
Realizing a Conceptual Framework to Integrate
Model-Driven Engineering, Software Product
Line Engineering, and Software Configuration

Management

Felix Schwägerl(B), Thomas Buchmann, Sabrina Uhrig,
and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{felix.schwaegerl,thomas.buchmann,sabrina.uhrig,

bernhard.westfechtel}@uni-bayreuth.de

Abstract. Software engineering is a highly integrative computer sci-
ence discipline, combining a plethora of different techniques to increase
the quality of software development as well as the resulting software.
The three sub-disciplines Model-Driven Software Engineering (MDSE),
Software Product Line Engineering (SPLE) and Software Configura-
tion Management (SCM) are well-explored, but literature still lacks an
integrated solution. In this paper, we present the realization of a con-
ceptual framework that integrates those three sub-disciplines uniformly
based on a filtered editing model. The framework combines the check-
out/modify/commit workflow known from SCM with the formalism of
feature models and feature configurations known from SPLE. The imple-
mentation is model-driven and extensible with respect to different prod-
uct and version space models. Important design decisions are formalized
by means of Ecore metamodels. Furthermore, we propose several opti-
mizations that increase the scalability of the conceptual framework.

Keywords: Model-driven software engineering · Software product line
engineering · Software configuration management

1 Introduction

The discipline Model-Driven Software Engineering (MDSE ) [25] is focused on
the development of models as first-class artifacts in order to describe software
systems at a higher level of abstraction and to automatically derive platform-
specific source code. In this way, MDSE promises to increase the productivity
of software engineers, who may focus on creative and intellectually challenging
modeling tasks rather than on repeated activities at source-code level. Models
are typically expressed in well-defined languages such as the Unified Modeling
Language (UML), which define the structure as well as the behavior of model ele-
ments. The Eclipse Modeling Framework (EMF ) [21] provides the technological
foundation for many model-driven applications.
c© Springer International Publishing Switzerland 2015
P. Desfray et al. (Eds.): MODELSWARD 2015, CCIS 580, pp. 21–44, 2015.
DOI: 10.1007/978-3-319-27869-8 2



22 F. Schwägerl et al.

Software Product Line Engineering (SPLE ) [13] enforces an organized reuse
of software artifacts in order to support the systematic development of a set of
similar software products. Commonalities and differences among different mem-
bers of the product line are typically captured in variability models, e.g., feature
models [8]. Different methods exist to connect the variability model to a plat-
form, which provides a non-functional implementation of the product domain.
The concept of negative variability considers the platform as a multi-variant
product, which constitutes the superimposition of all product variants. To auto-
matically derive a single-variant product, the variability within the feature model
needs to be resolved by specifying, e.g., a feature configuration.

Software Configuration Management (SCM ) is a well-established discipline
to manage the evolution of software artifacts. A sequence of product revisions
is shared among a repository. Besides storage, traditional SCM systems [2,3,
23] assist in the aspects of collaboration and variability to a limited extent, by
providing operations like diff, branch and merge. Internally, the components of
a versioned software artifact – most frequently, the lines of a text file – are
represented as deltas. The most commonly used delta storage type are directed
deltas, which consist of the differences between consecutive revisions in terms of
change sequences, whereas symmetric deltas [15] constitute a superimposition of
all revisions, annotated with version identifiers.

In literature, many approaches to pair-wise combinations of MDSE, SPLE,
and SCM are described. Model-Driven Product Line Engineering (MDPLE ) is
motivated by a common goal of MDSE and SPLE — increased productivity.
MDPLE may be realized using positive variability, e.g., by composition tech-
niques [24], or using negative variability by creating a multi-variant domain
model whose elements are mapped to corresponding feature model elements [6].
Model Version Control subsumes the combination of MDSE and version con-
trol [1], with the goal of lifting existing version control metaphors check-out
and commit up to the model level. Software Product Line Evolution deals with
common problems occurring during the management of the life-cycle of software
product lines, for instance propagating changes from the variability model to the
platform. A survey can be found in [11].

In [17], we have presented a conceptual framework to realize an integrated
combination of the three disciplines. It is built around an editing model oriented
towards version control systems, where the developer may use his/her preferred
tool to perform changes to versioned software artifacts within a single-version
workspace. The workspace is synchronized with a repository, which persists the
entirety of product versions. In addition to revision graphs, feature models are
provided to adequately define logical product variants. Version selection is per-
formed in both the revision graph and the feature model. In the latter case,
a feature configuration is selected, which allows for the combination of vari-
ous logical properties in a consistent product variant. The adoption of a ver-
sion control oriented editing model to SPL development implies advantages such
as unconstrained variability: single-version constraints do not affect the multi-
version repository. Furthermore, the distinction between variability in time and



Realizing the Integration of MDSE, SPLE and SCM 23

checkout

revision graph

multi-version product space

ambition choice

...

defines

commit

modifies

visibilities

multi-version
feature model

single-version 
feature model

single-version 
product space

...

repository workspace
user

Fig. 1. The integrated editing model underlying our conceptual framework.

variability in space is blurred: our conceptual framework allows to postpone the
decision, whether a change to a product constitutes a temporal evolution step
or a new product variant or feature, until the commit.

The current paper deals with the model-driven realization of a conceptual
framework [17], discussing important design decisions using the formalism of
Ecore models. Furthermore, extensions to the generated source codes are pre-
sented, which implement behavioral parts of the framework. In addition, this
paper proposes several optimizations that improve the scalability of the frame-
work’s implementation.

2 The Conceptual Framework

The conceptual framework presented in [17] provides an integrated solution to
MDSE, SPLE, and SCM based on the uniform version model (UVM) presented
in [27]. UVM defines a number of basic concepts (options, visibilities, version
rules) for version control. A prototype of our conceptual framework, SuperMod,
uses EMF both for its own implementation and as the primarily targeted product
space. In [18], SuperMod is presented from the end user’s perspective and the
added value of the integration of MDSE, SPLE and SCM is discussed.

