — X, t € [0,7] is said to be elementary if
there exists a partition 0 =19 <ty < ... <f =T and for m € {0,...,k— 1}
there exist BY', ..., B} € I pairwise disjoint, such that

k—1 n

o= z Zq)m (st ] XBm

m=0i=
where @ € L*(Q,F,,,P;X), 1 <i<n0<m<k-1.
(i) The linear space of all elementary processes is denoted by £.

For @ € € and ¢ € [0, T], we define the stochastic integral by

Int(® //CI)SZ (ds,dz)

k—1 n
ZZCI) N(tms1 At,B") — N(tw At,B")). (2.55)

m=0i=

Then Int(®) is P-a.s. well defined and Int is linear in @ € &. For ® € &, define

o3 E[ [ |c1><s,z>|§v<dz>ds}

Proposition 2.16 If ® € € then Int(®) € MZ(X), Int(®)(0) = 0 P-a.s. and for all
t€[0,T]

-t n
@)l =£| [ [ Io6.2lFviaa]
In particular, Int : (&, [| - [[7) = (MZ(X),[|-[]2) is an isometry,
T

[1M0t(®) 52 = [ [7-

Proof See Knoche [1, Proposition 2.22]. [

In order to get a norm on & one has to consider the equivalence class of
elementary processes with respect to || - ||7. For simplicity, the space of equivalence
classes is again denoted by &. Since & is dense in the abstract completion E!'I7 of
& with respect to || - || 7, there exists a unique isometric extension of Int to &!l'I7. In
paI’tiHChllar, the isometric formula in Proposition 2.16 does also hold for every process
in €T,
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The completion of & with respect to || - ||7 can be characterized as follows:

Proposition 2.17 Let P7(Z) be the predictable o-field on [0,7] x Q x Z and

N}%,(T,Z;X) = {CI) ([0, T x QX Z — X|®isPr(Z)/B(X)-measurable

anol|-|T=E[/0 gl ||¢(S,Z)||§v(dz>ds]”2< oo}

= L*([0.T] x @ x Z,Pr(Z),dt @ PR V:X).
Then
Elllr =2 (1,2;X).

Proof See Knoche [1, Proposition 2.24].  [J
The following are some important properties of the Poisson integral.

Proposition 2.18 Let @ < NIZV(T,Z;X). Let X be another Hilbert space and L €
L(X,X). Then L(®) € N} (T,Z;X) and for all £ € [0, 7],

(//(p” deZ> //L 0(s,2))N(ds,dz) P-a.s.

Proof See Knoche [1, Proposition 3.7]. [
Proposition 2.19 Let ® € N3 (T,Z;X). Then for all 7 € [0, T,

E[/Ot/z|¢<s,z>|§fv<ds,dz>} =E[/O’/Z||¢<s,z>||§v<dz>ds

Proof See Knoche [1, Proposition 3.1]. [
Let us denote the square bracket of an X-valued process X(r) by [X];.
Proposition 2.20 Let ® e NIZV(T,Z;R). Then, for ¢ > 0,

//q; 5,2)N(ds,dz) € M3(R),

and

ol = [ [ 102N (as. o).

Proof See Peszat and Zabczyk [1, Theorem 8.23]. [
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2.5.4 1Ito’s Formula for the case of a Q-Wiener Process

In the rest of this section we give some basic It6’s formula in various settings. Some
more such formulas are given later on as and when needed.

Theorem 2.15 Let Q € L(Y) be a symmetric nonnegative trace-class operator, and
let {w(z), 7 € [0,T]} be a Y-valued Q-Wiener process on a filtered probability space
(Q,F,{F:}o<i<T,P). Assume that a stochastic process x(¢), ¢ € [0,T], is given by

50 =0+ [ wisids+ [ @(s)in(s)

where xo is an Fp-measurable X-valued random variable, y(s) is an X-valued
predictable process Bochner-integrable process on [0,7], and ® is an Lg—valued
process stochastically integrable on [0, T].

