
Early Playout Termination in MCTS

Richard Lorentz(B)

Department of Computer Science, California State University,
Northridge, CA 91330-8281, USA

lorentz@csun.edu

Abstract. Many researchers view mini-max and MCTS-based searches
as competing and incompatible approaches. For example, it is generally
agreed that chess and checkers require a mini-max approach while Go
and Havannah require MCTS. However, a hybrid technique is possible
that has features of both mini-max and MCTS. It works by stopping
the random MCTS playouts early and using an evaluation function to
determine the winner of the playout. We call this algorithm MCTS-EPT
(MCTS with early playout termination) and study it using MCTS-EPT
programs we have written for Amazons, Havannah, and Breakthrough.

1 Introduction

Monte-Carlo Tree Search (MCTS) differs from “classical” mini-max game-tree
search in two major ways. First, no evaluation function is needed in MCTS.
Instead, the random playouts in the MCTS act as a kind of sampling of the
possible outcomes from various board positions, which in turn can be used to
rate (evaluate) these different positions. Also, MCTS builds the search tree so
that more promising lines of play are more thoroughly explored in the tree than
less promising ones. As a result, we have learned that MCTS can drastically
outperform mini-max based search engines in games where evaluation functions
are difficult to obtain, and especially in games with large branching factors [1,2].

A hybrid approach to MCTS is possible, however. Instead of allowing the
random playout to run until the end of the game we can instead terminate the
playout early and then apply an evaluation function to the position to determine
which side is likely to win. We call this approach MCTS with early playout
termination (MCTS-EPT, or simply EPT). A number of successful programs
have been written using EPT. See, for example, [5–7,9].

We have written EPT programs that play the games of Amazons, Break-
through, and Havannah and we will refer to them as Amabot, Breakbot,
and Havbot. Amabot was originally written using mini-max techniques and,
playing under the name Invader, was one of the top Amazons programs at
the Computer Olympiads from 2001–2005 [11], but never finished in first place.
After converting from mini-max to EPT, Amabot has won each of the last five
Computer Olympiads it has entered.

Breakbot is a more recent program. In contrast to Amabot, it was origi-
nally written as an MCTS program and then was migrated over to the MCTS-
EPT approach. The pure MCTS version played a fairly average game, whereas
c© Springer International Publishing Switzerland 2015
A. Plaat et al. (Eds.): ACG 2015, LNCS 9525, pp. 12–19, 2015.
DOI: 10.1007/978-3-319-27992-3 2



Early Playout Termination in MCTS 13

the EPT incarnation is very strong, being one of the top 3 players on the Little
Golem game-playing Web site [10], where it plays under the name Wanderer.

Havbot was also originally pure MCTS [8] that has recently been converted
to EPT. Havbot was also a moderately strong MCTS program, but is only
slightly stronger using EPT. Like Breakbot, Havbot also plays under the
name Wanderer. It has played in a number of Computer Olympiads and also
plays on the Little Golem Web site.

Though creating an EPT program is straightforward, we will explain in detail
(1) the requirements and difficulties of producing a strong EPT program from the
perspective of our success with Amabot and Breakbot and (2) our difficulties
with Havbot.

2 History

We begin with a brief history of our research into MCTS-EPT. By 2007 Amabot
had performed well in a number of Computer Olympiads, but had never managed
to win one. Johan de Koning’s program, 8qp, was the five-time winner of the
event and we could not seem to reach its level of play. Also in 2007 the MCTS
revolution was in full swing, so we wondered what MCTS could offer us beyond
what our mini-max program was providing. The mini-max program was using
a sophisticated evaluation function so we had little hope that MCTS would be
able to achieve the same level of play without using all the knowledge that was
available to the evaluation function. Unknown to us at the time, Julien Kloetzer
was doing the same research under the guidance of Hiroyuki Iida [5]. As it turns
out we independently came to the same conclusion, namely, random playouts
were insufficient. We needed to use the large amount of knowledge that was
coded in the evaluation function. We also both discovered that the evaluation
function can best be used as EPT rather than, say, to help guide the random
playouts. In the case of Amabot, we were ultimately able to achieve a win rate of
80 % using EPT over the mini-max based program. We then went on to win the
next five Computer Olympiads using EPT. We believe Kloetzer’s program had
the potential for similar results, but he did not have the luxury of a pre-existing,
strong evaluation function, leaving him at a disadvantage.

