
Access Time Tradeoffs in Archive Compression

Matthias Petri, Alistair Moffat(B), P.C. Nagesh, and Anthony Wirth

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

ammoffat@unimelb.edu.au

Abstract. Web archives, query and proxy logs, and so on, can all be
very large and highly repetitive; and are accessed only sporadically and
partially, rather than continually and holistically. This type of data is
ideal for compression-based archiving, provided that random-access to
small fragments of the original data can be achieved without needing to
decompress everything. The recent RLZ (relative Lempel Ziv) compres-
sion approach uses a semi-static model extracted from the text to be com-
pressed, together with a greedy factorization of the whole text encoded
using static integer codes. Here we demonstrate more precisely than
before the scenarios in which RLZ excels. We contrast RLZ with alterna-
tives based on block-based adaptive methods, including approaches that
“prime” the encoding for each block, and measure a range of implemen-
tation options using both hard-disk (HDD) and solid-state disk (SSD)
drives. For HDD, the dominant factor affecting access speed is the com-
pression rate achieved, even when this involves larger dictionaries and
larger blocks. When the data is on SSD the same effects are present, but
not as markedly, and more complex trade-offs apply.

1 Introduction

Large data archives are often retained for long periods. Examples include web
crawls; site edit histories for resources such as the Wikipedia; query, proxy, and
click logs; and many other forms of meta-data associated with the way we store
and access information. Such archives are rarely decoded in full, and even partial-
access operations may be infrequent. Moreover, the data might be highly repet-
itive, with occasional very long repeated strings, and repeated strings that are
widely separated. There is thus considerable interest in specialized compression
techniques that provide a high level of space saving for such data, plus the ability
to support random access to small fragments of it.

The Relative Lempel-Ziv (RLZ) compression approach is designed for
archives like these [5]. It involves a plain-text dictionary extracted from the col-
lection of documents via fixed-interval sampling across their concatenation. The
documents are then factored against the dictionary using the standard Lempel-
Ziv greedy parsing approach, and factor descriptions consisting of copy offsets
and copy lengths are represented with static integer codes. Because the dictio-
nary and encodings are both static, decoding is possible from any point in the
encoded stream, provided only that a corresponding code-aligned byte or bit
c© Springer International Publishing Switzerland 2015
G. Zuccon et al. (Eds.): AIRS 2015, LNCS 9460, pp. 15–28, 2015.
DOI: 10.1007/978-3-319-28940-3 2

16 M. Petri et al.

address is given for the document that is required. Moreover, decoding is fast –
during decoding operations the dictionary is stored in memory uncompressed,
allowing rapid access to factors that can then be copied directly to the output
stream as required. More details of the RLZ approach are given in Sect. 2.

While the approach provided by RLZ is indeed a good solution to the question
of archive compression, other methods based on adaptive compression mecha-
nisms are available. For example, standard tools like GZip and xz can be applied
on a per-block basis. The block size then becomes an important parameter that
trades compression effectiveness against access speed. The larger the block size,
the better the compression rate, but the longer it takes for a fragment of text to
be reconstructed, since decompression must start at the beginning of a block.

Our purpose in this paper is to provide detailed evidence of RLZ’s capability
in archive compression. Our analysis includes the effects of the storage device
chosen, and both hard-disk drives (HDD) and solid-state disk (SSD) storage are
employed. We analyze the factors that determine the time required to access a
fragment of text from an arbitrary location in a large corpus, and show how dif-
ferent compression techniques can be evaluated. The approaches explored include
making use of a facility provided by the standard ZLIB library in which a “prim-
ing” text enhances compression effectiveness during the start-up phase of GZip’s
Lempel-Ziv implementation. The various options are compared on the 426 GiB
GOV2 crawl of the .gov domain, which contains a broad mix of HTML, PDF,
and other document formats.

Based on those experiments, we conclude that for HDD the dominant factor
affecting access speed for random decoding is compression effectiveness, with
block size a secondary factor; whereas for SSD decompression speed is also a
factor. Our results confirm and extend those of Hoobin et al. [5], providing addi-
tional insights into the behavior of this important archiving technique. Our new
implementation of RLZ will be made available on completion of the project,
so that other compression approaches can also be incorporated as they are
developed.

