
Chapter 2
Order Relations and Ordering Cones

In this chapter, first, we give an introduction to order relations and cone properties.
Then we present a detailed overview of solution concepts in vector-valued as well as
set-valued optimization. We introduce and discuss the following solution concepts
for set-valued optimization problems:

• solution concepts based on vector approach,
• solution concepts based on set approach,
• solution concepts based on lattice structure.

Furthermore, we present the embedding approach by Kuroiwa and show
how it is possible to transform a set-valued optimization problem into a vector
optimization problem using this embedding approach. Solution concepts for
set-valued optimization problems with respect to abstract preference relations
and for set-valued problems with variable order structure are studied. Moreover,
we introduce approximate solutions of set-valued optimization problems. Finally,
relationships between different solution concepts are studied.

2.1 Order Relations

In this section, our objective is to study some useful order relations. We begin by
recalling that given a nonempty set M , by M � M we represent the set of ordered
pairs of elements of M , that is,

M � M WD f.x1; x2/ j x1; x2 2 M g:

The following definition gives the notion of an order relation.

Definition 2.1.1. Let M be a nonempty set and let R be a nonempty subset of
M � M . Then R is called an order relation (or a binary relation) on M and the
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12 2 Order Relations and Ordering Cones

pair .M; R/ is called a set M with order relation R. The containment .x1; x2/ 2 R
will be denoted by x1Rx2. The order relation R is called:

(a) reflexive if for every x 2 M , we have xRx;
(b) transitive if for all x1; x2; x3 2 M , the relations x1Rx2 and x2Rx3 imply that

x1Rx3;
(c) antisymmetric if for all x1; x2 2 M , the relations x1Rx2 and x2Rx1 imply

that x1 D x2.

Moreover, an order relation R is called a preorder on M if R is transitive,
a quasiorder if R is reflexive and transitive and a partial order on M if R
is reflexive, transitive, and antisymmetric. In all the three cases, the containment
.x1; x2/ 2 R is denoted by x1 �R x2, or simply by x1 � x2 if there is no risk of
confusion. The binary relation R is called a linear or total order if R is a partial
order and any two elements of M are comparable, that is

(d) for all x1; x2 2 M either x1 �R x2 or x2 �R x1.

Furthermore, if each nonempty subset M 0 of M has a first element x0 (meaning
that x0 2 M 0 and x0 �R x 8 x 2 M 0/; then M is called well-ordered.

We recall Zermelo’s theorem: For every nonempty set M there exists a partial
order R on M such that .M; R/ is well-ordered.

An illustrative example of a relation is �M WD f.x; x/ j x 2 M g which
is reflexive, transitive, and antisymmetric, but it satisfies (d) only when M is a
singleton.

We recall that the inverse of the relation R � M � M is the relation

R�1 WD f.x1; x2/ 2 M � M j .x2; x1/ 2 Rg;

and if S is a relation on M , then the composition of R and S is the relation

S ı R WD f.x1; x3/ j 9 x2 2 M j .x1; x2/ 2 R; .x2; x3/ 2 S g:

Using these two notations, the conditions (a), (b), (c), and (d) are equivalent to
�M � R, R ı R � R, R \ R�1 � �M and R [ R�1 D M � M , respectively.

Definition 2.1.2. Let R be an order relation on the nonempty set M and let M0 �
M be nonempty. An element x0 2 M0 is called a maximal (minimal) element of
M0 relative to R if for every x 2 M0;

x0Rx ) xRx0 .xRx0 ) x0Rx/: (2.1)

The collection of all maximal (minimal) elements of M0 with respect to (w.r.t.
for short) R is denoted by Max.M0; R/ (Min.M0; R/).

