On Dual Programs in Co-Logic Programming

Hirohisa Seki®

Department of Computer Science, Nagoya Institute of Technology,
Showa-ku, Nagoya 466-8555, Japan
seki@nitech.ac. jp

Abstract. Co-logic programming is an extension of the conventional
logic programming language, by allowing each predicate to be annotated
as either inductive or coinductive. To define its procedural semantics as
well as an alternating fixpoint semantics, the stratification restriction, a
condition on predicate dependency in programs, has been imposed on co-
logic programs (co-LPs). In this paper, we first consider dual programs
in co-logic programming: Given a program P, its dual program P* is a
program such that it defines the “complement” of P, i.e., for any ground
atom p(t), it computes its negation —p(f). When we consider co-LPs
with negation, we show that the stratification restriction becomes too
restrictive in general, and that the Horn p-calculus by Charatonik et al.
can be used as an extension of co-logic programming for handling “non-
stratified” co-LPs. We then consider some applications of non-stratified
co-LPs to Answer Set Programming (ASP) and the well-founded seman-
tics (WFS). In particular, we give new iterated fixpoint characterizations
of answer sets as well as the WFS via dual programs. We also discuss
some applications of non-stratified co-LPs to program transformation
such as partial deduction, and a proof procedure for the WFS.

1 Introduction

Co-logic programming, proposed by Gupta et al. [11] and Simon et al. [26,27], is
an extension of logic programming, where each predicate in definite programs is
annotated as either inductive or coinductive. To define its semantics, the strat-
ification restriction, a condition on predicate dependency in co-logic programs
(co-LPs), is assumed, and the declarative semantics by an alternating fixpoint
semantics has been given: the least fixpoints for inductive predicates and the
greatest fixpoints for coinductive predicates. A top-down procedural semantics,
co-SLD resolution, has also been proposed, and recent SWI Prolog [28] has added
support for coinduction.

As a result, co-logic programming provides a powerful computational frame-
work, where many interesting applications such as modelling w-automata [8],
model checking [6], non-monotonic reasoning and SAT solvers can be easily

H. Seki — This work was partially supported by JSPS Grant-in-Aid for Scientific
Research (C) 15K00305.
© Springer International Publishing Switzerland 2015

M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 21-35, 2015.
DOT: 10.1007/978-3-319-27436-2_2

22 H. Seki

expressed and computed (see, e.g., [12]). Recently, there has been reported some
work [16,17] on applying co-LP techniques to Answer Set Programming using
dual programs.

In this paper, we first consider dual programs in co-logic programming: Given
a program P, its dual program P* defines the “complement” of P, i.e., for any
ground atom p(t), SEM (P) | —p(t) if SEM(P*) | not_p(t), where not_p is
a new predicate symbol and SEM (P) is a semantics of P. The notion of dual
programs has been studied in the literature; among others, Sato and Tamaki
[22] has introduced a technique for program transformation called the negation
technique. It has also been utilized in partial evaluation (or partial deduction),
program transformation, implementation of proof procedures (see, e.g., [1,4,20,
21,24]).

Considering dual programs of co-LPs with negation requires us to handle
“non-stratified” co-LPs, and we show that the Horn p-calculus by Charatonik
et al. [5] can be used as an extension of co-logic programming. We then consider
some applications of non-stratified co-LPs to Answer Set Programming (ASP)
[10] and the well-founded semantics (WFS). In particular, we give new iterated
fixpoint characterizations of answer sets as well as the WFS through dual pro-
grams. To the best of our knowledge, this is the first result of giving fixpoint
characterizations of answer sets/WFS using dual programs. Some applications
of non-stratified co-LPs to program transformation such as partial deduction,
and a proof procedure for the WFS are also discussed.

The organization of this paper is as follows. In Sect. 2, we summarise some
preliminary definitions on co-LPs and dual programs. In Sect. 3, we explain non-
stratified co-logic programs and the Horn p-calculus. In Sect.4, we consider
non-stratified co-LPs in the well-founded semantics. Finally, we discuss about
the related work and give a summary of this work in Sect. 5.

Throughout this paper, we assume that the reader is familiar with the basic
concepts of logic programming, which are found in [3,15].

2 Preliminaries

In this section, we first recall some basic definitions and notations concerning co-
logic programs (co-LPs). The details and more examples are found in [11,26,27].
Then, we also explain some preliminaries on deriving dual programs by negation
elimination.

A co-logic program (co-LP) is a definite program, where predicate symbols are
annotated as either inductive or coinductive. There is one restriction on co-LP,
referred to as the stratification restriction: Inductive and coinductive predicates
are not allowed to be mutually recursive. An example which violates the stratifi-
cation restriction is {p < ¢; ¢ < p}, where p is inductive, while ¢ is coinductive.

When a co-LP P satisfies the stratification restriction, it is possible to decom-
pose the set P of all predicates in P into a collection (called a stratification) of

! Due to space constraints, we omit most proofs and some details, which will appear
in the full paper.

