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Abstract. With the popularity of Android devices, more and more
Android malware are manufactured every year. How to filter out mali-
cious app is a serious problem for app markets. In this paper, we propose
DroidADDMiner, an efficient and precise system to detect, classify and
characterize Android malware. DroidADDMiner is a machine learning
based system that extracts features based on data dependency between
sensitive APIs. It extracts API data dependence paths embedded in app
to construct feature vectors for machine learning. While DroidSIFT [13]
also attempts automated detection of Android applications according to
data flow analysis, DroidADDMiner can not only reduce the run time
but also characterize malware’s behaviors automatically. We implement
DroidADDMiner based on FlowDroid [14] and evaluate it using 5648
malware samples and 14280 benign apps. Experiments show that, for
malware detection, DroidADDMiner achieves a 98% detection rate, with
a 0.3% false positive rate. For malware classification, the accuracy of clas-
sifying malicious apps under their proper family labels is 96%. Although
performing data flow analysis, most of the experimental samples can be
examined in 60 seconds.

Keywords: Android malware · Machine learning · Data flow ·
Flowdroid

1 Introduction

Smartphone is performing a more and more important role in people’s daily life.
According to a recent study [1], in United States and Great Britain, Android
has reached over 50% market share. Meanwhile, in China, the market share has
exceeded 70%. There’s no doubt that Android has become the most popular
platform for smart phone today. This trend has attracted attention of attackers,
more and more malicious applications emerged in the official and alternative
Android marketplaces. As described in [2], over 150,000 malicious applications
and 253 new malware families have been discovered in 2013 alone. In order to
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maintain a healthy ecosystem for Android, robust malware detection techniques
need to be designed.

Previously, many machine learning based approaches have been proposed to
detect malware. Before utilizing machine learning algorithms, they use feature
vectors to model the app’s behaviors. Their main difference lies in how to extract
feature vectors. Rather than in-depth understanding program semantics, Drebin
[10] and DroidAPIMiner [20] extract features from application syntax like per-
missions listed in manifest file and API parameters used by application code.
Malware and benign apps may use the same APIs and permissions, because
some benign apps also need to access sensitive resources. So these approaches
are not robust enough to model malware’s behaviors. DroidMiner [11] focuses on
the control flow of Android application, API sequences extracted from control
flow graph are used to construct feature vectors. But it may miss important data
flow information that can help build better behavior models which have effects
on the detection rate.

For Android application, APIs can be invoked under two contexts: user inter-
face and background callback. Malware always exploit background callbacks to
launch malicious behaviors. Constant values like network address can also reveal
a malware’s intention when they are used as parameters of some APIs. Hence,
DroidSIFT [13] adopts data flow analysis to construct weighted contextual API
dependency graphs which contain data dependency, context and constant infor-
mation. Their feature vectors are extracted based on similarity between weighted
contextual API dependency graphs. Although DroidSIFT represents program
semantics well, it cannot automatically generate malicious behavior character-
ization of malware. Moreover, DroidSIFT is time-consuming when analyzing
large-scaled apps because it calculates all objects’ point-to information during
data flow analysis.

We present DroidADDMiner to automate the process of Android malware
detection, classification and characterization. DroidADDMiner is a machine
learning based system which extracts features on the basis of API data depen-
dency and also considers context and constant information just like DroidSIFT.
We define API data dependence path with context and constant information as
modality. A modality repository is built by collecting all modalities extracted
from malware samples. Feature vector is then generated according to whether
the app’s modalities are contained in modality repository. Finally, feature vec-
tors are feeded to machine learning techniques for detecting, classifying and
characterizing malware.

Data flow analysis is the most important part of DroidADDMiner. Flow-
droid [14][15] and Amandroid [17] are two state-of-the-art data flow analysis
tools for Android. Like DroidSIFT [13], during data flow analysis, Amandriod
calculates all objects’ point-to information. Analyzing the same app, Flowdroid
is quicker than Amandroid since it only focuses on objectes related to some
specified sources and sinks. Using machine learning techniques needs to analyze
abundant apps, so we choose to extend Flowdroid to build DroidADDMiner.
We evaluate our system using 5648 malware samples and 14280 benign apps.
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Experiments show that DroidADDMiner can achieve 98% accuracy in malware
detection with 0.3% false positive rate, and it can label 96% malware instances to
their right family. Although performing data flow analysis, for most of the exper-
imental samples, DroidADDMiner can accomplish analysis in 60 seconds which
leads us to believe that DroidADDMiner can handle large-scale applications.

