Chapter 2
Fortran Basics

In this chapter, we introduce the basic elements of programming using Fortran.
After briefly discussing the overall syntax of the language, we address fundamental
issues like defining variables (of intrinsic type). Next we introduce input/output (1/0),
which provides the primary mechanism for interacting with programs. Afterwards,
we describe some of the flow-control constructs supported by modern Fortran (1 £,
case, and do), which are fundamental to most algorithms. We continue with an
introduction to the Fortran array-language, which is one of the strongest points of
Fortran, of particular significance to scientists and engineers. Finally, the chapter
closes with examples of some intrinsic-functions that are often used (for timing
programs and generating pseudo-random sequences of numbers).

2.1 Program Layout

Every programming language imposes some precise syntax rules, and Fortran is no
exception. These rules are formally grouped in what is denoted as a “context-free
grammar”,! which precisely defines what represents a valid program. This helps the
compiler to unambiguously interpret the programmer’s source code,” and to detect
sections of source code which do not follow the rules of the language. For readability,
we will illustrate some of these rules through code examples instead of the formal
notation.

Below, we show the basic layout of a single-file Fortran program, with no proce-

dures (these will be discussed later):

! For example, extended Backus-Naur form (EBNF).

2 EBNF is also useful for defining consistent data formats and even simple domain-specific lan-
guages (DSLs).
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program [program name]
implicit none

[ variable declarations [ initializations ] ]
[ code for the program ]

end program [program name]

Any respectable language tutorial needs the classical “Hello World” example.
Here is the Fortran equivalent:

program hello_world

implicit none

print*, "Hello, world of Modern Fortran!"
end program hello_world

Listing 2.1 | stc/Chapter2/hello _world.£90 \

This should be self-explanatory, except maybe for the ’ implicit none ‘ entry,
which instructs the compiler to ensure all used variables are of an explicitly defined
type. It is strongly recommended to include this statement at the beginning of each
program.’ The same advice will apply to modules and procedures (discussed later).

Exercise 1 (7esting your setup) Use the instructions from Sect. 1.3 (adapting
commands and compiler flags as necessary for your system) to edit, compile
and execute the program above. Try separate compilation and linking first, then
combine the two stages.

2.2 Keywords, Identifiers and Code Formatting

All Fortran programs consist of several types of tokens: keywords (reserved words
of the language), special characters,* identifiers and constant literals (i.e. numbers,
characters, or character strings). We will encounter some of the keywords soon, as
we discuss basic program constructs. Identifiers are the names we assign to variables
or constants. The first character of an identifier should be a letter (the rest can be

3 This is related to a legacy feature, which could lead to insidious bugs. The take-home message

for new programmers is to always use ’ implicit none ‘ The —fimplicit—none
flag can be used, in principle, in gfortran, but this is also discouraged because it introduces an

unnecessary dependency on compiler behavior.
4 The special characters are (framed by boxes): E], s E], , , , Gl , , B,
vt [ ) [ (&) VS B O O E 1 ana @)

Certain combinations of these are reserved for operators and separators.
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letters, digits or underscores E])' The length of the identifiers should not exceed 63
characters (Fortran 2003 or newer).

Comments: Commenting the nontrivial aspects of your code is highly recom-
mended.® In Fortran, this is achieved by typing an exclamation mark (), either
on a line of its own, or within another line which also contains program code. In
either case, an | / | will cause the compiler/preprocessor to ignore the rest of the line.’

Multi-line statements: Unlike languages from the C-family, in Fortran the semicolon

for marking the end of a statement is optional (although it is still used sometimes,
to pack several short statements on the same line). By default, the end of the line
is also considered to be the end of the statement. A line of code in Fortran should
be at most 132 characters long. If a statement is so long that this is not sufficient
(for example, a long formula for evaluating derivatives in finite-difference numerical
schemes), we can choose to continue it on the following line(s), by inserting an
ampersand at the end of each line that is continued. Since Fortran 2003, up to
2558 continuation lines are allowed for any statement.

It can happen (although it should be avoided when possible) that the line break in
a multi-line statement occurs at the middle of a token. In that case, using a single
will probably not give the expected result. This can be overcome by typing another
as the first character on the continued line, which contains the remainder of the

divided token.
The two possible uses of continuation lines are shown in the example below:

1 program continuation_lines
2 implicit none
3 integer :: seconds_in_a_day = 0
4
5 ! Normal continuation-lines
6 seconds_in_a_day = &
7 24*60*60 ! 86400
8
9 print*, seconds_in_a_day
10
11 ! Continuation-lines with a split integer-literal token
12 seconds_in_a_day =
13 &4*60*60 ! still 86400. In this case, splitting the’'24’
14 ! is unwise, because it makes code unreadable.
15 ! However, for long character strings this can be
16 ! useful (see below).
17 print*, seconds_in_a_day
18
19 ! Continuation-lines with a split string token.
20 print*, "This is a really long string, that normal &
21 &1ly would not fit on a single line."
22 end program
\S )

Listing 2.2 | src/Chapter2/continuation_lines.f90

3 A maximum of 31 characters were allowed in Fortran 95.

6 A good guideline is to make the code indicate clearly what is being done (through choice of
meaningful variable and function names), and then to use the comments to describe the motivations
(why it has been done like that, and what other problem-specific aspects are relevant).

7 Exceptions to this rule are compiler directives (“pragmas”), which are specially-formatted com-
ments that communicate additional information to the compiler; examples will be shown in Sect. 5.3,
when we will discuss how to specify, using the Open MultiProcessing (OpenMP) extensions, which
portions of the code should be attempted to be run in parallel.

8 The previous limit (according to the Fortran 95 standard) was of up to 39 continuation lines.
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Spaces and indentation: Whitespace can be freely used to separate program tokens,
without changing the meaning of the program. For example, as far as the compiler
is concerned, /ine 3 in the previous listing could also have been written as:

Lginteger ::seconds_in_a_day= 0 J

Therefore, this is a subjective choice, which can be used to our advantage, to
improve readability of the code. For example, it is considered good practice to indent’
program-flow constructs (loops, conditionals, etc.), as will be shown later.
Combining statements in one line: As previously mentioned, we normally have
one statement per line of code. However, it is also allowed to combine instructions,
as long as they are separated by semicolons B A common example is for swapping

two variables ([ a | and @) using a temporary ():

(:temp:a; a=b; b=temp ! semicolon not mandatory at end of line J

2.3 Scalar Values and Constants

As other programming languages, Fortran allows us to define named entities, for
representing quantities of interest from the problem domain (speed, temperature,
concentration of a tracer, etc.). Each entity belongs to a type, which specifies a set of
possible values, a scheme for encoding those values, and allowed operations. Fortran
is statically-typed, which means the type of a variable is fixed at compile-time.'? This
apparent drawback actually helps in practice, because many errors can be caught ear-
lier; it also helps the compiler to apply certain code-optimization techniques (because
the number of bits needed for each variable is known well before any operation is
applied to the variable).

Standard-compliant compilers should provide at least five built-in types.'! Of

these, three are numeric (| integer|, |real | and | complex |), and two non-
numeric ( character |and| logical ).

9 Note that some text editors feature automatic indentation, which makes this easier.

10 Other languages, such as Matrix Laboratory® (MATLAB) or The R Project for Statistical Com-
puting (R), support dynamic typing, so the type of a variable can change during the execution of the
program.

11t is also possible to define custom types, enabling data-encapsulation techniques similar to C++
(this will be discussed in Sect.3.3.2).
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All of these types can be used to declare named constants or variables:

11

! Declaring normal variables
! -- numeric --

integer :: length = 10

real coox = 3.14

complex :: z = (-1.0, 3.2)

! -- non-numeric --

character :: keyPressed ='a’

logical :: condition = .false. ! (either’. true.’

! Declaring named constants
! -- numeric --

")

integer, parameter :: INT_CONST = 30
real, parameter :: REAL_CONST = 1.E2 ! (scientific notation)
complex, parameter :: I = (0.0, 1.0)
! -- non-numeric --
character, parameter :: B_CHAR ='b’
logical, parameter :: IS_TRUE = .true.
.
NOTES

o Position of declarations in (sub)programs: All declarations for constants
and variables need to be included at the beginning of the (sub)program,
before any executable statement. However, as of Fortran 2008 it is possible
to overcome this limitation, by surrounding variable declarations with a

| block || end block |construct, as follows:

! variable declaration(s)
integer :: length

! executable statements (normally, not possible to specify additional
! variable declarations after the first such executable statement)

length = 10

block

! block-construct (Fortran 2008+) enables us to overcome that

! limitation
real :: x
end block

e The E separator: In the examples below, we declare variables both with
and without this separator. In general, E is optional, except when the
variable is also initialized or variable attributes are specified. A simple rule

of thumb is to always use this separator, which works in all cases.

e Constants: Any value can be declared as a constant, by appending the
—attribute after the name of the type. This should be used
generously whenever values are known to be constant, to avoid accidental

overwriting. Other type attributes will also be discussed.

2.3.1 Declarations for Scalars of Numeric Types

Below, we present some examples of defining variables and constants of numeric
types. For each type, we first demonstrate how to define a variable. A definition only
reserves space for the variable in memory, but the value stored in its corresponding
bits is actually undefined, so it is highly recommended to follow each declaration
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with an initialization. These two steps can be merged into a one-liner (see examples
below). Finally, we also show how to define constants of each type.

’ integer type: ‘ valid values of this type are, e.g. —42, 24, 123. In general,
any integer is accepted, as long as it resides within a certain range. The length of the
range is determined by the kind parameter (if that is explicitly specified), or by the
machine architecture (32 or 64 bit) and compiler (if no kind is specified, as in our
present examples). Example declarations:

plain declaration...
.with corresponding initialization

integer i
i =10
(would be in the executable section of

the (sub)program)

integer : j = 20 ! declaration with initialization
integer, parameter :: K = 30 ! constant (initialization mandatory)

Note that, unlike other programming languages, Fortran integer-variables are

always signed (i.e. they can be both positive and negative).
valid values of this type are, e.g. 2.78, 99., 1.27e2 (exponential
notation)!'? or .123. Similar to integers, the number of digits after the decimal point

(precision) and range of the exponent are system-and kind-dependent. Example
declarations:

real x ! simple declaration
real Ly 1.23 ! declaration with initialization
real, parameter :: Z 1l.e2 ! constant (scientific notation)

’ complex type: ‘ complex numbers are often needed in scientific and engineer-
ing applications, thus Fortran supports them natively. They can be specified as a pair
of integer or real values (however, even if both components are specified as
integers, they will be stored as a pair of reals, of default kind). Example declarations:

complex :: c2 = (1.0, 7.19e23) ! declaration with initialization

complex cl ! simple declaration
complex, parameter :: C3 = (2., 3.37) ! constant

2.3.2 Representation of Numbers and Limitations
of Computer Arithmetic

While internally all data is stored by computers as a sequence of bits (zeroes and ones),
the concept of types (also known as “data types”) binds the byte sequences to spe-

cific interpretations and manipulation rules. For example, addition of -
versus that of -numbers is very different at the bit-level. The number of bits
used for a value of each type is particularly important: the more bits are used, the

12127¢2 = 1.27 x 102



2.3 Scalar Values and Constants 13

more numbers become representable. For s, this is exploited to increase
the bounds of the representable interval; for s, part of the extra bits can be
used to increase the precision (i.e. roughly the number of digits after the decimal
point, after we translate the number back to the decimal representation). As a rule of
thumb, computations become more expensive when more bits are used.!3 However,
numerical algorithms also vary with respect to the precision they need to function
correctly. To balance these factors, most computer systems support several sub-types

for| integer |and | real | values.

Modern Fortran has a very convenient mechanism for specifying the numerical
requirements of a program in a portable way, without forcing developers (or, worse,
users) to study each CPU in-depth. We discuss this feature in Sect.2.3.4.

It is important that programmers keep in mind the limitations of the internal
representations, since these are an endless source of bugs. A tutorial on these issues
is outside the scope of our text (a very readable introduction to these issues and their
implications is Overton [11]). For example, some of the facts to keep in mind for the

integer |and|real |types are:
° : Unlike C, Fortran always stores integer-values with a sign.!4

All | integer |types represent exactly all numbers within a sub-interval of the
mathematical set of integer numbers. However, different kinds of integers (using
different number of bits) will have different lengths for the representable interval.
This is important when our programs use conversions from one kind of integer
to another. Also, operations involving two integers may produce a result which
is not representable inside the type (a situation known as integer overflow). Some-
times, compilers may have options which can detect such errors when a program

is tested — for example, gfortran can achieve this when the flag

is used.

° : Most computer systems nowadays support the standard. This
specifies a set of rules for representing fractional numbers inside the computer,
along with bounds on the errors they introduce. This representation is also known
as “floating-point”, since it was inspired by the floating-point representation of
large numbers, used in science and engineering calculations. While integer-
arithmetic is exact (as long as both the arguments and the result are representable),
this is not the case for floating-point representations: since any interval along
the real axis contains an infinite set of numbers, it is impossible to store most

13 This is not a “hard” rule, however, because many factors enter the performance equation—
e.g. specialized hardware units within the central processing unit (CPU), the memory hierarchy,
vectorization, etc.

14 An intuitive approach would be to reserve one bit for the sign, and use the rest for the modulus.
However, to reduce hardware complexity most systems use another convention (“two’s comple-
ment”).

15 Note that enabling such options will most probably make the program slower too, so they are not
meant for “production” runs.
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numbers using a bit-field of finite size. This causes most nontrivial calculations
with real-values in Fortran to be approximate (so there is always some “noise”
in the numerical results).

To complicate matters more, note that many numbers which are exactly rep-
resentable in the familiar decimal floating-point notation cannot be represented
exactly when translated to one of the binary floating-point formats. A common
example is the number 0.1, which on our system becomes 0.100000001490116
when translated to 32 bit floating-point and back to decimal, and 0.10000000
0000000005551115123125783 when 64 bit floating-point is used. This can lead
to subtle bugs—for example, when two variables which were both assigned the
value 0.1 are compared for equality, the result may be false if the two variables
are of different floating-point type. In this case, the compiler will promote the
lower-precision value to the higher-precision type (so that it can perform the com-
parison). However, this cannot bring back the bits that were discarded when 0.1
was converted to fit inside the lower-precision type. For this reason, it is often
a good idea to avoid such comparisons as long as possible, or to include some
tolerances when this operation is necessary nonetheless. For more information on
floating-point arithmetic and advice for good practices, the reader can also consult
Goldberg [4], as well as Overton [11].

2.3.3 Working with Scalars of Numeric Types

The three numeric types share some characteristics, so it makes sense to discuss
their usage simultaneously, highlighting any exceptions. This is the purpose of this
section.

2.3.3.1 Constructing Expressions

Scalars of numeric type (operands), together with operators, can be combined to
form scalar expressions. Fortran supports the usual binary arithmetic operators:
(exponentiation), (multiplication), (division), (addition), and E]
(subtraction). The last two may also be used as unary operators (for example, to
negate a value). Complex expressions can be built, with more than one operator. For
evaluation, these are divided into sub-expressions, which are executed in left-to-right
order, with some complications due to the precedence rules (for the details, consult,
for example, Metcalf et al. [10]). Parentheses can be used to override the precedence
rules, which may make code readable in some cases:

§

o

1 :: x=13, y=17, z=0
X*y+x/y ! this expression (using precedence rules)
(x*y) + (x/y) ! is equivalent to this one (using parentheses)
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2.3.3.2 Mixed-Mode Expressions

The generality of numeric types in Fortran mirrors their mathematical counterparts:
Z C R c C. When operands in a numeric expression do not have the same type and
kind, Fortran usually converts the less precise/general operand, to conform to the
more precise/general of the operands. A notable exception to this rule is when raising
a real to an integer-power, in which case the integer is not converted to real
(which is good, since raising to an integer power is more accurate and faster than
raising to a corresponding real power). Another, less fortunate exception is when one
of the operands is a literal constant, which can lead to loss of precision (therefore
it is recommended to ensure the kind of the constant is specified—how to do this
will be shown in Sect.2.3.4).