Note that x0 is a maximal element of M0 w.r.t. R if and only if x0 is a minimal
element of M0 w.r.t. R�1, and hence Max.M0; R/ D Min.M0; R�1/.
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Remark 2.1.3. 1. If the order relation R in Definition 2.1.2 is antisymmetric, then
x0 2 M0 is maximal (minimal) if and only if for every x 2 M0

x0Rx ) x D x0 . xRx0 ) x0 D x/: (2.2)

2. If R is an order relation on M and ; ¤ M0 � M , then R0 WD R \ .M0 �M0/ is
an order relation on M0. In such a situation, the set M0 will always be endowed
with the order structure R0 if not stated explicitly otherwise. If R is a preorder
(partial order, linear order) on M , then R0 is a preorder (partial order, linear
order) on M0. Therefore, x0 is a maximal (minimal) element of M0 relative to R
iff x0 is a maximal (minimal) element of M0 relative to R0.

In the following, we give some examples to illustrate the above notions.

Example 2.1.4. (1) Assume that X is a nonempty set and M WD P.X/ represents
the collection of subsets of X . Then the order relation R WD f.A; B/ 2 M �M j
A � Bg is a partial order on M . However, if X contains at least two elements,
then R is not a linear order.

(2) Assume that N is the set of non-negative integers and

RN WD f.n1; n2/ 2 N � N j 9 p 2 N W n2 D n1 C pg:

Then N is well-ordered by RN. Note that RN defines the usual order relation on
N, and n1RNn2 will always be denoted by n1 � n2 or, equivalently, n2 � n1.

(3) Let R be the set of real numbers and let RC WD Œ0; 1Œ be the set of non-negative
real numbers. The usual order relation on R is defined by

R1 WD f.x1; x2/ 2 R � R j 9 y 2 RC W x2 D x1 C yg:

Then R1 is a linear order on R, but R is not well-ordered by R1. In the
following, the fact x1R1x2 will always be denoted by x1 � x2 or, equivalently,
x2 � x1.

(4) Given n 2 N, n � 2, we consider the binary relation Rn on R
n defined by

Rn WD f.x; y/ 2 R
n � R

n j 8 i 2 1; n W xi � yi g;

where x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ and 1; n WD fi 2 N j 1 �
i � ng. Then Rn is a partial order on R

n, but Rn is not a linear order.
For example, the elements e1 and e2 are not comparable w.r.t. Rn, where
ei WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 R

n. As usual, by ei we denote the vector whose
entries are all 0 except the i th one, which is 1).

Remark 2.1.5. Every well-ordered subset W of R (equipped with its usual partial
order defined above) is at most countable. Indeed, every element y 2 W , except
the greatest element w of W (provided that it exists), has a successor s.y/ 2 W .
Clearly, if y; y0 2 W , y < y0, then s.y/ � y0. Therefore, fixing qy 2 Q such that
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y < qy < s.y/ for y 2 W n fwg, we get an injective function from W n fwg into Q,
and so W is at most countable.

We emphasize that even when R is a partial order on M , a nonempty subset M0

of M may have zero, one, or several maximal elements, but if R is a linear order,
then every subset has at most one maximal (minimal) element.

Definition 2.1.6. Let ; ¤ M0 � M and let R be an order relation on M . Then:

1. M0 is lower (upper) bounded (w.r.t. R) if there exists a 2 M such that aRx

(xRa) for every x 2 M0. In this case, the element a is called a lower (upper)
bound of M0 (w.r.t. R).

2. If, moreover, R is a partial order, we say that a 2 M is the infimum (supremum)
of M0 if a is a lower (upper) bound of M0 and for any lower (upper) bound a0 of
M0 we have that a0Ra (aRa0).

In set-valued optimization, the existence of maximal elements w.r.t. order
relations is an important problem. For this, the following Zorn’s lemma (or Zorn’s
axiom) plays a crucial role.

Axiom 2.1.7 (Zorn) Let .M; �/ be a reflexively preordered set. If every nonempty
totally ordered subset of M is upper bounded, then M has maximal elements.