2.1 Overview

As illustrated in Fig. 1, the conceptual framework defines an editing model ori-
ented towards version control metaphors. The basic assumption is that the user
edits a single version selected by a choice (the read filter), but the changes affect
multiple versions, which are defined by a so called ambition (the write filter).
Editing a product version consists of three – partly automated – steps:



24 F. Schwägerl et al.

1. Check-out: The user performs a version selection (a choice) in the repository.
In the revision graph, the selection comprises a single revision. From the
feature model, a feature configuation has to be derived. A single-version copy
of the repository, filtered by the selected version, is loaded into the workspace.

2. Modify: The user applies a set of changes to the single-version product and/or
to the feature model in the workspace.

3. Commit: The changes are written back to the repository. For this purpose, the
user is prompted for an additional selection of a partial feature configuration
(an ambition) to delineate the logical scope of the performed changes. Visi-
bilities of versioned elements are updated automatically, and a newly created
revision is submitted to the repository.

The conceptual framework proposes a three-layered hierarchy of version and
product spaces. On top of the hierarchy is a revision graph, which controls the
evolution of both the product space and the feature model, which plays a dual role:
From the revision graph’s perspective, it is versioned the same way as the product
space; for the product space, it incorporates an additional variability model.

The product space is represented as a superimposition of product versions.
The connection between the product space and the version space is established
by visibilities, which are assigned to elements of the product space and the
feature model and in turn refer to the version space. The primary product space
is a heterogeneous file system, consisting of EMF models and further contents
such as plain text or XML files. The interaction between different spaces is
described below.

Please note that the conceptual framework’s implementation shown in the
current paper is restricted to single-user operation. Therefore, the repository is
persisted locally in the user’s development environment. Collaborative versioning
will be addressed by future research.

2.2 Version Space

The term version space subsumes the revision graph and the feature model. After
introducing a set of general concepts, we show the mapping of those concepts to
the feature model and to the revision graph, before an integration is described.

General Concepts. The version space is defined by a set of concepts described
in [27] using set theory and propositional logic.

Options. An option represents a (logical or temporal) property of a software
product that is either present or absent. The version space defines a global
option set:

O = {o1, . . . , on}. (1)

Choices and Ambitions. A choice is a conjunction over all options, each of which
occurs in either positive or negated form:

c = b1 ∧ . . . ∧ bn, bi ∈ {oi,¬oi} (i ∈ {1, . . . , n}) (2)



Realizing the Integration of MDSE, SPLE and SCM 25

An ambition is an option binding that allows for unbound options (bi = true,
such that this component can be eliminated from the conjunction):

a = b1 ∧ . . . ∧ bn, bi ∈ {oi,¬oi, true} (i ∈ {1, . . . , n}) (3)

Options occurring positively or negatively in the conjunction are bound. Thus,
a choice is a complete binding and designates a specific version, whereas an
ambition may have unbound options (partial binding) in order to describe a set
of versions. The version specified by the choice is used for editing, whereas the
change affects all versions specified by the ambition. The ambition must include
the choice; otherwise, the change would be performed on a version located outside
the scope of the change. Formally, this means that the choice must imply the
ambition:

c ⇒ a. (4)

Version Rules. The version space defines a set of version rules — boolean expres-
sions over a subset of defined options. The rule base R is composed of a set of
rules ρ1, . . . , ρm all of which have to be satisfied by an option binding in order
to be consistent. Thus, we may view the rule base as a conjunction:

R = ρ1 ∧ . . . ∧ ρm (5)

A choice c is strongly consistent if it implies the rule base R:

c ⇒ R (6)

In the case of ambitions, only the existence of a consistent version is required.
An ambition is weakly consistent if it overlaps with the constrained option space:

R ∧ a �= false. (7)

Feature Model. Concepts such as options, rules and choices should not be
exposed to the user directly because they are represented at a too low conceptual
level. Feature models [8] meet the requirements of SPLE in a satisfactory way.

Feature Options. A feature is a discriminating logical property of a software
product. It is adequate to map each feature to a feature option f ∈ Of , where
Of ⊆ O.

Feature Dependencies and Constraints. Feature models offer several high-level
abstractions: First of all, features are organized in a tree, which makes them
existentially depend on each other. Non-leaf features may be grouped as AND-
or OR-features. If an AND-feature is selected, its mandatory child features have
to be selected as well. In the case of an OR-feature, exactly one child has to
be selected (exclusive disjunction). Additionally, cross-tree relationships may be
defined: requires and excludes constraints. It is straightforward to map feature
models to propositional logic (see Table 1).



26 F. Schwägerl et al.

Table 1. Mapping feature models to version space rules.

Pattern Transformation

root feature fr fr

child feature fc of parent feature f fc ⇒ f

AND feature f and mandatory child fc f ⇒ fc

OR feature f and child features f1, . . . fn f ⇒ (f1 ⊗ . . . ⊗ fn)

f1 excludes f2 ¬(f1 ∧ f2)

f1 requires f2 f1 ⇒ f2

Version Selection. As aforementioned, feature configurations describe the char-
acteristics of a single product of the product line and thus may be considered as
a version selection within the feature model. A feature configuration is derived
from a feature model by assigning a selection state to each feature. A feature
configuration can be mapped to a choice or ambition by setting the binding bi

for a feature option fi ∈ Of as follows:

bi =

⎧
⎨

⎩

fi if feature fi is selected.
¬fi if feature fi is deselected.
true if no selection is provided for fi.

(8)

Please note that partial feature configurations allow for unbound options
(bi = true). These are allowed only for ambitions, not for choices.

Revision Graph. In SCM, the evolution of a software product is addressed.
The history of a repository is typically represented by a revision graph. Revision
control deviates from variability management in two aspects. First, revisions are
organized extensionally, i.e., only product revisions that have been committed
earlier may be checked-out [4]. Second, revisions are immutable: Once committed,
they are expected to be permanently available.