Assume that a function v € C12([0,T] x X, R), i.e.,v: [0, T] x X — R is such that v
is continuous and so also v, and its Fréchet partial derivatives vy, vy, are continuous
and bounded on bounded subsets of [0,7] x X. Then the following It6’s formula
holds:

V(00) = Y0.3(0) + [ {h5.X)), @S)w(s))n
+f l{v,(s,x(s» T (oal5,x(6)), W(s))x
1

+ztr[vxx(x,x(s))(q>(s)Q1/2)(q>(s)Q1/2)*}}ds, (2.56)

P-a.s.forallt € [0,7].
Proof See Da Prato and Zabczyk [1, Theorem 4.17]. [

Let M(Y,X) be the space of stochastic processes @(-,-) : [0,7] x Q — L(Y,X)
which are strongly measurable, i.e., ®(¢,-)y is a measurable stochastic process for

all y € Y. Define also M (Y,X) = {dD eM(Y,X): [T ||®(1)|Pdr < OO,P-a.s.}. Let

x(1), t € [0,T], have a stochastic differential:

x(t) =xo —|—/Ot l//(s)ds—i—/otcb(s)dw(s), (2.57)

where xj is an Fp-measurable X-valued random variable, y(s) is an X-valued and
adapted to F; with [J ||w(r)||dr < o P-a.s. and ® € M;(Y,X). Let Z be a real
separable Hilbert space and let P(-,-) € L(X x X,Z) and ® € L(Y,X). We define
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trP[@; Q] = 2},,'1’)(@61,(1)6,') cZ.
=1

1

We have an It6’s formula in a Hilbert space.
Theorem 2.16 Suppose that v(z,x) : [0,7] x X — Z is continuous with properties:

(i) v(t,x) is differentiable in ¢ and v,(¢,x) is continuous on [0, 7] X X,
(ii) v(z,x) is twice Fréchet differentiable in y and vy (t,x)x] € Z, vy (t,x) (x1,%2) € Z
are continuous on [0,7] x X for all x, x;, x; € X.

If x(z) is given as in (2.57), then z(¢) = v(¢,x(¢)) has the stochastic differential
(1) = {wlr.0) + vs(er(0) w0

+%trvxx(t,x(t)) [®(2); O] }dr
+x(2,x(2))D(2)dw(t). (2.58)

Proof See Ichikawa [3]. [
In applications to stochastic evolution equations, we need the following:

Corollary 2.6 Let A be a closed linear operator with dense domain D(A) in X. Let
v(t,x) satisfy the hypothesis of Theorem 2.16 except (i) which is replaced by

(a) v(t,x) is differentiable in ¢ for each x € D(A) and v(z,x) is continuous on [0, T] x
D(A), where D(A) is equipped with the graph norm of A, i.e., ||| |%)(A> = ||x||>+
[JAx][>.

Let x() be as given in (2.57) with xg € D(A), J; ||[Ay(?)||dt < e P-a.s. and A® €

M;(Y,X). Then the conclusion of Theorem 2.16 holds.

2.5.5 1Ito’s Formula for the case of a Cylindrical Wiener
Process

Let M»(Y,X) denote the class of Ly(Y,X)-valued stochastic processes adapted to
the filtration {JF;},<7, measurable as mappings from ([0,7] x Q,B([0,T]) ® Fr) to
(La(Y,X),B(L2(Y,X))) and

T
Pl 1001 e <] =1.
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Theorem 2.17 Let {w(#),0 <t < T} be a Y-valued cylindrical Wiener process on
a filtered probability space (Q,F,{F;}o<;<T,P). Assume that a stochastic process
{x(r),0 <t < T} is given by

x(t) =xo —l—/ot lp(s)ds—i—'/ot(b(s)dw(s),

where x( is an Fp-measurable X-valued random variable, y(s) is an X-valued JF;-
measurable P-a.s. Bochner-integrable process on [0, 7],

t
[ 1w)lnds <o, Pas.