We recall that given a linear space X , a nonempty set M � X is affine (or a
linear manifold) if �x C .1 � �/y 2 M for all x; y 2 M and � 2 R. A nonempty
set C of X is called convex if Œx; y� WD f�x C .1 � �/y j � 2 Œ0; 1�g � C for all
x; y 2 C . By convention the empty set ; is considered to be affine and convex. It
is obvious that a linear subspace is affine and an affine set is convex. Moreover, any
intersection of linear subspaces, affine sets, or convex sets is a linear subspace, an
affine set, or a convex set, respectively. These properties allow us to introduce the
linear hull, the affine hull, and the convex hull of a nonempty set A � X as being,
respectively,

lin A WD
\

fY � X j A � Y; Y linear subspaceg ;

aff A WD
\

fM � X j A � M; M linear manifoldg ;

conv A WD
\

fC � X j A � C; C convex setg :

Clearly, for X D R
n and R D Rn (from Example 2.1.4 (4)), we have

8 x1; x2 2 X; 8 � 2 R W x1Rx2; 0 � � ) �x1R�x2; (2.3)

8 x1; x2; x 2 X W x1Rx2 ) .x1 C x/R.x2 C x/: (2.4)

It is easy to find examples of relations satisfying (2.4). In fact, a nonempty
relation R on the linear space X satisfies (2.4) if and only if there exists ; ¤ D � X

such that R D RD , where
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RD WD f.x1; x2/ 2 X � X j x2 � x1 2 Dg:

Moreover, RD is reflexive if and only if 0 2 D, and RD is transitive if and only
if D C D � D.

Definition 2.1.8. Let R be an order relation on the linear space X ; we say that R
is compatible with the linear structure of X if (2.3) and (2.4) hold.

In linear spaces, a large number of relations R can be defined by cones which are
compatible with the linear structure of the space. For this we first give the following:

Definition 2.1.9. A nonempty set C � X is a cone if for every x 2 C and for
every � 2 RC we have �x 2 C . Clearly, if C is a cone, then 0 2 C . The cone C is
called

(a) convex if for all x1; x2 2 C we have x1 C x2 2 C ,
(b) nontrivial or proper if C ¤ f0g and C ¤ X ,
(c) reproducing if C � C D X ,
(d) pointed if C \ .�C / D f0g.

Clearly, the cone C satisfies condition (b) in the definition above iff, C is a
convex set.

In the following, we collect a few examples of cones.

Example 2.1.10. (1) Let

R
nC WD fx 2 R

n j xi � 0 8 i 2 1; ng D fx 2 R
n j .0; x/ 2 Rng: (2.5)

R
nC is obviously a cone in the linear space R

n, which fulfills all the conditions
of Definition 2.1.9.

(2) Let C Œ0; 1� be the linear space of all real functions defined and continuous on
the interval Œ0; 1� � R. Addition and multiplication by scalars are defined, as
usual, by

.x C y/.t/ D x.t/ C y.t/; .�x/.t/ D �x.t/ 8 t 2 Œ0; 1�

for x; y 2 C Œ0; 1� and � 2 R: Then

CCŒ0; 1� WD fx 2 C Œ0; 1� j x.t/ � 0 8 t 2 Œ0; 1�g (2.6)

is a convex, nontrivial, pointed, and reproducing cone in C Œ0; 1�. Note that the
set

Q WD fx 2 CCŒ0; 1� j x is nondecreasingg (2.7)

is also a convex, nontrivial, and pointed cone in the space C Œ0; 1�, but it doesn’t
satisfy condition (c) from Definition 2.1.9: Q � Q is the proper linear subspace
of all functions with bounded variation of C Œ0; 1�.
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(3) Consider the set C � R
n defined by

C WD fx D .x1; : : : ; xn/T 2 R
n j x1 > 0; or

x1 D 0; x2 > 0; or

: : :

x1 D � � � D xn�1 D 0; xn > 0; or

x D 0g:
Then the cone C satisfies all the conditions of Definition 2.1.9.

In the following result, we characterize compatibility between linear and order
relations:

Theorem 2.1.11. Let X be a linear space and let C be a cone in X . Then the
relation

RC WD f.x1; x2/ 2 X � X j x2 � x1 2 C g (2.8)

is reflexive and satisfies (2.3) and (2.4). Moreover, C is convex if and only if RC

is transitive, and, respectively, C is pointed if and only if RC is antisymmetric.
Conversely, if R is a reflexive relation on X satisfying (2.3) and (2.4), then C WD
fx 2 X j 0Rxg is a cone and R D RC .