In 2009, motivated in part by the “Havannah Challenge” [12], a number of
projects began to develop an Havannah playing program, including our Havbot
project. Havannah seemed to be a perfect candidate for MCTS because of its
high move branching factor, its very large state space, and the fact that a good
evaluation function seems very hard to find. With but one exception, all known
Havannah playing programs use MCTS. The one exception is a mini-max based
program written by the talented game programmer Johan de Koning. The one
time he entered it in the Computer Olympiad it lost every game it played against
the other two programs, providing strong evidence that MCTS is the approach
of choice.

However, progress in Havannah programming has not progressed as we might
have hoped. Though the top programs do play at a reasonable level, about the



14 R. Lorentz

level of somebody who has played the game for 6 months or a year, they still
play with a very unnatural style, and often win their games by virtue of tactical
shots missed by the human opponent. Our feeling is that Havannah programs
cannot be expected to play at an elite level until they learn to play a more
natural, human-like game. Towards this end, we have retooled Havbot to use
EPT. Evidence is still inconclusive, and more details will be provided below,
but we feel that its current style of play is more natural and has the potential
to improve to noticeably higher levels of play. It currently beats the mini-max
version of Havbot about 60 % of the time.

Breakbot, like Havbot, was written initially using MCTS but we fully
expected to transition to EPT. As was the case with the MCTS version of
Amabot, without an evaluation function it’s level of play languished in the low
intermediate range. With the introduction of EPT it’s level rose considerably
and quickly, where after quite a bit of work, it is, at the time of this writing,
the third highest rated player on Little Golem, and the second highest rated
active player. The evidence that Breakbot with EPT outperforms MCTS is
convincing. What is not quite so obvious is if it is better than mini-max based
programs. The evidence we have to support this viewpoint is that there are two
other programs playing on Little Golem, both of them are mini-max based, and
Breakbot has won the majority of the encounters, though against the stronger
of the two, Luffybot, all of the games have been very close. We may conclude
that EPT stands up well against mini-max and even though many of the games
have been close, Breakbot ultimately outperforms the mini-max based ones.

3 Details

We now consider implementation details for MCTS-EPT. Our conclusions con-
cerning these details are drawn from many years of experimenting (beginning in
2007) with the three different programs across two different playing situations
(real time as played in the Computer Olympiads and very slow as played on the
turn-based Web site Little Golem). As such some features seem to span most
EPT situations while others apply to more specific settings.

3.1 Blending Mini-Max and EPT

It would seem natural that certain phases of a game would lend themselves to
mini-max analysis while others to EPT. In fact, for many years Amabot was
written so that EPT was used throughout the majority of the game, and then
switched over to mini-max near the end. Evidence seemed to indicate that the
breadth-first nature of mini-max was superior near the end of the game because
it would be less likely to miss a tactical shot that EPT (and MCTS in general)
might miss because EPT had gotten stuck on a “good” line of play and did not
have the time to find a better move. This, of course, is a general problem with
MCTS, and can be fatal near the end game when a missed winning line or a
failed proper defence can quickly and permanently turn a game around.



Early Playout Termination in MCTS 15

We now believe this is not true for two reasons. First, it is easy to incorporate
solvers into MCTS, and therefore EPT, by propagating wins and losses up the
MCTS tree in the usual and/or fashion. The advantage of being able to prove
nodes outweighs anything lost by the tendency of MCTS to get stuck on a
suboptimal line of play. Further, the solver can accelerate the exit from a bad
line of play because winning and losing positions propagate immediately up the
tree rather than requiring many simulations to reach the same conclusion.