2 RLZ Compression

We now provide a brief description of the RLZ archive compression mechanism [5].

Forming a Dictionary. The collection of documents to be stored are concate-
nated to make a single large file; we let C denote that single string, and |C|
be its length in bytes. Two parameters are then identified: the dictionary size,
denoted |D| (with D to be used for the dictionary); and the sample size s, chosen
to be a factor of |D|. The dictionary is formed by taking |D|/s samples, each s
bytes long, from C, extracting them at regular |C|/(|D|/s)-byte intervals. For
example, if |C| = 64GiB and s = 1kiB, then a dictionary of |D| = 64MiB would
be formed by concatenating a total of 65,536 samples, extracted every 1,048,576
bytes of C. Figure 1 shows the process of extracting regular samples from C to
form the dictionary D, regardless of the underlying document boundaries.

Access Time Tradeoffs in Archive Compression 17

C

D

Document collection

Dictionary

Fixed−width blocks

Fig. 1. Constructing the RLZ dictionary D by selecting regular samples from the docu-
ment collection C. Document boundaries in C are shown by dotted lines; block bound-
aries (over part of the collection) by dashed lines.

Factoring the Collection. Once D has been formed, C is broken into a
sequence of blocks, and each block independently factored against D, using a
left-to-right greedy approach. The blocks might be variable-length and formed
by considering individual documents in the collection; might be variable-length
and formed by taking groups of documents to reach some minimum size; or
might be fixed-length and formed by taking some exact number of bytes. In our
implementation we adopt the latter approach, meaning that access to any byte
range or to any particular document requires that the corresponding block or
blocks be identified and retrieved.

To generate the factorization for each of the blocks, D is indexed via a suffix
array or similar structure, so that for an arbitrary string S, the set of longest-
matching prefixes of S that appear in D can be identified. Starting at the begin-
ning of each block, factors relative to D are identified and represented by a pair
of integer values: the length of the factor, and its offset in D. If the next character
in the block does not appear in D, a literal is generated – a factor length of zero,
and then an ASCII character code rather than a dictionary offset. There are a
range of ways in which the presentation of literals can be optimized, including
the application of a minimum match length, or separating them into a distinct
third stream. These alternatives are explored in Sect. 4; Hoobin et al. [5] assume
that literals are sufficiently rare that intermingling them in the stream of off-
sets will not adversely affect compression effectiveness. Except when specifically
described otherwise, references to factor offsets below include any literals that
may have been required. The last factor in each block is truncated so that it
finishes at the block boundary. The compressed equivalent of each fixed-length
block is then the fundamental access unit for decoding, with higher-level oper-
ations such as document retrieval and byte-range retrieval implemented on top
of the block access routines.

Compression Rate. The total cost of storing C is the cost of storing D, plus
the cost of storing all of the 〈offset, length〉 pairs. The dictionary can be stored
using any desired compression mechanism, and is fully decoded into memory
prior to subsequent access operations. Even stored uncompressed, it is typically

18 M. Petri et al.

a small fraction of the original collection. Continuing the previous example,
|D|/|C| = 0.1 %, and a compressed representation of D should occupy well under
0.03 % of |C|.

The majority of the space required is in the 〈offset, length〉 pairs. As already
noted, they are separated into two streams on a per-block basis, with each stream
coded using a static method such as 32-bit or minimal-width binary integers, or
the variable-width byte-oriented vbyte approach [9]. The two coded streams are
then typically padded to a byte or word boundary, concatenated to make a single
unit, and a small prelude added that includes a count of the number of factors
contained. Continuing with the same example, suppose that C is partitioned
uncompressed into blocks of 16 kiB; that the average factor length is 20 bytes;
that each offset is coded in log2 |D| = 26 bits; and that almost all factor lengths
are coded in one byte each (vbyte codes for factor lengths of up to 127). Then
each factor requires 34 bits, and the offsets and lengths for a block are stored
in around 3.4 kiB, a compression rate of approximately 3.4/16 ≈ 22 %. Previ-
ous experimental results with RLZ suggest that all these various estimates are
reasonable [5], and they are further confirmed in the experiments described in
Sect. 4.