Proof. See [214, Theorem 2.1.13]. ut
The above result shows that when ; ¤ C � X; the relation RC defined by (2.8)

is a reflexive preorder iff C is a convex cone, and RC is a partial order iff C is a
pointed convex cone.

We note that RR
n
C

D Rn (defined in Example 2.1.4 (4)), while the relation
RC with C � R

n defined in Example 2.1.10 (3) is a linear order, called the
lexicographic order on R

n.
Let Y be a linear topological space, partially ordered by a proper pointed convex

closed cone C � Y .
Denote this order by “�C ”. Its ordering relation is described by

y1 �C y2 if and only if y2 � y1 2 C for all y1; y2 2 Y: (2.9)

In the sequel, we omit the subscript C as no confusion occurs.
As usual, we denote by

C C WD fy� 2 Y � j y�.y/ � 0 8y 2 C g
the continuous positive dual cone of C , and by

C # WD fy� 2 C C j y�.y/ > 0 8 y 2 C n f0gg

the quasi-interior of C C.
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We recall that the interior and the closure of the subset A of the topological
space .X; �/ are defined, respectively, by

int A WD
[

fD � X j D � A; D openg;

cl A WD A WD
\

fB � X j A � B; B closedg:

Clearly, int A is open and cl A is closed.

2.2 Cone Properties Related to the Topology and the Order

We discuss now the connections between topology and order. Unlike the notion
of an ordered linear space (i.e., a linear space equipped with a compatible reflexive
preorder), the notion of an ordered topological linear space does not demand for
any direct relation between the order and the involved topology. However, because
a compatible reflexive preorder on a linear space is defined by a convex cone, it
is customary to ask that the cone defining the order be closed, have nonempty
interior, or be normal. Before introducing the notion of a normal cone, we recall
that a nonempty set A of the linear space X is full with respect to the convex cone
C � X if A D ŒA�C , where

ŒA�C WD .A C C / \ .A � C /:

Note that ŒA�C is full w.r.t. C for every set A � X .

Definition 2.2.1. Let .X; �/ be a t.v.s. and let C � X be a convex cone. Then C is
called normal (relative to �) if the origin 0 2 X has a neighborhood base formed
by full sets w.r.t. C .

In the next result we give several characterizations of normal cones. We are using
the notation NX for the set of balanced neighborhoods of 0 2 X in the t.v.s. .X; �/.

Theorem 2.2.2. Let .X; �/ be a topological linear space and let C � X be a
convex cone. Then the following statements are equivalent:

(i) C is normal,
(ii) 8 V 2 NX; 9 U 2 NX W ŒU �C � V ,

(iii) for all nets .xi /i2I ; .yi /i2I � X such that 0 �C xi �C yi for every i 2 I one
has .yi / ! 0 ) .xi / ! 0,

(iv) cl C is normal.

Proof. See [214, Theorem 2.1.22]. ut
The following corollary is immediate.
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Corollary 2.2.3. Let .X; �/ be a Hausdorff t.v.s. and let C � X be a convex cone.
If C is normal, then cl C is pointed, and so C is pointed, too.

Let .X; �/ be a Hausdorff t.v.s. partially ordered by the convex cone C . We say
that a net .xi /i2I � X is nonincreasing if

8 i; j 2 I W j � i ) xj �C xi : (2.10)

Given ; ¤ A � X , we say that A is lower bounded with respect to C if A

is lower bounded with respect to RC (see Definition 2.1.6). Similarly, a 2 X is a
lower bound (infimum) of A w.r.t. C if a is so for RC . Hence a 2 X is a lower
bound of A w.r.t. C if a �C x for every x 2 A. An element a is the infimum of A

w.r.t. C if a is a lower bound and for any lower bound a0 of A we have that a0 �C a.
The infimum of A w.r.t. C will be denoted by infC A when it exists.

Proposition 2.2.4. Let .X; �/ be a Hausdorff t.v.s. partially ordered by the closed
convex cone C . If the net .xi /i2I � X is nonincreasing and convergent to x 2 X ,
then fxi j i 2 I g is bounded below and x D inffxi j i 2 I g.