2.3.3.3 Using Scalar Expressions

Standalone numerical expressions do not make much sense (hence the language does
not allow them): what we actually want is to assign the result of the expressions to
variables (with the [ =]assignment operator'©), or to pass the result to some function
(e.g. to display it). This is another point where loss of precision can occur, if the
expression is of a stronger type/kind than the variable to which it is assigned:

integer :: i = 0

real ::m = 3.14, n = 2.0

i =m / n ! i will become 1, NOT 1.57 (rounding towards 0)
m = -m ! negate m with unary operator

i=m / n ! i will become -1 (rounding also towards 0)
print*, m / n ! expression passed to’print’-function

2.3.3.4 Convenient Notation for Sub-components of complex

For applications that need to work with data of complex type, note that it is possible
(since Fortran 2008) to conveniently refer to the real and imaginary components:

complex :: z1 (1.0, 2.0)
z1%im = 3.0 ! modify the imaginary part
print*, "real part of zl = ", zl%re

2.3.4 The xind type-parameter

Most of the numerical algorithms encountered in ESS need some assumptions regard-
ing properties of the types used to represent the quantities they manipulate. For exam-
ple, if integers are used to represent simulation time in seconds, we need to ensure
the type can support the maximum number of seconds the model will be run for. The

16 Not to be confused with an equivalence in the mathematical sense. In Fortran, that is represented
by the E] operator, which we discuss shortly, in relation to the 1ogical type.
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demands are more complex for reals, which are always stored with finite precision:
since each result needs to be truncated to fit the representation, numerical “noise” is
ever-present, and needs to be constrained.

One way to improve!” the situation is to increase the accuracy of the represen-
tation, by using more bits to represent each value. In older versions of Fortran, the
double precision type (real-variant) was introduced exactly for this. The
problem, however, lies in the fact that the actual number of bits is still system- and
compiler-dependent: switching hardware vendors and compilers is normal, and sur-
prises due to improper number representation (which can often go unnoticed) are
better avoided when possible.

The concept of kind is the modern Fortran response to this problem, and it
deprecates the double precision type. kind acts as a parameter to the type,
allowing the programmer to select a specific type variant from the multitude that may
be supported by the platform.'® Even better, the programmer need not be concerned
with the lower-level details, since two special intrinsic functions (discussed shortly)
allow querying for the most economic types that meet some natural requirements.

We only discuss kind for numeric types, although the concept also applies to non-
numeric types (for storing characters of non-European languages and for efficiently
packing arrays of logical type—for details consult, e.g. Metcalf et al. [10]).

Kinds are indexed with positive integer values. If we know these indices for
selecting numbers with the desired properties on the current platform, they can be
used to parameterize types, as in:

integer ( kind=4) :: i
real ( kind=16) :: x

However, this feature alone does not solve the portability problem, since the index
values themselves are not standardized. The intended usage, instead, is through two
intrinsic functions which return the appropriate k ind-values, given some constraints
requested by the developer:

1. selected_int_kind (requestedExponentRange), where request-
edExponentRange is an integer, returns the appropriate kind-parameter for
representing integer numbers in the range:

—]Qreques tedExponentRange OrequestedExponentRange

< number < 1

For example,'”

integer (kind=LARGE_INT) :: t = -123456_LARGE_INT

[integer, parameter :: LARGE_INT = selected_int_kind (18) J

17 This is not to be seen as a “silver bullet”, since numerical noise will still corrupt the results, if
the algorithm is inherently unstable.

18 Compilers are required to provide a default kind for each of the 5 intrinsic types, but they may
(and most do) support additional kinds.

19 In practice, it is more convenient to use shorter denominators for the ki nd-parameters.
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will guarantee that the compiler selects a suitable type of integer to fit values
of t in the interval (—10'3, 10'%).

2. selected_real_kind(requestedPrecision, requestedExpo-
nentRange), where both arguments are integers, returns the appropriate kind-
parameter for representing numbers with a decimal exponent range of at least
requestedExponentRange, and a decimal precision of at least reques-
tedPrecision?® after the decimal point.

Example:
integer , parameter :: MY_REAL = selected_real_kind (18,200)
real (kind=MY_REAL) x = 1.7_MY_REAL

To obtain what is commonly denoted as single-, double-, and quadruple-precision,
the following parameters can be used:

integer, parameter :: R_SP = selected_real_kind(6,37)
integer, parameter :: R_DP = selected_real_kind (15,307)
integer , parameter :: R_QP = selected_real_kind (33,4931)

Note that, since the exact data type needs to be revealed to the compiler, results of
the kind-inquiries need to be stored into constants (which are initialized at compile-
time).

By increasing the values of the requestedExponentRange and/or
requestedPrecision parameters, it is easily possible to ask for numbers
beyond the limits of the platform (you will get the chance to test this in Exercise 7).
In such situations, the inquiry functions will return a negative number. This fits with
the way kind type-parameters are used, since trying to specify a negative kind
value will cause the compilation to fail:

integer, parameter :: NONSENSE_ KIND = -1

integer (kind=NONSENSE_KIND) :: s ! will fail to compile

integer, parameter :: UNREASONABLE_RANGE = selected_int_kind (30000)

! will also fail to compile (at least, in 2013), because a too ambitious range

! of values was requested, causing the intrinsic function to
! return a negative number
integer (kind=UNREASONABLE_RANGE) :: u

In closing of our discussion on kind, we have to admit that inferring the type-
parameters in each (sub)program, while viable for simple examples, can become
tedious and, worse, leads to much duplication of code. An elegant solution to
this problem is to package this logic inside a module, which is then included in
(sub)programs.21 We defer the discussion of this mechanism to Sect.3.2.7, after
covering the concept of modules.

20 The situation is more complex for this type, because some values which are exactly representable
using the decimal floating-point notation can only be approximated in the binary floating-point
notation.

21 We encountered this mechanism in the Fortran distribution of the popular Numerical Recipes
book, see Press et al. [12].
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2.3.5 Some Numeric Intrinsic Functions

As a language designed for science and engineering applications, Fortran supports
a large suite of mathematical functions, which complement the operators. Also,
including these as part of the core language allows vendor-specific implementations
to take advantage of special hardware support for some costly functions.

Among the most frequently-used numeric intrinsic functions, we mention:

e fype conversion: ’ real(x [, kind)) H int(x [, kind]) ‘

e trigonometric functions (operating with radians): ’ sin(x) || cos(x) || tan(x) |;
also, inverse ( ’asin(x) , |acos(x) |, atan(x)‘ ), and hyperbolic functions
(’ sinh(x)|,| cosh(x) |, tanh(x)‘)

e usual mathematics: (absolute Value),’ exp(x) H log(x) ‘(natural loga-
rithm),

sgrt(x)

mod(x [,n]) ‘ (remainder modulo-n)

>

This list is by no means comprehensive (see Metcalf et al. [10] for an exhaustive
version). The kind of the result is usually the same as that of the first parameter,
unless the function accepts a kind-parameter, which is present.

In Sect. 2.7, we discuss some more intrinsic functions, useful for more advanced
tasks.

2.3.6 Scalars of Non-numeric Types

’ logical type: ‘ allows variables to take only two values: .true. or .false.
(dots are mandatory). They can be declared similarly to the other types:

logical activated ! plain declaration...

activated = .true. ! ...with corresponding initialization
logical :: conditionSatisfied = .false. ! declaration with init
logical, parameter :: ON = .true. ! constant (init mandatory)

logical expressions: As for numeric types, 1ogical values can be used, together

with specific operators (unary: [ .not.; binary: , [.or.] (equality)

and ), to construct expressions, as in (using the previous declarations):

.not. conditionSatisfied ! .egv. .true.
conditionSatisfied .and. ON ! .egv. .false.

It is important to know that 1ogical expressions can also be constructed out of
numeric arguments, using the arithmetic comparison operators: [==] (equal),

(not equal), [ > | (greater), (greater-or-equal), [ < | (smaller), and (smaller-

or-equal). Such 1ogical expressions are used in flow-control statements (e.g. 1 f),
discussed in Sect.2.5.
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character type: ‘ variables and constants of this type are used for storing text
characters, similar to other programming languages. In Fortran, characters and char-
acter strings are marked by a pair of single quotes (as in ‘some text’), or a pair of
double quotes (as in ‘‘some more text’’). These can be used interachangeably,
both for single- and multi-character values.

A textcharacter is said to belong to a character set. A very influential such character
set is ASCII, which can be used to represent English-language text. Ours being an
English text, we devote more space to this character set.

Many modern Fortran implementations currently use ASCII by default. For
example, this is the case on our test system (64bit Linux, gfortran v4.8.2),
when we declare variables such as:

character charl ! plain declaration (to be initialized later)
character :: char2 ='a’ ! declaration with immediate initialization

We discussed earlier (in the context of numeric types) the concept of type-
parameters. The character type actually accepts two such parameters:

(for controlling the length of the string) and (for selecting the character set).

Let us focus on the first parameter (len) for now. It exists because most of
the times developers want to store sequences of characters (strings). If (as in the
previous listing) 1en is not explicitly mentioned, it implicitly has the value fixed to
“1” (reserving space for just one ASCII-character). To store wider strings, we can
declare a sufficiently-large value for 1en, e.g.:

(ﬁharacter(len:loo) myName ! fixed-size string J

However, this method is not so convenient in practice.

For the case where the length of the string can be determined during compilation
(i.e. it will not change when our program will be executed), we can use assumed-
length strings. This is particularly useful for declaring constant strings, sparing the
developer from counting characters (for the len parameter):

program assumed_length_strng_constant
implicit none

character (len=*), parameter :: FILENAME = & ! character constant
'really_long_file_name_for_which_&
6 &we_do_not_want_to_count_characters.out’
7
8 print*, 'string length:’, len (FILENAME)

9 end program assumed_length_strng_constant

Listing 2.3 | src/Chapter2/assumed_length_strng_constant.f90

Note the type-parameter (line 4), which causes the string to have what
is known as assumed-length.

Another common scenario is when the strings to operate on are not constant, with
their lengths only becoming known during the execution of the program. This is the
case, for example, if we want to make the previous listing more flexible, by asking
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the user to provide a filename.?? For such a situation, we can use deferred-length
strings, which are marked by the type-parameter | 1e , in conjunction with the

specifier |allocatable | For example:

1 program deferred_length_strng

2 implicit none

3

4 character (len=256) :: buffer ! fixed-length buffer

5 character (len=:), allocatable :: filename ! deferred-length string
6

7 print*,'Please enter filename (less than 256 characters):’

8 read*, buffer ! place user-input into fixed buffer

9

10 filename = & ! copy from buffer to dynamic-size string

11 trim(adjustl (buffer)) !'"trim’ and’adjustl ’ exaplained later
12

13 print*, filename ! some feedback...

14 end program deferred_length_strng

S
Listing 2.4 ’ src/Chapter2/deferred_length_strng.f90 ‘

Itis not possible to place a value in £i1ename directly from the read-statement
(line 8). Therefore, we declare an extra buffer to hold the input data (line 4). The
actual deferred-length variable is declared at line 5. On line 7 we announce to the
user that a string (i.e. characters surrounded by single or double quotes!) is expected,
and on line 8 we read the input into the buffer. At line 10 we finally get to use the
deferred-length variable. Ignoring the intrinsic functions for now, the net effect is

that a string will be assigned to . Note that the system automatically
reserves memory internally, so that our variable is large enough. Later,

we will also discuss how to explicitly request such memory, in the context of dynamic
arrays (Sect.2.6.8).

character operators and intrinsic functions: For the character type it is
useful to know about the operator , which concatenates two strings. Expressions
formed with this operator are strings with length equal to the sum of the lengths of
the strings to be concatenated. We usually want to assign the evaluated expressions to
other string variables, in which case truncation or whitespace-padding (on the right)
can occur, depending on the length of the expression and of the string variable we
assign to. These situations are illustrated in the following example®3:

program character_type_examples
implicit none

! given two source string-variables:

character (len=4) :: firstName ="John"

character (len=7) :: secondName ="Johnson"

! and 3 target variables (of different lengths):
character (len=13) :: exactFit

character (len=10) :: shorter

character (len=40) :: wider =&

"Some phrase to initialize this variable."

22 This approach is more convenient, in the sense that the user does not have to re-compile the
program every time the filename changes. For real-world software, we prefer to minimize interaction
with users, and allow specification of filenames (e.g. model input) at the invocation command line
instead (Sect.5.5.1), which facilitates unattended runs.

23 If you try this example, you may notice that an additional space is printed at the beginning of
every line. This is the default behavior, related to some legacy output devices. We will discuss how
to avoid this in Sect.2.4.
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below, we concatenate’firstName '’ and’secondName ',
assigning the result to strings of different sizes.
note:’|’-characters serve as markers, to highlight
the spaces 1in the actual output.

! expression fits exactly into’exactFit ’
exactFit = firstName //","// secondName
print*,"|", exactFit,"|"

! expression does not fit into’shorter’, so some
! characters at the end are truncated
shorter = firstName //","// secondName
print*,"|", shorter,"|"
! expression takes less space than available in
! "wider’, so whitespace 1is added as padding on
! the right (previous content discarded)
wider = firstName //","// secondName
print*,"|", wider,"|"
end program character_type_examples

\S
Listing 2.5 | src/Chapter2/character_type_examples.f90

Table 2.1 Some intrinsic functions for charactexr(-strings)

Function name Result/Effect

lge(stringl, string2) .true. if stringl follows after or is equal to string2
(similar: 1gt, 11e, 11t) (lexical comparison, based on ASCII collating sequence)
len(string) length of string

trim(string) string, excluding trailing padding-whitespace
len_trim(string) length of string, excluding trailing padding-whitespace
adjustr (string) right-justify string

(similar: adjustl)

In ESS models, characters and strings are often secondary to the core numerics.
They are, however, useful for manipulating model-related metadata. To cater for
such needs, Fortran provides several intrinsic functions that take strings arguments
(see Table 2.1 for a basic selection, or Metcalf et al. [10] for detailed information).

At the end of Sect. 2.5, after introducing more language elements, we use some
of these intrinsic functions, to solve a common pattern in ESS (creation of unique
filenames for transient-phenomena model output, based on the index of the time step).

2.4 Input/Output (I/0)

The I/O system is an essential part of any programming language, as it defines ways
in which our programs can interact with other programs and with users.

For example, models in ESS typically read files (input) for setting-up the geometry
of the problem and/or for loading initial conditions. Then, as the prognostic variables
are calculated for the subsequent time step, the new model state is regularly written
to other files (output). Frequently, the input files are created in an automatic fashion,
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using other programs; likewise, the output of the model may be passed to post-
processing/visualization tools, for analysis.?*

External files are not the only medium for performing I/O; other interfaces include
the usual interaction with the user via the terminal, or communication with the oper-
ating system (OS) (which allows the program to become aware of command line
arguments passed to it, and of environment variables—see Sect. 5.5 for some exam-
ples). It is also possible to construct graphical user-interface (GUI)-based I/O appli-
cations, using third-party libraries.” but, in ESS, models providing such features
are still the exceptions rather than the rule.?’

We already used some simple I/O-constructs, in the code samples presented so far.
In this section, we provide the background for these constructs, and also discuss other
aspects of formatted®® 1/0 (such as controlling the I/O commands, or working with
files). Finally, we provide a hierarchical overview of the I/O facilities used in ESS.

NOTE

A distinguishing characteristic of Fortran is that, by default, its I/O subsystem
is record-based (unlike languages like C or C++, which treat I/O as a stream
of bytes®).

“This difference can cause problems while exchanging files across languages. Such problems

can be avoided by using portable formats like NETwork Common Data Format (netCDF)
(Sect.5.2.2) or, when the file format cannot be changed, by using the new stream 1/O capa-
bilities of Fortran 2003 (see Metcalf et al. [10]).

2.4.1 List-Directed Formatted I/0 to Screen/from Keyboard

The simplest form of I/O in Fortran, which we have used so far, enables communi-
cation with the program from the terminal where the program was launched. Here,
data needs to be converted between the internal representation of the format, and the

24 The complete network of tasks for obtaining the final data products can become quite complex.
In such cases, it often pays off to automatize the entire process, using shell scripts (see Sect.5.6.1
for a brief overview of the options available, and some suggestions for further reading).