and ® € M,(Y,X). Assume that a function v : [0,7] x X — R is such that v is
continuous and its Fréchet partial derivatives vy, vy, vy, are continuous and bounded
on bounded subsets of [0,7] x X. Then the following Itd’s formula holds:

v(t,x(1)) = v(0,x(0)) —I—/Ol<vx(s,x(s)),@(s)dw(s))x
+f ’{v,<s,x<s>> T (ra(.x(5)), W)
1

—l—itr [vxx(s,x(s))(D(s)((I)(s))*]}ds, (2.59)

P-a.s. forallt € [0, 7).
Proof See Gawarecki and Mandrekar [1, Theorem 2.10]. [

2.5.6 1Ito’s Formula for the case of a Compensated Poisson
process

We give an the Itd’s formula based on Mao and Yuan [1, Theorem 1.45, p. 48] and
Peszat and Zabczyk [1, Theorem D.2, p. 392].

Let Z be a vector space with a norm || -||. Let B(Z) be a Borel o-algebra on
Z and v(dz), a o-finite measure defined on B(Z). Let m be a positive integer. Let
{r(t),t € R} be a right-continuous irreducible Markov chain on the probability
space (Q,J, P) taking values in a finite state space S = {1,2,...,m} with generator
I = (%) ,nm given by

Yih+o(h), if i#j,

P{r(tJrh):jlr(t):i}:{1+y~h+o(h) o
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for any ¢ > 0 and small & > 0. Here ¥; > 0 is the rate of transition from i to j, if i # j,
while ¥ = — ;7.
Theorem 2.18 Let {w(#),0 <7< T} be a Y-valued cylindrical Wiener process on

a filtered probability space (Q,F,{F; }o<;<7,P). Assume that a stochastic process
{x(#),0 <t < T} is given by

t t
0)+ [ Flsx(s),r(9)ds + | Gls.x(s).r(s))dw(s)
0 0
t
[ [ @sxs=)r(). 00N s, ),
0.Jz

where f: [0,T] x X xS = X, g: [0,T] x X xS — Lp(X,X), and ®: [0,7] x X X § x
Z —X;x(0) =xo € X and r(0) = ro € S and x(t—) = limy, x(s) and the integrals are

all well defined. We assume further that the Wiener process w(z), the compensated
Poisson process N (ds,du) and the Markov chain r(¢) are all independent.

Let U: Rt x X x S — R™ be continuous and its Fréchet partial derivatives U;,
Uy, U,, are continuous and bounded on bounded subsets of [0,7] x X. For 7 > 0,
x € D(A) and i € S, define an operator

LU(t,x,i) := Uy(t,x,i) + (Ax+ F(t,x,i), U(t,x,1) ) x

1
+27J (t,5.) + S (U (1,2, 1)G (8,5, 1) G (1,,1)

+ / Ut 5+ ®(t,x,, 1), 1) — Ut,3,)
z

—(Uy(t,x,0),®(t,x,i,u)) x| v(du).

Then the following 1t6’s formula holds:.
U(t,x(t),r(t)) = U(0,x0,r0) —i—/OtZU(s,x(s),r(s))ds
+ [ U569, 60),Gl.506). ) b5
[ [ 10Gss-) + @(sx(s-).r(s) ). r(s)
—U(s,x(s—),7(s))]N(ds,du)

—i—// (8,x(s=),ro +h(r(s),0))
—U(s,x(s—),r(s))|N(ds,dt), (2.60)
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where N(ds,dl) is a Poisson random measure with intensity ds x ¥(d¢) and ¥ is a
Lebesgue measure on R.

For more details on the function / and the martingale measure N(ds,d{), we refer
to Mao and Yuan [1].

2.6 The Stochastic Fubini Theorem

Let us begin with a basic stochastic Fubini theorem from Ichikawa [3].