Proof. See [214, Proposition 2.1.24]. ut
We emphasize that in ordered topological linear spaces, the classical result

concerning the bounded monotone sequences is not generally true. We consider
the linear space `1 of all bounded sequences x D .xk/k�1 � R endowed with the
norm kxk D supfjxkj j k D 1; 2; : : :g. In `1 we consider the “usual” partial order
generated by the cone `1C WD fx 2 l1 j xk � 0 8 k � 1g; `1C is a pointed closed
convex cone (even reproducing and with nonempty interior).

Example 2.2.5 (Peressini [475, p. 91]). The sequence fxng � `1, defined by (for
n fixed)

xk
n D

� �1 if 1 � k � n;

0 if k > n;

is nonincreasing w.r.t. C , and inffxn j n � 1g D e0 WD �e where e D .1; 1; 1; : : :/ 2
`1. But kxn � e0k D 1 for every n � 1. Consequently, fxngn�1 does not converge
to its infimum.

We also recall that a cone C that partially orders a Hausdorff linear topological
space .X; �/ is said to be Daniell if any nonincreasing net having a lower bound
�-converges to its infimum (see Jahn [292, p.29], Luc [402, p. 47], Borwein [67]).

In the following, let us recall some useful notions of cones which play an
important role in proving existence results for solutions of optimization problems
in infinite dimensional spaces.

Definition 2.2.6. Let Y be a Hausdorff topological vector space and C � Y a
proper convex cone.
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Fig. 2.1 Cone properties
C well-based

C=cl C; Y=R
n

⇐= C pointed

Y normed

C nuclear =⇒ C normal

C complete

C Daniell ⇐= C compact base.

(i) C is based if there exists a nonempty convex subset B of C such that C D
RCB (where RCB WD f�b j b 2 B and � � 0g) and 0 … cl B; the set B is
called a base for C .

(ii) C is called well-based if C has a bounded base.
(iii) Let the topology of Y be defined by a family P of seminorms. C is called

supernormal or nuclear if for each p 2 P there exists y� 2 Y �, such that
p.y/ � hy; y�i for all y 2 C ; it holds y� 2 C C in this case.

(iv) C is said to be Daniell if any nonincreasing net having a lower bound
converges to its infimum.

(iv) C is said to be regular if any decreasing (increasing) net which has a lower
bound (upper bound) is convergent.

In Fig. 2.1 we give an overview of such additional cone properties and corre-
sponding relations for the case that Y is a Banach space, C a proper and convex
cone in Y .

The following result gives useful information for cones with bases:

Theorem 2.2.7. Let X be a Hausdorff locally convex space and C � X a proper
convex cone. Then C has a base if and only if C # ¤ ;.

Proof. See [214, Theorem 2.2.12]. ut
In the following, we collect a few examples of Daniell cones.

Example 2.2.8. 1. We recall that if .x˛/˛2A is a net which is increasing (decreasing)
in a topological vector space .Y; �/ ordered by a closed convex cone C and if x is
a cluster point of .x˛/, then x D sup˛2A x˛ (x D inf˛2A x˛) (see Peressini [475,
Proposition 3.1]). Therefore, any regular cone is Daniell.

2. If .Y; jj � jj/ is a Banach lattice, that is, Y is a Banach space, vector lattice and the
norm is absolute, i.e., jjxjj D jj jxj jj for any x 2 Y , then the cone YC D fy 2
Y j y � 0g is Daniell if Y has weakly compact intervals.

3. A convex cone with a weakly compact base is a Daniell cone.

The following result connects some useful cones.

Proposition 2.2.9 (Isac [280]). Let .Y; P/ be a Hausdorff locally convex space
and C � Y a proper convex cone. Then

C well-based H) C nuclear H) C normal:
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If Y is a normed space, then

C nuclear H) C well-based:

Remark 2.2.10. Among the classical Banach spaces their usual positive cones
are well-based only in l1 and L1.˝/ (but l1 is not an Asplund space (see
Definition 3.5.3)).

Let Y be a topological vector space over R. Assume .Y; C / is simultaneously a
vector lattice with the lattice operations x 7! xC, x 7! x�, x 7! jxj, .x; y/ 7!
supfx; yg and .x; y/ 7! inffx; yg.