Revision Options. Temporal versioning can be realized by revision options (trans-
actions options in [27]) r ∈ Or, where Or ⊆ O. For each commit, a new revision
option is introduced automatically. In order to achieve immutability, neither a
revision option itself nor a visibility referring to it may ever be deleted.

Revision Rules. Automatically derived revision rules reduce the number of
selectable versions within the revision graph considerably: it equals the num-
ber of available revision options. As summarized in Table 2, implications are
introduced for consecutive revisions transparently.

Choice Specification. A version in the revision graph is selected as a single revi-
sion rc by the user. Since each revision option requires the corresponding options
of its predecessor revision (ri ⇒ ri−1), a choice in the revision graph is created



Realizing the Integration of MDSE, SPLE and SCM 27

Table 2. Mapping revision graphs to version space rules.

Pattern Transformation

initial revision r0 r0

new revision ri as immediate successor of revision ri−1 ri ⇒ ri−1

by conjunction of the selected revision with all of its predecessors. All other
revisions appear in a negative binding. For each revision option ri ∈ Or within
a revision choice cr, the option binding bi is determined as:

bi =
{

ri if ri is the selected revision rc or a predecessor of it.
¬ri else. (9)

Choices referring to the revision graph are necessarily complete since the
binding true may never appear.

Ambition Specification. In contrast to choices, ambitions in the revision graph
only consist of one bound option, namely a transparently introduced revision
option that is a successor of the previously selected revision choice. As a conse-
quence, a revision ambition ar consists of exactly one positive option rn; positive
bindings for predecessors are set implicitly.

ar = rn, rn is a successor of rc. (10)

Hybrid Versioning. The combination of the revision graph and the feature
model causes interaction between elements of both spaces. Thus, we provide the
following extensions to our framework.

Hybrid Version Space. Both the option set and the rule base are decomposed into
two disjoint subsets for the feature model and for the revision graph, respectively:

O = Of ∪̇Or (11)

R = Rf ∪̇ Rr. (12)

Hybrid Choice Selection. A version selection has to be performed in both the
revision graph and the feature model. Correspondingly, a hybrid choice is a com-
plete option binding on Of ∪̇Or. It must be ensured that each selected feature
option is visible under cr, the choice among the revision graph.

c = cr ∧ cf . (13)

Hybrid Ambition Specification. From the user’s perspective, the specification
of a hybrid ambition does not differ from a specification in the feature model.
A hybrid ambition a is a conjunction of the selected feature configuration af

and a transparently introduced revision option rn.

a = rn ∧ af (14)



28 F. Schwägerl et al.

Since a revision ambition is always weakly consistent, a hybrid ambition only
needs to be weakly consistent with respect to the feature part of the rule base:

Rf ∧ af �= false (15)

Similarly, it is sufficient to require that the feature part of the choice and the
ambition imply each other:

cf ⇒ af . (16)

2.3 Product Space

Our conceptual framework makes only few assumptions with respect to the pri-
mary product space. These assumptions are discussed in this section, providing
the basis for the realization of a multi-variant heterogeneous file system, consist-
ing of EMF, XML, and plain text resources, in Sect. 3.

Set-Theoretic Definition. We assume that the product space consists of a base
set of products. It depends on the implementation of the concrete product space,
in which granularity elements are modeled, e.g., lines of code or model objects.

P = {e1, . . . , en}. (17)

Hierarchical Organization. Elements are arranged in a tree, and the product
space defines a unique root element er. Furthermore, each non-root element
e ∈ P \ {er} element has a unique container that is returned by the container
function cont(e). Basically, the hierarchy is invariant, i.e., the container of an
element may not vary among multiple versions.

Visibilities. Each element e of the product space defines a visibility v(e), a
boolean expression over the variables defined in the option set. An element e is
visible under a choice c if its visibility is implied by the choice, i.e., it evaluates
to true given the option bindings of the choice:

c ⇒ v(e). (18)

Filtering. The operation of filtering a product space P by a choice c can be
realized as a conditional copy, where elements e that do not satisfy the choice
are omitted.

filter(P, c) = P \ {e ∈ P | c �⇒ v(e)} (19)

Unfortunately, we cannot assert any properties to the result of this function.
In particular, it may be syntactically ill-formed, which raises new questions with
respect to product consistency control. Those will be further discussed at the
end of Sect. 3.2.



Realizing the Integration of MDSE, SPLE and SCM 29

3 Model-Driven Realization

This section describes the underlying design decisions made in advance to the
realization of the conceptual framework presented in Sect. 2. Unless specified
differently, the presented implementation is included in our research prototype
SuperMod [18]. First, we introduce a set of Ecore metamodels for the reposi-
tory. Next, the local workspace and the synchronization between repository and
workspace are addressed. Subsequently, the operations check-out and commit
are specified. All behavioral components have been implemented in a modular
and extensible way using the Google Guice [22] dependency injection framework.

3.1 Metamodels for the Repository

In the realization of the conceptual framework, the repository, where products
are contained in their multi-variant representation, is represented as an EMF
model instance. This section explains underlying design decisions by presenting
the repository’s core metamodel, which is divided into several Ecore models.

The Core Metamodel. The presented realization is highly configurable with
respect to the concrete product and version space used in a specific versioning
scenario. Figure 2 shows an Ecore Metamodel for the core, which is extended by
specific product and version dimensions. Below, we assume a three-layer archi-
tecture consisting of a revision graph, a feature model, and a file system as
primary product space (cf. Fig. 1).

A repository combines a version space and a product space, which are in turn
divided up into several product and version dimensions. A product dimension
contains a tree of versioned elements, to which a visibility may be assigned.
Those visibilities are organized in an optimized data structure, the visibility
forest, which is explained in Sect. 4.2. A version dimension contains options and
(version) rules, which have been formalized in Sect. 2.2. Both visibilities and
rules are represented as option expressions.

Fig. 2. The core metamodel implements the conceptual framework and is extensible
with respect to specific product spaces and version spaces. [18]



30 F. Schwägerl et al.

Fig. 3. Metamodel for option expressions and option bindings.