Secondly, it is simply the case that the strengths of MCTS extend well to all
aspects of the game. A good example is seen when dealing with defective territory
in Amazons, a problem that turns up near the end of the game. This has always
been a bit of a sticky issue with programs because the overhead necessary to deal
with defects, typically done either by using patterns or other computationally
expensive procedures in the evaluation function, does not seem to be worth
the cost. In the case of EPT, however, defective territory is easily detected. In
the presence of defective territory the MCTS tree accurately assesses the defect
because the random playouts show that the territory cannot be properly filled.
As a result, Amabot has not used any mini-max and has been exclusively an
EPT program for the last 5 years.

3.2 Progressive Widening

It is usually necessary to assist EPT by focusing on promising moves above
and beyond what the MCTS rules suggest. In nodes with very few visits it can
be difficult to distinguish among the many children. Two apparently different
techniques have been developed that accomplish essentially the same thing. Pro-
gressive widening restricts access to nodes with low evaluation values and low
visit counts and gradually phases them in as the parent node gets more visits
[4]. Alternatively, node initialization (sometimes referred to as priors [3]) ini-
tializes the win and visit counts of nodes at the time of their creation with win
values that reflect the strength of the node, again determined by the evaluation
function.

In all three of our programs we have seen that it is necessary to use one of
these techniques. In the case of Amabot, progressive widening is used. In fact,
since Amabot possesses such a mature and accurate evaluation function and
since Amazons allows so many legal moves, especially in the early parts of the
game, we push progressive widening a bit further and do some forward pruning.
Amazons positions can have more than 2000 legal moves. When building the
EPT tree, we evaluate all possible children of a node and only put the top 750
in the tree and then from these we proceed with the usual progressive widening.

With Havbot and Breakbot we use the evaluation function to initialize
win values in new nodes. Considerable tuning is necessary to find good initial
values because, as is so common with MCTS related algorithms, we must find the
proper balance so that the tree grows without inappropriate bias. In all three
cases the winning advantage when using these techniques is significant, being
over 75 %.



16 R. Lorentz

3.3 When to Terminate

Certainly a fundamental question is: when should the playout be terminated.
The longer we delay the termination the more the behavior is like pure MCTS
while sooner terminations put added emphasis on the evaluation function. We
were surprised to find that in all three of our programs the optimal termination
point was quite early and nearly at the same point in all three cases, namely,
after around five moves. When the evaluation function is known to be quite
reliable, as is the case with Amabot, and to a lesser extent Breakbot, it is not
too surprising that an earlier termination should be preferred since additional
random playouts before evaluating will only dilute the effect of the evaluation.
However, in the case of Havbot, where the evaluation is still very much a work
in progress and can be quite undependable, the optimal termination point is still
about the same and later termination points degrade its behavior at a rate quite
similar to what is observed in Amabot. In essence, it appears that even a weak
evaluation function can compare favorably with a long random playout.

But what about termination points that are shorter than the optimal value?
Since all three programs show similar results, let us focus on Breakbot. Though
it stands to reason that shorter termination points might outperform longer ones
when these termination points are reasonably large, it is not immediately obvious
why the optimal value is not 1 or 0.

Consider Fig. 1 where we show the results of Breakbot playing as white
against 4 other versions that were modified to have different termination points.
Terminating after four random moves is optimal. Delaying the termination point
beyond the optimal quickly degrades the performance and it is a bit surprising
just how quickly it degrades.

Termination Winning result
1 33%
4 43%
6 27%
12 10%

Fig. 1. Playout termination points in Breakbot.

But of particular interest is the first row that clearly shows that only 1
random move is not as good as 4. The values for 2 and 3 random moves degraded
roughly uniformly. Why is it the case that a few random moves actually improve
performance?