Definition 2.2.11. A set A � Y is called solid, if x 2 A and jyj � jxj implies
y 2 A. The space Y is called locally solid, if it possesses a neighborhood of 0

consisting of solid sets.

Lemma 2.2.12. The following properties are equivalent:

(i) Y is locally solid.
(ii) C is normal, and the lattice operations are continuous.

In order to derive optimality conditions or duality statements in general spaces
(cf. Chaps. 8, 12), the ordering cone is often required to have a nonempty interior.
Therefore, in the following, we give some examples of convex cones with nonempty
interior.

Example 2.2.13. 1. Any closed convex cone C in the Euclidean space .Rn; h�; �i/
such that C is self-adjoint (i.e., C D C C) has a nonempty interior.

2. Consider the space of continuous functions C Œa; b� with the norm jjxjj D
supfjx.t/j j t 2 Œa; b�g. Then the cone of positive functions in C Œa; b�

C Œa; b�C WD fx 2 C Œa; b� j 8t 2 Œa; b� W x.t/ � 0g

has a nonempty interior.
3. Let Y D l2.N�;R/ with the well-known structure of a Hilbert space. The convex

cone

Cl2 WD fx D fxi gi�1 j x1 � 0 and
1X

iD2

x2
i � x2

1g

has a nonempty interior

int Cl2 WD fx D fxi gi�1 j x1 > 0 and
1X

iD2

x2
i < x2

1g:

4. Let l1 be the space of bounded sequences of real numbers, equipped with the
norm jjxjj D supn2Nfjxnjg. The cone
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l1C WD fx D fxngn2N j xn � 0 for any n 2 Ng

has a nonempty interior (cf. Peressini [475], p. 186).
5. Let C 1Œa; b� be the real vector space formed by all real continuously

differentiable functions defined on Œa; b� (a; b 2 R; a < b), equipped with
the norm

jjf jj1 WD f
Z b

a

.f .t//2 d t C
Z b

a

.f 0.t//2 d tg1=2

for any f 2 C 1Œa; b�. Using a Sobolev’s imbedding theorem, we can show that
the natural ordering cone

C 1Œa; b�C WD ff 2 C 1Œa; b� j f � 0g
has a nonempty interior. The proof is based on some technical details (cf. da
Silva [532]).

6. About the locally convex spaces, we put in evidence the following result. If .Y; �/

is a real locally convex space, then for every closed convex pointed cone C � Y ,
with nonempty interior, there exists a continuous norm jj � jj on Y such that C

has a nonempty interior in the normed space .Y; jj � jj/.
Proof. Take y0 2 int C and A WD .y0 �C /\.C �y0/. Then A is a closed convex
and balanced set with 0 2 int A such that the Minkowski functional pA W Y ! R

defined by

pA.y/ WD infft > 0 j y 2 tAg
is a seminorm. Because int A D core A D fy 2 Y j pA.y/ < 1g � A D fy 2
Y j pA.y/ � 1g (see Proposition 6.2.1), pA is also continuous. Take y 2 Y with
pA.y/ D 0. Then y 2 n�1A for every n � 1, whence n�1y0 ˙ y 2 C for such
n. It follows that ˙y 2 cl C D C , and so y D 0: Hence k�k WD pA is a norm
and A D B.Y;k�k/, and so y0 2 intk�k C: ut
Finally, we give an example of a normed (vector) space (n.v.s.) where the natural

ordering cone has a nonempty interior as well as the Daniell property.

Example 2.2.14 (see Jahn [293]). Consider the real linear space L1.˝/ of all
(equivalence classes of) essentially bounded functions f W ˝ ! R (; ¤ ˝ � R

n)
measurable with the norm jj � jjL1.˝/ given by

jjf jjL1.˝/ WD ess supx2˝fjf .x/jg for all f 2 L1.˝/:

The ordering cone

L1.˝/C WD ff 2 L1.˝/ j f .x/ � 0 almost everywhere on ˝g

has a nonempty interior and is weak� Daniell.
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2.3 Convexity Notions for Sets and Set-Valued Maps

Throughout this section X; Y are real topological vector spaces.