Option Expressions and Option Bindings. Option expressions are logical
expressions on the option set. As shown in Fig. 3, there exist three categories
of option expressions: Option references target an existing option. Compound
expressions are used in order to combine option expressions (e.g., the negation
¬ is represented by NegExpr, the conjunction ∧ by AndExpr). Option expression
references re-use existing expressions in order to avoid their repeated duplication
(see Sect. 4).

Choices and ambitions appear as temporary data structures; they are
internally represented as option bindings, sets of entries binding an option to
a selection state. The enumeration Tristate defines the three states allowed
in three-valued logic. The value unbound indicates that no selection has been
performed for a specific option, which is only allowed within ambitions. Option
expressions may be evaluated with respect to a given option binding. This has
been realized by corresponding implementations of the operation evaluate in
the subclasses of OptionExpr. During evaluation, options are virtually replaced
by the bound tristate value. Table 3 shows how three-valued literals are com-
bined.

Table 3. Value table for three-valued logic and basic logical operators. Symmetric
cases have been omitted. Complex logical operators such as ⇒ are derived by laws of
propositional logic.

a b ¬a a ∧ b a ∨ b

true true false true true

true unknown false unknown true

true false false false true

unknown unknown unknown unknown unknown

unknown false unknown false unknown

false false true false false



Realizing the Integration of MDSE, SPLE and SCM 31

Fig. 4. Multi-version representation of ordered collections as directed graphs.

Ordered Collections. Ordered collections appear in several places in the prod-
uct space. A text file is a sequence of lines; furthermore, in case a multi-valued
structural feature is indicated as ordered in an Ecore metamodel, the order of
its instances should be preserved whenever possible. The metamodel for multi-
version ordered collections, shown in Fig. 4, is used in several concrete product
space metamodels.

The underlying design decision is to represent a single version of a collec-
tion as a linear directed graph, where succeeding elements are connected by an
edge. A corresponding multi-version representation in the repository may form
an arbitrary directed graph, whose vertex set and edge set are variable. Fur-
thermore, the vertices of a graph refer to occurrences of elements rather than to
elements themselves. In order to convert a multi-version collection into a single-
version representation (i.e., a list), this graph is linearized by a topological sort
algorithm. This problem is discussed in detail in [20] in the context of three-way
merging of ordered collections.

Fig. 5. Ecore class diagram for the metamodel of multi-version heterogeneous file sys-
tems.

Heterogeneous File Systems. The class diagram shown in Fig. 5 defines the
primary product space, heterogeneous file systems, which organize files and fold-
ers in a tree. The presented realization supports different file content types. As
one representative, EMF models are discussed below. In a similar way, support
for plain text files and XML files has been realized.

EMF Models. EMF models are structured in a specific way: A (single-version)
EMF resource contains a set of hierarchically organized objects. The state of each



32 F. Schwägerl et al.

Fig. 6. Simplified Ecore class diagram for the metamodel of the multi-version EMF
product space.

object is encoded in the specific values of its structural features, which are divided
up into attributes and references. For attribute values, primitive data values are
allowed. The values of references are links to existing objects. The metamodel in
Fig. 6 realizes the following design decisions with respect to multi-variant EMF
models:

(a) Unconstrained Variability: Each detail of an object may vary arbitrarily. For
this purpose, the meta-classes for structural features and their values extend
VersionedElement.

(b) Optionally Versioned Meta-data: The metamodel of the versioned model may
or may not be versioned itself. Classes and structural features are divided
up into the categories internal and external. Internal classes/features define
a reference to a co-versioned meta-object, while external classes/features
are identified by their package URI and class name, or their feature name,
respectively.

(c) Variable Object Classes: An object may be instance of different classes in
different versions. Therefore, the conformance relationship between objects
and their corresponding classes is expressed by an ordinary object link that
may vary among different versions. Technically, a multi-version EMF model
represents two modeling layers (model and metamodel) at the same modeling
level, which enables co-versioning of models and metamodels.

(d) Variable Object Containers: An object may have different containers in dif-
ferent versions. Thus, the containment hierarchy of objects inside a resource
is flattened.



Realizing the Integration of MDSE, SPLE and SCM 33

Furthermore, we assume a unique identifier (uuid) assigned to each object.
Attribute values are represented by string literals; reference values may be inter-
nal, by defining a link to an existing object, or external, by specifying a workspace-
global object URI. Variability among the order of multi-valued features is
achieved by an OrderedCollection (see above) that refers to instances of Value
that must be contained in the corresponding FeatureRef.

Revision Graphs. Revision graphs are realized as a version dimension com-
prising a directed graph of revisions, for which details such as the revision num-
ber, the commit date and message, as well as the username are recorded (see
metamodel in Fig. 7). In order to conceptually prepare three-way merging, a
revision may have multiple predecessors and successors. Furthermore, specific
references to low-level version space elements ensure that the mapping shown in
Table 2 may be realized. On instance level, the corresponding options and rules
are introduced transparently during the commit operation.

Fig. 7. Ecore metamodel for revision graphs in the repository.

Fig. 8. Ecore class diagram for the metamodel of multi-version feature models.



34 F. Schwägerl et al.

Feature Models. As mentioned above, the feature model plays a dual role.
Therefore, the corresponding class in the Ecore model in Fig. 8 extends both
ProductDimension and VersionDimension. A feature model arranges features
within a tree. Each feature is uniquely identified by its name. Multiple sibling
features may be arranged in either an AND or OR group. Furthermore, cross-tree
requires and excludes relationships are allowed. Since features, feature groups
and cross-tree relationships are subject to evolution, the corresponding classes
extend VersionedElement.

For each feature, a feature option is introduced transparently in advance to
a commit. Furthermore, the semantics of feature groups and cross-tree relation-
ships explained in Table 1 is enforced by links to corresponding rules, for which
the metamodel provides corresponding references.

3.2 Workspace and Local Synchronization

After having explained the repository, whose internals are not directly exposed
to the user, we now switch to workspace abstractions which allow the user to
communicate with the repository. First, we describe the realization of the meta-
data section of the workspace. Next, the synchronization between single- and
multi-version representation is explained. Last, mechanisms for product consis-
tency control are outlined.