To summarize, this paper makes the following contributions:

– We propose a semantic-based malware detection, classification and charac-
terization approach. The program semantics of malware are modeled by API
data dependence paths with context and constant information.

– We make an extension on Flowdroid [14]. Using the extended tool, we can
perform API data dependence path construction, API context and constant
analysis.

– We make an in-depth evaluation of DroidADDMiner. Experiments include
run-time performance and efficacy in malware detection, family classifica-
tion, and behavior characterization.

2 Motivation and System Goals

2.1 Motivation

We explain the motivation of our system design by introducing the inner work-
ing of a real-world malicious Android application. This malware sample (MD5:
ecbbce17053d6eaf9bf9cb7c71d0af8d) belongs to the family of zitmo. The code
of this malware is listed in Fig. 1. From the code snippet we can know that
once a SMS is arrived, life cycle call onReceive() is invoked by Android sys-
tem. Then abortBroadcast() is issued to abort current broadcast. In order to
steal SMS message, an intent carries SMS message information is created to
launch a background service (named “MainService”). Once the service is trig-
gered, SMS message extracted from intent is stored in an object array named
“pdus”. Next, for extracting originating address (sender) and message body
from this object array, getOriginatingAddress() and getMessageBody() are
called. Now the address and message body are stored in String value “str1” and
“str2” respectively. Meanwhile, after invoking getDeviceId(), the device id is
stored in “str3”. While malware gets all sensitive information it needs, these
information are encoded into an UrlEncodedFormEntity object. Before sending
these information through network, HttpPost object is created with a constant
string “http://softthrifty.com/security.jsp” and then setEntity() is called to
encode these information into a form that can be sent through network. Finally,
DefaultHttpClient.execute() is issued to post data to remote server.

From the above description, we find an important design premise that
when malware authors design malicious apps to achieve malicious behav-
iors, they always have to use some sensitive API calls like the APIs marked
with red font in Fig. 1. DroidMiner [11] and DroidSIFT [13] is two state-of-
the-art malware detection tools base on machine learning techniques. Droid-
Miner extracts API sequences according to control flow. For malware sample



26 Y. Li et al.

Fig. 1. Example Malware

depicted in Fig. 1, it will extract a control flow sequence [BroadcastReceiver,
abortBroadcast(), setEntity(), execute()] and sensitive resources “Vres”
{getOriginatingAddress(), getMessageBody(), getDeviceId()}. DroidMin-
erthey does not analyze the data flow of sensitive data, they simply consider
that there is an edge from the root “Vroot” (one component, in our example
is BroadcastReciever “SmsReceiver”) to the resources “Vres”. Actually, this is
not precise. For example, in “SmsReceiver”, the app invokes getOriginatingAd-
dress(), getMessageBody() and getDeviceId() to obtain sensitive information,
but if we change the sensitive information what we put into ArrayList “localAL”
by Line 22, the malware’s behaviors will be different. That’s why analyzing data
flow will get more precise behavior models which will affect the accuracy of
identification process.

DroidSIFT [13] is another malware detection tool adopts machine learn-
ing techniques. During data flow analysis, it calculates all objects’ point-to
information, this is time consuming. Moreover, when DroidSIFT analyzes the
demonstrated malware sample, it will construct a data dependence graph which
is composed of red font marked API nodes list in Fig. 1. Because of utiliz-
ing the data dependence graph as an integrity to compute similarity related
to base graphs in DroidSIFT’s database, it loses the ability of digging out the
relationships between APIs and malicious behaviors. So it cannot characterize a
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malware’s behaviors automatically. In order to address this deficiency, we extract
API data dependence paths embedded in known malware samples. Then mine
out the relationships between API data dependence paths and malicious behav-
iors according to the malicious behaviors malware contain. We use these rela-
tionships to characterize a unknown malware’s behaviors.

2.2 Goals and Assumption

DroidADDMiner is aimed to detect whether an app is malicious, label malware
to correct family, and more specially, give a concise description of a malware’s
malicious behaviors. For example, given the app demonstrated in section 2.1,
DroidADDMiner can know it is a malware, classify it to zitmo family, and find
out that it can get SMS message, block SMS message, and send sensitive infor-
mation to remote server. DroidADDMiner is built based on Flowdroid [14], so
its data flow analysis has the same limits as Flowdroid.

