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Abstract. The online recommendation service has a wide range of
usages for the various applications of Telecommunication companies. For
such applications, the user base is usually tremendous with a variety of
user characteristics and habits. Therefore, it is a challenge to achieve the
high click through rate (CTR) for the online recommendations. In this
paper, we proposed an approach of combining the technologies of ensem-
ble trees and logistic regression (LR). The ensemble trees are effective in
capturing the joint information of different features, which are then used
by the LR scheme. In addition, to deal with the scalability issues, we
implemented our system with both Apache Storm (for real-time predic-
tion and classification) and Apache Spark (for fast off-line model train-
ing). A group of experiments were carried out with real-world data sets
and the results show the efficiency and effectiveness of our proposed
approach.

1 Introduction

With the rapid development of mobile Internet, intelligent terminal, cloud com-
puting and Internet of things, Telecommunication industry has experienced a
substantial increase in traffic volume and data intensity. Take China Telecom
as an example, it has a bunch of systems, e.g. Customer Relationship Man-
agement (CRM), Business Intelligence (BI), Business and Operation Support
System (BOSS), etc., which have recorded more than 0.75 billion pieces of user
interaction information, and this number keeps increasing every day. In fact,
these meta data contains very rich and valuable information related to the cus-
tomers, such as the customer profile, call detail records (CDRs), web-surfing
traffics, usage of data services, usages of intelligent terminals and so on. In this
sense, China Telecom is surely facing the big data challenges, as known as “4V”:
volume, variety, value and velocity.

In Telecommunication industry, the primary use of these meta data is for del-
icacy traffic management. The commercial values of the big data applications are
reflected in two aspects: (a) have a deeper understanding of customer behaviors;
and (b) help on calibrated-marketing [1].
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For (a), since there is a large amount of customers’ terminal information,
their web surfing records of mobile devices, and other related meta data, the
traditional approach is to establish the calibrated classification model for cus-
tomers. With the help of deep packet inspection (DPI) technology, it is able
to labeling the different groups of customers based on their online behaviors,
which helps the service providers to obtain the complete customers’ “portraits”
and get a thorough understanding of customers’ personal preferences and needs.
The outcome of (a) is then utilized for advertizement and establishing the pre-
cise matching between the customers and the service packages, terminal device
types and so on; and also for satisfying the customized user demands.

However, it is still a challenge how to properly use these data for delicacy
traffic management. For example, when a customer logins the online business
office of a Telecom company, how can we make prediction on his/her behaviors,
i.e., whether or not to click on those links which are produced by the online
recommendation algorithm?

This is actually a classification problem which needs real-time processing.
The target is to find out what users are most likely interested in a very short
time period. There are a good number of state-of-art approaches with acceptable
performance proposed. Out of these, the approach which combines the ensemble
trees and the probabilistic sparse linear classifier is the most suitable one for
achieving our purpose.

However, all these approaches involves the model training phase, which is too
time-consuming to meet the low latency requirement for the online recommenda-
tion systems. Therefore, in our design and implementation, we make the system
into two separate modules, the offline data training, and the online recommen-
dation, which can definitely run in parallel. We observe that the new features
generated by the combined model earns higher AUC measure.

As the data volume is huge, in order to process as quick as possible, we choose
to use Apache Spark, a Lightning-fast cluster computing engine for dealing with
the offline data training module. However, due to the rigorous constraints on the
response time of the online recommendation module, we choose to use Apache
Storm for this module. Some other popular systems like Hadoop and Spark
streaming are not taken into consideration because of their long processing delay
for the inputs.

The paper is organized as follows. In Sect. 2, we begin with discussing the
related work about CTR prediction. In Sect. 3, we describe the proposed algo-
rithms. We introduce the implementation details in Sect. 4, and the experimental
settings and results in Sect. 5. Section 6 concludes the work.