Fig. 9. Simplified metamodel for workspace meta-data in Ecore class diagram repre-
sentation.

Workspace Meta-data. Workspace meta-data keep track of local modifica-
tions and allow to restore the previous state of the workspace during the commit
operation (see metamodel in Fig. 9). Meta-data comprise the current choice,
which has been used for the latest check-out operation, a reference to the repos-
itory, and a product descriptor, which is composed of specific dimension descrip-
tors, each referring to a product space dimension of the repository. We infor-
mally outline two specific subclasses of ProductDimensionDescriptor used for
the primary product space and for the feature model.

– The file system descriptor keeps track of the versioning state (added, removed,
modified, unmodified, non-versioned) of files and folders in the workspace. This
descriptor is invisible to the user.

– The feature model descriptor contains a copy the revision of the feature model
that has been selected in the previously specified choice. For the purpose of
its modification, an EMF-generated feature model editor is provided.



Realizing the Integration of MDSE, SPLE and SCM 35

Import and Export Transformations. Within the repository, the product
space is represented in a multi-variant representation. In order to make the
selected product version available for modification, it needs to be converted into
a specific single-version representation. The conversion between single-variant
and multi-variant products, and vice versa, is realized by two transformations,
namely import and export. For those, the core module provides an interface,
which needs to be implemented by each specific product dimension, e.g., for the
file system and for the feature model.

– The import/export transformation pair for the file system converts between
a physical file system and an instance of the metamodel shown in Fig. 5. The
operations are further divided up into specific resource types, i.e., plain text,
EMF, and XML. For instance, the EMF-specific export transformation maps
each multi-version object of the repository to a corresponding EObject in the
workspace, setting attribute and reference values accordingly. The flattened
containment links are converted back into a hierarchical object tree.

– The feature model in the workspace (see meta-data) is represented as an
instance of the multi-variant feature metamodel shown in Fig. 8. Therefore,
the import/export transformations correspond to the identity function.

Product Consistency Control. Multi-version models within the repository
are not restricted by single-version constraints and may therefore vary arbitrar-
ily. Version rules introduced in Sect. 2.2 cannot guarantee that the outcome of
the export transformation, i.e., the conversion between multi- and single-variant
representation, is syntactically correct. Thus, a mechanism for product consis-
tency control is required in addition.

For the purpose of conflict detection, we introduce an additional operation,
which has to be implemented by specific product dimensions. The validation
operation takes as input a filtered multi-version representation and returns a set
of conflicts, which forbid the transformation into a corresponding single-version
representation. It has been implemented for the file system and for the feature
model as follows:

– Once again, the validation of a multi-version file system is passed to resource-
specific validation operations. For multi-variant EMF models, generic con-
straints such as referential integrity, spanning containment hierarchy, type
correctness, and the cardinality of structural features are checked. In the case
of an ordered collection, a conflict is raised whenever a topological sort of the
corresponding collection graph (cf. Fig. 4) does not produce a unique result.

– For the feature model, the following constraints are enforced: unique root fea-
ture, unique parent feature, unique feature name, non-contradicting requires/
excludes relationships, and unique group membership.

After having detected conflicts, they must be resolved by the user, which
is not in focus of this paper. An approach to interactive conflict resolution is
described in [19] in the context of three-way merging of EMF models.



36 F. Schwägerl et al.

3.3 Realization of Check-Out and Commit

Below, we finalize our editing model sketched in Sect. 2.1 by detailing the opera-
tions check-out and commit. In the description below, we refer to the conceptual
framework presented in Sect. 2 as well as to local synchronization operations
defined in Sect. 3.2.

Check-Out

1. The user is prompted for a revision rc from the revision graph, by default
the latest revision. The derived revision choice is cr = r0 ∧ · · · ∧ rc ∧ ¬rc+1 ∧
· · · ∧ ¬rn.

2. The multi-version feature model is filtered by elements ef that satisfy the
revision choice (cr ⇒ v(ef )). The filtered feature model is exported into the
workspace and made available for modification.

3. The user performs a feature choice cf on the filtered feature model by speci-
fying a completely bound feature configuration. Options for invisible features
fi are automatically negatively bound: bi = ¬fi. The feature choice must be
strongly consistent according to the rule base: cf ⇒ Rf .

4. The effective choice c is calculated as the conjunction c = cr∧cf and recorded
within the meta-data section of the workspace.

5. The primary product space is filtered by selecting elements ep that satisfy the
effective choice (c ⇒ v(ep)). The filtered product space is validated ; in the case
of conflicts, the user is prompted for conflict resolution. Finally, the conflict-
free filtered product space is exported into the workspace and provided for
modification.

Modify

6. Between check-out and commit, the user may apply arbitrary modifications
to the primary product space and/or to the filtered feature model provided in
the local workspace. Model or non-model files within the workspace belonging
to the primary product space may be modified with arbitrary editors, e.g.,
GMF-based graphical or Xtext-based textual editors. For the modification of
the feature model, a generated EMF tree editor is provided, which ensures
single-version constraints, although the feature model itself is represented in
its multi-version metamodel.

Commit

7. The previous version of the product space is reproduced using the recorded
choice. The current state of the product space is obtained by applying
the import operation to the current workspace contents. Next, differences
between the previous and the current state of the product space are detected.
Updates are broken down to insertions and deletions of element versions.

8. A new revision option rn is added to Or transparently. The rule rn ⇒ rc is
added to Rr.



Realizing the Integration of MDSE, SPLE and SCM 37

9. Next, the user specifies an incomplete feature configuration af that delin-
eates the logical scope of the change. The feature ambition must be weakly
consistent according to the rule base: Rf ∧ af �= false. Furthermore, the
feature ambition must be implied by the feature choice: cf ⇒ af .