3 System Design

We demonstrate DroidADDMiner’s work flow in Fig. 2. As depicted in this figure,
DroidADDMiner contains two phases: program analysis phase and machine
learning phase.

Fig. 2. System Architecture

The most important component of DroidADDMiner is program analysis.
As described in section 2.1, we choose to use API data dependency, contex and
constant information to represent the program semantics of malware. When per-
forming data flow analysis, analyzing too much APIs will be very expensive. It is
necessary to choose a set of APIs which can achieve computational efficiency and
security analysis in the same time. So we leverage the API-permission mapping
from Pscout [21] to conduct our data flow analysis.

We also need to know whether an API is activated from background callbacks,
this is called context analysis. For context analysis, we select some background
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callbacks like BroadcastReceiver$onReceive and GpsStatus$Listener. Con-
stant information of parameters of some sensitive APIs, like exec() are sig-
nificant signature to identify malware. These parameters can decide an app’s
behavior significantly. Due to space limitations, we don’t list all these callbacks
and APIs in this paper. To extract API data dependence path and extract con-
text and constant information, we extend Flowdroid [14], a detail description
will be given in section 4.1.

After analyzing an app, DroidADDMiner will obtain some API data depen-
dence paths with context and constant information. We define API data depen-
dence path with context and constant information as modality. In this paper, we
use following formula to represent modality :

S1[constant; context] → · · · → Sk[constant; context] → · · ·

In this formula, Sk represents sensitive API. ’constant’ represents the con-
stant information of sensitive API, for APIs whose constant information we
don’t analyze, ’constant’ value will be ’none’. On the other hand, if we ana-
lyze an API’s constant information, the value will be ’ture’ or ’false’ depends
on whether the API’s parameter contains constant value. ’context’ represents
the context information, if the API is invoked under a background callback,
’context’ value will be this callback, otherwise the value will be ’none’. For
example, for the malware shown in section 2.1, one of its modalities is:

setEntity()[false; onReceive] → execute()[true; onReceive]

The modality is made up of at least one node, each node is a sensitive API
with its context and constant information. We show how to extract modalities
from app in section 4.2. After analyzing all malware samples, we collect all
modalities DroidADDMiner obtains, then build a modality repository. For the
sake of performing machine learning techniques, we need to generate feature
vector for every app. Those feature vectors can be calculated based on modality
repository. The detail of how to generate feature vectors is shown in section 4.3.
At machine learning phase, we use the classical algorithm to detect whether an
app is malicious. If it is a malware, we can label it to correct family. Finally we
use “Association Rule Mining” technique to characterize a malware’s behaviors.
This will be described in section 4.4.

4 Implementation

4.1 Extension of FlowDroid

In this section, we introduce how we extend FlowDorid [14] to extract API data
dependence path with constant and context information.

In order to extract API data dependence path, for adopting FolwDroid, we
need to solve two problems: First, in FlowDroid, all data dependencies are start-
ing from source and ending at sink, but we need to extract API data dependence
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Fig. 3. An Example of Call Graph. Each circle vertex stands for a function, each
rectangle vertex stands for a sensitive API

path, data dependency can start from or end at any sensitive API; Second, Flow-
Droid can just output data dependency between every two API(source and sink),
but the API data dependence path may contains more than two nodes. To solve
the first problem, we modify FlowDroid to make it treat the sensitive APIs we
specified as both source and sink. The data flow analysis start from a sensitive
API, during taint propagation, if a tainted factor encounters a sensitive API, we
will record it and stop propagate this factor. Because for every sensitive API,
we’ll also treat it as source and start taint propagation from it. In this way, we can
get propagation path between every two sensitive APIs which have data depen-
dency relationship. For the second problem, as we get data flow propagation
path between every two sensitive APIs. To construct long API data dependence
path, we use these propagation paths. For simplicity and time efficiency, when
using these propagation paths, we only focus on their call context(function call
sequence), so we modify FlowDroid to output these call context.