Proposition 2.21 Let 7 = [0,7] and let G : I x I x Q — L(Y,X) be strongly
measurable such that G(s, ) is F;-measurable for each s and

T pT
/ / 1G(1,5)|Pdsd < P-a.s.
0 Jo

Then
T (T T T
/O/OG(t,s)dw(s)dt:/O ./0 G(t,s)dtdw(s) P-a.s., (2.61)

where we interpret the right-hand side as 7, fo fo G(t,s)e;drdpBi(s).

The following version is more general.

Let (X,X) be a measurable space and let ® : (f,0,x) — ®(¢,0,x) be a
measurable mapping from

(Qr xX,Prx B(X)) into (LY, B(LY)). (2.62)

Thus, in particular, for arbitrary x € X, ®@(-,-,x) is a predictable Lg-valued process.
Let in addition u be a finite positive measure on (X, X).

Proposition 2.22 Assume (2.62) and that:

J 0G0l () < .69

then P-a.s.

/X{/O.T(D(t,x)dw(t)}#(dx)=/};[/0T(I>(t,x)u(dx)}dw([). (2.64)

Proof See Da Prato and Zabczyk [1, Theorem 4.18]. O

The following stochastic Fubini theorem involving Poisson integral will also be
needed in the sequel.
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Let P = P([0,7] x Q) denote the predictable o-algebra and (Z,Z, 1) be a finite
measure space. Let O € B(Y — {0}) and H, (T, 0, Z) be the real Hilbert space of all
P x B(O) x Z-measurable functions G from [0,7] x Q x O x Z — X for which

T
L[ [ G5 91R vids) dsn(as) <=

The space S(T,0,Z) is dense in H,(T,0,Z), where G € S(T,0,Z) if

Ni Ny N3

G= z Z 2 Gijk%Ai%(ij,tj+1]lBk7
i=0j=0k=0

where Ni, N», N3 € N, Aq...., Ay, are disjoint sets in B(0), 0 =1y <t; <--- <
tny+1 =T, By,..., By, is a partition of Z, wherein each By € Z and each Gy is a
bounded ?,-].-measurable random variable with values in X.

Proposition 2.23 If G € H,(T,0,Z), then for each 0 <7 < T,

/Z(/o[/o G(s,y,z)N(ds,dy))u(dZ)

= /Ot/ot(/ZG(s,y,z)u(dz))ﬁ(ds,dy), P-a.s. (2.65)

Proof See Luo and Liu [1]. O

2.7 Stochastic Convolution Integrals

In this section, we collect some properties of stochastic convolution integrals. In
Section 2.7.1, we present another use of Yosida approximation to estimate such
integrals.

The following lemma is from Da Prato and Zabczyk [2].
Lemma 2.8 Let WY (¢) = [5S(t— s)®(s)dw(s), t € [0,T]. For any arbitrary p > 2,
there exists a constant ¢(p,T) > 0 such that for any 7 > 0 and a proper modification
of the stochastic convolution Wg’, one has

ot
Esup||[WZ (1)[]P SC(p,T)SupHS(t)H”E/ ()| ds.
t<T <T 0 2

Moreover, if E fOTHCI)(s)H’ZOds < oo, then there exists a continuous version of the
2
process {WP, 1> 0}.
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Lemma 2.9 Suppose A generates a contraction semigroup. Then the process Wff(-)
has a continuous modification and there exists a constant k > 0 such that

t
E sup ||W§>(s)||2ng/ [0(s)|Bods, 1€ [0,7].
s€[0,T] 0 2

Proof See Da Prato and Zabczyk [1, Theorem 6.10]. O

2.7.1 A Property using Yosida Approximations

Lemma 2.10 Letr > 1,7 > 0 and let ® be a Lg—valued predictable process such
that E [ ||®(s)| \igds < oo, There exists a constant Cr > 0 such that
2

2r

T
E sup /s (1 — ) (s)dw(s) <CTE</ ||c1>(s)|§5ds>. (2.66)
1€[0,7] 0 2
Moreover
lim E sup [|Wg(t) — Wg,(1)|[* =0, (2.67)
n=ee relo,7)

where Wi and Wi, are defined as

- /0 ' S(t — 5)(s)dw(s)

W, (1) = /0 te<f*3>*‘nc1>(s)dw(s)7 10,7, (2.68)

and A,, are the Yosida approximations of A. Finally, Wff has a continuous modifica-
tion.