To help us understand this phenomenon we ran hundreds of games where
at every position a move was generated by two versions of Breakbot, with
termination points of 4 and 1. We found that on average the different versions
disagreed on the best move about 12 times per game, where the average length
of a game is 55 moves. It is important to point out, however, that a similar test
performed on two copies of the same version of Breakbot (with termination



Early Playout Termination in MCTS 17

point 4) still disagreed an average of 7 times per game, simply because of the
random nature of EPT. In general, this suggests that about 5 times a game,
or roughly 10 % of the time, the termination-1 version selects a move that the
termination-4 version probably would not, and presumably more often than not
this is a weaker move. Visual examination of these moves, however, generally
does not reveal major blunders. Rather, when differences are detectable at all,
they are small and subtle. Of course, five minor mistakes a game is certainly
sufficient to cause the observed drop in winning percentage.

But it is difficult to provide a definitive explanation as to exactly what causes
these roughly five aberrations per game. Why would fewer random moves in a
playout hinder performance? Observational evidence suggests it boils down to
a trade off between the advantages of a deep evaluation and disadvantages of
losing information from the randomness of a playout. In general, an evaluation
near the end of the game is more reliable than one earlier on but after too many
random moves a position may lose the essence of the starting position. We search
for a happy medium where a few random moves take us closer to the end of the
game, without having the random moves degrade the information too much. For
all three games we are studying this cutoff seems to be around 4 or 5.

Related to this, we should mention the concept of improving the random
playouts. This, of course, is an important technique for an MCTS program and
is certainly one of the major reasons MCTS programs are so successful. In the
case of EPT it appears to be of little or no help. On the one hand it is not too
surprising given that the random playouts are only 4 or 5 moves deep, but on
the other hand given how important it is for MCTS, we thought we could get
some improvement in our programs by improving the playouts. Despite consid-
erable effort on all three programs, we have never been able to demonstrate any
advantage by introducing smart playouts.

Finally, we point out that in a game like Amazons the evaluation function
can vary wildly depending on whose move it is. This is sometimes referred to
as the parity effect. The evaluation function tends to heavily favor the player
to move. To help stabilize EPT we can modify the random playouts so that
they always terminate with the same player to move. In the case of Amazons
we terminate the playout after either 5 or 4 moves, accordingly. This produces
some small advantage in the case of Amabot, but in the cases of Havabot and
Breakbot, where the evaluations do not display such a strong parity effect,
adjusting the playouts this way does not seem to have any effect.

3.4 Miscellaneous

In this section we summarize a few other observations and techniques that we
consider important.

It is generally the case that MCTS programs prefer to record wins and losses
at the end of their playouts, rather than trying to somehow keep track of the
margin of victory. We find the same is true with EPT. Rather than somehow use
the value of the evaluation function, we have always obtained the best results



18 R. Lorentz

by simply treating the evaluation as a boolean function, reporting either a win
or a loss.

In Sect. 3.1 mention was made of the fact that EPT, as well as MCTS, can get
stuck on a bad move simply because there is not enough time for the refutation
of this weak move to achieve sufficient visits. Even though this seems like a
problem mainly for real-time play, we find the problem carries over even for
turn-based play where we sometimes allow as much as 15 min of thinking time.
This problem can occur anywhere in the tree, but we have found that if we
deal with it specifically at the root, we can get better results. What we do is
we increase the exploitation constant only at the root so that exploration is
encouraged, allowing more moves to be considered. Specifically, since all of our
EPT programs are UCT based, we simply increase the UCT constant, typically
by a factor of around 6. It does not make sense to uniformly change the UCT
constant by this amount because the constant has already been optimized. But
changing it only at the root has the very real effect of possibly allowing a move
to be considered that might otherwise have been ignored. We have not been
able to prove an advantage quantitatively, but we have seen quite a few cases of
games on Little Golem where moves were found that were clearly better than
those found without the adjustment while the reverse has yet to be observed.
This technique, as well as the next, would probably apply to MCTS programs
as well.

In the case of Breakbot we had to deal with the situation that early cap-
tures are almost always bad. We found no satisfactory way to deal with this in
the evaluation because a capture by the first player usually requires a recapture
by its opponent, so it balances out in the evaluation. Attempts to recognize the
bad exchange after the fact in the evaluation had too many undesirable side
effects. Our solution was to deal with this in the move selection process of the
MCTS part of the search. Whenever a move was being selected for traversal or
expansion in the MCTS tree, if it was a capture we hand tuned a penalty value
for its winning percentage. This penalty is a function of (1) the stage of the game
(early, middle, or late) and (2) the depth in the tree in which the move is being
considered. This proved to be a successful way to deal with a problem that we
were unable to deal with in the evaluation.

