
A Simple Linearisation
of the Self-shrinking Generator

Sara D. Cardell1(B) and Amparo Fúster-Sabater2
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Abstract. Nowadays stream ciphers are the fastest among the encryp-
tion procedures, thus they are performed in many practical applications.
Irregularly decimated generators are very simple sequence generators
to be used as keystream generators in stream ciphers. In this paper, a
linearisation method for the self-shrinking generator has been developed.
The proposal defines linear structures based on cellular automata (rules
102 or 60) able to generate the self-shrunken sequence. The obtained cel-
lular automata are simple, easy to be implemented and can be extended
to other sequence generators in a range of cryptographic interest.
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1 Introduction

Symmetric key ciphers are usually split into two large classes: stream and block
ciphers depending on whether the encryption function is applied either to each
individual bit or to a block of bits, respectively.

At the present moment, stream ciphers are the fastest among the encryption
procedures so they are implemented in many technological applications e.g. the
encryption algorithm RC4 [1] used in Wired Equivalent Privacy (WEP) as a
part of the IEEE 802.11 standards, the encryption function E0 in Bluetooth
specifications [2] or the recent proposals HC-128 or Rabbit from the eSTREAM
Project [3] that are included in the latest release versions of CyaSSL [4] (open
source implementation of the SSL/TLS protocol). In fact, from a short secret key
(known only by the two interested parties) and a public algorithm (the sequence
generator), stream cipher procedures consist in generating a long sequence, the
so-called keystream sequence, of seemingly random bits. For encryption, the
sender performs the bit-wise XOR operation among the bits of the plaintext and
the keystream sequence. The result is the ciphertext to be sent to the receiver. For
decryption, the receiver generates the same keystream, performs the same bit-
wise XOR operation between the received ciphertext and the keystream sequence
and recovers the original plaintext.
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Most keystream generators are based on maximal-length Linear Feedback
Shift Registers (LFSRs) [5], that is linear structures characterized by their length
(the number of memory cells), their characteristic polynomial (the feedback func-
tion) and their initial state (the seed or key of the cryptosystem). Their out-
put sequences, the so-called PN-sequences, are combined in a nonlinear way to
break their inherent linearity as well as to produce new pseudorandom sequences
of cryptographic application. Combinational generators, nonlinear filters, clock-
controlled generators, LFSRs with dynamic feedback or irregularly decimated
generators are just some of the most popular keystream sequence generators
found in the literature [6,7].

Irregularly decimated generators produce good cryptographic sequences [8]
characterized by long periods, good self-correlation, excellent run distribution,
balancedness, simplicity of implementation, etc. The underlying idea of this kind
of generators is the irregular decimation of a PN-sequence according to the bits of
another one. The result of this decimation is a binary sequence that will be used
as keystream sequence in the cryptographic procedure. A well known design
in the class of irregularly decimated generators is the self-shrinking generator
proposed by Meier and Staffelbach [9] that includes only one LFSR. A natural
extension of this sequence generator is the generalized self-shrinking generator
[10] that generates a whole family of cryptographic sequences.

It is a well known fact that some one-dimensional linear cellular automata [11]
generate exactly the same PN-sequences as those generated by LFSRs. There-
fore, a cellular automata can be considered as an alternative generator to the
maximum length LFSRs [12]. Moreover, some keystream generators can be mod-
eled in terms of linear cellular automata. In [13], the authors modeled the self-
shrinking generator by using rules 150 and 90. In this work, we model the same
generator by using rules 102 and 60. A comparison between both modelings is
also provided.

The main contribution of this work is to define one-dimensional linear CA
able to generate the self-shrunken sequence. The generation of such a sequence
from a linear model simplifies the cryptanalysis of the self-shrinking generator.

2 Fundamentals and Basic Notation

First of all, different features and properties of the two basic structures (self-
shrinking generator and linear binary CA) considered in this paper are intro-
duced.

2.1 The Self-shrinking Generator

The self-shrinking generator was designed by Meier and Staffelbach [9] for
potential use in stream cipher applications. This generator consists of a maximal-
length Linear Feedback Shift Register (LFSR) [5] of L stages whose output
sequence the PN-sequence {ai} is self-decimated giving rise to the self-shrunken
sequence {sj} or output sequence of the self-shrinking generator. This sequence



12 S.D. Cardell and A. Fúster-Sabater

generator is attractive by its simplicity and easy implementation as it involves
a unique LFSR. The decimation rule is very simple; let (a2i, a2i+1), with i =
0, 1, 2, . . ., be pairs of consecutive bits of the PN-sequence, then the self-shrunken
sequence {sj} is given by:{

if a2i = 1 then sj = a2i+1

if a2i = 0 then a2i+1 is discarded

The key of this generator is the initial state of the LFSR. Period, linear
complexity and statistical properties of the self-shrunken sequence [9] are very
adequate for their application in stream cipher. In brief, the self-shrinking gener-
ator is a simplified version of the shrinking generator, suggested by Coppersmith
et al. [14], which satisfies the same decimation rule but includes two maximal-
length LFSRs.