When analyzing an app, FlowDroid constructs an extended call graph. Any
control flow transformation like lifecircle or callback method is modeled in this
graph and this call graph has only one entry point. It means if one sensitive API
data depends on the other sensitive API, the call graph must contains a fuction
can reach both these two sensitive APIs. For example, in fig 3, if S2 data depends
on S1, f1 is the function which is able to reach both S1 and S2. More generally,
if an app has an API data dependence path, there must exist a function in the
call graph which can reach all sensitive APIs this API data dependence path
contains. The API data dependence path with call context is defined as:

Ft{· · · → (. . . , Ckm
, . . . , CSj

)Si → · · · }

Ft represents the function this API data dependence path happens. Ckm

represents call statement, km is a function. Statement sequence in parentheses is
the call context of propagation path, the last call statement must call sensitive
API. Si represents sensitive API, and API data dependence path contains at
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least two nodes. Right arrow represents data dependence. The formula shows Ft

can reach Si through propagation path (. . . , Ckn
, . . . , CSj

).

Short API Data Dependence Path with Call Context. To demonstrate
the API data dependency path construction process, we assume that, for call
graph in fig 3, we get following short paths

f1{(c[f2], c[f3], c[S1])S1 → (c[f4], c[f5], c[S2])S2} (1)
f4{(c[f5], c[S2])S2 → (c[f7], c[S3])S3} (2)

c[F] denotes a call statement which invokes function or API.

Long API Data Dependence Path Construction. Before constructing long
paths, we need to define what kind of paths can be assembled. Every path has
at least two nodes, we call the first node start node and the last node end node.
If two path can be assembled to construct a long path, this means the first
path’s end node is “equal” to the second path’s start node. In this case, two
nodes are “equal” does not mean they are identical. Every node in the API data
dependence path has call context. During our path construction process, end
node is “equal” to start node means their call context are identical or one’s call
context is the subsequence of the other one’s. For example, (c[f5], c[S2])S2 is
subsequence of (c[f4], c[f5], c[S2])S2, so path (1) and path (2) can be assembled
to a long path:

f1{(c[f2], c[f3], c[S1])S1 → (c[f4], c[f5], c[S2])S2 → (c[f4], c[f7], c[S3])S3} (3)

Context and Constant Analysis. After data flow analysis, we get all API
data dependence paths embedded in an app. In this section, we demonstrate
how to add context and constant information to API nodes in these API data
dependence paths.

For constant analysis, APIs (such as Runtime.exec()) whose parameter have
special meaning are selected. To perform constant analysis, starting from state-
ments invoke these APIs, we backward search the control flow graph. Call context
will be stored during this process. Hence, we can obtain sensitive APIs’ constant
information with call context. Just like path construction, using the call context,
we can add constant information to nodes in API data dependence path. For
example, if we get following constant information:

f2{(c[f3], c[S1])S1[true;none]}
f2{(c[f3], c[S1])S1 is the subpath of f1{(c[f2], c[f3], c[S1])S1, so we can add this
information to path (3), we’ll get a new path:

f1{(c[f2], c[f3], c[S1])S1[true;none] → (c[f4], c[f5], c[S2])S2

→ (c[f4], c[f7], c[S3])S3} (4)
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For context analysis, we need to know whether a function is triggered in
background. Among the code of an app, background callback is overridden to
do some operations. In Flowdroid [14], all callback methods are modeled in a
dummy method. This means if we perform a backward search on control flow
graph, we can reach a single entry point. We know that every API data depen-
dence path is happened in a function. For example, the path (4) is contained in
function f1. Starting from nodes in control flow graph which invoke f1, we per-
form backward search. If we encounter a background callback method, record it.
After the backward search, we can decide the context of f1 based on the callback
methods we record. But we can’t directly apply the f1’s context to all nodes in
path (4), because the nodes in this path also have call context. If a node’s call
context contains a background callback method, we specify this background call-
back method as the node’s context. Otherwise, the node’s context is decided by
f1’s context. Using this approach, we can obtain context of all nodes in API data
dependence path. For example, if our backward analysis find that f1 is invoked
under onRecieve, and f1, f2, f3, f4, f5, f7 are not background callback, we can
get a new path with constant and context information:

f1{(c[f2], c[f3], c[S1])S1[true; onReceive]→(c[f4], c[f5], c[S2])S2[none; onReceive]
→ (c[f4], c[f7], c[S3])S3[none; onReceive]} (5)