Random Access Decoding. To provide random-access decoding, index point-
ers to each block in the compressed integer stream are maintained in an auxiliary
structure. The block size determines the number of index points and hence the
size of the index, which is important because the index must also be retained in
memory during access operations. In the same example, with blocks of 16 kiB, a
set of 4,194,304 indexing pointers into the compressed stream is required, with
each pointer 34 bits long to address a compressed file of approximately 16GiB.
That is, in the example an index to allow random access to blocks consumes
17MiB, a further overhead.

To decode a fragment of C specified by an uncompressed byte range (for
example, if one document is required, and a mapping from document identifiers
to byte addresses is available) standard mod/div arithmetic is performed to
determine the ordinal numbers of the block or blocks that are required. The
block index (required to be memory resident) is then used to determine the
address of the bundle of de-interleaved 〈offset, length〉 pairs for that block, and a
file operation undertaken to fetch the relevant data from secondary storage. The
dictionary D (also memory resident) is then used, with D[offset] to D[offset +
length−1] copied to a decode buffer for each 〈offset, length〉 factor extracted from
the compressed blocks. The required range of bytes from within the block can
then be written to the output stream once the block decode buffer is filled. That
is, after a compressed block has been fetched into main memory, reconstructing a
fragment of C consists of decoding two sequences of integers using static integer
codes, and then copying strings. Both operations are fast. Further blocks are
fetched and decoded if required, until the byte range specified in the query has
been delivered.

Ferrada et al. [2] have also considered random access in RLZ mechanisms.

Access Time Tradeoffs in Archive Compression 19

Memory Footprint. Compression effectiveness is in part determined by the
amount of space used for the dictionary, as another dimension of effectiveness-
efficiency trade-off. For example, if the memory required (64MiB + 17MiB in
the example scenario) must be reduced for some reason, either the block size can
be increased, potentially affecting access speed; or the dictionary size decreased,
potentially affecting compression rate. If the block size is increased to 64 kiB, the
index reduces to 4.3MiB. The drawback, of course, is that four times as much
data must be transferred into main memory to fulfill a request, and more of it
is likely to be required to be decoded as well, unless internal structure is added
within each block. As is demonstrated in the experiments below, transfer and
decoding times are usually small, and block sizes in the tens of kilobyte range
are acceptable. The uncompressed dictionary D is then the dominant mem-
ory requirement during random-access decoding. To mitigate this cost, methods
have been developed for pruning the dictionary to remove unused or under-used
strings [7].

Access Time. In a memory-to-memory context, string-copy decoders similar
to RLZ generate text at around 250MiB–300MiB per second.1 A compressed
block derived from 64 kiB of C can thus be decoded in around 0.25 ms. But
that can only happen once it has been fetched from secondary memory. Table 1
provides indicative performance figures for mechanical (HDD) and solid-state
(SSD) secondary memory devices. In a mechanical disk, there is a non-trivial
startup time for each data transfer, involving (with high probability) a seek
operation to move the read head, followed by a delay resulting from rotational
latency. Solid-state disks achieve higher data transfer rates, and commence the
data transfer relatively quickly after the request is received.

Table 1. Performance of different storage media. Extracted from product specifications
of current devices: Seagate ST3000DM001 (HDD), Intel SSD 750 Series (SSD).

Medium Random read latency Sequential transfer rate

Hard disk (HDD) 8.5 ms 150 MiB/s

Solid-state disk (SSD) 0.12 ms 1000 MiB/s

If compressed blocks are stored on HDD, the seek-plus-latency cost of approx-
imately 8.5 ms dominates the cost of transferring the data (around 0.15 ms for
the compressed equivalent of a block of, say, 64 kiB of C), and the cost of decod-
ing that block once it is in memory (around 0.25 ms). Based on this arithmetic,
and assuming that each query consists of accessing a 16 kiB segment of C, a
throughput of around 110 random-access queries per second should be possible.
Of that time, decoding activity occupies less than 3 %. On the other hand, if the
whole collection is decoded sequentially (meaning that seek and latency times are

1 https://github.com/Cyan4973/lz4, accessed 27 July 2015.

https://github.com/Cyan4973/lz4

20 M. Petri et al.

amortized to zero), and if compression effectiveness of 30 % or better is achieved
(meaning that decoding cost completely subsumes transfer cost) then data can
be handed to another process at the measured peak output rate. Continuing the
same example, a rate of 300MiB decoded per second correspond to up to 5,000
64 kiB-blocks, or 20,000 16 kiB-blocks.