10. The applied modifications are written back under the effective ambition a.
For changes to the feature model, a = rn; for the primary product space, the
hybrid ambition a = rn ∧af is applied. Each modified element e is processed
as follows:
– Inserted elements eins are appended to the primary product space or to

the feature model, respectively. Their visibility is set to the ambition:
v(eins) := a.

– For re-inserted elements ereins, which have not been visible under c, the
visibility is modified as follows: v(ereins) := vold(ereins) ∨ a.

– Deleted elements edel remain in the repository. Their visibility is modified
accordingly: v(edel) := vold(edel) ∧ ¬a.

4 Optimization

The representation of the product space as a superimposition will inevitably
result in a growing memory consumption. Since revisions are immutable, product
space elements will never be effectively deleted from the repository. Furthermore,
the evaluation of the constantly growing visibilities will be noticeable in terms
of higher runtimes for check-out and commit. In this section, we present three
mutually independent optimizations for the implementation of the conceptual
framework, which significantly improve the scalability of the framework’s imple-
mentation. All three optimizations have been realized in the tool SuperMod [18].

4.1 Hierarchical Evaluation of Visibilities

As explained in Sect. 2.3, one of the few assumptions with respect to the product
space is that its elements are organized hierarchically. This inherently implies
two drawbacks:

– Duplication of Visibilities: The insertion of a tree of new elements under the
same logical ambition will result in multiple copies of the same visibility during
the application of Sect. 3.3, step 10.

– Consistency of Parent/Child Relationships: Many modeling frameworks includ-
ing EMF assume that non-root elements e existentially depend on their respec-
tive container element cont(e), if any. This constraint should be ensured in
any version described by the superimposition; conflicts may be avoided by
requiring that the child element’s visibility must imply the parent element’s
visibility: v(e) ⇒ v(cont(e)).

In order to compensate these drawbacks, we introduce the concept of effective
visibility veff of an element, which is defined by conjunction with the visibility
of its container element as follows:

veff (e) =
{

v(e) if e is a root element.
v(e) ∧ veff (cont(e)) otherwise. (20)



38 F. Schwägerl et al.

Furthermore, the visibility of an element is made optional ; in case an element
e does not define a visibility, we implicitly assume v(e) = true. This improvement
has been conceptually prepared in the core metamodel: In Fig. 2, the cardinality
of the reference visibility is 0..1.

The editing model shown in Sect. 3.3 is modified as follows: When a tree
of elements is inserted/removed in the workspace, only the corresponding root
element’s visibility needs to be updated during step 10.

Replacing visibilities with effective visibilities improves scalability for the
following reasons:

– Reduced Commit Runtimes: The above modification of the editing model sig-
nificantly reduces the number of elements to be processed by visibility updates
and therefore the entire runtime of a commit.

– Reduced Check-out Runtimes: Likewise, the number of visibilities to evaluate
during the filter operation, which is applied during a check-out, is reduced.
In case an element is filtered, all sub-elements must be filtered, too, removing
the necessity to evaluate their visibilities.

– Improved Consistency Control: The constraint v(e) ⇒ v(cont(e)) is ensured
automatically for each non-root element e.

4.2 Visibility Forests

Now, we discuss how the connection between product space elements and vis-
ibilities can be realized. One possibility would be to make an element directly
contain its visibility, which has two obvious drawbacks:

– Duplication of Visibilities: The insertion of a large set of new elements (not
necessarily connected by containment) under the same logical ambition will
result in repeated copies of the same visibility during the application of
Sect. 3.3, step 10.

– Repeated Evaluation of Equivalent Visibilities: During the filter operation,
the visibility of all product space elements is evaluated with respect to the
specified choice. However, many elements share an equivalent visibility. With-
out any optimization, the filter operation would repeatedly evaluate the same
visibility with respect to the same choice, causing additional runtime.

These drawbacks are removed by visibility forests, a global data structure
for the storage of visibilities, which has been conceptually prepared in the core
metamodel (cf. Fig. 2). Rather than subordinating an element’s visibility by
containment, a cross-reference is established between VersionedElement and
OptionExpr. This allows several elements to share the same visibility. Further-
more, option expression references (see Fig. 3) allow to re-use existing visibilities
in the case of element re-insertions or removals. By the mechanisms described
below, several hierarchies of interconnected visibilities are created, giving the
visibility forest its name.

The following modifications are applied to the editing model from Sect. 3.3:



Realizing the Integration of MDSE, SPLE and SCM 39

– Commit, step 10 : The visibility of an element is modified by adding corre-
sponding new entries to the visibility forest and re-using the old visibility
by means of expression references. The graph patterns presented in Fig. 10
describes how visibilities of inserted and deleted elements are updated. For
instance, in the case of an element deletion, the old visibility is re-used as the
first operand of an AndExpr, and the second operand consists of the negated
ambition. Both the old visibility and the ambition are connected by option
expression references, which ensure that these expressions may be re-used
within different visibilities. As a consequence, no duplicate visibility will ever
be inserted into the visibility forest.

– Check-out, steps 2 and 5 : The visibility forest ensures that equivalent visi-
bilities are represented by the same runtime object. Therefore, the runtime
object’s identity is used to cache the evaluation result (i.e., the Tristate
returned by evaluate, cf. Fig. 3) in a hash map. Before an element’s visibility
is actually evaluated, a lookup is performed. In the case of a match, the cached
result is returned.

Fig. 10. Object diagrams describing optimized visibility updates of newly inserted,
re-inserted and deleted elements in the visibility forest as graph patterns. It is assumed
that the ambition is passed as a parameter. In the case of a new insertion, the elements
shaded in grey are omitted.

4.3 Substitution of Ambition Expressions

The mechanism of writing back changes using an ambition results in correspond-
ing option expressions appearing in the visibility of all affected elements. These



40 F. Schwägerl et al.

expressions increase the size of the superimposition and/or the visibility forest,
regardless of whether hierarchical visibilities are used.