Definition 2.3.1. Let A 	 X be a nonempty set. We say that A is ˛-convex, where
˛ 2 �0; 1Œ, if ˛x C .1 � ˛/y 2 A for all x; y 2 A. The set A is mid-convex if A is
1
2
-convex. The set A is nearly convex if A is ˛-convex for some ˛ 2 �0; 1Œ. The set

A is closely convex if cl A is convex. The empty set is ˛-convex for all ˛ 2 �0; 1Œ and
closely convex (and so nearly convex).

Of course, A is convex if and only if A is ˛-convex for every ˛ 2 �0; 1Œ. Moreover,
if T W X ! Y is a linear operator and A 	 X , B 	 Y are ˛-convex (nearly convex,
convex), then T .A/ and T �1.B/ are ˛-convex (nearly convex, convex), too.

Some properties of nearly convex sets are mentioned in the next result (see [214,
Proposition 2.4.3, Corollary 2.4.4]).

Proposition 2.3.2. Let A 	 X be a nonempty nearly convex set. Then

(i) cl A is convex.
(ii) If x 2 icr A and y 2 A, then Œx; y� 	 A. Moreover, if x 2 int A and y 2 A,

then Œx; yŒ 	 int A.
(iii) If int A ¤ ;, then int A is convex and icr A D int A.
(iv) If A is open or closed, then A is convex.

Definition 2.3.3. Let C 	 Y be a convex cone. We say that A 	 Y is C -˛-convex
if ACC is ˛-convex; A is nearly C -convex if ACC is nearly convex; A is closely
C -convex if A C C is closely convex. Moreover, A is closely c-C -convex (nearly
C -subconvexlike in [601]) if cl .P.A C C // is convex; A is ic-C -convex (see [517])
if int .P.A C C // is convex and P.A C C / 	 cl .int .P.A C C ///.

The next result, stated essentially in [79, Lemma 2.5], proves to be useful in the
following sections.

Lemma 2.3.4. Assume that C 	 Y is a convex cone with int C ¤ ; and let A 	 Y .
Then

cl.A C C / D cl.cl A C C / D cl .A C int C / ; (2.11)

A C int C D cl A C int C D int.A C C / D int.cl A C C / D int.cl.A C C //:

(2.12)

Therefore, cl.A C C / is convex iff A C int C is convex.

Proof. The equalities in (2.11) follow immediately from the known relation

cl.A C B/ D cl.cl A C B/ D cl.cl A C cl B/; (2.13)

valid for all subsets A; B 	 Y , and the fact that cl C D cl.int C /:
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Note that A C int C is open being the union [a2A.a C int C / of open sets. The
inclusions A C int C 	 cl A C int C and int.A C C / 	 int.cl.A C C // are obvious.
Take y 2 cl A and k 2 int C . Since k � int C 2 NY .0/, we have that A \ .y C k �
int C / ¤ ;, whence y C k 2 A C int C ; hence cl A C int C 	 A C int C , and so
the first equality in (2.12) is true.

The inclusion A C int C 	 int.A C C / is obvious because A C int C is open.
Fix k0 2 int C and take y 2 int.A C C /. Then there exists ˛ > 0 such that
y � ˛k0 2 A C C , whence y 2 A C C C int C D A C int C . It follows that
int.A C C / 	 A C int C , and so the second equality in (2.12) is true. The third
equality in (2.12) follows immediately from the first two equalities.

Clearly, cl.A C C / D cl.A C C / C C ; using the first three equalities in (2.12)
we get

int.cl.A C C // D int.cl.A C C / C C / D cl.A C C / C int C

D .A C C / C int C D A C int C:

If cl.A C C / is convex then A C int C D int.cl.A C C // is convex. Conversely,
if A C int C is convex, then cl.A C C / D cl .A C int C / is convex. The proof is
complete. ut

It is worth observing that

P.A C C / D PA C C; P.A C int C / D PA C int C: (2.14)

Moreover, if int C ¤ ;, using (2.14) and (2.12) we get

int.P.A C C // D PA C int C D int.cl.P.A C C ///: (2.15)

In the next result we establish some relationships between the C -convexity
notions above.