25 See, for example, Java Application Programming Interface (JAPT) for an open-source solution;
a commercial alternative is Winteracter.

26. A model which provides a GUI is the Planet Simulator (see Fraedrich et al. [3], Kirk
et al. [7]).

27 A lack of graphical interfaces does not imply obsolete software practices: textual, command line
interfaces can be readily used to automate complete workflows. This paradigm is suitable for ESS
models, which usually need a long time to run. However, GUI-based systems are often suitable for
steering operations which complete very fast, such as low-resolution models or tools in exploratory
data analysis.

28 In Fortran, formatted 1/0 means ASCII-text form; conversely, un-formatted 1/0 means binary
form. We do not cover binary I/O in this text, even if it is more space-efficient, due to possible
portability issues (we highlight an alternative form of efficient I/O in Sect.5.2.2).


http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_5
http://dx.doi.org/10.1007/978-3-642-37009-0_5

2.4 Input/Output (I/0) 23

character strings recognized by the terminal. The programmer would often want to
control this conversion process, to achieve the desired formatting.>” However, for
testing purposes, the reads= and print:* forms can be used, known as list-directed
I/0. These are demonstrated in the following program, which expects the user to
enter a name and date of birth (year, month, day), and returns the corresponding day
of the week:

program birthday_day_of_week
implicit none

character (len=20) :: name
integer :: birthDate (3), year, month, day, dayOfWeek
integer, dimemnsion (12) :: t = &

o, 3, 2, 5,0, 3,5, 1, 4,6, 2, 4]

print*, "Enter name (inside apostrophes/quotes):"

read*, name

print*, "Now, enter your birth date (year, month, day):"
read*, birthDate

year = birthDate (1); month = birthDate (2); day = birthDate (3)
if ( month < 3 ) then

year = year - 1
end if

! Formula of Tomohiko Sakamoto (1993)

! Interpretation of result: Sunday = 0, Monday = 1,
dayOfweek = &
mod ( (year + year/4 - year/100 + year /400 + t(month) + day), 7)

print*, name," was born on a "
select case (dayOfWeek)
case (0)

print*, "Sunday"
case (1)

print*, "Monday"
case (2)

print*, "Tuesday"
case (3)

print*, "Wednesday"
case (4)

print*, "Thursday"
case (5)

print*, "Friday"
case (6)

print*, "Saturday"
end select

end program birthday_day_of_week

Listing 2.6 | src/Chapter2/birthday_day_of_week.f90

The part of the I/O statements following the comma is called an I/0 list. For input,
this needs to consist of variables (also arrays), while for output any expression can
be used.

Previously, we mentioned the record metaphor used by Fortran; this needs to be
considered while feeding input at the terminal for a read-statement: each statement
expects its input to span (at least one) distinct line (=record), so before any subsequent
readx-statement is executed, the file “cursor” would be advanced to the next record,
making it impossible to enter on a single line input for adjacent reads-statements.

29 This is discussed later, in Sect.2.4.2; the process is controlled via an edit descriptor, which is
embedded in a format specification.
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Thus, it is perfectly acceptable to write something like:

(program read_3variables_on_a_line

implicit none

character (len=100) :: station_name ! fixed-length, for brevity
integer :: day_of_year

real :: temperature

read*, station_name, day_of_year, temperature
! provide feedback (echo input)

print*,"station_name=", trim(adjustl(station_name)), &
", day_of_year=", day_of_year, &
", temperature=", temperature

end program read_3variables_on_a_line

\S

Listing 2.7 | src/Chapter2/read_3variables_on_a_line.f90

providing as input:
'Bremerhaven/Germany’ 125 8<Enter>

On the other hand, if the input is performed as in the following program:

-
program read_3variables_on_3lines

implicit none

character (len=100) :: station_name ! fixed-length, for brevity
integer :: day_of_year

real :: temperature

read*, station_name
read*, day_of_year
read*, temperature
! provide feedback (echo input)

print*, "station_name=", trim(adjustl(station_name)), &
", day_of_vyear=", day_of_year, &
", temperature=", temperature

end program read_3variables_on_3lines

Listing 2.8 | src/Chapter2/read_3variables_on_31lines.f90 ‘

we need to split the data for the three variables over three lines (records), as in:

'Bremerhaven/Germany’'<Enter>
125<Enter>
8<Enter>

As previously mentioned, this form of I/O is not recommended for anything but

quick testing, because it is limited from two points of view:

1.

2.

system-dependent format: the system will ensure that all data is visible, but the
outcome is frequently not satisfying, due to generous whitespace-padding, which
may often decrease readability; we discuss how to resolve this issue in Sect. 2.4.2.
fixed I/O-channels: input is only accepted from the keyboard, and output will
be re-directed to the screen.? This becomes counter-productive as soon as the
volume of I/O increases; we discuss how to route the I/O-channels to files in

Sect.2.4.3.

30 For ¢/C++ programmers: this is the Fortran equivalent to the stdin, stdout and stderr
streams.
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Exercise 2 (Emission temperature of the Earth) The simplest energy balance
model (EBM) for computing the emission temperature (7,) of the Earth (as
observed from space) consists of simply equating the absorbed solar energy
and the outgoing blackbody radiation (assumed isotropic). This gives (Marshall
and Plumb [8]) the following equation:

1 —ap)
T, = | So——2
¢ 0 4o

where 0 = 5.67 x 1078 Wm~2 K—* is the Stefan-Boltzmann constant and, for
present-day, the average Earth albedo « = 0.3 and the annualy-averaged flux
of solar energy incident on the Earth is Sy = 1367 Wm 2.

Write a program which evaluates this equation, computing 7,. How does
the result change if So is 30 % lower? What about increasing o« by 30 %?

2.4.2 Customizing Format-Specifications

Fortran allows precise control on how data is converted between the internal rep-
resentation and the textual representation used for formatted I/O. This is achieved
by specifying a format specification. In fact, the language provides three ways of
specifying the format:

1. asterisk ([ )): this is what we have used so far. The effective format is platform-
dependent.

2. acharacter string expression (of default kind): this consists of a list of edit descrip-
tors, as will be explained in this section.

3. astatement label: this allows writing the format on a separate, labeled statement—
a technique that may be useful for structuring I/O statements better. However, we
do not emphasize this option, since the same effect can be obtained with character
strings.

The basic form of the output statement is:

(print <format> [, <I/O list>] J

Similarly, the input statement looks like:

(read <format> [, <I/O list>] J

The format-part, on which we focus in this section, is usually a character expres-
sion of the form:
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'( edit_descriptor_1, edit_descriptor_2, ... )’

[?T edit_descriptor_1, edit_descriptor_2, ... )" J
where each edit descriptor in the comma-separated list corresponds to one or
more3! item(s) in the /O list of the statement.

The task of the edit descriptor is to precisely specify how data is to be converted

from the internal representation to the character representation external to the pro-
gram (or the other way around). Fortran supports three types of edit descriptors,
which can be combined freely: data, character string, and control.
Data edit descriptors: This is the most important category, since it refers to the
actual data-conversion process. Such edit descriptors are composed of combinations
of characters and positive integers, as discussed shortly. In general, the numbers
represent the lengths of the different components in the text representation on the
external device side. For output of numeric types, a set of asterisks is printed if these
lengths are too small for representing the value.

Fortran provides different types of edit descriptors, for each of the intrinsic types.3?
We present them below, using monospace-font for characters that need to be typed
literally, and italic-font for variables to be replaced by integer values. Note that char-
acters like E] (negation), -] (decimal point) and E] or (marker for exponent),
when they appear, are also accounted for in the values of the various field-width
variables.

e integer: either or may be used, where w specifies the width of

the field, and m specifies that, on output, at least m digits should be printed even
if they are leading zeroes (on input, the two forms are equivalent). Example:

integer :: id = 0, year=2012, month=9, day=1
integer, dimension (40) :: mask = 10

print*, "Enter ID (integer < 1000):"

read’ (13)’, id

! echo id (with leading zeroes if < 100)
print’ (13)’, id

! using multiple edit descriptors
print ' (i4, i2.2, 1i2.2)', year, month, day

When the magnitude of the integers to be written is not known in advance, it is
convenient to use the edit descriptor, which automatically sets the field-width
to the minimum value that can still contain the output value3?:

3 tis possible, and sometimes useful, to have less edit descriptors than elements in the I/O list. In
such situations, the edit descriptors are reused, while switching to a new record (for examples, see
Sect.2.6.5).

32 Special facilities also exist for arrays and derived types. We discuss the former in Sect.2.6.5,
after introducing the corresponding language elements. For the latter, see Metcalf et al. [10].

33 This form is highly recommended, as it relieves the programmer from bugs associated with
manually selecting the field width (corrupted, asterisks-filled fields can occur if the number of
digits in the number exceeds the expected field width). However, this makes the formatting of
values variable, and may not be appropriate for applications where precise control of alignment is
important (like compatibility with other programs, or for improving the clarity of the output). Also,

note that this approach does not work for input (where would cause any input value to be set
to zero).



2.4 Input/Output (I/0) 27

(}rint’(io)', testInt ! works correctly for any value J

Binary, octal, and hexadecimal (hex) integers: For some applications, it can be
useful to read/write integer-values in a non-decimal numeral system (bases 2, 8,
and 16 being the most frequent). This is easily achieved in Fortran, by replacing the
i with b (for binary), o (for octal) and z (for hexadecimal) respectively. The field-
width can also be specified or auto-determined, just like when using the decimal
base. The following program uses such edit descriptors to convert decimal values
to other bases (some new elements in the program will be covered later):

program int_dec_2_other_bases
implicit none

integer :: inputlInteger

! elements of this will be clarified later

write (*, ' (a)’, advance='no’) "Enter an integer:

! get number (field width needs to be manually-specified)
read’' (1i20) ', inputInteger

! (string in format discussed later) print...
print ' ("binary: ", b0)’, inputInteger !...min-width binary
print ' ("octal : ", o00)’, inputInteger !...min-width octal
print ' ("hex co" z0)', inputInteger !...min-width hex

end program int_dec_2_other_bases

Listing 2.9 ’ src/Chapter2/int_dec_2_other_bases.f90 ‘

e real: no less than seven types of edit descriptors are available for this type
ew.dee

| ew.d |, R

(reflecting Fortran’s focus on numerical computing): ’ fw.d

’ esw.d || esw.dee|, | enw.d |, | enw.dee |, where w denotes the total width of
the field, d the number of digits to appear after the decimal point, and e (when
present) the number of digits to appear in the exponent field.

The first type of edit descriptor (based on ) is appropriate when the domain of
the values includes the origin, and does not span too many orders of magnitude (say,
0.01 < x < 1000). Otherwise, the [ e -variants, which use exponential notation,
are usually preferred. The different | e |-variants were introduced for supporting
various conventions for representing floating-point values used in different fields.
The distinction lies mainly in the way they scale the exponent, which correlates to
the range of the significant (=the rest of the number, after excluding the exponent).
This is summarized in Table 2.2 below.

> d

Table 2'2. Preﬁx?s f(.)r . Prefix Resulting range for absolute value of
exponential notation in edit .
descriptors for real significan

e [0.1, 1.0)

en (“engineering”) [1, 1000)
es (“scientific”) [1, 10)
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Similar to integer-values, w can be set to zero when performing output, causing
a minimum field-width to be selected, which can still contain the significant.>*
Howeyver, this is not allowed for the E]—variants.

The following program demonstrates the effects of different edit descriptors for
writing real-values:

program edit_descriptors_for_reals
implicit none
! get kind for high-precision real
integer, parameter :: QUAD_REAL = selected_real_kind (33,4931)
real (kind=QUAD_REAL) :: testReal
write (*, ' (a)’, advance='no’')"Enter a real number:
read'’' (£100.50) ', testReal
! print with various edit-descriptors
print ‘' (a, £f0.2 )y, "£0.2 s " testReal
print ' (a, £10.2 ) ,"f10.2 testReal
print ' (a, fl14.4 Y, "f14 .4 : , testReal
print ' (a, eld .4 ), "eld . 4 : ", testReal
print ‘' (a, eld.6e3 )’',"eld.6e3 : ", testReal
print ' (a, enld .4 )’ ,"enld .4 : ", testReal
print ' (a, enld.6e3)’,"enld.6e3 " testReal
print ' (a, esld .4 )’ ,"esld .4 : ", testReal
print ' (a, esld.6e3)’,"esld.6e3 : ", testReal

end program edit_descriptors_for_reals

Listing 2.10 ’ src/Chapter2/edit_descriptors_for_reals.f90

e complex: can be formatted using pairs of edit descriptors for real values.

e logical: supports the edit descriptor, where w denotes the width of the
field (if w = 1, or are supported, while w = 7 enables support for the
expanded notation of boolean values, i.e.,[.true.|and[.false.)). According
to the language standard, the width is mandatory.

e character strings: can be used with the[a |or edit descriptors, where the
first form automatically determines the necessary width to contain the string in

the I/O list. The second form allows manual specification of the width but, unlike
the similar mechanism for numbers, the value is not invalidated with asterisks if
the string in the I/O list is larger than w. Instead, the non-fitting part of the string
on the right-hand side is simply truncated. Alternatively, if w is larger than the
length of the string in the I/O list, the string will be right-justified.

All data edit descriptors can be preceded by a positive integer, when more values

for which the same format is appropriate appear in the I/O list. This is particularly
useful when working with arrays, as we will illustrate in Sect.2.6.5.
Control edit descriptors: these do not assist in data I/O, but allow instructing the
I/0 system to perform other operations related to the alignment of output. We only
discuss how to insert spaces and start a new line here (see Metcalf et al. [10] for other
details).

To insert spaces in output, use the edit descriptor, where n represents the
number of spaces to be inserted. Similarly, to start a new record (line) without issuing
another output statement, use the edit descriptor, where n represents the number

34 However, unlike integer, the value of d remains important even in this case, since truncation
is usually inevitable when converting floating-point binary numbers to the decimal base.
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of records to be marked as complete.?> The following program uses these ideas, to
print three character-strings and a 1logical value, where the first two strings
are separated by two spaces, and three empty lines separate the second from the third
string:

program mixing_edit_descriptorsl
implicit none
logical :: convergenceStat = .true.

print ' (a, 2x, a, 4/, a, 11)', &
"Simulation","finished.", &
"Convergence status = ", &

convergenceStat
end program mixing_edit_descriptorsl

Listing 2.11 ’ src/Chapter2/mixing_edit_descriptorsl.f90

NOTE

The idea of counts (also known as “repeat counts”) in front of edit descriptors is
actually more general, since these can also appear in front of data edit descrip-
tors (e.g. *(1010)’), or even in front of groups of edit descriptors, surrounded
by parentheses (e.g. *(5(£8.2, x))’). These are useful mostly when working
with arrays, therefore we discuss them in more detail in Sect.2.6.5.

Character string edit descriptors: we already presented cases when character
strings were already present in the format specification itself. These are permitted
(but only for output), and can be combined with other types of descriptors, leading
to output statements like in the next program:

program mixing_edit_descriptors?2
implicit none

integer :: myInt = 213
real :: myReal = 3.14
print ' ("An integer: ", i3, /,"A real: ", £f0.2)’', &

myInt, myReal
end program mixing_edit_descriptors?2

Listing 2.12 | src/Chapter2/mixing_edit_descriptors2.£90

which should look more natural to C programmers.3¢

Managing format specifications: In the examples presented so far, we have written
the format specification next to the I/O statements, as a string constant. This can be
inconvenient in several situations, for example:

e when the same format specification needs to be reused for many I/O statements
(here, the approach we have illustrated so far would lead to code duplication—
always a red flag)

35 Note that, if the current record is not empty, the number of empty records inserted by such an
edit descriptoris n — 1.