Finally, we remove the call context information, and can get a API depen-
dence path:

S1[true; onReceive] → S2[none; onReceive] → S3[none; onReceive]} (6)

4.2 Modality Generation

In section 3, we define modality. And in section 4.1, we demonstrate how to
extract API data dependence path with constant and context information. For
an API dependence path, we extract its subpaths, because these subpaths are
both modalities. The length of these subpaths are not less than one. For path
(6) obtained from section 4.1, we can get following subpaths:

S1[true; onReceive] (7)
S2[none; onReceive] (8)
S3[none; onReceive] (9)

S1[true; onReceive] → S2[none; onReceive] (10)
S2[none; onReceive] → S3[none; onReceive] (11)

So, for Fig. 3, path (6)(7)(8)(9)(10)(11) are modalities. Through the app-
roach, we collect modalities embeded in all malware samples to build a modality
repository.
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4.3 Feature Vector Construction

Before applying machine learning techniques, we need translating extracted
information to mathematical form. For every app, we generate a feature vector.
All app’s feature vectors will be added to a data set used by machine learning
algorithms. In section 4.2, we get a modality repository. For an app, we can
extract the modalities embeded in it. The app’s feature vector is constructed as
a boolean vector (B1, B2, ..., Bn): Bi = 1, if app??s modality set contains modal-
ity Mi in the modality repository. Otherwise, Bi = 0. Through this vector, all
API data dependencies can be represented.

4.4 Malware Detection, Classification and Characterization

In this section, we introduce how to use app’s feature vectors to achieve malware
detection, classification and characterization:

Malware Detection. One application scene is to determine whether or not an
Android app is malicious. This is not straightforward. Some benign apps also use
sensitive APIs to accomplish some actions like sending SMS message and getting
location information. So their feature vectors may contain some modalities mined
from malware. However, usually, malicious behaviors are not launched by just
a single modality. Multiple modalities are needed to achieve a malicious behav-
ior. This observation makes us treat an app as malware only when its modalities
exceed a threshold. In this paper, we use machine learning technique to automat-
ically find the relationships between modalities and malware. Machine-learning
classifier mines the relationships based on feature vectors extracted from known
malware samples and benign apps, then unknown apps can be detected by this
classifier.

Malware Classification. Another application scene is to label malware to a
malware family which it actually belongs to. Generally, malware belong to the
same family always share similar malicious behaviors. This leads to their modal-
ities are similar. For us, we can use the similarity between malware’s feature
vectors to classify malware. Using the malware samples from known malware
family, we can build a machine-learning classifier to classify unknown malware
samples.

Malware Characterization. The last application scene is to automatically
characterize the malicious behaviors a malware contains. In fact, to achieve
a specified malicious behavior, malware always needs to invoke some sensitive
APIs. Such as sending a SMS message needs sendTextMessage(), getting loca-
tion information needs getLastKnownLocation(). It means there exist relation-
ships between modalities and malicious behaviors. Our work is to dig out which
modalities result a specific malicious behavior. This goal can be achieved by using
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a well-known machine learning technique called “Association Rule Mining”. Mal-
ware from the same malware family share the similar malicious behavior, we can
list malicious behaviors of a malware family from many sources [3][9]. Malware
from a malware family may contains several malicious behaviors, like blocking
SMS message, sending out phone id. We can use a boolean vector to represent
a malware’s behaviors according to whether it contains a specified malicious
behavior. Then adding this vector to the end of malware’s feature vector to con-
struct a new vector. Feeding this vector to “Association Rule Mining” algorithm
can mine out the relationships between modalities and malicious behaviors.

5 Evaluation

5.1 Dataset and Experiment Setup

We collect 6400 malware samples from the Android Malware Genome Project
(AMGP) [9][22] and VirusShare project [5]. Then we submit these malware sam-
ples to VirusTotal [4]. For each malware, we get a VirusTotal report which lists
the scan results of 57 different antivirus (AV) products. If a malware is labeled
as malicious by more than 4 AVs, we add this malware to our malware dataset.
Finally, we get a malware dataset contains 5648 malware samples. For malware
classification, we need to know which malware family a malware belongs to. After
we examine the scan results of AV products, we find Ad-Aware’s [6] classifica-
tion results are more approximate to the classification results of AMGP. So we
chose the classification results of Ad-Aware to classify the malware. In order to
construct a benign dataset, we crawls apps from two alternative Android mar-
kets(xiaomi [7] and anzhi [8]). We also upload crawled apps to VirusTotal. If an
app passed all AVs, we add it to our benign dataset. In the end, we get 14280
benign apps. Finally, our dataset contains 5648 malware samples and 14280
benign apps.