2 Related Work

In the machine learning research community, the CTR (click through rate) pre-
diction problem is becoming more and more important. Recently, many peo-
ple have proposed different models and methodologies for CTR prediction. For
example, Neter et al. [2] proposed to use logistic regression, Richardon et al. [3]
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and Graepel et al. [4] proposed to train the standard classifiers based on con-
catenation of the user and the ad features. Some other researchers suggested
models which use prior knowledge like the inherent hierarchical information in
log-loss models [5] or LR models [6]. In [7], Menon et al. used a matrix factor-
ization approach without utilizing the user features. In [8], Yan et al. proposed
a coupled group lasso (CGL) model to integrate the conjunction information
from the user as well as the ad features. In [9], Stern et al. raised a probabilistic
model which used user and item features together with collaborative filter infor-
mation. It mapped user and item features into lower dimensions and use inner
product to measure the similarity. In [10], the authors proposed a method which
use boosted decision trees to transform all the features to binary values which
were used for LR training. However, only use the transformed features may lose
important information for the classifier. Because LR model is easy to implement,
it is now becoming one of the most popular models for CTR prediction problem.
However, LR is a linear model, where the contribution made by the input fea-
tures to the final prediction results are independent. In consequence, it cannot
capture the underlying connections among features. Better performance can be
achieved by applying the ensemble trees to capture the underlying connections
among features, which is then used for the LR training.

3 Algorithm Description

This section proposes a combined model structure: the concatenation of ensemble
trees and a probabilistic sparse linear classifier. In the following, we will introduce
how we combine the two schemes properly.

When transforming the input features to improve the accuracy of a linear
classifier, there are two possible ways [10]: (a) group the continuous features into

Fig. 1. The overview of the hybrid approach.
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discrete bins, and (b) build tuple features. In the former case, the bin index was
treated as a categorical feature from which the linear classifier can learn a piece-
wise constant non-linear map. In the latter case, the Cartesian product of the
categorical features and the joint binning of the continuous features is calculated
to build the tuple features which are later useful for the linear classifier.

As is known that the ensemble trees scheme can realize both (a) and (b) dis-
cussed above, therefore it is a powerful and convenient tool to transform features
of the linear classifiers.x In an ensemble tree, each individual subtree is treated
as a categorical feature which is the index of the leaf node where an instance ends
up. For example, consider the ensemble trees in Fig. 1. It has 2 subtrees. The left
subtree has 4 leaf nodes while the right one has 3 leaf nodes. If an instance ends
up at the third leaf node of the left subtree and the first leaf node of the right
subtree, the result new feature produced by the ensemble trees will be a binary
vector with values [0,0,1,0,1,0,0]. Each element of this binary vector is actually
an indicator of the occurrence of the input instance to the corresponding leaf
node. The ensemble trees can be realized as the gradient boosted decision trees
(GBDT) [11], the random forest trees, and etc. In each learning iteration of the
ensemble trees, a new tree is created and a binary vector is produced by it. We
can take the ensemble trees based transformation as a supervised feature encod-
ing whose functionality is to select those features that are more important to the
classifier and jointly convert them into a compact binary-valued vector. A traver-
sal from the root node to a leaf node represents a combination of some features.
The weights of the rule set can be learnt by conducting a linear regressing on
these binary vectors [10]. In addition, the ensemble trees are usually trained in
a batch manner.

4 System Implementation

In this section, we introduce how we implement the online classification appli-
cation with the Storm stream processing engine (SPE). At first, we give a brief
introduction of the Apache Storm [12] SPE. Secondly, we present the key points
of implementing the online classification module on Storm. At last, we describe
how the online module interacts with the offline learning module, which will be
implemented with the Apache Spark [13].

4.1 The Apache Storm SPE

Storm is a distributed real-time computation system open source by twitter. In
Storm, each real-time application is represented by a directed graph (called topol-
ogy in Storm), of which the vertices are user-defined operators which encapsulate
computation logics and the edges define the data-transmitting path, pointing from
the upstream operator to the downstream operator. Note that one characteristic
of Storm is that such a directed graph can be a general one, hence this are no
topological constraints, e.g., it allows loops (cyclic) and each operator can have
multiple upstream operators and/or multiple downstream operators, too.
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There are two types of operators pre-defined by Storm. One type with special
API design, called spout, is acting as the role of the data source, which mainly
concerns of retrieving data from dedicated storage (file or memory) and feeding
them into the application topology. The other type, called bolt, is designed to
serve more general purpose. It actually can be viewed as an abstraction of any
kind of computation logic implementation.

4.2 Online Classification Application on Storm

There are two major functionalities of the online classification application:
(a) quick response: compute and return the classification results requested by
the user in real time; and (b) online model training: take the feedback data as
the input to training the model and the coefficients, and live update the corre-
sponding classifier.