36 In C, the equivalent statement would be: princs (*an integer: $3a\na real: %0.26\n", annt, arloat);
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e when some facts about the format are not known until actual program execution
(here, the string constant would impose switching between various hard-coded
formats)

Fortunately, format specifications can also be non-constant strings, constructed
dynamically at runtime. This can be used to address both issues above.3” The fol-
lowing program illustrates how such a specification can be used for multiple output
statements:

program string_variable_as_format_spec
implicit none

integer :: a =1, b =2, ¢ = 3

real :: d = 3.1, e = 2.2, £ = 1.3

! format -specifier to be reused (could also use deffered-length)
character (len=*), parameter :: outputFormat =’'(10, 3x, £0.10) "’

print outputFormat, a, d
print outputFormat, b, e
print outputFormat, c, £
end program string_variable_as_format_spec

Listing 2.13 ’ src/Chapter2/string variable_as_format_spec.£90

2.4.3 Information Pathways: Customizing I/0 Channels

The I/O statements discussed in the previous sections used the standard I/O channels:
we always assumed that input is directed from the keyboard, and output is appearing
on the screen. However, Fortran also allows the use of other channels (files or even
character-strings), as will be discussed in this section.

Any I/O-channel (e.g. keyboard, screen, or a file on disk) is mapped to aunit. To
distinguish between the various channels, each unit is identified by an integer
unit-number, which is either

e selected by the platform (usually “5” represents standard-input from keyboard,
and “6” standard-output to screen), or
e specified by the programmer (examples of this shown later).

General I/0-statements: The simplified forms of the I/O statements discussed pre-
viously (print and read) do not support customization of I/O channels. To gain
more control, the general I/O statements (write and read?®) need to be used,
which we introduce below:

! general form of input statement

read ([unit=]u [,fmt=fml] [,iostat=statCode] [,err=1bll] [,end=1bl2]) &
[inputList]

! general form of output statement

write ([unit=]u [, fmt=fml] [,iostat=statCode] [,err=1bll]) [outputList]

37 There is also the option to use £ orma t-statements, as we mentioned previously. However, their
usefulness is limited to the first issue, which is why we chose not to describe them—see Metcalf
et al. [10] for details.

38 The general input statement has the same name as the simplified form, but observe the other
differences.
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As usual, the square brackets denote optional items. The unit-number () and
the format specification ( finl) are the only mandatory items (optionally, they can be
preceded by ’ unit= ‘ and] fmt= \respectively, to improve readability). Both of these
items can be set to , to recover the particular forms of I/O we already presented:

( . .
program general_can_recover_special_io
implicit none

integer :: anInteger
! special forms, default formatting...
read *, anInteger ! input

print *,"You entered: ", anlInteger ! output

! ...equivalent general forms, default formatting
read (*, *) anInteger ! input
write (*, *)"You entered: ", anlnteger ! output

! special forms, custom formatting...
read ‘' (120)’, anInteger ! input
print ' ("You entered: ", 1i0)'’, anlInteger ! output

! ...equivalent general forms, custom formatting

read (*,"(120) ') anInteger ! input

write (*,’'("You entered: ", 1i0)’) anInteger ! output
end program general_can_recover_special_io

Listing 2.14 | src/Chapter2/general_can_recover_special_io.f90 ‘

Expecting the unexpected: exception handling The remaining (optional) parame-
ters in the general I/O-statements (which we named in the examples above statCode,
Ibl] and [bI2 for read/ statCode and [bl] for wr i t e) help the program recover from
various exceptional conditions. Since the success of these I/O statements depends
on properties of data channels usually beyond the control of our programs, many
things can go wrong, without being a program bug. For example, when trying to
read from a file, the file may not exist, or our program may not have permission
to read from it. Similarly, the program may try to write to a file for which it has
no write-permission, or there may not be sufficient space on the external device to
contain the output data.

If the error-handling parameters are omitted, any problems encountered during the
I/O operations will cause the program to crash, which is acceptable for test programs.
However, for “industrial-strength” programs that will be run by many users, it is a
good idea to put these error-handling facilities to good use, for example to assist the
users. The meaning of the optional parameters is summarized below:

° ’ iostat=statCode ‘: here, statCode is an integer which will be set to a value
representing the status of the I/O operation (following the Unix tradition, zero
means “no error”’, while a non-zero value signals that an error occurred)

° : Ibl1 is the label®® of a statement (within the same (sub)program), to
which the program will jump if an error occurred during the I/O statement

39 In Fortran, every statement can be given a label, which is simply a positive integer (of at most
5 digits), written before the statement. These provide “bookmarks” within the code, allowing the
program to “jump” to that statement when necessary—either transparently to the user (when the
jump results from error handling), or explicitly (using the controversial go to statement). Please
note that explicit jumps with go to are strongly discouraged, as they can quickly make programs
difficult to understand!
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same (sub)program), to

which the program will jump if an “end-of-file” condition will be met (for the

read-statement)

The following program illustrates how these extra arguments may be used:

program read_with_error_recovery
implicit none
integer :: statCode=0, x

! The safeguarded READ-statement

read (unit=*, fmt=*, iostat=statCode, err=123, end=124) x
print ' (a, 1lx, 10)’,"Received number", x
! Normal program termination-point, when no exceptions occur
stop

123 write(*, ' (a, 1x, 1i0)’) &

"READ encountered an ERROR! iostat =" statCode
can insert here code to recover from error, 1f possible...
stop
124 write(*, ' (a, 1x, 1i0)') &
"READ encountered an end-of-file! iostat =",
can insert here code to recover from error,
stop
end program read_with_error_recovery

!

statCode

! if possible...

Listing 2.15 ’ src/Chapter2/read_with_error_recovery.f90

Exercise 3 (Testing error recovery) Compile the program listed above, and try
providing different types of input data, to test how the error-handling mecha-
nism works.

Hints: try providing (a) a valid integer-value, (b) a string and (c) an end-
of-file character (on Unix: type CTRL+d).

The three phases of I/0: Working with external data channels in Fortran implies
the following sequence of phases:

1.

establishing the link: before the I/O system can use a unit, a link needs to
be established and a unique unit-number assigned. For standard I/O (keyboard/
screen), the channels are pre-connected by the Fortran runtime system, without
any intervention from the programmer.

However, for all other cases the link has to be established explicitly, with the
open-statement. From the programmer’s point of view, the most important effect
of this statement is to associate a uni t-number to the actual data channel. This
number is necessary for the next steps (e.g. when the actual I/O takes place).
Currently, there are two methods for performing this association:

a. Until Fortran 2003, the programmer was responsible for explicitly selecting
a positive integer-value for the unit-number. For working with ASCII
files,*0 the open-statement would then commonly look like:

40 Creating “binary” files is also possible, but we avoid discussing this, in favor of another format
which is more appropriate in ESS, i.e., netCDF (see Sect.5.2.2).
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file=fileName] &
[, action=actionString]
err=labelErrorHandling]

open ([unit=]unitNum [,
[, status=statusString]
[, iostat=statCode] [,
)

&
&

where:

° is a positive integer variable/constant, assigned by the

programmer. This will be used by the actual I/O statements.

° isacharacter-string, representing the actual name of the

file in the file system.*! This can be omitted only when ’ statusString ‘

(which is useful for creating temporary files, managed by

the system, and usually deleted when the program terminates).

° ’ statusString ‘is one of the following strings: "old", "new", "replace",
"scratch” or "unknown" (=default). This can be used to enforce some
assumptions related to the status of the file prior to opening it.

° ’ actionString ‘ is one of the strings: "read", "write" or "readwrite".
This is useful for limiting the set of I/O statements that can be used with
the unit, which can help prevent bugs.

e | statCode | and ’ labelErrorHandling | have the same roles as
statCode and 1b12 in the preceding discussion on error-handling.

The following listing presents some examples:

r

integer :: statCode
real :: windUx=1.0, windUy=2.0, pressure=3.0

! assuming file"wind.dat"exists, open it for reading,
14 ! the value of 20 as unit-id; no error-handling
open (unit=20, file="wind.dat", status="o0ld", action=

selecting
"read")

pressure.dat"for writing (creating it if it does not

exist, or deleting and re-creating it if it exists), selecting

the value of 21 as unit-id; place in variable ’'statCode’ the

result of the open-operation

open (unit=21, file="pressure.dat", status="replace",
action="write", iostat=statCode)

! open file"
/

19 !
!

&

intermediate -result (which
too large to keep in memory;

for storing some
that would be

! open a scratch-file,
! we need to read later),
! no error-handling

open (unit=22, status="scratch",

action="readwrite")

_J

S
Listing 2.16 ’ src/Chapter2/file_io_demo_manual_unit_numbers. ‘

(excerpt)

b. Requiring the programmer to manually manage the unit-numbers (the
“magic” numbers 20, 21, and 22 in the listing above) is inconvenient, espe-
cially for large projects. Fortunately, since Fortran 2008, it is possible to
ask the runtime system to automatically provide a suitable unit-number,
so that clashes with any other open links are avoided. The syntax for the

open-statement is similar to the one

previously shown, except that we need

to replace | [unit=JunitNum | with

[newunit=]JunitVariable |

41 Note that there might be some system-dependent restrictions on what constitutes a valid filename.
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open ([newunit=]unitVariable [, file=fileName] &
[, status=statusString] [, action=actionString] &
[, iostat=statCode] [, err=labelErrorHandling] &

)

Note that, with this new method, it is not possible anymore to use constants
for the newunit-value—only integer variables are accepted. This is
because, when the open-statement is invoked, the runtime system will need
to update unitvariable.*?

With this new method, the examples presented above can be re-written as:

13 ( integer :!: statCode, windFileID, pressureFileID, scratchFileID
14 real :: windUx=1.0, windUy=2.0, pressure=3.0
15 ! assuming file"wind.dat"exists, open it for reading, and store an
16 ! (automatically-acqguired) unit-number in variable’windFileID’; no
17 ! error-handling
18 open (newunit=windFileID, file="wind.dat", status="old", &
19 action="read")
20
21 ! open file"pressure.dat"for writing (creating it if it does not
22 ! exist, or deleting and re-creating it if it exists), while storing
23 ! the (automatically-acquired) unit-number in variable ‘pressureFileID ’;
24 ! place in variable ‘statCode’ the result of the open-operation
25 open (newunit=pressureFileID, file="pressure.dat", status="replace"', &
26 action="write", iostat=statCode)
27
28 ! open a scratch-file, storing the (automatically-acquired) unit-number
29 ! in variable’'scratchFileID’; no error-handling
30 open (newunit=scratchFileID, status="scratch", action="readwrite")
\& )

Listing 2.17 ’ src/Chapter2/file_io_auto_manual_unit_numbers.

(excerpt)

Good practice

Due to its convenience, we recommend to use this second method (using
newunit) when opening files. We also rely on this technique in the later
examples for this book (especially in Chap. 4).

2. actual I/O calls: the second phase corresponds to issuing the actual I/O-
statements, for the data we want to read or write. We discussed this in the previous
sections; the only change necessary for file I/O is that the | * | used until now for
the unit-id needs to be replaced by the appropriate variable, as associated in
advance within the open-statement. For example (continuing the example from
the previous listing):

32 ! ... some code to compute pressure ...

33 read (windFileID, *) windUx, windUy

34

35 ! display on-screen the values read from the"wind.dat"-file
36 write (*, ' ("windUx =", 1x, £0.8, 2x,"windUy =", 1x, £0.8)') &
37 windUx, windUy

42 The standard specifies that a negative value (but different from , which signals an error) will

be chosen for unitVariable, to avoid clashes with any existing code that uses the previous
method of assigning uni t-numbers, where positive numbers had to be used.
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38
39 ! write to scratch-file (here, only for illustration-purpose; this makes
40 ! more sense if 'pressure’ is a large array, which we would want to modify,
41 ! or deallocate afterwards, to save memory)
42 write (scratchFileID, ' (£10.6) ') pressure ! write to scratch
43 | re-position file cursor at beginning of the scratch-file
44 rewind scratchFileID
45 ! ... after some time, re-load the ’'pressure’-data from the scratch-file
46 read (scratchFileID, ' (£10.6) ') pressure
47
48 ! write final data to'"pressure.dat'-file
49 write (pressureFileID,  (£10.6) ‘) pressure*2
& _/

Listing 2.18 ’ src/Chapter2/file_io_auto_manual_unit_numbers.
(excerpt)

3. closing the link: unlike the first phase (establishing the link), the system will
automatically close the link to any active unit, if the program completes nor-
mally. It is, however, still recommended for the programmer to perform this step
manually, to avoid losing data in case an exception occurs.*> To terminate the
link to a unit, the ¢l ose-statement can be used:

[, iostat=statCode] [, err=labelErrorHandling]

)

tclose ([unit=]unitNum [, status=statusString]

Like for the open-statement, unitNum is mandatory, but some additional
(optional) parameters are also supported:

° ’ statusString ‘ can be either "keep" (=default, if the unit does not corre-
spond to a scratch file) or "delete" (=required value for scratch files)

e | statCode and’ labelErrorHandling ‘can be used for error-handling,
like for the open-statement

For example, the files opened in the previous listings can be closed with:

52 ( close (windFileID); close(pressureFileID); close(scratchFilelID) J

Listing 2.19 ’ src/Chapter2/file_io_auto_manual_unit_numbers. ‘
(excerpt)

Internal files: In addition to units, the general I/O statements in Fortran can also
operate on internal files (which are simply buffers, stored as strings or arrays of
strings).**

Internal files are similar, in a sense, to the scratch files that we described earlier,
since they are normally used for temporarily holding data which need to be manipu-
lated at a later stage of the program’s execution. However, because they are resident in

43 Such data loss can occur when writing to files, since most platforms use buffering mechanisms
for temporarily storing output data, to compensate for the slow speed of the permanent storage
devices (e.g. disks).

4 Strictly speaking, these do not form true I/O operations (the buffers are still memory areas
associated with the program, so no external system is involved), but it is convenient to treat them
as such (as done for the equivalent stringstreamclassin C++).
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memory, they are usable only for smaller amounts of data. One application of internal
files is type conversion between numbers and strings—for example, to dynamically
construct names for the output files of an iterative model, at each time step.*> One
approach to achieve this is shown in the listing below:

program timestep_filename_construction
implicit none
character (40) :: auxString ! internal file (=string)
integer :: i, numTimesteps = 10, speedFileID

! do is for looping over an integer interval (discussed soon)
do i=1, numTimesteps
! write timestep into auxString

9 write (auxString, ' (10) ") i

10 ! open file for writing, with custom filename

11 open (newunit=speedFilelID, &

12 file="speed_"// trim(adjustl (auxString)) //".dat", &

13 action="write")

14

15 ! here, we would have model -code, for computing the speed and writing
16 ! it to file...

17

18 close (speedFilelID)

19 end do
20 end program timestep_filename_construction

Listing 2.20 | src/Chapter2/timestep_filename_construction.f90

Non-advancing I/0: We illustrated towards the end of Sect.2.4.1 how, unlike other
languages, Fortran automatically advances the file-position with each I/O statement,
to the beginning of the next record. However, this can be turned off for a particular
[/O-statement, by setting the optional control specification advance to "no" (default
value is "yes"). This is often used when data is requested from the user, in which case
it is desirable to have the prompt and the user input on the same line. We already
used this technique, in Listings 2.9 and 2.10.

2.4.4 The Need for More Advanced 1/0 Facilities

So far, we discussed some basic forms of I/O, which are useful in common practice.
However, these approaches do not scale well to the data throughput of state of the
art ESS models (currently, in the terrabyte range for high-resolution models with
global coverage). Text (“formatted”) files are ineffective for handling such amounts
of data, since each character in the file still occupies a full byte. If we imagine a very
simple file which only contains the number 13, the ASCII-representation will occupy
2 bytes = 16 bits. In addition, to mark the end of each record, a newline character
(Unix) or carriage-return + newline (Windows) needs to be added for every row in
the file. Thus, the total space requirement for storing our number in a file will be of
3 bytes on Unix, and 4 bytes on Windows systems, respectively.