We conduct experiments on a computer equipped with Intel(R) Core(TM)
i7-4770k CPU(3.5GHz) and 16GB of physical memory. The operation system is
Windows 7 and we utilize weka [25] as machine learning tool.

5.2 Summary of Modality Generation

The summary of Modality Generation is shown in Figure 4 and Figure 5. Among
them, Figure 4 demonstrates the number of the modalities generated from both
benign and malicious apps. As shown in this figure, for 94.3% of benign apps
and 90.4% of malware samples, less than 20 modalities are extracted from an
individual app. This is because the majority of apps don’t invoke too many
different sensitive APIs.

After analyzing 5648 malware samples, we obtain 4317 modalities. The length
of modality is defined as the number of sensitive APIs it contains. Figure 5
illustrates the distribution of the length of modality. As shown in this figure, the
longest modality is 7 and 87% of modalities carry less than 6 APIs.
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Fig. 4. Distribution of The Amount of
Modality Extracted from Each App

Fig. 5. Distribution of The Length
Modality

5.3 Malware Detection Result

As introduced in section 4.4, we use machine learning techniques to detect mal-
ware. In our experiment, we adopt NaiveBayes, SVM and Random Forest to
conduct malware detection, and we use 10-fold cross validation to evaluate these
machine learning approaches. The malicious apps and benign apps are both ran-
domly split into 10 groups. In each time of 10 rounds, we select combination of
one group of benign apps and malicious apps as testing dataset. The reminding
groups are treated as training dataset. When using NaiveBayes, we can correctly
identify 91.5% of experimental apps with a 0.8% false positive rate. This process
can be completed in 30 seconds. For SVM algorithm, there are four kinds of ker-
nel function in weka [25]: linear, polynomial, radial basis function and sigmid.
After testing all these kernel functions, we find linear kernel can achieve 97.3%
accuracy rate with a 1.6% false positive, the training and testing procedure can
be finished in 3 minutes. We also evaluate the efficiency of using Random For-
est, the experiment completes in 20 minutes and 98.5% of apps are correctly
identified with a 0.3% false positive rate. For DroidMiner, it achieves 82.2%,
86.7% and 95.3% accuracy rate when using NaiveBayes, SVM and Random For-
est respectively. This verify feature vectors extracted based on data flow is more
efficient than control flow on modeling the program semantics of malware. The
comparison is shown in Table 1.

5.4 Malware Classification Result

In this section, we evaluate the ability of DroidADDMiner [20] to label mal-
ware to its correct family. We select 1168 malware samples from 16 malware
families. The number of samples selected from each family is listed in Table 2.
For malware of each family, we divide them into training set and testing set.
Training set contains 66% of malware samples and testing set contains 34% of
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Table 1. Effectiveness of Malware Detection(DR denotes Detection Rate, FP denotes
False Positive Rate)

Classifer NaiveBayes SVM Random Forest

Tool DR FR DR FR DR FR

DroidADDMiner 91.5% 0.8% 97.3% 1.6% 98.5% 0.4%

DroidMiner 82.2% 4.4% 86.7% 1.1% 95.3% 0.3%

malware samples. Then we use Random Forest as classifier for training and pre-
diction. The experiments show the classifier can correctly label 96% of malware
samples. We further examine 4% of the samples that are mislabeled. 7 samples
from DroidDeluxe and GingerMaster are labeled as one another, DroidDeluxe
and GingerMaster both root the phone and share some similar malicious behav-
iors, thus these mislabels are understandable. DroidKungFu4 is the variant of
DroidKungFu2, so 4 samples belong to them are mislabeled as one another.