Figure 2 illustrates the topology of the proposed online classification appli-
cation. It consists of two spouts (Query spout and Feedback spout) and three
bolts (Feature Extractor, Trainer and Classifier). To make a reliable and scalable
system, we adopt the Kafka [14] as the implementation of the message queues,
i.e., Storm spouts continuously read data from the Kafka queue, and feed them
into the subsequent bolts to process. Since there are two different types of input
data, we have created two pairs of spout and the corresponding Kafka queue for
each of them, e.g. Query spout for the user classification requests and Feedback
spout for the feedback data. The spouts encapsulate every input data message
to be a Tuple, which will then be sent to the Feature Extractor Bolt.

Fig. 2. Illustration of the topology of the proposed online classification application.

Feature extractor bolt: On receiving the input tuple from either the Query
spout or the Feedback spout, the Feature Extractor applies the ensemble trees
approach on extracting features. According to the description of the transfor-
mation algorithm in Sect. 3, for each input tuple, every decision tree generates a
one dimensional sparse vector. Consequently, we can compress the output data
of this bolt in an efficient way: to record the index of each non-zero element
of the decision trees only, which helps to largely decrease the total data size to
transmit through the network. In addition, each input tuple carries its sender
information, say, the Query spout (respectively the Feedback spout), which is
used by the Feature Extractor Bolt for choosing the correct downstream bolt,
say the Classifier bolt (the Trainer bolt) to send the processed tuples.
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Trainer bolt: Take the feedback data as the input, and based on the current
coefficients of the LR model in the Classifier bolt, the Trainer bolt trains and
updates the LR model. The training algorithm is very time consuming, thus to
increase the throughput of the training phase, we apply the batch processing
method. In particular, we allocate a separate memory space for buffering the
input feedback tuples. Only when the total number of buffered tuples reaches
a pre-defined threshold, will a dedicated thread be started to run the training
algorithm. Finally, the Trainer sends these training results to the Classifier bolt
after data serialization.

Classifier bolt: It takes input tuples from two upstream bolts. When the inputs
are those user classification requests sent from the Feature extractor, it executes
the classification job by using the LR model, and sends the results back to the
user; when the inputs are from the Trainer bolt, it simply replaces the coefficients
of the LR model with the input ones.

4.3 Interact with Spark

The supervised classification mostly consists of two phases, the training phase
and the classifying phase. The former is delay insensitive, but shall be scalable
and robust when the input data size is tremendous. The latter however, is delay
sensitive, which means the response time for answering the user requests shall
be as little as possible.

In our case, we have implemented the construction algorithm of the ensemble
trees with Apache Spark. In the meantime, we utilize these ensemble trees to
carry out fast feature extractions in the Feature extractor bolt. A technical chal-
lenge shows up when we try to achieve both: (a) keep the application topology
running and unaffected; and (b) keep the ensemble trees up-to-date in real time.

HDFS (Hadoop distributed filesystem) [15] is therefore used to tackle this
problem (as shown in Fig. 3). At first, we use Spark to run the ensemble trees
construction algorithm, and serialize the newly generated ensemble trees onto
the HDFS. During the initialization of Feature extractor bolt, the Storm metric
API is called to register a temporal task, whose duty is to check the updates on
the HDFS periodically. If there are updates, a separate thread will be started
by the bolt to load the new generated ensemble trees from the HDFS in an
asynchronous mode.

Fig. 3. Illustration of coordination among Storm, Spark and HDFS.
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5 Experiment and Results

We implemented all proposed solution based on Apache Strom [12] v0.9.3 and
Apache Spark [13] v1.2.0. The experiments were run on a cluster of 7 IBM
servers, 4 of which were equipped with an Intel Xeon quad-core 2.53 GHz CPU
and 32 GB of RAM, while others were equipped with an Intel Xeon dual-core
1.80 GHz CPU and 18 GB of RAM. We allocate one server to run as the master
node, which hosts the Storm Nimbus. We choose 4 power servers to run spark,
one as the master, the other three as slaves which have 8 GB of RAM and 16
cores. The Apache Kafka [14] is allocated on 3 servers and zookeeper 4 servers.