In order to reduce the size of serialized feature expressions, we propose to
introduce a third component to the option set and the rule base, namely change
options Δ ∈ OΔ and change rules ρΔ ∈ RΔ by redefining Eqs. 11 and 12 as
follows:

O = Of ∪̇ Or ∪̇OΔ (11′)

R = Rf ∪̇Rr∪̇RΔ (12′)

The change space is completely invisible to the user and used transparently
for optimization purposes. After a logical ambition af has been specified by the
user (cf. Sect. 3.3, step 9), the editing model is modified as follows:

1. A new change option Δ is introduced to OΔ.
2. The rule Δ ⇒ af is added to RΔ.
3. The change is committed to the repository under the ambition a′

f := Δ.

Besides improved commit runtimes, this optimization brings an additional
advantage: It becomes easer to modify a user-specified ambition a posteriori. In
case the user has specified an erroneous ambition, it is only necessary to correct
af in the rule base rather than in the visibility forest.

5 Related Work

In this paper, the implementation of the conceptual framework presented in [17]
has been presented. The design decisions explained here have been realized in
the research prototype SuperMod, which is presented in [18] from the user’s per-
spective. The conceptual framework itself is based on the uniform version model
(UVM) presented in [27]. UVM’s basic concepts (options, visibilities, version
rules) have been initially introduced in the context of change-oriented version-
ing (CoV ) [12].

A detailed comparison of approaches to pairwise integration of MDSE/SPLE,
MDSE/SCM, and SPLE/SCM, can be found in [17]. In the following, we confine
our comparison to tools that address both temporal and logical versioning.

With branches, traditional version control systems [2,3] offer logical variants
to a limited extent. Albeit, it is only possible to restore variants that have been
committed earlier (extensional versioning, see [4]). In contrast, our approach
allows to create new variants based on a predicate on variant options, i.e., feature
configurations (intensional versioning). This reduces the overhead of product
derivation considerably.

The tool EPOS-DB [12] is an implementation of CoV concepts at a low
level of abstraction when compared to our approach. Propositional formula are
exposed to the user directly, e.g., to specify choices and ambitions. The product
space is based on an EER (Enhanced Entity-Relationship) model, and is also
capable of versioning plain text files. In [12], a global storage for visibilities



Realizing the Integration of MDSE, SPLE and SCM 41

is introduced, which shares many conceptual similarities with visibility forests
discussed in this paper.

In [14], an approach for orthogonal version management is proposed. In the
version control tool VOODOO, a version cube is formed by product, revision,
and variant space. The user interface is capable of versioning a complete file
hierarchy, which may itself vary along all three dimensions. Albeit, the approach
does not consider that the variant space may be subject to temporal evolution.

The commercial SCM system Adele [5] has logical variants built into its
object-oriented data model as symmetric deltas, which are exposed to the user.
Temporal variability is realized by a versioning layer on top, which relies on
directed deltas. Thus, logical and temporal versioning are not integrated at the
same conceptual level.

In [28], an approach to unified versioning based on feature logic is presented.
In the version control system ICE, versions of artifacts (i.e., text files) are stored
with selective deltas; visibilities are controlled by feature-logical expressions.
Constraints on feature combinations are expressed by version rules, which are
enforced by means of unification. The editing model slightly differs from the app-
roach presented in this paper: The user performs only a partial version selection.
As a consequence, the workspace may still contain variability, which is exposed
to the user in the form of C preprocessor directives [10]. Concurrent changes are
orchestrated by means of a pessimistic versioning strategy, i.e., write locks.

In [26], an approach to filtered (projectional) editing of multi-variant pro-
grams is described. The motivation is a reduction of complexity gained by hid-
ing variants not important for a specific change to a multi-variant model. As
in our approach, visibilities are managed automatically. Conversely, the restric-
tion of a completely bound choice does not exist since the user operates on a
partially filtered product, which still contains variability. Temporal versioning is
not addressed by the approach presented in [26].

In the field of SPLE, there exist several approaches to partially apply fil-
tered editing to software product lines. These approaches can be considered as a
conceptual extension to multi-version editors [16]. The source-code centric tool
CIDE (Colored IDE ) [9] generalizes preprocessors using a colored representa-
tion to distinguish features. The changes performed in a filtered view may only
affect the selected feature or variant, i.e., choice and ambition must be equal.
The MDPLE tool Feature Mapper [7] offers the possibility of change record-
ing during domain engineering. However, only insertions are recognized while
recording.

6 Conclusion

We have described the model-driven realization of a conceptual framework [17]
that integrates MDSE, SPLE and SCM. The framework defines an editing model
that is oriented towards version control metaphors and uses the operations check-
out and commit in order to make a single-version workspace communicate with a
multi-version repository. In addition to revision graphs, which manage temporal



42 F. Schwägerl et al.

variability, feature models and feature configurations are used in order to define
logical variability and the logical scope of a change. With respect to the reposi-
tory’s architecture, the presented implementation is highly configurable. In this
paper, we have focused a three-layered approach, where a revision graph is used
to control the evolution of a feature model and a primary product space, which
may consist of arbitrary model- or non-model resources. The feature model plays
a dual role since it is also used as an additional variability model.

The conceptual framework is based on a uniform version model, which builds
upon the formalisms of set theory and propositional logic. The static structure
of the framework’s core is defined by a basic metamodel that abstracts from
concrete product and version dimensions. On top of the core metamodel, the
model-driven realization of the tool has been presented by means of several con-
crete extending metamodels, e.g., for the revision graph, for the feature model,
and for the heterogeneous file system. The operations check-out and commit have
been fully specified. Last, we have presented three optimizations that increase
the scalability of our approach: hierarchical visibilities, visibility forests, and
substitution of ambition expressions.

Future work will address the realization of a multi-user component, which
requires a mechanism to synchronize multiple, remotely distributed copies of a
repository. This extension will advance our prototype SuperMod [18] to a full-
fledged distributed version control system. Furthermore, conflict resolution still
needs to be improved, especially with regard to collaborative versioning. For
evaluation purposes, we are planning a case study of industrial scale, which will
allow for a quantitative comparison with related SPLE and SCM approaches.