2.2 Cellular Automata

A one-dimensional Cellular Automata (CA) is a device composed by memory
cells whose content (binary in this work) is updated according to a state transi-
tion rule that determines the new state of each cell in terms of the current state
of the cell and the states of the cells in its neighbourhood [11]. In fact, the value
of the cell in position i at time τ + 1, notated xτ+1

i , depends on the value of the
k neighbour cells at time τ .

The cellular automata considered in this work are linear (only XOR opera-
tions are used), regular (every cell follows the same rule) and null (cells with
null content are adjacent to extreme cells). In this work, our attention is focused
on one-dimensional linear CA with binary contents whose time evolution is deter-
mined by two simple linear transition rules: rule 102 and rule 60.

Rule 102: xτ+1
i = xτ

i + xτ
i+1

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0

Rule 60: xτ+1
i = xτ

i−1 + xτ
i

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0

Recall that both rules are linear and that just involve the addition of two bits.
The numbers 01100110 and 00111100 are the binary representations of 102 and
60, respectively. That is the reason why they are called rule 102 and rule 60.

In Fig. 1, we can see these rules using the notation introduced by S. Wolfram
[15], where 1 is represented by a black square and 0 is represented by a white
square.
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Rule 102

0 1 1 0 0 1 1 0

Rule 60

0 0 1 1 1 1 0 0

Fig. 1. Rules 102 and 60 depicted in Wolfram’s notation

3 The Self-shrinking Generator in Terms of Linear CA

In this section, we propose a family of uniform, null, linear CA that generate
the self-shrunken sequence. The following facts characterize the linearisation of
the shrunken sequence in terms of CA with rules 102 or 60.

Fact 1. Given a positive integer t, the polynomial pt(x) is defined pt(x) = (1+x)t

where pt(x) = (1 + x) pt−1(x).
Fact 2. The characteristic polynomial of the shrunken sequence generated by a

maximal-length LFSR of length L is [16]:

pn(x) = (1 + x)n, 2L−2 < n ≤ 2L−1 − (L − 2).

Fact 3. If the characteristic polynomial of a binary sequence {si} is pn(x), then
the characteristic polynomial of the sequence {ui} = {si + si+1} is pn−1(x).

Fact 4. According to the previous fact, if the first column of a linear CA with
rule 102 and length n is the shrunken sequence, then the successive columns
of CA will be sequences with characteristic polynomials pn−1(x), pn−2(x),
. . . , p2(x), p1(x), respectively, where p1(x) corresponds to the identically 1
sequence.

Fact 5. A uniform, null, linear CA of length n whose first column is the shrunken
sequence defined in fact 2 will generate:

• n − 2L−2 sequences of period 2L−1,
• 2i−1 sequences of period 2i, for 1 ≤ i ≤ L − 2,
• one sequence of period 1 (the identically 1 sequence).

It is worth noticing that the previous facts also hold for uniform, null, linear
CA with rule 60. In this case, the CA provides the same sequences but they are
obtained in reverse order. The previous results are illustrated in the following
example.

Example 1. Given an LFSR with characteristic polynomial p(x) = 1+x3+x4 and
initial state 1001, the self-shrunken sequence obtained is 01001011, with period
23. The characteristic polynomial of this sequence is p5(x) = (1+x)5. In Table 1,
a one-dimensional, uniform, null, linear CA with rule 102 and length 5 is given.
Starting at initial state 01011, this CA generates the self-shrunken sequence, in
bold, at the first column. It is easy to check that the characteristic polynomials
of the remaining sequences are p4(x), p3(x), p2(x) and p1(x), respectively.