The dataset we use is CTR prediction from Kaggle Display Advertising Chal-
lenge. The first column is the label (click or not clock) for each instance. There
are 24,004,662 instances in the dataset which has 13 numerical features and 26
categorical features. In our experiment, we choose 70 percent of the dataset for
training the hybrid model and the remaining 30 percent for testing purpose.
We apply the hot encoding approach in the pre-processing phase to encode the
categorical features, and set the minimum distinct value to be 4 million, i.e. only
features with more than 4 million distinct values will be encoded and kept.

In the following, we show the experiments in which the hybrid model demon-
strated above is used. We first run experiments to evaluate the accuracy of
different classification schemes on the dataset. We then investigate on the train-
ing time of these schemes. At last, we running experiment on Storm to show the
relationship between the query arrival rate and the average response time.

The classification accuracy We carry out experiments to demonstrate the effect
of including tree features as part of the input to the linear model. In this exper-
iment, we compare the five schemes:

(a) LR model with original features (LR only);
(b) Random forest with original features (random forest only);
(c) GBDT with original features (GBDT only);
(d) LR model with features produced by GBDT (GBDT with LR);
(e) LR model with features produced by random forest (random forest with LR).

The Area-Under-ROC (AUC) is used to test the performance of the models. AUC
is a good metric when we are to measure the ranking quality without considering
calibration. A larger AUC value means a more accurate model, hence the better
classification results. AUC value of three different models on the testing dataset
is listed in Table 1.

The total processing time for model training In this set of experiments, we investi-
gate the total processing time for model training spent by different schemes. The
flow of the training process is: at first, we use the numerical features and trans-
formed categorical features to train the ensemble trees. Secondly, the ensemble
trees are used to produce the binary vectors. Lastly, the binary vectors together
with the numerical features and the encoded categorical features are used to
train the LR model where the Limited-memory BFGS algorithm [16] was used.
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Table 1. Classification accuracy comparison on five schemes.

Scheme AUC (relative value)

Random forest only 94.5 %

Random forest with LR 98.9 %

LR only 96.2 %

GBDT only 95.3 %

GBDT with LR 100.0 %

Fig. 4. The total processing time changing with different tree depth.

The settings of Spark applications were as follows: the total number of execu-
tors are set to 40, driver memory is 2 GB, and executor memory is 8 GB. The
total processing time here includes both the pre-processing time and the model
training time. We study the sensitivity of the tree depth and the number of dif-
ferent trees to the total processing time of the two schemes, random forest with
LR versus GBDT with LR. The results are plotted in Figs. 4 and 5.

According to the results in Table 1, Figs. 4 and 5, we observe that GBDT with
LR earns the highest accuracy, however, it spends much longer training time
than the random forest with LR scheme. The results indicate that the choice
of GBDT with LR or the random forest with LR depends on the application
context: when it is insensitive to the training time while sensible with accuracy,
GBDT with LR is the better choice; Oppositely, random forest with LR will be
more preferred.

Next, we test the performance of the online classification application run
on the Storm with different arrival rate of the online requests raised by users.
Figure 6 shows the curve of the corresponding average response time.

We observe from Fig. 6 that (a) the processing speed is really fast on Storm
and the response time is less than 5 ms when the request arrival rate reaches
50 K per second; and (b) the average response time increases super-linear to the



An Empirical Study of a Large Scale Online Recommendation System 23

Fig. 5. The total processing time changing with the number of trees.

Fig. 6. The average response time changing with the tuple arrival rate.

arrival rate. This suggests that to keep the average response time under a certain
threshold, far more resources shall be allocated at a higher request rate.

6 Conclusion

In this paper, we have studied and proposed a hybrid way (batching working
with streaming processing) to implementing the online recommendation system
with Apache Spark (for fast offline model training), Apache Storm (for quick
answering users’ online classification requests), and Hadoop file system (for data
sharing and updating). This architecture helps enhancing the overall perfor-
mance, in terms of the response time to the users’ requests, the processing time
for model training and updating, and the efficiency of the resource utilization.
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Based on our hybrid framework, we also evaluated a group of online classifi-
cation schemes. The experiment results imply that the choice on these different
schemes shall depend on the using context, e.g. GBDT with LR earns the highest
accuracy at the cost of long training time while random forest with LR earns the
second highest in accuracy but spends less training time than GBDT with LR.
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