4 Conclusions

We have had considerable success with MCTS-EPT in games with a variety
of features. Amazons is a game with a fairly large branching factor but it does
allow for very precise and sophisticated evaluation functions. Still, EPT Amabot
outperforms all mini-max based programs. Not only does Amabot do well in
real-time play but it has played a number of games against some of the strongest
players on turn based Little Golem and has never lost.

Breakthrough has a smaller branching factor but evaluation functions tend
to be rather primitive. Not many programs exist that play Breakthrough, but
of the two we are aware of (both play on the Little Golem site), we know that
both are mini-max based, and both have losing records to Breakbot.



Early Playout Termination in MCTS 19

Havannah is a game, like Go, that has no strong mini-max based programs
and not until the MCTS revolution did any reasonable programs exist. The
three strongest Havannah playing programs all play on Little Golem and, though
maybe slightly weaker than the other two, the MCTS version of Havbot plays
a very similar game to the other two. Even though the evaluation function for
Havbot is still quite primitive the program is making some promising looking
moves and is outperforming its MCTS counterpart. As the evaluation continues
to improve we feel there is great potential for this program.

As a side note, Amabot and Breakbot are now so strong that progress
comes very slowly. When deciding if a modification is an improvement sometimes
simply running test games is not sufficient. If the tests are inconclusive, we must
be ready to allow human intervention. How do the moves look to us? Do they
seem to improve on the older version moves? How often do the moves look
worse? We must be willing to make decisions based on answers to these kinds of
questions, especially in the setting of turn based play, where results come at an
agonizingly slow pace.

References

1. Browne, C., Powley, D., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, C.: A survey of monte carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–49 (2012)

2. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
In: 5th International Conference on Computers and Games, CG 2006, Turin, Italy,
pp. 72–84 (2006)

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In:
Ghahramani, Z. (ed.) Proceedings of the 24th International Conference on Machine
Learning (ICML 2007), pp. 273–280. ACM, New York (2007)

4. Chaslot, G.M.J.-B., Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M.,
Bouzy, B.: Progressive strategies for monte-carlo tree search. New Math. Nat. Com-
put. 4(3), 343–357 (2008)

5. Kloetzer, J., Iida, H., Bouzy, B.: The monte-carlo approach in amazons. In: Com-
puter Games Workshop, Amsterdam, The Netherlands, pp. 113–124 (2007)

6. Lorentz, R.J.: Amazons discover monte-carlo. In: van den Herik, H.J., Xu, X.,
Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer,
Heidelberg (2008)

7. Lorentz, R., Horey, T.: Programming breakthrough. In: van den Herik, H.J., Iida,
H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 49–59. Springer, Heidelberg
(2013)

8. Lorentz, R.: Experiments with monte-carlo tree search in the game of havannah.
ICGA J. 34(3), 140–150 (2011)

9. Winands, M.H.M., Björnsson, Y.: Evaluation function based monte-carlo LOA. In:
van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 33–44.
Springer, Heidelberg (2010)

10. http://www.littlegolem.net/jsp/index.jsp
11. http://www.grappa.univ-lille3.fr/icga/program.php?id=249
12. Havannah#The Havannah Challenge. https://chessprogramming.wikispaces.com/

http://www.littlegolem.net/jsp/index.jsp
http://www.grappa.univ-lille3.fr/icga/program.php?id=249
https://chessprogramming.wikispaces.com/


http://www.springer.com/978-3-319-27991-6


	Early Playout Termination in MCTS
	1 Introduction
	2 History
	3 Details
	3.1 Blending Mini-Max and EPT
	3.2 Progressive Widening
	3.3 When to Terminate
	3.4 Miscellaneous

	4 Conclusions
	References