45 Here, we imply there is one output file for each time step, to illustrate the idea. Note, however,
that this may not always be a good approach. In particular, when the number of time steps is large, it
is more convenient to write several time steps in each file (this is supported by the net CDF-format,
which we will describe in Sect.5.2.2).
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Alternatively, if we choose to store the data directly in binary form, 4 bits would
already be sufficient in theory to represent the number 13 (however, this is half of
the smallest unit of storage—on most systems, the file would finally occupy 1 byte).
These calculations illustrate that there is a large potential for reducing the final size
of the files, even without advanced compression algorithms, just by storing data in
the binary format instead of the ASCII representation. Other advantages include:

e less CPU-time spent for I/O operations: the conversion to/from ASCII also
increases the execution time of the program, by an amount that can become com-
parable to the time spent for actual computations

e approximation errors: especially when working with floating-point data, approxi-
mation errors can be introduced each time a conversion between binary and ASCII
representations takes place

While the benefits of binary storage are significant, it does have the problem that
interpretation of data is made more difficult.*® The importance of this cannot be
overstated, which is why it is not recommended to use the binary format directly
in most cases: a much more convenient solution in ESS is to use the netCDF data
format, which allows efficient storage in a platform-independent way. We cover this
topic later, in Sect.5.2.2, after introducing some more language features.

2.5 Program Flow-Control Elements (if, case, Loops, etc.)

Most programs shown so far consisted of instructions that were executed in sequence.
However, in real applications it is often necessary to break this ordering, as some
blocks of instructions may need to be executed (once or several times) only when
certain conditions are met. The generic name for such constructs is (program) flow-
control, and Fortran has several of them, as we discuss in this section.

Style recommendation: In the examples below, we indent each block of program
instructions, to clearly reflect situations when their execution is conditioned by a
certain flow-control construct. Indentation is not required by the language (the com-
piler eventually removes whitespace anyway), but it greatly improves the clarity of
the code, especially when multiple flow-control constructs are nested. We highly
recommend this practice.

2.5.1 if Construct

The simplest form of flow-control can be achieved with the i f-statement which,
in its most basic form, executes a block of code only when a certain scalar logical
condition is satisfied. This is illustrated by the following program, which asks for a
number, and informs the user in case it is odd:

46 Various technicalities (such as platform dependence of the internal, bit-level representation of
the same data) can make the data transfer nontrivial for binary data.
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( .
program number_is_odd
implicit none
integer :: inputNum

write (*, ' (a)’, advance="no")"Enter an integer number: "

read (*, *) inputNum

! NOTE: mod is an intrinsic function, returning the remainder
! of dividing first argument by the second one (both integers)

if ( mod(inputNum, 2) /= 0 ) then
write (*, ' (10, a)’) inputNum," is odd"
end if

end program number_is_odd

Listing 2.21 ’ src/Chapter2/number_is_odd.f90 ‘

In this case (when there is only one branch in the if), the corresponding code
can be made even more compact, on a single line*’:

(}f( mod (num, 2) /= 0 ) write(*,’ (10, a)’) num," is odd" J

We may wish to extend the previous example, such that a message is printed also
when the number is even. This can also be achieved with if, which supports an
(optional) el se-branch:

if ( mod(num, 2) /= 0 ) then
write (*, ' (10, a)’) num," is odd"
else
write(*, ' (10, a)’) num," is even"
end if

Sometimes, if the primary logical condition of the i £-construct is , we
may need to perform additional tests. This is still possible using i f only, in the most

general form of the construct, which introduces else if branches:

if( <logical_conditionl> ) then
! block of statements for"then"
else if( <logical_condition2> ) then
! block of statements for first"else if"branch
else if( <logical_condition3> ) then
! block of statements for second"else if"branch
else
! block of statements 1if all logical conditions
! evaluate to .false.
end if

To illustrate, assume that we need to extend our previous example such that, when
the number is even, we inform the user if it is zero. This can be implemented as in:

if( mod(num, 2) /= 0 ) then
write (*, ' (i0, a)’) num," is odd"
! num is odd, now check 1f it 1is zero
else if( num == 0 ) then
write(*, '’ (10, a)’) num," is zero"
! default, "catch-all"branch, 1if all tests fail
else
write (*, ' (i0, a)’) num," is non-zero and even"

end if

47 Note that the keywords then and end i f do not appear in the compact form.
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Other constructs (including other i f-statements) can appear within each of the
branches of the conditional.*® It is recommended to moderate this practice (since it
can easily lead to code that is hard to follow), but sometimes it cannot be avoided. In
such cases, proper indentation becomes crucial. Also helpful is the fact that Fortran
allows 1 fs (as well as the rest of the flow-control constructs) to be named, to make it
clear to which construct a certain branch belongs; when names are used, the branches
need to bear the same name as the parent construct. This is illustrated in the following
(artificial and a little extreme) example, which asks the user for a 3-letter string, and

then reports the corresponding northern hemisphere season®’:

program season_many_nested_ifs
implicit none

character (len=30) :: line
write (*, ' (a)’, advance="no")"Enter 3-letter season acronym: "
read (*, ' (a)’) line
if( len_trim(line) == 3 ) then
winter: if( trim(line) =="djf") then
write (*, ' (a)’)"Season is: winter"
else if( trim(line) =="DJF") then winter
write (*,’(a)’)"Season is: winter"
else winter
spring: if( trim(line) =="mam") then
write (*, ' (a)’)"Season is: spring"
else if( trim(line) =="MAM") then spring
write (*,’(a) ') "Season is: spring"
else spring
summer: if( trim(line) =="jja") then
write (*, ' (a)’)"Season is: summer"
else if( trim(line) =="JJA") then summer
write (*, ' (a)’)"Season is: summer"
else summer
autumn: if( trim(line) =="son") then
write (*,’(a)’) "Season is: autumn"
else if( trim(line) =="SON") then autumn
write (*, '’ (a)’)"Season is: autumn"
else autumn

write (*, ' (5a)’) &
rn trim(line), ‘"’," is not a wvalid acronym", &
for a season!"
end if autumn
end if summer
end if spring
end if winter

else
write (*, ' (5a) ') &
o trim(line), ‘," is cannot be a valid acronym", &
for a season, because it does not have 3 characters!"
end if

end program season_many_nested_ifs

S
Listing 2.22 | src/Chapter2/season_many_nested_ifs.f90

Note that, while indentation and naming of constructs are helpful, the resulting
code still looks complex, which is why we do not recommend including such extreme
forms of nesting in real applications. For the current example, there is a way to
simplify the logic using the case-construct, discussed next.

Note on spacing: In Fortran, several keywords (especially for marking the termina-
tion of a flow-control construct) can be written with or, equivalently, without spaces

48 The process is called nesting. When used, nesting has to be complete, in the sense that the
“parent”-construct must include the “child”-construct entirely (it is not allowed to have only partial
overlap between the two).

49 This is a common convention in ESS, where DJF = winter, MAM = spring, JJA = summer,
and SON = autumn (for the northern hemisphere). The acronyms are obtained by joining the first
letters of the months in each season.



40 2 Fortran Basics

in between. For example, endi f is equivalent to end if, and enddo (discussed
later)—to end do. This is more a matter of developer preferences.

2.5.2 case Construct

Another flow-control construct is case, which allows comparing an expression (of
logical, integer, or character type) against different values and ranges of
values. The general syntax for it is:

select case( <expression> )

case ( <match_listl> )
! block of statements when expression evaluates to
! a value in match_listl

case ( <match_list2> )
! block of statements when expression evaluates to
! a value in match_list2

! ... (other cases)

case default
! block of statements when no other match was found
! ("catch-all"case)

end select

\S

Unlike the i f-construct, where multiple expressions could be evaluated by adding
else if-branches, case only evaluates one expression, and afterwards tries to
match this against each of the cases. To avoid ambiguities, the patterns in the different
match-lists are not allowed to overlap.

Note that only (literal) constants are allowed in each match-list. An interesting fea-
ture related to the match-list is that ranges of values are allowed (for types integer
and character). Furthermore, values and ranges can be combined freely. This is
shown in the following example, which reads a character, and tests if it is a vowel
(assuming the English alphabet):

program vowel_or_consonant_select_case
implicit none

character :: letter
write(*, ' (a)’', advance="no")

”Type a letter of the Engllsh alphabet: "
read (*, " (al)’) letter

select case( letter )
case ('a’,’'e’,’i’,’0’,'u’, &
‘A’ ,’E’,'I",’0",'U")
write(*,’(4a)’)’"’, letter, ’'"’," is a vowel"
! note below: match-1list consists of values,
! as well as value-ranges

case ('br:’d’, £',7g", h', Jrin’, priite, vz, &
PR D, E, G, T, T IN, P T, )
write (*, ' (4a)’)’'"’, letter, ’"’," is a consonant"
case default
write (*, " (4a)’) "', letter, '"’," is not a letter!"

end select
end program vowel_or_consonant_select_case

S Y
Listing 2.23 | src/Chapter2/vowel_or_consonant_select_case.f90
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For specifying ranges of values, it is even allowed to omit the lower or the higher
bound (but not both), which allows ranges to extend to the smallest (negative) and
largest (positive) representable integer-value.”® This is used in the next code
listing, which asks the user to enter an integer value, and checks if the number is a
valid index for a calendar month:

program check_month_index_select_case_partial_ranges
implicit none
integer :: month
write (*, ' (a)’, advance="no")"Enter an integer-value: "
read (*, *) month
! check if month is valid month-index, with partial
! (semi-open) ranges 1in a select-case construct
select case( month )
3: )

case ( :0,
write(*, ' (a, 10, a)')"error: ", &
month," is not a valid month-index"
case default
write(*, ' (a, 10, a)’)"ok: ", month, &

" is a valid month-index"
end select
end program check_month_index_select_case_partial_ranges

Listing 2.24 | src/Chapter2/check_month_index_select_case_par—

tial_ranges.f90

Using the case-construct can lead to great simplifications of what would other-
wise be complex, nested i £-contraptions. For example, the season-acronym match-
ing program, could be re-written as:

(program season_select_case
implicit none
character (len=30) :: line
write (*, ' (a)’, advance="no")"Enter 3-letter season acronym: "
read (*, ' (a)’) 1line
if( len_trim(line) == 3 ) then
season_match: select case( trim(line) )
case ("djf","DJF") season_match
write (*,’(a)’)"Season is: winter"
case ("mam","MAM") season_match
write(*,’(a)’)"Season 1is: spring"
case ("jja","JJA") season_match
write (*,’(a)’)"Season is: summer"
case ("son","SON") season_match
write (*,’(a)’)"Season 1is: autumn"
case default season_match
write (*,’(5a)’) &
rvr, trim(line), ‘"’," is not a valid acronym", &
" for a season!"
end select season_match
else
write (*, ' (5a)’) &
v, trim(line), ’"’," 1s cannot be a valid acronym", &
" for a season, because it does not have 3 characters!"
end if
end program season_select_case

Listing 2.25 ’ src/Chapter2/season_select_case.f90 ‘

where we also demonstrated how to assign a name (in this example: season_
match) to the case-construct.

50 These are, in a sense, the discrete equivalents of o00.
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2.5.3 do Construct

The flow-control constructs discussed so far (i f and case) allow us to deter-
mine whether blocks of code need to be executed or not. Another pattern, which
is extremely important in modeling, is to execute certain blocks of code repeatedly,
until some termination criterion is satisfied. This pattern (also known as iteration) is
supported in Fortran through the do-construct, which we describe in this section.

The simplest form of iteration uses an integer-counter, as in the following
example:

integer :: i

do i=-15, 10
! block of statements, to be executed for each iteration
write (*, ' (1i0) ") i

end do

Here, the variable i is also known as the loop counter, andneedstobe of integer
type. The numbers on line 2 represent the lower (—15) and upper bound (10). For
each value in this range, the block of statements within the do-loop will be executed.
Within this block, the value of i can be read (e.g. it can appear in expressions), but
it cannot be modified.

2.5.3.1 Loop Counter Increment

By default, the loop counter is incremented by one at the end of each iteration. Fortran
also allows to specify a different increment, as a third number at the beginning of
the do-construct. This allows, for example, incrementing the loop counter in larger
steps, or even decrementing it, to scan the range of numbers backwards. For example:

! iterate from 0 to 100, in steps of 25
do i=0, 100, 25

! block of statements
end do

! iterate backward, from 8 to -8, in steps of 2
do i=8, -8, -2

! block of statements
end do

In our examples so far, we always used integral literals for the start-, end-, and
increment-values of the loop counter. However, the language also allows these to
be integer-variables, or even more complex expressions involving variables. In
such cases, the variables can be altered within the loop, but this has no influence
whatsoever on the progress of the loop, since only the initial values are used for
“planning” the loop. For example, in the following listing, the assignments on lines
6 and 7 have no impact on the loop:
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1 fprogram do_specified_with_expressions

2 implicit none

3 integer :: timeMax = 10, step = 1, 1, numLoopTrips = 0
4

5 do i1i=1, timeMax, step

6 tlmeMax = timeMax / 2

7 step = step *

8 numLoopTrips = numLoopTrips + 1

9 write(*, ' (a, 10, a, /, 3(a, 10, /))') &

10 "Loop body executed ", numLoopTrips," times", &
11 "i= ", i, &

12 "timeMax = ", timeMax, &

13 "step = ", step

14 end do

16 end program do_specified _with_expressions

S
Listing 2.26 ’ src/Chapter2/do_specified_with_expressions.f90

Exercise 4 (Practice with do-loops) The equidistant cylindrical projection is
one of the simplest methods to visualize the Earth surface in a plane. This
projection maps meridians and parallels onto vertical and horizontal lines,
respectively. However, this projection is not “equal area”—for example, axis-
aligned rectangles (say, 10° latitude x 10° longitude) which have the same area
on the map do not have equal areas in reality.

To quantify this effect, use a do-loop to evaluate areas of 9 such cells (with
latitude bounds [0°N, 10°N], [10°N, 20°N], ...[80°N, 90° N]. How large is
the area of the near-pole cell, relative to that of the near-equator cell (in per-
cents)?

Hint: Assuming our vertical displacement is much smaller than the average
Earth radius, a “cell” whose normal coincides with the local direction of gravity
has an area given approximately by:

S; = R2 (AE - AW) (sin¢N - sin¢5) :

where both latitudes (A{E-W}) and longitudes (¢{S-N!) are given in radians.

Exercise S (Hypothetical potential density profile) Assume the potential den-
sity profile for a rectangular box within the ocean is given by:

2
op(y,2) = [0.9184 (—\/G(y, 2) + l) + 0.9184 arccos”

1 3
( e ) + 26.57} kg/m 2.1)

G(y,2) = (2 _ ﬁ)z (o 1+ )2 2.2)
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Fig. 2.1 Idealized profile of potential density (oy), based on Egs. (2.1)—(2.2)

where:
e ye[0,L], with: L =1000km
e z€[0,H], withh H=4km

This can be viewed as an idealized profile of the density structure in some
part of the ocean (Fig.2.1).

Assuming the extent along the x-axis (perpendicular to the figure) is of
100km, compute the fraction of total volume occupied by water whose poten-
tial density matches the range typical for upper Labrador Sea Water (uLSW),
which is:

oSV € [27.68,27.74 kg m 3

2.5.3.2 Non-deterministic Loops

In practical applications, loops are not always deterministic.’! Suppose we need to
read successive data elements (e.g. a time series) from a file, for estimating the mean
and the variance of the values. The steps of the algorithm are the same for each
considered value, so it is natural to surround them by a loop construct. However,
since the data resides in the external file, we may not know in advance how many
values there are. Fortran accommodates such cases with the “endless” do construct,
which looks like:

51 “Non-deterministic” means, in this context, not (easily) determined at compilation time.
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end do

do
! block of statements

This form truly has the tendency to run endlessly,’? and it is the responsibility of
the programmer to devise a suitable termination criterion, and to end the execution
of the loop with the exit-statement. This is illustrated in the following listing,
which demonstrates a way to solve the file-reading problem described above, where
a suitable loop-termination criterion is that the end-of-file was reached while trying
to read-in data:

1 rprogram mean_and_standard_deviation_from_file

2 implicit none

3 integer :: statCode, numVals=0, inFilelID

4 real :: mean=0.0, variance=0.0, sd=0.0, newValue, &

5 sumVals=0.0, sumValsSqgr=0.0

6

7 ! open file for reading

8 open (newunit=inFileID, file="time_series.dat", action="read")
9

10 !'"infinite"DO-loop, to read an unknown amount of data-values
11 data_reading_loop: do

12 read (inFileID, *, iostat=statCode) newValue

13 ! check 1if exception was raised during read-operation

14 if ( statCode /= 0 ) then ! **TERMINATION-CRITERION for DO-loop**
15 exit data_reading_loop

16 else ! datum read successful

17 numVals = numVals + 1

18 sumVals = sumVals + newValue

19 sumValsSgr = sumValsSqgr + newValue**2

20 end if

21 end do data_reading_loop

22

23 ! close file

24 close (inFilelID)

25

26 ! evaluate mean (avoiding division by zero, when file 1is empty)
27 if ( numvals > 0 ) mean = sumVals / numVals

28 ! evaluate 2nd central -moment (variance)

29 variance = (sumValsSqgr - numVals*mean**2) / (numVals - 1)

30 ! evaluate standard-deviation from variance

31 sd = sqgrt( variance )

32

33 write (*, ' (2(a, £10.6)) ') "mean = ", mean, &

34 ", sd = ", sd

35 end program mean_and_standard_deviation_from_file

Listing 2.27 ’ src/Chapter2/mean_and_standard_deviation_from_

where we used the fact that:

_ \/— ZIN:I (x;i — 2)2 1 J 2 -2
S{X}: UGV{X = T:: ﬁ lexi — Nx
=

where s is the unbiased estimator of the standard deviation, N is the number of
samples, x is the estimated mean, and x; ¢[1...y] corresponds to the individual samples.