If SSD is used, the situation for random access changes markedly. Now the
transfer initialization time is around 0.1 ms, meaning that something like 2,900
64 kiB blocks per second can be fetched and decoded, with the decoding taking
around 60 % of the total time. Sequential access continues to be dominated by
decoding cost, and remains capped at around 20,000 16 kiB-blocks per second.
All of these estimated access time and throughput rates are validated empirically
in Sect. 4.

3 Block-Based Adaptive Alternatives

We now consider additional options for archive compression.

Standard Compression Libraries. Standard compression tools such as GZip,
BZip2, and xz, are adaptive, in that they use dynamic models and codes, so as
to be versatile across file types. For example, the well-known GZip compressor
adopts the same Lempel-Ziv factorization approach as RLZ, starting each com-
pression run with an empty dictionary, and then adding each parsed factor’s text
for possible use in subsequent factorizations. If GZip is applied independently to
blocks, its “always-start-from-zero” approach puts it at a disadvantage compared
to RLZ, because the global RLZ dictionary allows identification of long factors
right from the beginning of every block.

On the other hand, adaptive compression techniques build models that are
focused on exactly the content being compressed, and hence have an ability to
be locally sensitive in a way that RLZ does not. Adaptive methods are also able
to exploit encodings for factor offsets and lengths that are adaptive rather than
static, further enhancing their ability to provide locally sensitive compression.
That is, while RLZ’s use of a global dictionary and static encodings for factor
offsets and lengths gives it an advantage on very short blocks, localized adaptive
methods may obtain better compression as the block size is increased. Part of
our purpose in this investigation is to explore the options provided by these
alternatives.

Block Size. A second area for exploration is the effect of block size. The connec-
tion between block size and the size of the block index was discussed above. In
the case of RLZ, because it typically uses static integer codes, increasing block
size has no effect on compression effectiveness. But if large blocks are passed
to an adaptive compression utility, average compression effectiveness is likely
to improve, because the start up cost of the model is amortized over a longer
section of text. This then raises an interesting trade-off – at what block size
does an adaptive dictionary provide better compression than a static RLZ-style
dictionary of some given size.

Access Time Tradeoffs in Archive Compression 21

For random-access operations using mechanical disk, the added decoding cost
due a large block size may not matter. Even with a block size of 512 kiB, decoding
of half a block, to reach a given byte address within it, takes around 0.8 ms;
transfer of a full block takes approximately 1.1 ms, assuming a 25 % compression
rate; and the seek-plus-latency time of around 8.5 ms is unchanged. That is, it
should be possible to extract fragments from a block representing 512 kiB of text
in around 11 ms, or at an estimated rate of approximately 90 queries per second.

Batch-Mode Operation. If queries are batched and processed “elevator” style,
higher query throughput rates can be achieved, because average disk-seek times
are likely to be smaller when the access requests are sorted. For example, if 110
random-access queries per second can be supported without batching, and if
batches of sufficient size can be accumulated so that the average seek-plus-latency
time drops from 8.5 ms to say 4.5 ms then the same hardware configuration
should support approximately 200 queries per second. The drawback is that on
average the queries will have much greater latencies before being processed –
perhaps measured in tens or hundreds of seconds, rather than tens of millisec-
onds. In applications that fetch small fragments of a large archive, this mode of
operation may still be acceptable.

4 Experiments

A New Implementation. To allow precise characterization of the performance
of RLZ compression, we have created a new implementation based on fixed-
length data blocks, each compressed independently, with a block index main-
tained in memory so that random-access queries can be supported. The system
is written using ≈4000 lines of C++11 code with the help of the sdsl library [4]. We
use gcc 4.9.2 running on Ubuntu 15.04 in our experiments, with all optimizations
enabled.