If we consider the same CA of length 5 with rule 60 starting at the symmetric
initial state 11010, then the output sequences are the same but they appear in
reverse order. See Table 2.
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Table 1. 102 CA generating the self-shrunken in Example 1

102 102 102 102 102

0 1 0 1 1

1 1 1 0 1

0 0 1 1 1

0 1 0 0 1

1 1 0 1 1

0 1 1 0 1

1 0 1 1 1

1 1 0 0 1

Table 2. 60 CA generating the self-shrunken in Example 1

60 60 60 60 60

1 1 0 1 0

1 0 1 1 1

1 1 1 0 0

1 0 0 1 0

1 1 0 1 1

1 0 1 1 0

1 1 1 0 1

1 0 0 1 1

4 90/150 CA Versus 102/60 CA

Now, we compare the linearisation of the self-shrunken sequence in terms of
102/60 CA with that of [13] carried out in terms of 90/150 CA. In [13], the
authors proposed CA based on rules 90/150 that generate the self-shrunken
sequence. In fact, the rules 90 and 150 can be defined as follows:

Rule 90: xτ+1
i = xτ

i−1 + xτ
i+1

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0

Rule 150: xτ+1
i = xτ

i−1 + xτ
i + xτ

i+1

111 110 101 100 011 010 001 000
1 0 0 1 0 1 1 0

As before, the numbers 01011010 and 10010110 are the binary representations
of 90 and 150, respectively.
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90/150 CA generating the self-shrunken sequence had a defined structure:
rule 90 in extreme cells and rule 150 in the intermediate cells. The length of
this CA equals the period of the self-shrunken sequence, 2L−1. In Table 3, the
same self-shrunken sequence as that of Example 1, in bold at the first column,
is generated by means of these rules. See references [17,18] for a more detailed
description.

Table 3. 90/150 CA generating the self-shrunken in Example 1

90 150 150 150 150 150 150 90

0 1 1 1 0 0 0 1

1 0 1 0 1 0 1 0

0 0 1 0 1 0 1 1

0 1 1 0 1 0 0 1

1 0 0 0 1 1 1 0

0 1 0 1 0 1 0 1

1 1 0 1 0 1 0 0

1 0 0 1 0 1 1 0

In this work, 102/60 CA generating the self-shrunken sequence have a well
defined structure too. At the last column the sequence of 1s appears. Besides,
there is always a sequence of period 2 (0101 . . . or 1010 . . .). Next, there are 2
sequences of period 4, 4 sequences of period 8 and so on, until we find 2L−3

sequences with period 2L−2. The remaining sequences (the length of the CA
minus 2L−2) have period 2L−1, including the self-shrunken sequence.

On the other hand, we know that the linear complexity n of the self-shrunken
sequence satisfies 2L−2 < n ≤ 2L−1 − (L − 2). Hence the length of these CA, n,
is less than 2L−1, the length of the CA proposed in [13]. For example, in order
to model the self-shrunken sequence in Example 1, we need CA of length 5 (see
Tables 1 and 2). If we use the CA proposed in [13], then we need CA of length 8.
This difference is more remarkable as far as the length L of the maximal-length
LFSR increases.

5 Application of the CA to the Self-shrinking Generators
Cryptanalysis

Assume that n is the linear complexity of the self-shrunken sequence. Given 2n
intercepted bits, it is possible to recover the characteristic polynomial of the
maximal-length LFSR that generates the sequence by means of the Berlekamp-
Massey algorithm [19].



16 S.D. Cardell and A. Fúster-Sabater

In our case, we know that there exist CA that generate the self-shunken
sequence as well as that the last sequence for rule 102 is the identically 1 sequence
(the first sequence for rule 60 is the identically 1 sequence). Therefore, it is
enough to know n − 1 bits of the self-shrunken sequence to recover the initial
state of the CA and thus, to recover the whole sequence. Notice that this amount
is half the needed bits to apply the Berlekamp-Massey algorithm so that the
required amount of intercepted bits is reduced by a factor 2.

In Example 1, the self-shrunken sequence had period 8 and linear complexity
5. In Table 4, we can see that intercepting 4 bits of the self-shrunken sequence,
we can determine the initial state of the CA and, consequently, the whole self-
shrunken sequence.

Table 4. Necessary bits to recover the initial state

102 102 102 102 102

0 1 0 1 1

1 1 1 1

0 0 1

0 1

1

1

1

1

6 Conclusions

In this work, it is shown that the sequences generated by self-shrinking gener-
ators are output sequences of one-dimensional, linear, regular and null cellular
automata based on rules 102 and 60. In fact, the linearisation procedure to con-
vert a given self-shrinking generator into the linear cellular model here proposed
is quite immediate. It must be noticed that, although the self-shrunken sequences
come from PN-sequences irregularly decimated, in practice they can be modeled
by means of linear structures. This fact establishes a subtle link between irreg-
ular decimation and linearity that as it is shown can be conveniently exploited
in cryptanalysis.

A natural extension of this work is the generalization of this procedure to
many other cryptographic sequences: (a) The sequences generated by the shrink-
ing generator and the generalized self-shrinking generator as more simple exam-
ples of decimation-based keystream generators. (b) The so-called interleaved
sequences, as they present very similar structural properties to those of the
sequences obtained from irregular decimation generators.
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