If the loop that we wish to terminate is named, it is possible to provide this name
to the ex1i t-statement, to improve the clarity of the code. We illustrated this in the
example above, although the value of this feature is more obvious when several loops

are nested.

52 At least, until the program is terminated forcibly.
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2.5.3.3 Shortcutting Loops

Another pattern that occurs sometimes while working with loops is skipping over
parts of the code within the loop’s body, when certain conditions are met, without
leaving the loop. For example, assume we are writing a program which converts
a given number of seconds into a hierarchical representation (weeks, days, hours,
minutes, and seconds). Clearly, the number of seconds provided by the user should be
positive for the algorithm to work. If the user provides a negative integer, it does not
make sense to try to find a hierarchical representation of the period; instead, it would
be more useful to skip the rest of the code within the loop, and proceed to the next loop
iteration directly, where the user has the opportunity to provide another input value.
This type of behavior is supported in Fortran, using the ’ cycle [loop_name] ‘53
command, as illustrated in the following example:

s

program do_loop_using_cycle
implicit none

integer, parameter :: SEC_IN_MIN = 60, &
SEC_IN_HOUR = 60*SEC_IN_MIN, & ! 60 minutes in hour
SEC_IN_DAY = 24*SEC_IN_HOUR, & ! 24 hours in a day
SEC_IN_WEEK = 7*SEC_IN_DAY ! 7 days 1in a week
integer :: secIn, weeks, days, hours, minutes, sec
do
write(*,’(/, a)'’, advance="no") & !’/’ adds newline, for separation

"Enter number of seconds (or 0 to exit the program):
read (*, *) secIn

if( secIn == 0 ) then ! loop-termination criterion
exit
else if( secIn < 0 ) then ! skipping criterion
write (*, ' (a)’) "Error: number of seconds should be"// &
positive. Try again!"
cycle ! ** calculation skipped with CYCLE **
end if

! calculation using the value

sec = secIn ! backup value
weeks = sec / SEC_IN_WEEK; sec = mod(sec, SEC_IN_WEEK)
days = sec / SEC_IN_DAY; sec = mod(sec, SEC_IN_DAY)
hours = sec / SEC_IN_HOUR; sec = mod(sec, SEC_IN_HOUR)
minutes = sec / SEC_IN_MIN; sec = mod(sec, SEC_IN_MIN)
! display final hierarchy
write(*, ' (6(1i0, a))’) secIn,"s = { ", &

weeks , " weeks, ", days," days, ", &

hours," hours, ", minutes," minutes, ", &

sec," seconds }"
end do

end program do_loop_using_cycle

.

Listing 2.28 | src/Chapter2/do_loop_using_cycle.f90

Nesting of loops is another very common practice in ESS modeling, naturally
occurring from the discretization of space and time. Another example of loop nesting
occurs in linear algebra, for example matrix multiplication or transposition.

33 is an optional name, which allows to clarify to which loop the cycle-
command should be applied, in case of multiple nested do-loops.
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Exercise 6 (Zero-padded numbers in filenames) The program in Listing 2.20
produced filenames in which the numeric portion had a variable width. This
may prevent some post-processing tools from correctly identifying the order
of the files.

Extend the program, so that the numeric portion in filenames has a con-

stant width (with zero-padding), which is calculated based on the value of
num_timesteps.
Hints: if num timesteps is zero, the required number of dig-
its is obviously one; for the other cases, you can use the expres-
sion aint(loglO(real(num_timesteps))) + 1 (we assume
num_timesteps >=0). Also, you can use a second internal file, to
construct the format for the statement where the 1 is written to aux_strng
(since a dynamic minimum width of the integer field needs to be specified).

Exercise 7 (Detecting kinds of numeric types on your platform) We now
have the tools to complete the discussion on kind-values (Sect.2.3.4). Write
a program that uses the intrinsic functions selected_int_kind and
selected_real kind to determine the variants of these two numeric
types available on your platform.

Hints: For each type, search the parameter space with do-loops. For
integer, iterate through values for requestedExponentRange in the
interval [0, 45], and write to a file the (requestedExponentRange,
obtained_kind)-pairs, as determined by your program. For real, use two
nested do-loops, to iterate through values of requestedExponentRange
in the interval [0, 5500], and values of requestedPrecision in the inter-
val [0, 60], and write to another file the (requestedExponentRange,
requestedPrecision, obtained_kind)-triplets. Visualize your
results as a scatter plot for integer and a filled contour map for real
(the results for our platform are shown in Figs. 2.2 and 2.3).

Exercise 8 (Working with another platform) Use the program developed for the
previous exercise to test the kind-values for a different platform (hardware
and/or compiler). Compare the results with those obtained in Exercise 7.

47
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Fig. 2.2 integer kind indices as a function of requested exponent range (platform: Linux,
64 bit, gfortran compiler)
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Fig. 2.3 real kind indices as a function of requested exponent range and requested precision
(platform: Linux, 64 bit, gfortran compiler)

2.6 Arrays and Array Notation

So far, we used mostly scalar variables for representing entities in our example pro-
grams. This was sufficient, since the number of quantities was rather limited. How-
ever, in most applications (and ESS models in particular), the number of variables
easily exceeds several millions, which is clearly not something that can be managed
with scalars. There is, in fact, a distinct branch in computer science, dealing with data
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structures—methods of organizing data for various applications.>* In this section,
we focus on arrays, which are among the most basic, but also most popular data
structures. In fact, arrays are so useful in scientific and engineering programs that a
large part of the Fortran language is devoted to them.

An array is a compound object, which holds a set of elements. The elements can
belong to any of the 5 intrinsic types already discussed, or even to derived types. An
important constraint, however, is that all elements need to have the same type (and
kind-parameter).

The second important aspect of arrays, besides the type of each element they store,
is their shape. It is helpful to introduce some terms, which characterize this aspect
for any given array:

e rank = number of dimensions of the array. “Dimensionality” in this context refers
to the number of indices needed for uniquely specifying an element—similar to
classification of tensors in mathematical physics.

e extent = “width” along a particular dimension. Fortran arrays are rectangular,
in the sense that the extent along each dimension is independent of the value
of the indices along the other dimensions.’® We will demonstrate later how the
range for each index can be freely customized in Fortran, by specifying arbitrary
(possibly negative) integers for the lower and upper bound. In this context, we

have’ extent == upper_bound — lower_bound + 1 ‘

e shape = 1 D-array, each component of which represents an extent along a specific
dimension.
e size = total number of scalar elements in the array (equals product of extents).

2.6.1 Declaring Arrays

Before working with arrays, we need to create them. This needs to be done explicitly
in Fortran, and it implies declaring and initializing the arrays we want to use (second
step is mandatory for constants, but highly recommended for modifiable arrays too).

In normal usage, there are two ways for declaring arrays, both of which require
specification of the array shape. The first method uses the dimension-keyword,
as in:

54 Because the merits of a data structure can only be proven in the context of the algorithms
applied on them, most references unify these two aspects (e.g. Mehlhorn and Sanders [9] or Cormen
et al. [2]).

35 At the risk of stating the obvious: this should not be confused with dimensionality of the physical
space (if we store the components of a 3 D-vector in an array, that array will have rank==1).

36 So an entity with a more irregular shape, such as the set of non-zero elements of a lower-triangular
matrix, needs to be stored indirectly when arrays are used.



50 2 Fortran Basics

‘(} both X & Y are rank=1 arrays, with 16 elements each i
real, dimension (16) :: X, Y

! A is a rank=3 array, with 52073 elements

&J up~to rank=15 is allowed in Fortran 2008 (was 7 1in Fortran 90) J

integer, dimension (520, 520, 520) :: A

The second declaration method is to specify the shape of the array after the variable
name, as in:

! X is still a rank=1 array, but Y is a scalar real
real :: X (16), Y

! same effect as 1in previous declaration of A
integer :: A (520, 520, 520)

The numbers inside the shape specification actually represent the upper bounds
for the indices along each dimension. An interesting feature in Fortran is that one
can also specify lower bounds, to bring the code closer to the problem-domain:

1
{feal, dimension (-100:100) :: 2 ! rank=1 array, with 201 elements J

Notes

e Unlike programming languages from the C-family, the value to which the lower
bound defaults (when it is not specified) is 1 (not 0)!

e Although in the examples here we often specify the shape of the arrays using hard-
coded integer values, it is highly recommended to use named integer constants>’
for this in real applications, which saves a lot of work when the size of the arrays
needs to be changed (since only the value of the constant would need to be edited).

2.6.2 Layout of Elements in Memory

‘We now turn our attention to a seemingly low-level detail which is, however, crucial
for parts of our subsequent discussion: given one of the array declarations above,
how are the array elements actually arranged in the system’s memory>%?

The memory can be viewed as a very large 1D sequence of bytes, where all the
variables associated to our program are stored. For 1 D-arrays, it is only natural to
store the elements of the array contiguously in memory. Things are more complex for
arrays of , where an ordering convention (also known as “array element
order”) for the array elements needs to be adopted (effectively, defining a mapping
from the tuple of coordinates in the array to a linear index in memory).

57 This is achieved with the parameter-attribute.

38 Here, we refer to the Virtual Memory subsystem, which includes mainly the random-access
memory (RAM) and, less used nowadays, portions on secondary storage (e.g. hard-drives) which
extend the apparent amount of memory available.
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| i+ + |_7+ + |
A(1LD) - - - A(520,1.1) A(121) o - - A(5202.1) A(1,520.1) - - A(520,520,1) k++
, | i+ + | i+ + | .
| A(1,1,2) - - A(520,12) A(1.2.2) - - - A(520272) A(1,520.2) - - - A(520,520.2) ket
Logical ordering of bytes in Memory |
———————————————————— Some Tows missing - ————————————————— -}
, | i+ + | i+ + |
| A(1,1,520) - - A(520,1,520) 1 A(1,2,520) — - = A(520.2,520) I A(1.520,520) - - - A(520,520,520)

Fig. 2.4 Tllustration of element ordering for a 3D array in Fortran. The dashed horizontal black
line represents incrementing in the first dimension, the black vertical lines—incrementing in the
second dimension, and the vertical green lines—incrementing in the third dimension. The blue line
represents the logical ordering of bytes in memory. The figure was split into multiple rows, to fit in
the page

NOTE

In Fortran, the array element order for elements of a multi-dimensional array
is such that the earlier dimensions vary faster than the latter ones.“

This is exactly opposite to the corresponding convention in C and C++, pro-
viding opportunities for bugs to appear while porting applications!

¢ An alternative way to remember this is relative to how a matrix is stored: since the elements
within a column are adjacent, Fortran (along with other languages like MATLAB and GNU
Octave (octave)) is said to use column-major order (C and C++ use row-major order).

For example, the elements of the A-array declared earlier could be arranged in
memory similarly to Fig.2.4.

The array element order is important for understanding how several facilities of the
language work with multi-dimensional arrays. It is also very relevant for application
performance,59 as illustrated in Exercise 9.

2.6.3 Selecting Array Elements

Since arrays group multiple elements, a crucial feature when working with them is
the ability to select elements based on some pattern, which is usually dictated by
a subtask of the algorithm to be implemented. Fortran supports many methods for

9 This relates to the memory-hierarchy within modern systems. There are usually several layers
of cache-memory (very fast, but with small capacity) between the CPU and RAM, to hide the
relatively high latency for fetching data from RAM. Most caches implement a pre-fetching policy,
and higher performance is achieved when the order in which array elements are processed is close
to the array element order. Note that more details need to be considered, for performance-critical
(sub)programs (for more information, see Hager and Wellein [5]).
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outlining such selections. We illustrate these via examples below, assuming we want
to overwrite some parts of an array. However, the same techniques apply for reading
parts of an array, of course.

Given an array declaration like:

integer, parameter :: SZ_X=40, SZ_Y=80

! Note the use of named integer constants for specifying
! the shape of the array (recommended practice).

real, dimension (-SZ_X:SZ_X, -SZ_Y:SZ_Y) :: temperature

Fortran allows to select:

e the entire array: by simply specifying the array’s name:

&femperature = 0. ! scalar written to selection (=whole array) J

e a single element: by specifying the array’s name, followed, within parentheses,
by a list of z indices®® (where 7 is the rank of the array):

! scalar written to element (i=1, jF=2)
temperature(l, 2) = 10.

e a sub-array: by specifying the array’s name followed, within parentheses, by a
list of n ranges (n = rank of the array, as before). A range, in this context, is an
integer interval, with an optional step,®! as in:

temperature (-SZ_X:0, -SZ_Y:SZ_Y:2) =

L[! scalar written to element (i=1, 7

e a list of elements: by specifying the array’s name followed, within parentheses,
by one or more array(s) of (we call these selection arrays). Each
selection array represents a list of values for a corresponding dimension (so only
one selection array is necessary when the source array is 1D, two when the source
array is 2D, etc.). The elements of the source array which eventually become
selected are those with the coordinate-tuples within the Cartesian product of the
sets represented by the selection arrays. The next listing uses this procedure to
select the corners of the 2D-array temperature:

! (-Sz_X, -Sz_Y), (-SZ_X, Sz_Y), (SZ_X, Sz_Y), (SzZ_X, -SZ_Y)

! only 4 elements are selected (Cartesian product):
temperature( [ -SZz_X, Sz_X 1, [ -Sz_Y, Sz_Y 1 ) = 30.

where we used the | [ | and | ] | tokens, to create arrays inline.®> We will present
more uses of this technique in the next section.

60 The list of indices can also be provided as a 1 D-array of size n.

61 Such ranges are very similar to what we illustrated previously for the do program-flow construct,
except that in this case commas (EP need to be replaced by colons (E]).

62 This notation was introduced in Fortran 2003. Note that there is also an older (equivalent) notation,

using the tokens and .



2.6 Arrays and Array Notation 53

NOTE

When an array selection is used for writing to an array, it is not recommended
to have, in the selection arrays, elements which are repeated, since this can
lead to attempts to write more than one value to the same array element.”

¢ Some compilers may allow this without warnings, although the standard declares these
as illegal. In any case, the behavior in such situations is likely platform-dependent, and the
recommendation holds.

2.6.4 Writing Data into Arrays

As soon as an array is declared, a first concern, before using the values of the array
elements in other statements, is to initialize those values. Unlike other languages,
the Fortran standard does not make any guarantee regarding data initialization (such
as setting them to zero), so explicit action is required from the programmer in this
respect.

Values can be assigned to array elements using several mechanisms, to fit various
scenarios. Just as for scalar variables, these assignments can be combined® with
the declaration line, as a compact method of initialization (therefore, the techniques
shown in this section apply to initialization, as well as to assignment).

An important notion when writing data to an array is conformability: two data enti-
ties are said to be conformable if they are arrays with the same shape, or if at least one
of them is a scalar. When one entity is assigned to another one, they need to be con-
formable (this is also necessary when forming array expressions, as discussed later).