On Dual Programs in Co-Logic Programming 23

mutually disjoint sets Py, ..., P, (0 <), called strata, so that, for every clause
p(Zo) — p1(Z1),-..,pn(Zyn) in P, we have that o(p) > o(p;) if p and p; have
the same inductive/coinductive annotations, and o(p) > o(p;) otherwise, where
o(q) = i, if the predicate symbol ¢ belongs to P;. o is called a stratification
function.

The following is an example of co-LPs due to Simon et al. [26], which shows
that co-logic programming can handle infinite terms such as infinite lists or trees
like f(f(...)) as well as finite ones.

Ezample 1 [26]. Suppose that predicates member and drop are annotated as
inductive, while predicate comember is annotated as coinductive.

member(H,[H|]) « drop(H,[H|T],T) «—
member(H, [_|T]) «— member(H,T) drop(H,[-|T],Th) < drop(H,T,T})

comember(X, L) «— drop(X, L, L1), comember(X, L)

The definition of member is a conventional one; its meaning is defined in terms
of the least fixpoint, since it is an inductive predicate. So, the prefix ending in
the desired element H must be finite. The same applies to predicate drop.

On the other hand, predicate comember is coinductive, whose meaning is
defined in terms of the greatest fixpoint. Therefore, it is true if and only if the
desired element X occurs an infinite number of times in the list L. Hence it is
false when the element does not occur in the list or when the element only occurs
a finite number of times in the list.

For example, the query X = 1,L = [0, 1|L], comember(X, L) is true, while
the query X =1,L = [0,1,0, 1], comember(X, L) is false. Note that L = [0, 1|L]
represents an infinite list L consisting of 0 s and 1 s. O

A meta-interpreter for co-logic programming has been developed and
available [14], and recent SWI-Prolog (version 6.5.1) has also offered a mod-
ule for supporting coinduction.?

The declarative semantics of a co-logic program is a stratified interleaving
of the least fixpoint semantics and the greatest fixpoint semantics. To handle
infinite terms, we consider the complete (or infinitary) Herbrand base [13,15],
denoted by HB}., where P is a program.?

Let P be a co-logic program with a stratification Po,..., P, (0 < r). Let
IT; (0 < i < r) be the set of clauses whose head predicates are in P;. Then,
P = IIyJ...UIl,. Let IT (resp., S) be a set of clauses (resp., ground atoms).
Similarly to the “immediate consequence operator” Tp in the literature, our
operator Ty7 g assigns to every set I of ground atoms a new set Trr,s(I) of
ground atoms as

2 http://www.swi-prolog.org/pldoc/doc/swi/library /coinduction.pl.

3 In the following sections, we will restrict ourselves to propositional programs for
the ease of exposition, thus the “standard” Herbrand base HBp will suffice. In
this section, however, we explain some of the general basics of co-LPs for readers
unfamiliar with them.

http://www.swi-prolog.org/pldoc/doc/swi/library/coinduction.pl

24 H. Seki

Ti,s(I) = {A € HB}; | there is a ground instance of some clause in IT
A« By,---,By, n >0, such that, for every 1 <i <mn,
either B; € I or B; € S}.

In the above, the atoms in S are treated as facts. S is intended to be a set
of atoms whose predicate symbols are in lower strata than those in the current
stratum . We consider Tz s to be the operator defined on the set of all subsets
of HB7;, ordered by standard inclusion. Then, Tj; s admits a least and a greatest
fixpoint denoted by Ifp(Tr,s) and gfp(Tr,s), respectively.

Finally, the model M (P) of a co-logic program P = IIyl...UII, is defined
inductively as follows: Let M (I1_1) = 0. For k > 0, M(II;) = Ufp(Tr, m,_,) if
P; is inductive; gfp(Tm, m,_,) if Pi is coinductive, where Mj,_; is the model of
lower strata than I1, i.e., My_1 = Uf:_ilM(Hi).

Then, the model of P is M (P) = Ul_,M (I1;), the union of all models M (II;).

Ezample 2. Let Py = {p <« ¢q; ¢ <« q; v «— r} be a set of clauses. In the
traditional logic programming, the meaning of Py is given in terms of the least
fixpoint semantics, Ifp(Tp,) = 0.

In co-logic programming, on the other hand, assume that p and r are induc-
tive predicates, while ¢ is a coinductive predicate. Then, since P, satisfies the
stratification restriction, its meaning is defined in co-logic programming, i.e.,

M(PO) = {pvq} o

Dual Programs in Co-Logic Programming. Our approach to handling
negation in (co-)LPs is based on negation elimination (NE for short), a familiar
program transformation technique [22], tailored to co-logic programs [24]. Given
a (co-)LP P, the NE transformation derives from P a set P* of definite clauses,
called the dual program of P, by replacing negative literals —p(f) by not_p(t),
where not_p is a newly introduced predicate symbol.