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inf. Syst. (IJWIS) 5(3), 271–304 (2009)

2. Chacon, S.: Pro Git, 1st edn. Apress, Berkely (2009)
3. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-

version. O’Reilly, Sebastopol (2004)
4. Conradi, R., Westfechtel, B.: Version models for software configuration manage-

ment. ACM Comput. Surv. 30(2), 232–282 (1998)
5. Estublier, J., Casallas, R.: The Adele configuration manager. In: Tichy, W.F.

(ed.) Configuration Management, Trends in Software, vol. 2, pp. 99–134. Wiley,
Chichester (1994)

6. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Addison-Wesley, Boston (2004)

7. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to mod-
els. In: Companion Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), pp. 943–944. ACM, New York, May 2008

8. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute, November 1990



Realizing the Integration of MDSE, SPLE and SCM 43

9. Kästner, C., Trujillo, S., Apel, S.: Visualizing software product line variabilities in
source code. In: Proceedings of the 2nd International SPLC Workshop on Visual-
isation in Software Product Line Engineering (ViSPLE), pp. 303–313, September
2008

10. Kernighan, B.W.: The C Programming Language, 2nd edn. Prentice Hall Profes-
sional Technical Reference, Upper Saddle River (1988)

11. Laguna, M.A., Crespo, Y.: A systematic mapping study on software
product line evolution: from legacy system reengineering to prod-
uct line refactoring. Sci. Comput. Program. 78(8), 1010–1034 (2013).
http://dx.doi.org/10.1016/j.scico.2012.05.003

12. Munch, B.P.: Versioning in a Software Engineering Database – The Change Ori-
ented Way. Ph.D. thesis, Tekniske Høgskole Trondheim Norges (1993)

13. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations Principles and Techniques. Springer, Berlin (2005)

14. Reichenberger, C.: VooDoo a tool for orthogonal version management. In:
Estublier, J. (ed.) ICSE-WS/SCM 1993/1995. LNCS, vol. 1005, pp. 61–79.
Springer, Heidelberg (1995)

15. Rochkind, M.J.: The source code control system. IEEE Trans. Software Eng. 1(4),
364–370 (1975)

16. Sarnak, N., Bernstein, R.L., Kruskal, V.: Creation and maintenance of multiple
versions. In: Winkler, J.F.H. (ed.) SCM. Berichte des German Chapter of the
ACM, vol. 30, pp. 264–275. Teubner (1988)

17. Schwägerl, F., Buchmann, T., Uhrig, S., Westfechtel, B.: Towards the integration
of model-driven engineering, software product line engineering, and software con-
figuration management. In: Hammoudi, S., Pires, L.F., Desfray, P., Filipe, J. (eds.)
Proceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2015), pp. 5–18. SCITEPRESS Science
and Technology Publications, Portugal (2015)

18. Schwägerl, F., Buchmann, T., Westfechtel, B.: SuperMod – a model-driven tool
that combines version control and software product line engineering. In: Pro-
ceedings of the 10th International Conference on Software Paradigm Trends
(ICSOFT-PT). SCITEPRESS Science and Technology Publications, Portugal,
Colmar, France (2015, to be published, accepted for publication)

19. Schwägerl, F., Uhrig, S., Westfechtel, B.: Model-based tool support for consistent
three-way merging of EMF models. In: Proceedings of the workshop on ACadeMics
Tooling with Eclipse, ACME 2013, pp. 2:1–2:10. ACM, New York (2013)

20. Schwägerl, F., Uhrig, S., Westfechtel, B.: A graph-based algorithm for three-
way merging of ordered collections in EMF models. Science of Computer Pro-
gramming (2015, in press, accepted manuscript). http://www.sciencedirect.com/
science/article/pii/S0167642315000532

21. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Upper Saddle River
(2009)

22. Vanbrabant, R.: Google Guice: Agile Lightweight Dependency Injection Framework
(Firstpress). APress, New York (2008)

23. Vesperman, J.: Essential CVS. O’Reilly, Sebastopol (2006)
24. Völter, M., Groher, I.: Product line implementation using aspect-oriented and

model-driven software development. In: Proceedings of the 11th International Soft-
ware Product Line Conference, SPLC 2007, pp. 233–242. IEEE Computer Society,
Washington, DC (2007). http://dx.doi.org/10.1109/SPLC.2007.28

http://dx.doi.org/10.1016/j.scico.2012.05.003
http://www.sciencedirect.com/science/article/pii/S0167642315000532
http://www.sciencedirect.com/science/article/pii/S0167642315000532
http://dx.doi.org/10.1109/SPLC.2007.28


44 F. Schwägerl et al.

25. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester (2006)

26. Walkingshaw, E., Ostermann, K.: Projectional editing of variational software.
In: Generative Programming: Concepts and Experiences, GPCE 2014, Vasteras,
Sweden, 15–16 September 2014, pp. 29–38 (2014). http://doi.acm.org/10.1145/
2658761.2658766

27. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform ver-
sion management. IEEE Trans. Softw. Eng. 27(12), 1111–1133 (2001)

28. Zeller, A., Snelting, G.: Unified versioning through feature logic. ACM Trans.
Softw. Eng. Methodol. 6(4), 398–441 (1997)

http://doi.acm.org/10.1145/2658761.2658766
http://doi.acm.org/10.1145/2658761.2658766


http://www.springer.com/978-3-319-27868-1


	Realizing a Conceptual Framework to Integrate Model-Driven Engineering, Software Product Line Engineering, and Software Configuration Management
	1 Introduction
	2 The Conceptual Framework
	2.1 Overview
	2.2 Version Space
	2.3 Product Space

	3 Model-Driven Realization
	3.1 Metamodels for the Repository
	3.2 Workspace and Local Synchronization
	3.3 Realization of Check-Out and Commit

	4 Optimization
	4.1 Hierarchical Evaluation of Visibilities
	4.2 Visibility Forests
	4.3 Substitution of Ambition Expressions

	5 Related Work
	6 Conclusion
	References