2.6.4.1 Writing a Constant Value

One of the simplest write operations is to assign a scalar value to an entire array (or
an array section), in which case all elements (selected elements) will be set to that
value:

1
! either: declaration, followed by assignment
! before the values are used

real, dimension (0:20) :: velocity
velocity = 0.
! or: initialization directly at declaration-time
&feal, dimension (0:20) :: velocity = J

63 For array constants this is, naturally, required.
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2.6.4.2 Writing Element-by-Element

Another form of writing into an array is the “lower-level” fashion, using element-
based assignments, (optionally) combined with loops. This is the most flexible
method and, perhaps, also the most intuitive. As a simple example, here is a more
verbose (but logically equivalent) version of the assignment for the velocity array
from the previous listing:

integer :: i
! element -based assignment (equivalent to: velocity = 0.)
do 1=0,20
velocity (i) = 0.
end do

Despite being conceptually straightforward, we recommend avoiding this proce-
dure when possible, in favor of the ones discussed previously (writing a constant
value), or next (writing another array(selection)). Still, this form is sometimes justi-
fied, for example when:

e the assignment does not follow an obvious pattern, or
e there is a definite performance advantage (proven by benchmarks) for using this
method instead of the other ones.

2.6.4.3 Writing Another Array (Section)

An array (or array-section) can also be assigned to another array (or section), as long
as the two entities are conformable. For example:

some code to compute array?2

integer :: arrayl (-10:10), array2(0:20)
oo .
arrayl = array?2 ! whole-array assignment

Note that the arrays are conformable even if the lower and upper bounds of the
array indices are different for the two arrays, as it was the case here (only the shape
matters): after the assignment, arrayl (-10) == array2(0) == ... ==
arrayl (10) == array2(20).

The use of array sections is illustrated in the following listing, which swaps the
value of each odd element with that of the next even element®*:

integer :: array3(1:20), tmpArray (1:10)
! some code to initialize array3
tmpArray = array3 (1:20:2)

array3 (1:20:2) = array3(2:20:2)

array3 (2:20:2) = tmpArray

64 This assumes the lower bound for the index is odd, and that the upper one is even.
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2.6.4.4 Array Constructors

We already mentioned that arrays can be initialized based on other arrays, but then
one could ask how are the latter arrays to be initialized. Fortran has a special facility
for this problem—the array constructor. This consists of a list of values, surrounded
by square brackets.®> A common use of this is to define a constant array (with the
parameter-keyword), as in:

integer, dimension (3), parameter :: meshSize = [ 213, 170, 10 ]
real, dimension(0:8), parameter :: weights = [ 4./9., &

1./9., 1./36., 1./9., 1./36., &

1./9., 1./36., 1./9 1./36. 1

The arrays defined with the constructor syntax can also be used directly in expres-
sions (as long as they are conformable with the other components of the expression),
as any other array, for example:

integer, dimension (10) :: xRange
xRange = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

2.6.4.5 Patterns in Array Constructors: Implied-do Loops

A drawback of the weights and xRange examples above (using constructor syn-
tax) is that they tend to be quite verbose. The implied-do loops were introduced in
Fortran to solve this problem, when the values follow a well-defined pattern. They
act as a convenient shorthand notation, with the general form:

! Note: the expression below needs to be embedded into an

! actual array constructor (see next examples).

( exprl, expr2, ..., indexVar = exprA, exprB [, exprC] )
where:

e indexVar is a named scalar variable of type integer (usually named i, j,
etc.); note that the scope of this variable is restricted to the implied-do loop, so it
will not affect the value of the variable if used in other parts of the program

e exprl, expr2, ...are expressions (not necessarily of integer type), which
may or may not depend on indexVar

e exprA, exprB, and exprC are scalar expressions (of integer type), denoting
the lower bound, upper bound and (optional) increment step for indexvar

To illustrate the implied-do loops, we use them to re-write the operations above
(for weights and xRange) in a more compact (but otherwise equivalent) form:

95 Or surrounded by the pre-Fortran 2003 tokens and .
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! index variable for implied-do still needs to be declared

integer :: 1
xRange = [ (i, 1=1,10) 1 ! uses declaration above
real, dimension(0:8), parameter :: weights = &

[ 4./9., (1./9., 1./36., i=1,4) 1

The implied-do loop is eventually expanded, such that the list { exprl,
expr2, ..., } isrepeated for each value of the indexVar, using the appro-
priate value of the index variable for each repetition. For instance, in our second
example above, the list {1./9., 1./36.} is repeated 4 times (and the value of the index
variable is not used for computing any component).

2.6.4.6 Array Constructors for Multi-dimensional Arrays

So far, we only used array constructors for building 1D arrays. It is also possible,
however, to construct multi-dimensional arrays, with a two-step procedure:

1. construct a 1 D-array tmpArray
2. pass tmpArray to the intrinsic function reshape, to obtain a multi-dimen-
sional array

In practice, the two steps are commonly combined into a single statement. The
following example illustrates this, for constructing a 10 x 20 matrix, where each
elementa; j =i * j:

real, dimension (10, 20) a = reshape ( &
source = [ ((i*j, 1i=1,10) j=1,20) ] &
shape = [ 10, 20 ] &

)

where we also demonstrated the way in which implied-do loops can be nested
(essentially, by replacing one or more of the expressions exprl, expr2, ...,
discussed above by another implied-do loop).

In its basic form,° the reshape implicit function takes two arguments (denoted
by optional keywords source and shape), both of them being 1D arrays, and
where shape should be constant, and with non-negative elements.

The elements are read, in array element order, from the source-array, and writ-
ten, also in array element order, to the result array.

2.6.5 1/0 for Arrays

Just as we demonstrated in Sect. 2.4 for scalar variables, it is also essential to read/
write (parts of) arrays from/to external devices. In principle, the same ideas could

6 Additional arguments are supported, although not discussed here—see, e.g. Metcalf et al. [10].
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be used, by simply treating individual array elements as scalar variables. However,
there are several techniques related to array I/O which can simplify these operations.
This section is devoted to these techniques.

2.6.5.1 Default Format ([x])

Just as for scalar variables, it is possible to let the system choose a default format,
as in:

1 integer :: i, j ! dummy indices

2 integer, dimension(2,3) :: inArray = 0

3

4 write (*,’(a)'’)"Enter array (2x3 values):"
5 read (*,*) inArray

6 write (*, ' (a)’)"You entered:"

7 write (*,*) inArray

The input (provided for /ine 5 in the listing above) can be provided over multiple
records—the system will keep reading new records, until the elements in the I/O-list
(whole array in our case) are satisfied.

The appearance of the output (generated by line 7) is, as in the case of scalars,
platform-dependent. This was merely an aesthetic issue for scalars, but in the case of
arrays it actually poses a serious problem, since the topological information of the
array is effectively lost®7 (the lines in the output will not correspond, in most cases,
to recognizable features of the array, such as rows and columns for 2D arrays). In
the particular case of the previous listing the 6 array elements would normally fit on
a single line of output.

In the remainder of this section, we discuss several methods for producing higher-
quality output. Related to this, we also illustrate several methods for specifying the
format specification, ranging from verbose to compact.

2.6.5.2 Implied-do Loops in the I/O-List

A first problem with the wr i t e-statement at /ine 7 in the previous listing is that, when
an array appears in the I/O-list, the I/O-system will effectively expand it internally
to a list of array elements, taken in the array element order. We know, based on
the discussion at the beginning of this section, that for a 2D array this order is the
transpose of what would be needed to output the elements (given that Fortran I/O is
record-based). This can be solved by modifying the I/O-list, so that it contains an
implied-do loop instead of the array, as follows:

(write(*, *) ( ( inArray(i,j), 3=1,3), i=1,2 ) J

67 Strictly speaking, it is still possible to deduce the coordinates of a specific element in the output list,
by counting its position, and then comparing this with the expected array element order; however,
this can hardly be called productive use of the programmer’s time.
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2.6.5.3 List of Formats (Verbose)

The previous listing causes the two rows of the array to be written on the same line. To
separate them, we need to control the appearance of the output, using a customized
format specifier, as we illustrated before for scalars. A first option to achieve this is
to specify a verbose list of edit descriptors, as in:

( ( inArray (i, Jj),

{%rite(*,’(x, io, x, io, x, io0, /, x, 10, x, 10, x, 10)’') &
j=1,3), i

2.6.5.4 Repeat Counts

The previous statement causes the two rows of the matrix to appear on separate
lines, as intended. However, the format specifier is quite verbose, and it would be
impractical to write in this form if the matrix were to be larger. We mentioned below
that Fortran allows repeat counts to be placed in front of edit descriptors, or groups
of edit descriptors within parentheses. In the current case, this can be used to make

the format descriptor more compact, by factoring the -pattern:

write (*, ' (3(x, 10), /, 3(x, 10))’') &
( ( inArray(i,3j), j=1,3), i=1,2)

2.6.5.5 Recycling of Edit Descriptors

Finally, we notice that Fortran has a mechanism for “recycling” edit descriptors, so
that there can be more elements in the I/O-list than edit descriptors in the output
format. When the I/O-subsystem “runs out” of edit descriptors, a new line of output
is started, and the format specifier is re-used for the next elements in the I/O-list.
This is perfect for our current purposes, as the output format can be further simplified
using this feature:

write (*, ' (3(x, 1i0))’) &
( ( inArray(i,3j), j=1,3), i=1,2)

2.6.6 Array Expressions

We emphasized above the usefulness of working with whole arrays and array sec-
tions, instead of manually iterating through the array elements with loops. Fortran
allows a similar high level of abstraction for representing computations, with array
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expressions. Specifically, most unary intrinsic functions and operators can take a
whole array (or an array selection) as an argument, producing another array, with
the same shape, through element-wise application of the operation. The same idea
applies to binary operators, as long as the arguments are conformable. The following
program uses these techniques to evaluate the functions sin(x) and sin(x) +cos(x)/2
on a regular grid, spanning the interval [—m, 7 ]:

( .
program array_expressionsl
implicit none

integer, parameter :: N=100
real, parameter :: PI=3.1415
integer :: i

real, dimension (-N:N) :: &

xAxis = [ (i*(pi/N), i=-N,N) 1, &
a =0, b=0

[ NET I NP S

10 ! Compact array-expressions, using elemental functions.
11 ! a(i) == sin( xAxis (i) )
12 a = sin(xAxis)
13 ! b(i) == sin( xAxis (i) ) + cos( xAxis (i) )/2.
14 b = sin(xAxis) + cos (xAxis) /2.
15
16 write (*, ' (£f8.4, 2x, £8.4, 2x, f8.4)') &
17 [ (xAxis (i), a(i), b(i), 1i=-N,N) ]
18 end program array_expressionsl
NS

Listing 2.29 | src/Chapter2/array_expressionsl.f90 ‘

Note that the standard does not impose a specific order in which the elements
of the result array for the expression are to be created. This allows compilers to
apply hardware-specific optimizations (e.g. vectorization/parallelization). For this
to be possible, all array expressions are completely evaluated, before the result is
assigned to any variable. This makes array expressions behave differently from do-
loop constructs which superficially seem equivalent to the array expression (so one
needs to carefully examine any data dependencies between the different iterations of
the do-loops when translating between the two forms of syntax). This was not the case
for the two array expression examples above (lines 12 and /4 in the listing), which
could have also been written equivalently with a do-loop (although we recommend
the previous, compact version):

do i=-N,N

a(i) = sin( xAxis (1) )
b(i) = sin( xAxis (i) ) + cos( xAxis (i) )/2.
enddo

However, the expression:

(%(—(N—l):(N—l)) = ( a(-N:(N-2)) + a(-(N-2):N)) /2. J

which assigns to each interior element of a an average value computed using its left
and right neighbours, is not equivalent to the loop:

do i=-(N-1),(N-1)
a(i) = ( a(i-1) + a(i+l) )/2.
enddo
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We demonstrated above that some intrinsic functions ( s , etc.) accept
a scalar, as well as a whole array, as their argument.68 Such functions are known
in Fortran as elemental, and can also be defined by the programmer, for derived
types, or for specific types of arrays. We provide a brief example for this, in Sect. 3.4.

2.6.7 Using Arrays for Flow-Control

Another array-oriented feature in modern Fortran consists of two specialized flow-
control constructs. Just as the 1f, case, and do were demonstrated to produce
more compact code when working with scalars, for arrays the where and forall
constructs can be used to simplify array expressions, and to further avoid the need
for manually expanding the expressions (with loops and element-based statements).
As a general note, both of these constructs can be named and nested (see Metcalf
et al. [10] for details).

2.6.7.1 where Construct

The where construct can be used to restrict an array assignment only to elements
which satisfy a given criterion. It is also known as masked array assignment. In many
ways, it is the array-oriented equivalent of the i f-construct, discussed for scalars.
In its basic form, the syntax of where reads:

where ( <logicalArray> )
arrayl = <array_expressionl>
array2 = <array_expression2>

end where

where logicalArray, arrayl, array?2, etc., must have the same shape, and
logicalArray may also be a logical expression (for example, comparing array
elements to some scalar value).

For example, assume we have two arrays a and b, and that we want to copy inside
b the a-values® that are lower than some scalar value threshold. This can be
easily achieved with the where construct, as follows:

program where_constructl
implicit none
integer, parameter :: N = 7

character (1len=100) :: outFormat

integer :: i, J

real :: a(N,N) = 0, b(N,N) = 0, threshold = 0.5, &
c(N,N) = 0, d(N,N) = 0 ! used in next examples

! write some values in a
call random_number ( a )

8 Programmers familiar with C++ can think of this as a restricted form of function overloading.
% random_ number is an intrinsic subroutine, described in Sect. 2.7.2.
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! Create dynamic format, with internal-file(=string) outFormat.
! This way, the format is adjusted automatically if N changes.

write (outFormat, *)" (", N,"(x, £8.2))"
write (*, ' (a)’)"a =
write (*, fmt=outFormat) &

( (a(i,3), J=1,N), 1i=1,N )

! ** Masked array-assignment **
where( a > threshold )

b = a
end where

write (*, ' (/,a)’)"b (after masked assignment) = "
write (* fmt=outFormat) ( (b(i,3j), j=1,N), i=1,N )

end program where_constructl

Listing 2.30 | src/Chapter2/where_constructl.f90

Similar to the i £-construct, the where-construct could have been compacted, in
this case, to a single line (since a single array assignment statement was present):

{ﬁhere( a > threshold ) b = a J

Next, suppose we also want to copy over to array c the values of a that are
smaller than half the threshold. We can extend the where-construct with an
elsewhere(logicalArray) construct, similar to the elsei f-branches we
showed for i f:

where ( a > threshold )

b = a
elsewhere( a < threshold/2. )
c = a

end where

As a final extension of our example, let us assume that we want to copy over
to array d the remaining values of a, which satisfy neither of the criteria (like the
else-branch of if). This is achieved again with an elsewhere-branch, which
does not have a 1ogicalArray associated, as in:

where( a > threshold )
b = a

elsewhere( a < threshold/2. )
c = a

elsewhere
d = a

end where

The logical arrays which define the masks (for the where- or elsewhere-
branches) are first evaluated, and then the array assignments are performed in
sequence, masked by the logical arrays (i.e. no assignment is performed for ele-
ments where the mask is ). This implies that, even if some assignments
would alter the data used for evaluating the mask array,’” such changes will not affect
the remainder of the where-construct, for which the initially evaluated mask will
be used.

70 Tn our examples above, this would mean changing elements of a.
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2.6.7.2 The|do Concurrent ‘ Construct

The do concurrent construct (introduced in Fortran 2008) can also be used for
improving the performance and conciseness of array operations. Strictly speaking,
the construct is more general, as it can also be used to work with scalar data. However,
we discuss it here, as it is particularly useful for arrays, and also because it effectively
supersedes another array-oriented construct (forall), which we do not cover in
this text.’!

We begin our brief discussion of this construct with a warning: as for many
Fortran 2008 features, support for do concurrent was, at the time of writing, still
incipient.”?