In the following, we explain NE for a program P such that a clause in P
might contain negative literals in its body for later use, and we assume that P
is a propositional program for the ease of exposition, although it is applicable to
programs without existential variables.* NE consists of the following two steps:

(step 1) for each clause in P, we replace each occurrence —p of negative literals
(if any) by not_p, where not_p is a new predicate not appearing elsewhere;
(step 2) for each predicate p, let comp(p) be its completed definition in P. We
then derive the definition of not_p from comp(p) as follows:

(i) [Definition Derivation] Suppose that comp(p) is of the form p < By V-V
B,,. Then, negating both sides of comp(p), and replacing every negative
occurrence —p by not_p, we obtain not_p < —(By V-V By).

Next, transforming the right-hand side in the above to a disjunctive form,

4 A variable in a clause is existential if it appears in the body of the clause, but not
in the head.

On Dual Programs in Co-Logic Programming 25

using De Morgan’s laws, replacing each occurrence of =—¢ by ¢, and each
occurrence of =g by not_q, we obtain the completed definition of not_p, i.e.,
not_p <+ NByV ---V NB,, where each NB; is a conjunction of positive
literals. Finally, we transform comp(not_p) to a set of clauses: {not_p «—
NBy; ... ;notp < NB,/}.

(ii) [Annotation Inversion] Annotate the derived predicate not_p as “coinduc-
tive” (resp. “inductive”) if the annotation of the original predicate p is induc-
tive (resp. coinductive).

Let P be a (definite) co-LP with the stratification restriction o, and P* be the
set of all clauses obtained by applying the above NE transformation. We define
the stratification function o* for P* as follows: o*(p) = o(p) for all predicates
defined in P, and o*(not_p) = o(p) +1 for all predicates not_p newly introduced
in NE. Then, we can show that P* satisfies the stratification restriction w.r.t. o*.

Proposition 1. Correctness of Negation Elimination [24]

Let P be a definite co-logic program. If every clause in P has no existential
variable, then the procedure of negation elimination gives a complementary co-
logic program P*, i.e., for any ground term £,

M(P) = —p(d) it M(P") F notp(D).

Ezample 8 (Continued from Example 2). Consider again Py = {p « ¢; ¢ <
g; r < r} in Example2. Then, its dual program P* = Py U {notp <
not_q; not_q < not_q; not_r «— not_r}.

Recall that p and r are inductive predicates, while ¢ is a coinductive predi-
cate. Therefore, not_p and not_r are coinductive, while not_g is inductive. Thus,
M(P*) = {p, q, not_r}. We note that M(P) = —r and M(P*) = not_r. O

In the following, we restrict ourselves to propositional programs, where the con-
dition of NE (Proposition 1) is always satisfied. When a program has existen-
tial variables, NE will be still applicable if a certain condition [22] is satisfied.
Another way is to use grounding by Iparse in smodels [19], which allows us to
deal with more general classes of programs such as range-restricted programs.
Moreover, our applications of dual programs here include AS and abduction,
where it is often the case that datalog programs are considered.

3 Non-stratified Co-Logic Programs and Horn p-calculus

Proposition 1 deals with definite co-logic programs, thus satisfying the stratifi-
cation restriction. However, the stratification restriction becomes too restrictive,
when we consider dual programs of (co-)LPs with negation. In this section, we
show that the Horn p-calculus by Charatonik et al. [5] can be used as a frame-
work for handling “non-stratified” co-LPs.

26 H. Seki

3.1 Dual Programs of Non-Stratified Programs

The notion of dual programs has been studied in logic programming; we have
already explained the program transformation technique, called the megation
technique, by Sato and Tamaki [22] in Sect.2. Aravindan and Dung [4] have
then proposed partial evaluation (or partial deduction) of logic programs in the
well-founded semantics (WFS) using dual programs. Dual programs have also
been used for implementing proof procedures; ABDUAL by Alferes et al. [1] and
its successors such as TABDUAL [20,21] are abductive reasoning systems for the
WFS. Marple and Gupta [16] have proposed a proof procedure for answer set
programs using their dual programs.

In particular, Aravindan and Dung [4] have shown the following result on par-
tial deduction in the WF'S, which is given in the case of propositional programs
for the sake of simplicity.

Proposition 2 (Aravindan and Dung). Partial Deduction in the WES [4]

Let P be a program whose well-founded model is complete® and P*~# a negative
partial deduction of P obtained by replacing selected negative literals —p by
not_p and adding new definitions for not_p. Then, for every goal G: < A which
contains no not_p predicate, WFS(P) | A iff WFS(P*~3) | A. O

In the above, when applied to propositional programs, a negative partial deduc-
tion of P, denoted by P*~# is the same as the dual program P* explained in
Sect. 2, except that annotation inversion is not employed. However, the above
proposition is not always correct as the following example shows. Given a pro-
gram P, we denote by WFES(P) = (T; F), where T (resp., F) is the set of atoms
true (resp., false) in the WFS of P. The truth value of the remaining atoms in
U=Hp\ (TUF) is undefined, where Hp is the Herbrand base of P.