Table 2. Malware Samples Used for Classification

Ind Family Num Ind Family Num

1 GingerMaster 42 9 DroidKungFu2 26

2 DroidDeluxe 22 10 DroidKungFu3 305

3 ADRD 27 11 DroidKungFu4 71

4 BaseBridge 114 12 Geinimi 67

5 AnserverBot 183 13 GoldDream 42

6 DroidDreamLight 46 14 KMin 71

7 DroidDream 21 15 Pjapps 44

8 DroidKungFu1 28 16 SmsSpy 59

5.5 Malware Characterization Result

As described in section 4.4, in order to characterize a malware’s behaviors, we
need to construct a boolean vector for each malware family to model its malicious
behaviors. We use the malicious behavior characterization of malware family col-
lected by DroidMiner [11], and also focus on following behaviors: stealing phone
information (GetPho), Sending SMS (SdSMS), blocking SMS (BkSMS), com-
municating with a C&C (C&C), escalating root privilege (Root) and accessing
geographical information (GetGeo). Then malicious behavior boolean vectors
are generated for each malware family. Adding corresponding malicious behav-
ior boolean vector to the end of a malware’s feature vector, we can get new
vector for Association Rule Mining.

We utilize Apriori algorithm [12] to mine the relationships between malicious
behaviors and modalities. After mining, DroidADDMiner obtained 492 behavior
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Table 3. Behaviors of 5 Test Malware Samples

MD5 Family Behavior
3ae5c5ee6c118a3cdbf2c55132f55948 SmsSpy BkSMS,C&C,SdSMS
156fdce65eb6e4287aed687a1c9c2589 GGTracker BkSMS,C&C,GetPho,SdSMS
60ce9b29a6b9c7ee22604ed5e08e8d8a Endofday BkSMS,GetPho,SdSMS
e98791dffcc0a8579ae875149e3c8e5e zitmo BkSMS,SdSMS

de04914d84239fbd40aa470ad86e388c DroidKungFuUpdate Root,GetPho,C&C

Table 4. Representative Rules for Malicious Behavior Characterization

Index Behavior Rule

1 GetGeo
LocationManager.getBestProvider()[false;none]

→ Location.getLastKnownLocation()[false;none]
2 GetGeo LocationManager.requestLocationUpdates()[true;none]
3 Root Runtime.getRuntime()[false;none] → Runtime.exec()[true;none]
4 Root Process.killProcess()[false;none]

5 C&C
ConnectivityManager.getActiveNetworkInfo()[false;none]

→ WifiManager.setWifiEnabled()[false;none]

6 C&C
URLConnection.openConnection()[false;none]
→ HttpURLConnection.connect()[false;none]

7 SdSMS
gsm.SmsManager.getDefault()[false;none]

→ gsm.SmsManager.sendTextMessage()[true;none]

8 SdSMS
SmsManager.getDefault()[false;none]

→ SmsManager.sendTextMessage()[true;none]

9 GetPho
TelephonyManager.getLine1Number()[false;none]

→ ConnectivityManager.getActiveNetworkInfo()[false;none]

10 GetPho
TelephonyManager.getDeviceId()[false;none]

→ HttpEntityEnclosingRequestBase.setEntity()[false;none]
11 BkSMS ContentResolver.delete()[false;BroadcastReceiver$onReceive]
12 BkSMS abortBroadcast()[false;BroadcastReceiver$onReceive]

association rules. Some representative rules are listed in Table 3. Then we use
these mined rules to test malware samples which are not used in mining phase.
The results show we can correctly characterize the malware’s behaviors. We list
the results in Table 4.

5.6 Runtime Performance

DroidADDMiner needs three steps to identify an app: modality generation, fea-
ture vector construction and machine learning. Compared with modality genera-
tion, the time of feature vector construction and machine learning are negligible.
So we just focus on the time of modality generation. Fig. 6 illustrates the runtime
performance of modality generation for benign apps and malware samples. As
shown in this figure, because most of malware samples are very small, majority
(91%) of malware samples are completed in 10 seconds. For 89% of benign apps
and 95% malware samples, the process of modality generation can be completed
in 1 minute. The average runtime of modality generation is 10 seconds. Droid-
SIFT [13] also performs data flow analysis on Android app, as shown in Table 5,
although their hardware is better than ours, its average runtime is 175.8 seconds.
It’s no doubt that when analyzing large-scaled apps, DroidADDMiner can vastly
reduce the running time.
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Fig. 6. Distribution of Modality Generation Time

Table 5. Runtime Performance of Malware Detection Tools

Tool Average Performance CPU physical memory
DroidADDMiner 10s Core(TM) i7-4770k 16G