We have explored five variants, including three RLZ versions:

– RLZ-UV, using unsigned 32-bit integers for factor offsets, and vbyte for factor
lengths, as described by Hoobin et al. [5];

– RLZ-PV, using packed log2 |D|-bit integers for factor offsets, and vbyte for factor
lengths; and

– RLZ-ZZ, using ZLIB (the basis of the standard GZip compression utility) version
1.2.8 (http://zlib.net) to represent each of the streams of 32-bit factor offsets
and the stream of 32-bit factor lengths, on a block-by-block basis.

Each of these three methods makes use of a sampled dictionary. We also applied
each of ZLIB and LZ4 (https://github.com/Cyan4973/lz4) to independent blocks,
without use of a dictionary, following preliminary experimentation that included
BZip2 and xz. The latter two were slower, and gave less interesting trade-offs
between access speed and compression effectiveness. Finally, as a sixth system
and a further baseline, we measured the performance of a COPY mechanism that
does no compression at all.

http://zlib.net
https://github.com/Cyan4973/lz4

22 M. Petri et al.

Datasets. Our experiments focus on the GOV2 collection, a crawl of the .gov
domain undertaken in early 2004, with documents stored in as-crawled order.
This collection contains around 25 million documents as a mixture of PDF,
HTML, text, and other formats, averaging 18 kiB each, and totaling 426 GiB.2

We use both the full collection and a 64 GiB prefix of it.

Query Streams. We explore three modes of retrieval: FULL, in which the archive
is decoded sequentially; RANDOM, in which a set of 10,000 random unaligned
locations is accessed and a 16 kiB fragment retrieved from each; and BATCH,
in which those same 10,000 locations are accessed, but with the queries sorted
by address. The “Sequential” mode explored by Hoobin et al. [5] most closely
matches our FULL mode, in that they measured retrieval of 100,000 consecutive
GOV2 documents. Similarly, their “Query Log” mode corresponds broadly to
our RANDOM mode, but with 100,000 document requests in the query stream,
and hence more possibility of caching affecting throughput.

Hoobin et al. [5] also make use of a second URL-sorted GOV2 collection.
They obtain notably different query throughput results for the two orderings,
particularly with regard to decoding speed, differences that we were unable to
reproduce with our implementation. An examination of their code suggests that
the differences arise from a mode in their software that because of compiler
optimization inadvertently results in no decoded output being generated. As a
result, we believe that the “Sequential” retrieval speeds shown in their Table 5
(including decoding rates as high as 80,000 documents per second) should be
discounted; and (for other reasons) possibly some of their other speed results
too.3 That is, our work here can be seen in part as representing re-measurement
of the techniques Hoobin et al. [5] describe.

Dictionary Size and Formation. The effectiveness of the RLZ mechanism is
heavily affected by the dictionary size. In their GOV2 experiments Hoobin et
al. [5] work with dictionary sizes between 0.5 GiB and 2 GiB. Here we focus
on smaller dictionaries, and explore the range from 16MiB to 256MiB for the
64GiB test file, and the range 64MiB to 1024MiB for the full GOV2 collection.
As described in Sect. 2, we followed the “standard” approach of selecting fixed-
interval samples from the collection, presuming it to have been concatenated into
a single large file. Other dictionary construction methodologies have been shown
to result in small compression effectiveness gains [7]; we also explored a range
of other heuristics, but found the simple interval-based sampling approach to
be relatively robust. We used samples of length s = 1024 throughout, matching
(when |D| = 1GiB) some of the experiments carried out by Hoobin et al. [5]. We
tested block sizes of 16 kiB, 64 kiB, and 256 kiB. All compression rates include
the cost of storing the dictionary, compressed as a character stream using ZLIB,
and the cost of the index table for block access, also stored using ZLIB.