Ezample 4. Consider the following program P = {p <« —¢; ¢ < ¢}. Since
P is a stratified program, P has a unique answer set, i.e., the perfect model,
PERF(P) = {p}, which coincides with WFS(P) = ({p};{q¢}) and thus it is
complete.

Consider the negative partial deduction P*~® = {p « not_q; notp «—
g; not_q «— not_q; q — q}, where all the atoms are annotated as inductive.

Then, WFS(P*~3) = (0; {p, g, not_p, not_q}). In particular, p is thus false.

On the other hand, the dual program P* is the same set of clauses as P*~#
with different predicate annotations: not_p and not_q are coinductive, while p
and ¢ are inductive. P* satisfies the stratification restriction. Then, M (P*) =
{p, not_q}; this means that P* with its co-LP semantics M (P*), exactly captures
the semantics of P in the WFS. O

When we consider conventional general (i.e., non-stratified) programs, all pred-
icates are supposed to be annotated as inductive. Then, the resulting dual
programs do not satisfy the stratification restriction in general. For example,

5 Well-founded model of a program P is complete when it classifies all the elements
of the Herbrand base as ‘true’ or ‘false’.

On Dual Programs in Co-Logic Programming 27

let P = {p <« —q; g — —p}. Then, its dual program P* = {p «— not_q; q —
not_p; notp «— ¢q; not.q «— p}, which does not satisfy the stratification
restriction.

3.2 Horn p-Calculus and Its Fixpoint Semantics

Charatonik et al. [5] have proposed the Horn p-calculus; it is an extension of
logic programs by allowing nesting of least and greatest fixpoints, in terms of a
priority of each predicate for specifying whether its semantics has to be computed
as a least or a greatest fixpoint. They have given to the Horn p-programs the
semantics based on ground proof trees as well as the nested fixpoints semantics.

A Horn p-program (P, £2) is a set of definite clauses in which every predicate
symbol p in P is associated with a non-negative number £2(p), called the priority
of p.

Charatonik et al. [5] give an iterated fixpoint characterization of the seman-
ties [(P, £2)] of a program P, which we will use in the following.

First we recall the familiar Tp operator of logic programming (see [15]); for
any set A of ground atoms, we define Tp(A) in the standard manner. Next,
for all sets A and B of ground atoms, and non-negative priority k, we define
Alk := B] to be the set of ground atoms such that p € A[k := B] if either the
priority of p is different from k and p € A or the priority of p equals k and p € B.
We now define the operator T% such that T%(A) = A[k := Tr(A)]; The operator
T1’§ is thus analogous to Tp except that T}B only updates predicates of priority k.
Then, for each value of k, we take fixpoints of the operators T f,. To do that, for
any integer k we define F5(A) as follows. First, for negative integer k, we define
FE(A) = A.

FE(A) = VB.T}i(F}i_l(A[k: := B])) if k is even,
PYYT\ uB.TE(FE Y (Alk == B))) if k is odd,

Then, [(P, 2)] = FA(0), where n = max(£2(P)), i.e., n is the maximal pri-
ority of any predicate in P.

It is easy to show that the Horn p-calculus is an extension of co-logic pro-
gramming. In fact, let P be a co-LP with a stratification . Then, we call a
priority function 2 consistent with o, if it satisfies the following: (i) o(p) < o(q)
iff 2(p) > £2(q) for any predicates p and g, i.e., a predicate in lower stratum
has a higher priority, and (ii) £2(p) is even (odd) if p is a coinductive (inductive)
predicate, respectively. Then, we have the following:

Proposition 3. Let P be a co-logic program with a stratification function o.
Then, M(P) = F£(0) with priority 2, where {2 is consistent with o, and n =
max {2(p) for any predicate p in P. O

Ezample 5. Consider again Py = {p < ¢; ¢ < ¢; r «— r} in Example 2, where
p and r are inductive predicates, while ¢ is a coinductive predicate. Then, its
stratification function o is defined as: o(q) = 0,0(p) = o(r) = 1.

28 H. Seki

Consider a priority 2 consistent with o such that £2(p) = 2(r) = 1, 2(q) = 2.
Then, we have that [(Py, 2)] = F3 (0) = {p,q} = M(P). 0

On the other hand, the Horn p-calculus is more general than stratified co-LP.

Ezample 6 (Adapted and Simplified from [5]). Let Py = {p < p; p < ¢; ¢ < p}
be a set of clauses, where p is an inductive predicate, while ¢ is a coinductive
predicate. Since Py does not satisfy the stratification restriction, its meaning is
not given in co-logic programming.

In the Horn p-calculus, however, the semantics of Py can be determined in
terms of priorities assigned to the predicates. Suppose, for example, that the
coinductive predicate g has a higher priority than the inductive predicate p. We
thus define: 2(p) =1 and 2(q) = 2. Then, [(FPy, 2)] = {p,q}. O

The framework for unfold/fold transformation of co-logic programs is
proposed in [23], where a program is assumed to satisfy the stratification restric-
tion. We note that unfolding does not preserve the meaning of a Horn p-program
in general, as the following example shows.