Proof We will use the factorization method, see the proof of Theorem 5.14 (see
Da Prato and Zabczyk [1]). Let o € (1/2r,1/2), the stochastic Fubini theorem (see
Proposition 2.22) implies that

sin o
T

Wo(1) = /0 (=) 1S(t—$)Y(s)ds, 1€ [0.T],

where

Ye) = /0 “(5= 6)“S(s— 0)B(0)dw(o), s€[0,T],
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Since o > 1/2r, applying Holder’s inequality one obtains that there exists a constant
C1,7 > 0 such that

T
sup [[WP(n)[[*" < Cur / 1Y (5)1["ds. (2.69)
t€[0,T] 0

Moreover, by Lemma 7.2 (see Da Prato and Zabczyk [1]), there exists a constant
Ca.7 > 0 such that

BV < Cors( [ 6-0) “@@)ydo) . @)

from which using the Young’s inequality,
"B () ds < CorE( [ (s—0)do ) [ |o(o)|%d
A < CrE| | (s—o o) | o)ll;pdo

T
< curt( [ I0(o)lao ).

This finishes the proof of (2.66) with C7 = TC; 7C3 7.
We now prove (2.67) we have:

sinwo

t
W) = S [y (s)ds,

where

Thus, we can write

1 t
W) W) = % [1s(0—5) =1 5)% ¥ (5)ds
’ 0
1 !
sinwo / o(1=9)An (t— S)ocfl [Y(s) = Yu(s)]ds,
T 0
= 1,(t) +Ju(1).
We proceed now in two steps.
Step1 We show that
lim E sup ||,(¢)|[*" = 0. (2.71)

0 40,7
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Since ¥,,(f) = S(f) — e, then, by the Holder’s inequality, there exists Cs7>0
such that

T 2r
sup [[1,(0)|*" < Car | ds.
1€[0,T] 0

(r=9)Y(s)

n

So (2.71) follows from the dominated convergence theorem.
Step2 We have

lim E sup ||[J,(1)|[* =0. (2.72)

nee iefo,T)

The following estimate is proved as (2.69):

T
sup |[7,(0)||* < Car / 1Y (s) — Yu(s)||*ds. (2.73)
1€[0,T] 0

Now, by the Young’s inequality

/EIIY )Ilzrds<C3rE</ IIZ dG) (2.74)

and (2.72) follows letting n tend to infinity.

Finally, the existence of the continuous modification of Wg’ follows easily
from (2.67). O

For more applications, we refer to Da Prato and Zabczyk [1, Chapter 6].

2.8 Burkholder Type Inequalities

The following lemma could be regarded as the stochastic convolution inequality of
Burkholder type in infinite dimensions. Consider the process:

W (1) = /0 St — s)F (s)dw(s) 2.75)

defined for any fixed ¢ € [0,T], where {S(z) : r > 0} is a strongly continuous
semigroup of bounded linear operators with infinitesimal generator A on X and F(r)
is some appropriate stochastic process. It is well known that for such an operator A,
there exists a nonnegative number o > 0 such that

(Ax,x) < af|x|[>, Vx € D(A). (2.76)



2.8 Burkholder Type Inequalities 63

Lemma 2.11 Assume T > 0, F(r) : Q x RT — L(Y,X), is a progressively measur-
able process, and for some p > 2,

E( /0 Ttr[F(s)QF(s)*]ds>p/2< oo, 2.77)

then there exists a positive constant C, > 0, depending on p and ¢, such that

) T p/2
E sup ||[WE(1)|]P < Cpe? O‘TE< /0 tr[F(s)QF(s)*]ds) : (2.78)

0<s<T
Proof See Tubaro [1]. [

We next consider a Burkholder type inequality for the Poisson integral.