2 http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm, 27 July 2015.
3 Our concerns in this regard have been communicated to the authors of [5].

http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

Access Time Tradeoffs in Archive Compression 23

Hardware Configuration. All experiments were run on a server equipped with
two Intel Xeon E5640 CPUs running at 2.67 GHz using 144 MiB RAM, a West-
ern Digital 5 TiB (WD50EFRX-68MYMN1) HDD and a 500 GiB Samsung 850
EVO SSD. Before each experiment the operating system caches were cleared to
minimize caching effects using echo 3 > /proc/sys/vm/drop caches. We also
took care with file placement on the HDD, noting the effect that fragmentation
and track assignment can have on disk-based experimentation [8]. In some cases
this meant deleting and re-copying indexes, so as to ensure that measurements
were made in a fair and consistent manner. The SSD did not suffer from this
variability.

High-Level View. Figure 2 presents an overview of the six methods, measured
using the 64GiB file, and shows the gross relative performance across the three
querying modes and two hardware configurations. Each pane plots the relation-
ship between compression rate, as a percentage of the original file size, on the

FULL BATCH RANDOM

100

200

500

1 k

2 k

5 k

10 k

20 k

100

200

500

1 k

2 k

5 k

10 k

20 k

H
D

D
S

S
D

20 30 40 50 60 80 100 20 30 40 50 60 80 100 20 30 40 50 60 80 100

Compression Ratio [%]

16
K

iB
 B

lo
ck

s
pe

r
S

ec
on

d

Dict Size [MiB] 0 4 16 64 Type RLZ−ZZ RLZ−PV RLZ−UV ZLIB LZ4 COPY

Fig. 2. Query processing rates measured as 16 kiB units retrieved per second, for
three different processing modes, two types of secondary storage, block sizes of 16 kiB,
64 kiB, and 256 kiB (not individually identified in the plots), and a 64 GiB prefix
of GOV2. In the FULL mode, throughput rates are for aligned 16 kiB units; for the
BATCH and RANDOM modes, for unaligned 16 kiB units. The COPY, LZ4, and ZLIB
methods do not use a dictionary, and are shown as 0 MiB. In general, larger block
sizes lead to better compression effectiveness; together with faster access in the case
of FULL operation, and slower access in the case of BATCH and RANDOM operation.
(Color figure online)

24 M. Petri et al.

horizontal axis; and access speed, measured by the number of 16 kiB blocks
accessed per second. Each pane contains 36 plotted points: three RLZ variants,
each with three different dictionary sizes and three different block sizes (27 data
points); plus two blocked adaptive methods using the same three different block
sizes (6 data points); plus the COPY method using the three block sizes. Each
color corresponds to a dictionary size, and each point shape corresponds to a
method. Within each method, the larger the dictionary size and/or the larger the
block size, the better the compression. But increased block sizes also correspond
to slower decoding. All six panes show the absolute advantage of using virtually
any compression method, with the COPY approach the slowest in several cases,
and never the fastest. Data compression often pays for itself. Note also that for
each method, dictionary, and block size combination the compression rate is the
same across all six panes.

The two left panes confirm that sequential decoding is very fast, with the
LZ4, RLZ-UV and RLZ-PV approaches having a moderate speed advantage over
the other mechanisms, but with all of the compressed approaches delivering
10,000+ documents (each a 16 kiB unit in these experiments) per second, or
160MiB+/second. There is little measurable difference in performance between
HDD and SSD. Unsurprisingly, the larger the dictionary and/or the larger the
block size, the better the compression.

The BATCH and RANDOM modes are much slower. In the two middle panes,
depicting BATCH access, there is a clear trend on the HDD for better compression
to correspond to higher query throughput, with query rates of between 100 doc-
uments (unaligned 16 kiB units in this querying mode) and 200 documents per
second, and relatively little differentiation between the compression techniques.
On the SSD, much faster rates of 800–2,000 documents per second result, with
throughput more sensitive to the choice of compression technique. Finally, the
right two panes show the further slowdown arising from RANDOM access. On the
HDD, query rates are around 100 documents/second; and on the SSD querying
throughput is the same as for BATCH retrieval.

The SSD RANDOM and BATCH querying rates are around half those predicted
by the model described in Sect. 2. Measurement of the operating characteristics
of the SSD used in the experiments indicate that its mean latency is higher than
is shown in Table 1, approximately 0.25 ms per access, explaining the difference
between predicted and measured querying rates.