Ezample 7. Let Py = {p <« q; q¢ «— p} be a set of clauses, where 2(p) = 1

(i.e., p is an inductive predicate), while 2(q) = 2 (i.e., ¢ is a coinductive predi-

cate). Then, [(Po, 2)] = {p, q}. Note that Py does not satisfy the stratification
restriction.

unfolding

Py:p—q ——> Pr:p—p

q<—p q<—p

P() pg unfolding PQ pgq

q—Dp q<q
In the above, the atoms in bold letters are the ones on which unfolding is
applied. Then, M (P;) = 0, while M (P2) = {p, q}. Therefore, when Py does not
satisfy the stratification restriction, a simple application of unfolding will yield
programs with different meanings. O

We will consider unfolding in the Horn p-calculus in the following section.

Answer Set Programs and Horn p-programs. We are now in a position
to give the relationship between answer sets and Horn p-programs. Let M be a
set of atoms and M™* a set of atoms including ones of the form not_p for some
atom p. In the following, we denote by M = M* if, for any ground atom p,
peMiff pe M* and p & M iff not.p e M*.

Ezample 8. Consider again the following program P = {p «— —q; ¢ < —p} and
its dual program P* = {p « not_q; q < not_p; not_p «— q; not_g — p}. Pisa
non-stratified program, and it has two answer sets My = {p} and M = {q}.
On the other hand, P* does not satisfy the stratification restriction. First,
we consider a Horn p-program (P*,2;), where we define the priority §2; as

On Dual Programs in Co-Logic Programming 29

21 (not_q) = 2 and 2 (not_p) = 0, while £2;(p) = 21(¢) = 1. Then, [(P,)] =
{p, not_q}, thus My = [(P, {1)].

On the other hand, we consider a Horn p-program (P*, (2;) in a symmet-
ric fashion; we define the priority (25 as (22(not_p) = 2 and §23(not_q) = 0,
while (25(p) = (2(q) = 1 as before. Then, [(P,{2)] = {q,notp}, thus
M2 = [[(P, QQ)]] O

In general, we can show the following relationship between the answer sets
of P and the fixpoints of F3.(0).

Proposition 4. AS is a fixpoint of a dual program
Let P be a logic program and AS(P) the set of its answer sets. If M € AS(P),
then there exists a priority {2 such that M = F3.(0).

In particular, when P is a stratified program, PERF(P) = F3.(0) = M (P*),
where priority 2 is defined to be consistent with the stratification function
of P. O

Example 4 is a special case of the above proposition.

Unfolding Dual Programs. Next, we consider unfolding of dual programs.

Ezample 9. Consider again the dual program P* in Example 8 and recall that
the priority §2; is defined as 21 (not_¢) = 2 and £2;(not_p) = 0, while 2,(p) =
21(¢) = 1. Then, [(P, 1)] = {p, not_q}. We consider the following two cases of
applying unfolding to P*, where the atoms in bold letters are the ones on which
unfolding are applied.

(i)

P*:p«— notgq Lunfolding, Py :p«— notg
q < not_p q—q
not_p < q not_p < q
not_q < p not_q < p

Then, [(P;, 1)] = {p, not_q}, thus unfolding preserves the semantics. We
note that, in the unfolded clause, £21(q) > 21 (not_p).

(i)

pr - D not,q unfolding PQ* pe—p
q < not_p q < not_p
not_p <« q not_p < q
not_q < p not_q < p

Then, [(P5,21)] = 0, thus unfolding does not preserve the semantics. We
note that, in the unfolded clause, £2;(p) < 21 (not_q). O

The following proposition explains the above applications of unfolding.

30 H. Seki

Proposition 5. Unfolding of Horn p-programs

Let (P, 2) be a Horn p-program and P’ a program derived by applying unfolding
to P. Let p — q1,...,qn (n > 1) be the unfolded clause in P and ¢; (1 <i < n)
the atom upon which unfolding is applied. If 2(p) > 2(g;), then the semantics
of (P, 2) is preserved, i.e., [(P, 2)] = [(P’, 2)]. O

Aravindan and Dung [4] also studied unfolding of dual programs in the well-
founded semantics, where unfolding is defined as usual, i.e., no condition is
imposed on applying unfolding. In contrast, unfolding in our framework requires
the above-mentioned condition for its application, since each atom in a Horn
p-program is assigned its priority and the semantics (P, §2) is defined based on
the priorities of atoms.

4 Dual Programs in the Well-Founded Semantics

Finally, we consider a fixpoint characterization of the well-founded semantics
(WFS) via dual programs, which is based on the Horn p-calculus.