Lemma 2.12 Assume that ®: Q x R x Z — X is a progressively measurable
process, and for p > 2,

T
E/O /Z\|<I>(s,u)\|’;(v(du)ds<oo.

If {S(¢) : t > 0} is a pseudo-contraction Cy-semigroup satisfying [|S(z)|| < e*, for
some ¢ > 0 then

/OI/ZS(I—S)(I)(s,u)N(ds,du)

E sup
0<t<T

P T
<CE / / (s, )| [5v (du)ds,
X 0 Z

where C, > 0 is a constant dependent on p, o, T
Proof See Marinelli, Prévot, and Rockner [1, Proposition 3.3]. [

Let O, = {y e Y—{0}:|ly|ly < c}and M} ([0,T] x Oc;X), p > 2 denote the space
of X-valued mappings J(t,y), progressively measurable with respect to F; such that

T
E / / 172, 3) 5 v (dy)dr < ee. (2.79)
0 J{lIylly<c}
We are interested in the stochastic convolution
t
Z(1) = / / S(t — $)J (s,y)N(ds, dy),
0 J{|ylly<c}

defined for any fixed ¢ € [0,7]. In particular, we establish below a special case of
Burkholder type of inequality for stochastic convolutions driven by the compensator
N(-,-) of the Poisson random measure N(-, ).
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Lemma 2.13 Suppose J € M2([0,T] x O;X) NM([0,T] x O.; X); then for any ¢ €
[0, ]

t
Esw |zl <c{e([ [ wemliviars)
0<s<t 0 Hlylly<e}

! . 1/2}
! E</0 /{Hyum} MG,y ”XV(dy)dS) (2.80)

for some number C = C(T) > 0. In particular, if o = 0 then C(T') can be chosen
independent of 7.

Proof See Luo and Liu [1]. O

Lemma 2.14 Letp > 1 and {M(¢),t > 0} be a real-valued square integrable cadlag
martingale with M(0) = 0. Then, for any 7 > 0, there exists a positive constant C,
such that

¢, EM M < E[ s (M) } < C,EM ML,
trel|0,

where [M, M), is the quadratic variation process of {M(t),t > 0}.
Proof See Kallenberg [1, Theorem 26.12]. [

2.9 Bounded Stochastic Integral Contractors

The purpose of this section is to introduce the concept of a random (stochastic)
contractor and motivate its applicability to Itd stochastic integral equations. The
existence, uniqueness, measurability, stochastic stability, and approximation of
random solutions of such equations may be established by using the notion of
random contractors.

Let X and Y be separable Banach spaces, and let U(®w) : Q x D(U) — Y be a
nonlinear random operator, where D(U) denotes the domain of U(®). Let T'(x,-) :
Q x Y — X be a bounded linear random contractor associated with x € X. First, the
definition of a random contractor of a nonlinear random operator is given.

The random operator U(®) has a random contractor I'(x,-) at x € D(U) C X if
there exists a positive random variable ¢(®), 0 < g(®) < 1, P-a.s., and a constant
1n > 0 such that

U (@) [x+T'(x, 0)y] = U(o)x —y[| < g(@)[lyll, P-as.,

where y € Y and ||y|| < 7.
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The random contractor is said to have a bounded random contractor I'(x,-) if
there exists a positive random variable B(®) such that ||T'(x,-)|| < B(®), P-a.s. for
allx € D(U).

Example 2.2 The inverse of the Fréchet derivative of the random operator, that is,
[U'(®)(x)]~! is a random contractor. More generally, an inverse derivative of U(®)
is a random contractor.

Example 2.3 Let P(w) : Q X X — Y be a contraction mapping, that is, there exists
a positive random variable g(®), 0 < g(®) < 1, P-a.s. such that

[|lU(w)x) — U(w)xz]| < g(o)||x1 —x2||, P-a.s VYxj,x €X.