The syntax of the construct is as follows:

do concurrent ( [type_spec ::] list_of_indices_with_ranges &
[, scalar_mask_expression] )
statementl
statement2

end do

where list_of_indices_with_ranges can be an index range specifica-
tion (as would appear after a normal do-loop), or a comma-separated list of
such specifications (in which case, the construct is equivalent to a set of nested
loops). We discuss the optional type_spec at the end of this section. The
scalar_mask_expression, when present, is useful for restricting the state-
ment application only to values of indices for which the expression evaluates to
. This is illustrated in the following example, where elements of matrix a
which belong to a checkerboard pattern are copied to matrix b:

1 (program do_concurrent_checkerboard_selection

2 implicit none

3 integer, parameter :: DOUBLE REAL = selected_real_kind (15, 307)
4 integer, parameter :: N 5 1 side- length of the matrices

5 integer :: i, j ! dUMMY*lHdlCeS

6 real (kind=DOUBLE_REAL), dimension(N,N) :: a, b ! the matrices
7 character (len=100) :: outFormat

8

9 ! Create dynamic format, u51ng internal file

10 write (outFormat, *)" (", N,"(x, £8.2))"

11 ! Initialize matrix a to some random values

12 call random_number ( a )

13

14 ! Pattern-selection with do concurrent

15 do concurrent ( i=1:N, j=1:N, mod(i+j, 2)==1 )

16 b(i,j) = a(i,])

17 end do

18

19 ! Print matrix b

7! In many ways, forall is a more restricted version of do concurrent, which is why we
prefer to describe only the latter. The syntax is very similar for both constructs. See, e.g. Metcalf
et al. [10] for more details on forall.

72 That being said, we found that both gfortran (version 4.7.2) and ifort (version 13.0.0)
support this construct, with the exception of the type specification. Check the documenta-
tion of your compiler, for any flags that may need to be added to enable this feature (e.g.

—ftree—parallelize—loops=n| with being the number of parallel threads

(for gfortran), or| —parallel |(for ifort)
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20 write(*, ' (/,a)’)"b ="
21 write (*, fmt=outFormat) ( (b(i,j), j=1,N), i=1,N )
22 end program do_concurrent_checkerboard_selection

Listing 2.31 ’src/Chapter2/do_concurrent_checkerboard_selec—‘

Syntactically, the construct in lines 15—17 in the previous listing could have been
written using nested do-loops and an 1 £, as in:

do i=1,N
do j=1,N
if ( mod(i+j, 2)==1 ) then
b(i,j) = a(i,J)
end if
end do
end do

so the version using do concurrent is obviously more compact. More impor-
tantly, the construct also enables some compiler optimizations with respect to the
version using nested do-loops. There is a tradeoff, of course, because the restrictions
on do concurrent do make it less general. Some of these (restrictions) are things
that the compiler can check (and issue compile-time error if they are violated), while
others cannot be checked automatically, and the programmer guarantees that they
are satisfied.”3 For example:

e Most restrictions relate to preventing the programmer to branch outside the
do concurrent-construct. Examples of mechanisms which can cause such
branches are return, go to, exit, cycle, or err= (for error-handling). A
safe rule of thumb is to avoid these statements.’*

e Calling other procedures from the body of the construct is allowed, as long as
these procedures are pure. This notion, discussed in more detail in the next chapter,
implies that the procedure has no side effects; examples of side effects which would
render procedures impure are:

— altering program’s state, in a global entity, or locally to the procedure, which
may be used next time the procedure is called
— producing output during one iteration, which is read during another iteration

e The programmer also guarantees to the compiler that there are no data dependen-
cies between iterations (through shared variables, data allocated in one iteration
and de-allocated in another iteration, or writing and reading data from an external
channel in different iterations)

Given these limitations, using do concurrent may require some additional
effort. However, for applications where performance is a priority, this is time

73 Therefore, the program may successfully compile, but still contain bugs, if some of these implied
guarantees do not actually hold!

74 Strictly speaking, those which reference a labelled statement are allowed, as long as that statement
is still within the do concurrent-construct.
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well-spent, since it forces the programmer to re-structure the algorithms in ways
which are favorable for parallelization at later stages (more about this in Sect.5.3).

An interesting last note about this construct is that the standard also allows to
specify the type of the indices within the construct (the type is always integer,
but the kind-parameter can be customized). This is very convenient, since it brings
type declarations closer to the point where the variables are used (otherwise these
indices would need to be declared at the beginning of the (sub)program, as done
in the previous example-program). For example, the pattern-selection portion in the
earlier example-program could be written as:

1
do concurrent ( integer :: 1=1:N, m=1:N, mod(l+m, 2) == 1)
b(l,m) = a(l,m)
end do

Note that, at the time of writing, most compilers still do not support this. However,
it should be allowed in the near future.

2.6.8 Memory Allocation and Dynamic Arrays

In the examples so far, we only showed how to work with arrays whose shape is
known at compile-time. This is often not the case in real applications, where this
information may be the result of some computations, or may even be provided by the
user at runtime. If this were a book about C++, now would definitively be the place
to discuss pointers. In Fortran, however, this is not necessary’> for dynamic-size
arrays, which are supported through a simpler (and faster) mechanism, discussed in
this section.

We often use the terms static and dynamic when discussing how memory is
reserved for data entities. Generally speaking, memory for static objects is auto-
matically managed by the OS. Examples of static entities are static global variables
(defined through the modu 1 e-facility, discussed later), variables local to a procedure,
and procedure arguments (also covered later). Contrarily, dynamic objects require the
programmer to explicitly make requests for acquiring and releasing regions of mem-
ory. Therefore, whereas for working with normal (static) arrays only a declaration is
necessary, the workflow for dynamic arrays involves three steps:

1. declaration: Dynamic arrays are declared similarly to normal arrays. For exam-
ple, a dynamic version of array bigArray (see Sect.2.6.1) is given below:

(integer , dimension(:,:,:), allocatable :: bigArray J

75 Pointers are still useful in many contexts, like for constructing more advanced data structures.
They too are supported in Fortran, via the pointer-attribute (but Fortran pointers carry more
information and restrictions than their C/C++ counterparts). We do not discuss this issue in this
text—see, e.g. Metcalf et al. [10] or Chapman [1].
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Note that there are two notable differences in the dynamic version:

a. the shape of the array is not specified; instead, only the rank is declared
(encoded as the number of E]—characters in the list within the parentheses)

b. the allocatable-attribute needs to be added, to clarify that this is a
dynamic array

2. allocation: Before working with array elements is allowed, memory has to be
allocated, so that the exact shape of the array is specified. This is done with the
allocate-statement, which has the form:

k[allocate( list_of_objects_with_shapes [, stat=statCode] ) J

where statCode is an (optional) integer scalar, set to zero by the sys-
tem if the allocation was successful, or to some positive value if an error
occurred (such as not enough memory to hold the arrays requested), and
list_of_objects_with_shapes isalist of arrays, each followed by the
explicit shape in parentheses (as would normally appear after the dimension-
attribute if the arrays were static). For example, the following statements allo-
cate the dynamic versions of arrays xArray, bigArray, and zArray, from
Sect.2.6.1:

integer statCode
allocate ( xArray (16), bigArray (520,520,520), =zArray(-100:100), stat=statCode )

After allocation, one can work with these arrays normally, as discussed before
for the static case.

3. deallocation: A last concern related to dynamic arrays is to release the memory
to the system, as soon as it is not needed by the program anymore. This is a
highly recommended practice, both for performance reasons (because it reduces
the amount of bookkeeping at runtime), and for increasing the readability of
the programs (to signal the fact that the data is not used in other parts of the
program). This step is achieved with the deallocate-function, which has the
syntax:

(deallocate( list_of_objects [, stat=statCode] ) J

where statCode has the same error-signalling role as before, and 1ist_of_
objects is a list of arrays. For example, the following statement releases the
memory allocated above, for the arrays xArray, bigArray, and zArray:

[deallocate( xArray, bigArray, zArray, stat=statCode ) J

Note that it is an error to attempt allocating an already-allocated array, or deallo-
cating an already-deallocated (or never allocated) array. The allocation status of an
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array may become difficult to track in larger programs, especially if the array is part
of the global data and used by many procedures. The allocated intrinsic function
can be used in such cases. For example:

iallocated( xArray ) J

will return beforethe allocate-call above, and afterthe deallocate-
call; it will return , however, between these two calls. Interestingly, since
Fortran 2003, it is not necessary [13] to use this intrinsic function when we want
to assign to the allocatable array another array (or array expression): in that case,
allocation to the correct shape is automatically done by the Fortran runtime.

Exercise 9 (Array transversal order and performance) Earlier in this chapter,
we mentioned that array element order dictates the optimal array-transversal
order for obtaining good performance. To test this, write a program which
adds two cubic 3 D-arrays (a and b), using nested do-loops. Measure the time
required for the program to complete, for two different transversal scenarios:
do i=1,N
do j=1,N
do k=1,N
a(i,j,k) = a(i,j, k) + b(i,j, k)
enddo
enddo
enddo

do k=1,N
do j=1,N
do i=1,N
a(i,j,k) = a(i,j,k) + b(i,j,.k)
enddo
enddo
enddo

Hints:

e The length of the cube’s side (N) should be large enough to be representative
for a real-world scenarios (i.e. the whole arrays should not fit in the cache).
For example, take N = 813, and 32bit real array elements. It is easier to use
allocatable arrays.”

e To improve the accuracy of the result, wrap the code above within another
loop, so that the operations are performed, say, Nrepetitions = 30 times.?

e It is also instructive to test the programs with several compilers, because
some highly-optimizing compilers (like ifort) may recognize perfor-
mance “bugs” like these in simple programs, and correct the problem
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internally (but this can fail in more complex scenarios, so learning about
these issues is still valuable). Also, compilers can simply “optimize away”
code when the computation results are not used, so try to print some elements
of a at the end of the computation.

“Most systems have some limits for the size of static data (“stack size”). Therefore, large
static arrays would require adjusting these limits and, possibly, adjusting the “memory
model” through compiler flags.

bThis reduces the effect of system noise, and it also provides a “poor man’s” solution for
reducing the relative importance of the (de)allocation overhead—a more accurate approach
is to benchmark the computational parts exclusively, using techniques discussed later, in
Sect.2.7.

2.7 More Intrinsic Procedures

In the course of our discussion so far, we have already mentioned some of the many
intrinsic procedures offered by Fortran. In this section, we describe a few additional
ones, which would not easily fit into the previous sections, but are nonetheless com-
mon practice. We discuss later (in Chap. 3) how to define custom procedures.

2.7.1 Acquiring Date and Time Information

Some ESS applications need to be concerned with the current date and time. The
date_and_time intrinsic subroutine is appropriate for this. When calling this, one
can pass (as an argument) an integer-array, of size 8 or more. The Fortran-runtime
will then fill the components with integer-values, as described in Table 2.3.

A very common application is timing a certain portion of code, as a quick way
for profiling parts of a program. In principle, using date_and_time before and
after the part of the algorithm to be profiled could be used, but this limits the time

Table 2.3 Data inserted into components of curr_date_and_time

Component # | Meaning Component # | Meaning

1 Year 5 Hour

2 Month 6 Minutes

3 Day 7 Seconds

4 Time difference (minutes) w.r.t. GMT |8 Milliseconds
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resolution that can be achieved. Fortran also has the cpu_ time intrinsic for such
purposes, which provides microsecond precision on many platforms.

e
program working_with_date_and_time

A complete program, demonstrating these functions, is given below:

implicit none
! for date_and_time-call

integer :: dateAndTimeArray (8)
! for cpu_time-call

real :: timeStart, timeEnd

! variables for expensive loop
integer :: mySum=0, 1

call date_and_time (values=dateAndTimeArray)
print*, "dateAndTimeArray =", dateAndTimeArray

call cpu_time(time=timeStart)
! expensive loop
do i=1, 1000000000
mySum = mySum + mySum/i
end do
call cpu_time (time=timeEnd)
print*, "Time for expensive loop =", timeEnd-timeStart, "seconds",k &
mySum =", mySum
end program working_with_date_and_time

Listing 2.32 | src/Chapter2/working with_date_and_time.f90

2.

Some precautions apply to uses of cpu_time:

results are generally non-portable (since the resolution is not standardized, to allow
higher precision for platforms which support it)

even if no other demanding programs seem to be running on the system, the
timing results will fluctuate, due to ever-present “system noise” (the OS needs to
continuously run some internal programs, to maintain proper operation)

the function is not useful for parallel applications; for example, in a parallel pro-
gram using OpenMP, the omp_ get_wt ime-subroutine should be used instead
while convenient for quick tests, this approach to profiling does not scale (just
as print-based debugging does not scale well for complex bugs); many manu-
facturers, as well as open-source projects, offer much more convenient tools for
complex scenarios.

7.2 Random Number Generators (RNGs)

Statistical methods form the basis of many powerful algorithms in ESS. For example,
stochastic parameterizations are commonly used in models, to simulate the effects of
processes at smaller spatial scales (clouds, convection, etc.), which are not resolved
by the (usually severely coarsened) model mesh. A basic necessity for many such
algorithms is the ability to generate sequences of random numbers. This may seem
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a simple technicality but, in fact, it invites a philosophical question, since computer
algorithms are supposed to produce deterministic outcomes.”®

Nonetheless, many algorithms can produce sequences which are often “suffi-
ciently random”, despite being deterministic. Fortran implementations also provide
such algorithms, via the random_number intrinsic subroutine. The following pro-
gram uses it to estimate .

7 (program rng_estimate_pi
8 implicit none
9 integer, parameter :: NUM_DRAWS_TOTAL=1e7
10 integer :: countDrawsInCircle=0, i
11 real :: randomPosition (2)
12 integer :: seedArray (16)
13
14 ! quick method to fill seedArray
15 call date_and_time (values=seedArray (1:8))
16 call date_and_time (values=seedArray (9:16))
17 print*, seedArray
18 ! seed the RNG
19 call random_seed (put=seedArray)
20
21 do i=1, NUM_DRAWS_TOTAL
22 call random_number ( randomPosition )
23 if( (randomPosition (1) **2 + randomPosition (2)**2) < 1.0 ) then
24 countDrawsInCircle = countDrawsInCircle + 1
25 end if
26 end do
27 print*, "estimated pi =", &
28 4.0*( real (countDrawsInCircle) / real (NUM_DRAWS_TOTAL))
29 end program rng_estimate_pi
. )

Listing 2.33 src/Chapter2/rng_estimate_pi.f90‘

Note that we used another intrinsic subroutine (random_seed), to compensate
for the deterministic nature of the random number generator (RNG).”” To link with
the previous discussion, we use two calls to the date_and_time intrinsic, to
obtain a seed array.”® This is not an “industrial-strength” solution, since the date
information is not completely random (and some components like the time zone are
in fact constant).”

The algorithm itself is based on placing random points within a square 2 D-domain,
and checking what fraction of those fall within the largest quarter-of-circle inscribed
in the square. This is a classical example of what is known as the Monte-Carlo
approach to simulation.

76 This is fundamentally different from randomness in the physical sense, which is driven by
the quantum-probabilistic processes at the atomic scale. These effects are then amplified at the
mesoscopic scales, due to the large number of degrees of freedom of the system (e.g. climate
system, see Hasselmann [6]).

77 In situations where perfect reproducibility of results is necessary, the seeding step could be
skipped. However, a more scientifically-robust method to achieve this is to use a sequence of
random numbers large enough that the reproducibility is achieved algorithmically.

78 You can check how large the array needs to be for your platform, by calling the seed function
like| call random_seed(size=seedSize) | where seedSizeisan integer
scalar, inside which the result of the inquiry will be placed.
79 A better solution for seeding may be to use the entropy pool of the OS. In Linux, you can read

data from the file | /dev/random | (see, e.g. Exercise 10).
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Exercise 10 (Accurate w) Modify the previous program, so that it reliably
recovers the first 7 digits after the decimal dot of 7.

Hints: you will need to ensure that the variables involved have a kind which
is accurate enough. Also, to rule out “accidental” convergence, it is a good idea
to check that the convergence criterion remains satisfied for several (say, 100)
Monte-Carlo draws in a row.

As a final note on this topic, for scientific applications it is often important to

ensure the RNG passes certain quality criteria—usually a batch of tests. Thus, a hier-
archy of RNG-algorithms exists, relative to which the random_number intrinsic
may not be the most suitable. For an in-depth discussion of this topic, please refer to
Press et al. [12].
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