Proposition 6. Fixpoint Characterization of the WFS

Let P be alogic program and v the truth valuation in the well-founded semantics
WFES(P). Let P* be its dual program and {2 be a priority defined as £2(p) = 1
(resp., 2(not_p) = 2) for any predicate p in P. Then, we have

~ v(p)=tiff pe F3.(0) and not_p & F2.(0),
— v(p) = f iff not_p € F3.(0) and p ¢ F3.(0), and
~ v(p) =uiff p € F3.(0) and not_p € F.(0). O

Ezample 10. Consider the following non-stratified program P = {p «— ¢; ¢ <«
—p}, and its dual program P* = {p < ¢; q < not_p; not_p — not_q; not_q —
p}. Then, WES(P) = (0; 1), i.e., the truth value of every atom in P is undefined:
v(a) = u for a € {p,q}.

On the other hand, we consider a Horn p-program (P*, 2), where we define
the priority {2 as 2(not-a) = 2 and 2(a) = 1 for a € {p,q}. Then, [(P,2)] =
{p, q, not_p, not_q}. O

A Proof Procedure of Dual Programs in the WFS. From Proposition 6,
we will propose a simple proof procedure, which is based on the notion of P-
derivation of the Horn u-calculus [5].

The semantics of a Horn u-program is given in terms of ground derivations
[5]. Given a logic program P, r is called a P-derivation if for each node n in r,
labeled by some ground atom h, there exists a ground instance h <« by, ..., b,
(m > 0) of a clause in P, and n has m children nodes, each of which is labeled
by b; (0 < i < m). When m = 0, the node n has no children nodes and is a
success node. If there are no such clauses in P, then n has no children nodes and
is a failure node. When the root node of r is labeled by p, r is a P-derivation of
p (or p has a P-derivation 7).

On Dual Programs in Co-Logic Programming 31

Given a P-derivation r, let w be an infinite sequence wowyws ... of nodes in
r such that w; 1 is a child of w;. Such a sequence w is called an infinite path. For
an infinite path 7 in a P-derivation, we denote by Inf(7) the set of all priorities
occurring infinitely often on the path 7. We say that a path w in r is accepting
if the largest element of Inf(w) is even. A P-derivation r is accepting if every
infinite path in 7 is accepting and every finite path ends with a success node.
A P-derivation r is not accepting if there exists either an infinite path in » which
is not accepting or a finite path ending with a failure node.

From the equivalence of the procedural semantics and the iterated fixpoint
semantics of the Horn p-calculus [5], we have the following characterization of
procedural semantics of a dual program P* in the WFS.

— v(p) =t iff p (resp. not_p) has an (resp. no) accepting P*-derivation,
— v(p) = £ iff not_p (resp. p) has an (resp. no) accepting P*-derivation, and
— v(p) = u iff both p and not_p have accepting P*-derivations.

wo:p
P*: |
peq wiq
q < not_p |
not_p « not_q w2 not_p
not_q <« p |
w3: not_q
|
wqe:p

Fig. 1. The P*-Derivation of p (Example 10)

Since we consider here propositional dual programs in the WFS, we can have
a simple procedure for detecting whether v(p) = u for a ground atom p. To do
that, we will make the notion of (non)-acceptance more detailed.

Given a P*-derivation r of an atom pg, suppose that there is an infinite path
T = wowiws ... in r. We denote the label of node w; (i > 0) by w;.l. Since dual
programs are propositional, there exist some node w,, (n > 0) and k > 0 such
that w, and w1 have the same label, i.e., w,.l = wy4py1.l. Then, 7 is of
the form: wowy ... (Wy ... Wyk)*.

Definition 1. Let » be a P*-derivation. Then,

— r is called successful if every finite path in r ends with a success node and for
every infinite path 7 in r, 2(w;.l) =2 for all i (n <i <n+k).

32 H. Seki

— r is called failed if there exists either a finite path in r ending with a failure
node or an infinite path 7 in r such that 2(w;.l) =1 for all i (n < i <n+k).
— r is called undefined if it is neither successful nor failed. In this case, r has an
infinite path 7 such that 2(w,,.l) # 2(w,,.l) for some m (n <m <n+k).O

Example 11. Figurel shows a P*-derivation of p in Example 10. Recall that
v(p) = u. p has a single P*-derivation r; it consists of a single infinite path
= (wo...w3)*, where 2(wo.l) = 2(p) =1 and 2(ws.l) = 2(not_p) = 2. The
priorities of labels in the infinite loop are thus alternating. a

Proposition 7. Procedural Semantics of Dual Programs in the WFS

Let P be alogic program and v the truth valuation in the well-founded semantics
WFS(P). Let P* be its dual program and {2 be a priority defined as 2(p) = 1
(resp., £2(not_p) = 2) for any predicate p in P. Then, we have

— v(p) = t iff p has a successful P*-derivation,
— v(p) = f iff all of P*-derivations of p are failed, and
— v(p) = wiff all of P*-derivations of p are neither successful nor failed. O

We note some implementation issues on the above procedural semantics.
ABDUAL [1] has some problems in handling loops involving negative atoms,
referred to as “negative loops over negation” (NLoN) [20]. In Example 10, for
example, goals « p and < mot_p succeed unexpectedly in ABDUAL. In TABD-
UAL [20], such problems have been remedied by introducing some mechanisms for
dealing with NLoN. However, its implementation for handling NLoN is depen-
dent on the XSB built-in predicates such as tnot/1 and call tv/2 (see Fig.2
(below)) together with an auxiliary predicate over/1, which would make it dif-
ficult to perform program analysis and its possible optimization.