Detailed View – Random Access. Figure 3 shows a focused view correspond-
ing to the two right-hand panes in Fig. 2, measured using the full 426 GiB GOV2
collection, and with the COPY method omitted. It considers only the RANDOM

queries, using correspondingly larger dictionaries of 64MiB, 256MiB, and 1GiB,
and unchanged block sizes of 16 kiB, 64 kiB, and 256 kiB. At the increased scale
of these graphs, it is possible to identify a Pareto frontier for each different dic-
tionary size, and quantify the tension between compression and throughput that
is controlled by block size.

For random access, the raw speed of LZ4 is less of an advantage, and it is
part of the trade-off frontier only when no dictionary can be used, and when

Access Time Tradeoffs in Archive Compression 25

RANDOM

95

100

105

110

600

800

1000

1200

H
D

D
SSD

10 15 20 25 30
Compression Ratio [%]

16
Ki

B
Bl

oc
ks

 p
er

 S
ec

on
d

Dict Size [MiB] 0 64 256 1024 Type RLZ−ZZ RLZ−PV RLZ−UV ZLIB LZ4

Fig. 3. Query processing rates for the RANDOM processing mode, measured as
unaligned 16 kiB units retrieved per second, for two types of secondary storage, block
sizes of 16 kiB, 64 kiB, and 256 kiB (not individually identified in the plots), and
the full GOV2 collection. Note that the upper and lower panes have different vertical
scales. (Color figure online)

the fast data rates of SSD are available. If dictionary space is not a restriction,
then the RLZ-ZZ methods dominate absolutely for HDD retrieval, and for much
of the frontier with SSD retrieval. The remaining part of the SSD frontier is
pinned on the RLZ-PV method, highlighting that unaligned bit-wise integers can
be processed just as efficiently as can the aligned 32-bit integers preferred by
Hoobin et al. [5], and give better compression.

Comparing our results with those of Hoobin et al. [5], we have measured
very similar throughput rates for RANDOM queries, and by adding blocking to
the RLZ-ZZ approach, have slightly improved its compression effectiveness. That
small gain, and the reduction in transfer and decoding time that accompanies
it, gives the RLZ-ZZ approaches the upper hand, and dictionaries as small as 256
MiB are sufficient to attain high RANDOM query throughput even compared to
RLZ-PV, and also compact storage. On SSD, the situation is similar, but if query
throughput is the primary goal, the RLZ-PV represent the best combination of
attributes.

26 M. Petri et al.

5 RLZ Extensions

We briefly describe two different ways in which RLZ compression can be
enhanced.

Table 2. Use of ZLIB priming with the 64 GiB prefix of GOV2. In the ZLIB′ method,
a uniform sampled dictionary of 256 MiB is employed. In the RLZ-ZZ′ method, the
same 256 MiB dictionary is used, plus two fixed pre-computed integer sequences of 64
kiB containing factor lengths and factor offsets respectively. The two values for each
combination are the compression rate, as a percentage of the original collection, and
the measured RANDOM-mode throughput, in documents per second using SSD.

Block size ZLIB ZLIB′ RLZ-ZZ RLZ-ZZ′

Comp. Thrpt. Comp. Thrpt. Comp. Thrpt. Comp. Thrpt.

16 kiB 24.83 % 990 22.64 % 955 17.56 % 1043 17.37 % 946

64 kiB 22.29 % 840 21.53 % 825 16.56 % 905 16.47 % 866

256 kiB 21.53 % 513 21.33 % 508 16.26 % 599 16.21 % 581

Priming in RLZ-ZZ. The ZLIB compression library offers the ability to “prime”
the compression process, by providing data that is considered to precede the
sequence that is to be compressed, thereby providing a model to initialize the
dictionary. In the same way that RLZ employs a dictionary, so too can a ZLIB′

approach, in which a uniform sampled dictionary is created, and then each block
of data is ZLIB-compressed using priming text drawn from the dictionary in the
vicinity of the block being compressed. A similar approach has been demon-
strated to be effective when compressing Yahoo email archives [1]. A primed
variant of RLZ-ZZ can also be constructed, using pre-computed sequences of fac-
tor offsets and factor lengths. Table 2 shows that when the block size is small,
priming achieves a worthwhile benefit, but that the gain for larger block sizes is
smaller. Priming causes a small decrease in query throughput rates.