DroidSIFT 175s Xeon(R) E5-2650 128GB

6 Discussion

There is competition between defender and attacker, Android malware always
evolutes itself to evade detection. DroidChameleon [23] and Adam [24] have
demonstrated common malware transformation techniques like repackaging,
changing field names could evade many existing commercial anti-malware tools.
But for DroidADDMiner, it does not rely on external symptoms like package
name, field name. So it’s resilient to these common transformation attacks.
Other transformation techniques like call indirections, code reordering and junk
code insertion also can not evade DroidADDMiner. Because DroidADDMiner
focuses on data flow between sensitive APIs, these transformation techniques do
not change the data flow of sensitive APIs. To demonstrate it, we use Droid-
Chameleon and Adam to obfuscate 100 malware samples selected from Droid-
KungFu3 family. As expected, DroidADDMiner can label all these obfuscated
samples to DroidKungFu3 family. But DroidADDminer also has some limita-
tions. It does not take native code into consideration right now, so a malware
can put malicious behaviors in native code to bypass detection of DroidAD-
DMiner. And DroidADDMiner just performs a simple constant analysis, if mal-
ware author splits an string like “content://sms” into two parts, we can not get
the original semantics of some APIs. These limitations are left for future work.
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Table 6. Comparison of Different Tools

Tool Modeling of App Behavior Explanation of App Behavior
Dredin permission, API, manifest file support

DroidAPIMiner API, parameters of API -
DroidMiner control flow of API support

DroidSIFT
data flow of API

context and constant information
-

DroidADDMiner
data flow of API

context and constant information
support

7 Related Work

Static analysis techniques are widely adopted to extract features for using
machine learning algorithm to detect and classify Android malware. We summa-
rize the difference of exist tools in Table 6. We don’t list the detection rate and
time efficiency in this table, because these tools use different machine learn-
ing algorithms and hardwares. Drebin [10] proposes to detect Android mal-
ware by extracting feature vectors from application manifest file and app code.
DroidAPIMiner [20] extracts features at API level, and they take some APIs’
parameters into consideration. Despite the effectiveness, the extracted feature
vectors of these approaches are related to application syntax instead of program
semantics. The feature vectors they extract are not robust enough to reflect
app’s behaviors. DroidMiner [11] focuses on control flow, they select some sen-
sitive APIs and specific resources as the nodes to construct control flow graph,
node sequences are extracted from this graph to generate feature vectors. Miss-
ing of data flow information could affect its detection rate. DroidSIFT [13] per-
forms data flow analysis on Android apps. For every app, it generats a weighted
contextual API data dependence graph. Then similarities between graphs are
calculated to construct feature vectors. Compared with DroidADDMiner, it not
only lacks of the ability to automatically characterize the behaviors of malware
but also needs more time to analyze an app.

CHEX [16], Flowdroid [14], AmanDroid [17] are three tools designed to deal
with information leakage problem. CHEX [16] uses a ??spit?? based approach
to perform data flow analysis, each program split includes code reachable from
a single entry point. For every program split, a system dependence graph [18]
will be generated. Sources and sinks connections are extracted from this graph.
Amandroid [17] computes an inter-component data flow graph (IDFG) which
contains all objects?? points-to information in a both flow and context-sensitive
way. This IDFG can be used to solve security problems including information
leakage problem. Flowdroid [14] is quite different from CHEX [16] and Aman-
droid [17], it models data flow analysis problem within the IFDS [19] framework
for inter-procedural distributive subset problems. Flowdroid is faster than the
other two tools, because when performing data flow analysis, it only focuses on
the variables related to sources and sinks. DroidADDMiner is built based on
Flowdroid, so it can benefit from Flowdroid.
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8 Conclusion

In this paper, we propose a semantic-based approach which detects, classifies
and characterizes Android malware via API data dependency. For each app, we
extract API data dependence paths which we call modality embedded in the
app. Feature vectors are constructed for every app according to these modal-
ities. We present our prototype system, DroidADDMiner, extends FlowDroid
[13]. We evaluate our system using 5648 malware samples and 14280 benign sam-
ples. Experiments show that DroidMiner can achieve 98% accuracy in malware
detection, and it can label 96% malware instances to its right family. Although
performing data flow analysis, for most of the experimental samples, DroidAD-
DMiner can complete analysis in 60 seconds.
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