On the other hand, Proposition 7 will give a simple proof procedure for
the WFS. For example, predicate solve/1 in DRA interpreter [14] (see Fig.2
(above)) has an argument which maintains information about the current path
of ancestors (stack). Using this mechanism, it would be simple to check whether
a path currently stored on the stack is successful, failed or undefined, since it is
enough to examine the labels of atoms in the stack.

5 Related Work and Concluding Remarks

The notion of dual programs has been proposed and utilized in various fields
in logic programming. Techniques using dual programs have been proposed for
performing partial evaluation (or partial deduction), program transformation
and implementation of reasoning systems and proof procedures (see, for exam-
ple, [1,4,16-18,20-22,24]). In this paper we have extended to non-stratified
(co-)LPs negation elimination with the operation of annotation inversion, which
was proposed for definite co-LPs [24].

The main contributions of this paper are the following. (i) We have shown
that the Horn p-calculus can be utilized as a framework for handling non-
stratified co-LPs. In fact, the Horn p-calculus is an extension of co-logic pro-
gramming (Proposition 3). Gupta et al. [12] have also proposed an extension

On Dual Programs in Co-Logic Programming 33

% solve/1 in DRA interpreter

solve(+ sequence of goals, + stack, + coinductive hypotheses, + level):

%% Solve the sequence of goals, maintaining information about the current chain
%% of tabled ancestors (stack) and the chain of coinductive ancestors

%% (coinductive hypotheses). The level is the level of recursion, and is used
%% only for tracing.

% Tbdual Implementation of Ex. 10
% the predicate over(G)/1 is defined as over(G) :- tnot(G).

1. :- table g_ab/1, over/1, not_p/1, p_st/3.

2. g_ab(E) :- tnot p_ab([]), not_p_ab([],E).

3. not_p_ab(I,0) :- call_tv(tnot over(mot_p(I)), V),
(V=undefined, 0=I, undefined;
inspect (p_st(I,0,[1))).

not_p(I) :- p_st(I,0,[1).

5. ... (omitted)

IS

Fig. 2. Predicate solve/1 in DRA interpreter [14] (above) and implementation in
TABDUAL (below)

of co-LPs to handle non-stratified co-LPs. To do that, they have introduced
strong/weak_inductive annotations, which play a similar role of priorities in the
Horn p-calculus. However, they have not discussed the relationship of their exten-
sion with the Horn p-calculus, and its declarative semantics is not known either.
(ii) We have given new iterated fixpoint characterizations of answer sets as well
as the WF'S for propositional programs via dual programs. A lot of work has
been done on the fixpoint semantics for logic programming (see, e.g., an excel-
lent survey in [9]). Denecker et al. [7], for example, have proposed a fixpoint
theory as a uniform framework of major semantics of general logic programs.
In contrast, our approach has focused on the use of dual programs, and to the
best of our knowledge, this is the first result of giving fixpoint characterizations
of answer sets/WFS through dual programs. In [25], the relationship between
co-LP and the Horn p-calculus has been studied from the procedural point of
view. (iii) Finally, we have proposed an unfolding rule for Horn u-programs
(Proposition 5) and a procedural semantics of dual programs in the WFS (Propo-
sition 7). The unfolding rule in this paper is more general than that for co-LPs
[23] in that the latter is applicable only when the stratification restriction of a
given program is satisfied. Furthermore, the proof procedure for the WFS in this
paper is much simpler than that in [25] in that the latter requires checking a
well-founded ordering among ground atoms, while such checking is replaced here
by simply examining whether priorities of labels are alternating or not.

In this paper, we have restricted ourselves to propositional programs. This
would be reasonable, since co-logic programming has some computational
difficulty [2]. This restriction is due to the condition of NE (Proposition 1),
i.e., no existential variables in every clause in a given co-LP. One direction for
future work is thus to extend the current framework to handle a more general
class of co-LPs. Some approaches have already been mentioned in the end of

34 H. Seki

Sect. 2. Another approach will be to allow arbitrary first order logic formulas in
the body of a clause, as in the work by Denecker et al. [7].

We have proposed the proof procedure for the WFS, and compared it with
ABDUAL and TABDUAL (Fig. 2). It will be interesting to extend proof procedure
to allow abducibles for performing abduction. We also have a plan to implement
our proof procedure for the WFS in Proposition 7.

Acknowledgement. The author would like to thank anonymous reviewers for their
constructive and useful comments on the previous version of the paper. The idea of
using co-LP techniques for a proof procedure for the WFS in Sect.4 came from the
discussions with Gopal Gupta at LOPSTR’13 in Madrid.