Three Streams. Using a full factor – requiring 30+ bits – to represent a literal
is expensive, and it is not actually necessary for literals to be mingled with
the stream of dictionary offsets. If a third stream is added, containing only the
sequence of literals, it can be compressed separately. Once a separate stream is
allowed, it also makes sense to force any short factors in to it too – if the next
match in the dictionary is of length less than some value min literal, then the
entire factor is coded as literals. Similar optimizations are used in many Lempel-
Ziv implementations; see, for example, Fiala and Greene [3]. The third stream
can be coded using any of the mechanisms already discussed, or any other coding
method [6]; here we use of ZLIB for all three.

Table 3 provides a detailed comparison between RLZ-ZZ and RLZ-ZZZ. The
gain in compression is larger with a small dictionary than with a large dictio-
nary, since the bigger the dictionary, the less likely it is that short factors will get

Access Time Tradeoffs in Archive Compression 27

Table 3. Use of a three-way split of streams, using min literal = 4, a 64 GiB prefix of
GOV2, and three different dictionary sizes. Values reported are compression rates, as a
percentage of the original collection. The final column shows the measured RANDOM-
mode throughput, as unaligned 16 kiB accesses per second using SSD secondary storage,
for the RLZ-ZZZ method with a dictionary of 256 MiB, and can be compared with the
values in Table 2.

Block size RLZ-ZZ RLZ-ZZZ

16 MiB 64 MiB 256 MiB 16 MiB 64 MiB 256 MiB Thrpt.

16 kiB 22.89 % 20.03 % 17.56 % 22.42 % 19.80% 17.47 % 1029

64 kiB 21.58 % 18.89 % 16.57 % 20.99 % 18.54% 16.39 % 896

256 kiB 21.18 % 18.54 % 16.27 % 20.57 % 18.17% 16.06 % 591

generated. That is, the use of three streams can be viewed as being a way of mak-
ing slightly better use of a small dictionary. Decoding speed is only marginally
affected.

6 Summary and Conclusion

We have extended the experimentation of Hoobin et al. [5] to SSD memory,
and undertaken a systematic study of blocking effects and access time trade
offs in archive compression. The RLZ-ZZ static-dictionary method provides an
outstanding balance between random access query throughput and compression
effectiveness, for both HDD devices and SSD devices. We have also measured
the effect of two simple techniques that provide small additional compression
gains, without any great loss of throughput.

Acknowledgments. This work was supported under the Australian Research Coun-
cil’s Discovery Projects scheme (project DP140103256).We have had access to the code
of Hoobin et al. while working on this project, and we thank them for making it avail-
able.

References

1. Bergman, A., Zohar, E.: Compressing Yahoo mail. In: Proceedings of the DCC, pp.
223–232 (2015)

2. Ferrada, H., Gagie, T., Gog, S., Puglisi, S.J.: Relative Lempel-Ziv with constant-
time random access. In: Moura, E., Crochemore, M. (eds.) SPIRE 2014. LNCS, vol.
8799, pp. 13–17. Springer, Heidelberg (2014)

3. Fiala, E.R., Greene, D.H.: Data compression with finite windows. Commun. ACM
32(4), 490–505 (1989)

4. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) sea 2014.
LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

28 M. Petri et al.

5. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. PVLDB 5(3), 265–273 (2011)

6. Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer, Boston (2002)
7. Tong, J., Wirth, A., Zobel, J.: Principled dictionary pruning for low-memory corpus

compression. In: Proceedings of the SIGIR, pp. 283–292 (2014)
8. Webber, W., Moffat, A.: In search of reliable retrieval experiments. In: Proceedings

of the 10th Australasian Document Computing Symposium, pp. 26–33 (2005)
9. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Comput. J. 42(3),

193–201 (1999)

http://www.springer.com/978-3-319-28939-7

	Access Time Tradeoffs in Archive Compression
	1 Introduction
	2 RLZ Compression
	3 Block-Based Adaptive Alternatives
	4 Experiments
	5 RLZ Extensions
	6 Summary and Conclusion
	References