Then the random operator U(w) of the term U(w)x = x — P(®)x, x € X has
I'(x,w) =1 (identity operator) as a contractor. In fact, we have

1U(@)[x+T'(x, )y] = U(w)x —y|| = |lx+(x,0)y— P(0)[x+I'(x, 0)y]
—x+P(w)x—y||
= |[P(@)x — P(@)[x+)]]]
<q(o)lbll VyeY.

The concept of random contractor introduced above is useful in studying the
existence of a solution of random operator equations of the first kind

Ulw)x=E(w) (2.81)

where U(®) : QxX — Y, xeXandE €Y.
Consider now the random operator equations of the second kind

x—U(w)x=¢(0). (2.82)

Or, more specifically, consider the following It stochastic integral equation
ﬂmm+A¥w¢@w»m+AQwJ@w»wwmnzgmwx (2.83)
where F: [0,T] x X — X, G:[0,T] x X — L(Y,X) and £(¢, ) is a given stochastic

process. For convenience (as in the literature), we suppress the random parameter @
henceforth. Define the random integral operators

mmozé%@mmm
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and

6ol = [ s(rx(0)aw(n.

With these definitions, the equation (2.83) can be written in the form of (2.81) with
U =1+ F + G. Consider

UG+ T(x)y) = Ux =y = [lx + T(x)y — F(x+T(x)y) + Glx+T(x)y)

But

—|—/ Iy (s,x(s ds—&-/otl"z(s x(8))y(s)dw(s).

Defining the integral operators

= [TiGsxto)a

sz /Fzsx

and

we have

1U(x+T(x)y) — Ux— |
< |IF(x+T(x)y) = F(x) =T (x)y]]
+ GG+ T(x)y) = G(x) = Ta (x|

:mpuéwamw+ww+43unmw»wwr

+ [ Ta(rx(m)y(nin(o)
~F(5,x(s)) — Tt (s.x(s))y(s)Jds]|
+supl| [ 16(5.1(6) +36)+ [ (@@

+/OSF2(T,x(T))y(T)dW(T))
~G(s.x(s)) ~ Ta(s,x(s))y(5))dw(s)| (&54)

We now impose the following conditions on F and G:
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There exist positive constants K| and K> such that the following inequalities hold
P-a.s.:

IF(0) 430+ [ Ti(Ea(e)y(e)de

L /0 " (2, x(0) )y (2) (7))

—F(t,x()) = T1 (6, x(0) )y (1) || < K[ [y (D), (2.85)

1
1640 +3(0)+ [ Ti(z.()y(0)dn
!

+ [ Talea(@)y(@dn(e))

—G(1,x(1)) ~ Tat,x(0))y(0)]| < Kol [y(0)]] (2.86)
for all x,y € C (space of continuous functions). The vector (K;,K>) is called the
vector of contractor constants.

Under the conditions (2.85) and (2.86), (2.84) gives
UG +T(x)y) = Ux—y|| <K'[lyl], K >0.
Therefore f‘(x) is a contractor for U. Moreover, if there exists I'; and I'; that satisfy

the conditions (2.85) and (2.86), then F and G are said to have bounded stochastic
integral contractor.

Remark 2.7 Conditions (2.85) and (2.86) are weaker than the usual Lipschitz
condition. However, if I'y = I', = 0, then these conditions reduce to the Lipschitz
condition.

2.9.1 Volterra Series

Consider the special case of G = 0. Then the bounded integral contractor is given by

m@M@:ﬂOf[H@AMWWK (2.87)

On the other hand, we have

U'(x)2(t) = (I + FY (¥)2(6) = 2(6) + /0 Fus,x(s))2(s)ds,
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if F, exists, and
VW0 = W0 =0+ [ IZF)':(s,x(s»y(s)ds. (2.88)
In view of Example 2.2, we obtain from (2.87) and (2.88) that
I (2,x(2)) = ilF;'(t,x(t)). (2.89)

It is interesting to observe that I'}, in fact, exists and is precisely the Volterra series
given in (2.89).
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