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theor. Pract. Log. Program.
4, 383-428 (2004)

2. Ancona, D., Dovier, A.: co-LP: Back to the Roots. Theory and Practice of Logic
Programming 13(4-5) (2013)

3. Apt, K.R.: Introduction to logic programming. In: Handbook of Theoretical Com-
puter Science, pp. 493-576. Elsevier (1990)

4. Aravindan, C., Dung, P.M.: Partial deduction of logic programs wrt well-founded
semantics. New Gener. Comput. 13(1), 45-74 (1994)

5. Charatonik, W., McAllester, D., Niwinski, D., Podelski, A., Walukiewicz, I.: The
Horn Mu—calculus. In: LICS 1998, pp. 58-69. IEEE Computer Society (1998)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

7. Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and
the semantics of logic and answers set programs. In: Erdem, E., Lee, J., Lierler,
Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 178-194. Springer,
Heidelberg (2012)

8. Farwer, B.: w-Automata. In: Gradel, E., Thomas, W., Wilke, T. (eds.) Automata,
Logics, and Infinite Games. LNCS, vol. 2500, pp. 3-21. Springer, Heidelberg (2002)

9. Fitting, M.: Fixpoint semantics for logic programming a survey. Theoret. Comput.
Sci. 278(1-2), 25-51 (2002)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the Fifth International Conference and Symposium on Logic
Programming, pp. 1070-1080. MIT Press (1988)

11. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Dahl, V., Niemel4, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27-44. Springer, Heidelberg (2007)

12. Gupta, G., Saeedloei, N., DeVries, B., Min, R., Marple, K., Kluzniak, F.: Infinite
computation, co-induction and computational logic. In: Corradini, A., Klin, B.,
Cirstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 40-54. Springer, Heidelberg
(2011)

13. Jaffar, J., Stuckey, P.: Semantics of infinite tree logic programming. Theoret. Com-
put. Sci. 46, 141-158 (1986)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

On Dual Programs in Co-Logic Programming 35

Kluzniak, F.: Meta-interpreter supporting tabling and coinduction (2009). http://
www.utdallas.edu/gupta/meta.html

Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). Extended edition

Marple, K., Bansal, A., Min, R., Gupta, G.: Goal-directed execution of answer set
programs. In: PPDP 2012. pp. 35-44 (2012)

Marple, K., Bansal, A., Min, R., Gupta, G.: Dynamic consistency checking in goal-
directed answer set programming. Theory Pract. Log. Program. 14(4-5), 415-427
(2014)

Min, R.: Predicate Answer Set Programming with Coinduction. Ph.D. thesis, Uni-
versityof Texas at Dallas (2010)

Niemela, I., Simons, A.: Smodels — an implementation of the stable model and
well-founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J.,
Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 420-429. Springer, Hei-
delberg (1997)

Pereira, L.M., Saptawijaya, A.: Abductive logic programming with tabled abduc-
tion. In: Proceedings of the Seventh International Conference on Software Engi-
neering Advances ICSEA 2012, pp. 548-556 (2012)

Saptawijaya, A., Pereira, L..M.: Tabled abduction in logic programs. Theory Pract.
Log. Program. 13, 4-5 (2013)

Sato, T., Tamaki, H.: Transformational logic program synthesis. In: FGCS 1984
Tokyo, pp. 195-201 (1984)

Seki, H.: Proving properties of co-logic programs by unfold/fold transformations.
In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 205-220. Springer, Hei-
delberg (2012)

Seki, H.: Proving properties of co-logic programs with negation by program trans-
formations. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 213-227.
Springer, Heidelberg (2013)

Seki, H.: Extending co-logic programs for branching-time model checking. In:
Gupta, G., Penia, R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp.
127-144. Springer, Heidelberg (2014)

Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczynski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330-345.
Springer, Heidelberg (2006)

Simon, L.E.: Extending Logic Programming with Coinduction. Ph.D. thesis. Uni-
versity of Texas at Dallas (2006)

Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract.
Log. Program. 12(1-2), 67-96 (2012)

http://www.utdallas.edu/gupta/meta.html
http://www.utdallas.edu/gupta/meta.html

2 Springer
http://www.springer.com/978-3-319-27435-5

Logic-Based Program Synthesis and Transformation
25th International Symposium, LOPSTR 2015, Siena,
ltaly, July 13-15, 2015, Revised Selected Papers
Falaschi, M. (Ed.)

2015, XV, 385 p. 88 illus. in color., Softcover

ISBN: 978-3-319-27435-5

	On Dual Programs in Co-Logic Programming
	1 Introduction
	2 Preliminaries
	3 Non-stratified Co-Logic Programs and Horn -calculus
	3.1 Dual Programs of Non-Stratified Programs
	3.2 Horn -Calculus and Its Fixpoint Semantics

	4 Dual Programs in the Well-Founded Semantics
	5 Related Work and Concluding Remarks
	References