Proposition 2.3.5. Let A 	 Y . The following assertions hold:

(i) Let ˛ 2 �0; 1Œ. Then A is C -˛-convex iff ˛A C .1 � ˛/A 	 A C C:

(ii) A is closely C -convex iff �A C .1 � �/A 	 cl.A C C / for all � 2 �0; 1Œ:

(iii) A is closely C -convex and int C ¤ ; iff

9k 2 int C; 8˛ > 0; 8� 2 �0; 1Œ W ˛k C �A C .1 � �/A 	 A C C: (2.16)

(iv) If A is nearly C -convex then A is closely C -convex.
(v) If A is closely C -convex then A is closely c-C -convex.

(vi) A is ic-C -convex iff A is closely c-C -convex and

int .cl .P.A C C /// D int .P.A C C // ¤ ;: (2.17)

(vii) Assume that int C ¤ ;. Then A is ic-C -convex iff A is closely c-C -convex.
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Proof. All the assertions a clearly true if A is empty. Therefore, we assume that
A ¤ ;:

(i) The assertion is (almost) evident.
(ii) Assume that A is closely C -convex and take � 2 �0; 1Œ. Since cl.A C C / is

convex we get

�A C .1 � �/A 	 � cl.A C C / C .1 � �/ cl.A C C / D cl.A C C /:

Conversely, assume that �AC .1��/A 	 cl.ACC / for all � 2 �0; 1Œ. Taking
� 2 �0; 1Œ, we have that �.A C C / C .1 � �/.A C C / 	 cl.A C C / C C D
cl.ACC /. Using (2.13) we get � cl.ACC /C.1��/ cl.ACC / 	 cl.ACC /,
and so cl.A C C / is convex.

(iii) Assume that (2.16) holds; then clearly int C ¤ ;. Take y1; y2 2 A and � 2
�0; 1Œ. Then n�1k C �y1 C .1 � �/y2 2 A C C for every n 2 N

�; taking the
limit we get �y1 C .1 � �/y2 2 cl.A C C /, and so A is closely C -convex.

Assume now that A is closely C -convex and int C ¤ ;. Consider k 2
int C . Take ˛ > 0, y1; y2 2 A and � 2 �0; 1Œ. Then �y1 C .1 � �/y2 2
cl.A C C /. Then using (2.12),

˛k C �y1 C .1 � �/y2 2 cl.A C C /

C int C D .A C C / C int C D A C int C 	 A C C:

(iv) Assume that A is nearly C -convex. Then, using (i), A C C is nearly convex.
Then, by Proposition 2.3.2 (i) we obtain that cl.A C C / is convex, that is A is
closely C -convex.

(v) Clearly, cl .P.A C C // D cl .P.cl.A C C /// : Since cl.A C C / is convex,
from the preceding relation we obtain that cl .P.A C C // is convex, that is A

is c-C -convex.
(vi) Assume that A is ic-C -convex. From the definition of the ic-C -convexity we

have that B WD int .P.A C C // is nonempty and convex, and P.A C C / 	
cl B . It follows that int.cl B/ D B 	 P.A C C / and cl.P.A C C // 

cl B , and so cl.P.A C C // D cl B is convex. Therefore, A is closely c-
C -convex. Moreover, since B is open, convex and nonempty, we have that
int .cl.P.A C C /// D int.cl B/ D B . Therefore, (2.17) holds.

Assume now that A is closely c-C -convex and (2.17) holds. Then C WD
cl.P.A C C // is convex int C D int .P.A C C // DW B ¤ ;. Then clearly B

is convex and cl B D cl .int C / D C 
 P.A C C /. Hence A is ic-C -convex.
(vii) Let int C ¤ ;. Then (2.15) holds and int .P.A C C // ¤ ;. The conclusion

follows using (vi). The proof is complete. ut
Note that Proposition 2.3.5 (vii) is stated in [601, Theorem 3.1], while the fact

that A is closely c-C -convex if A is ic-C -convex in Proposition 2.3.5 (vi) is proved
in [601, Theorem 3.2]
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Let F W X � Y . We say that F is ˛-convex (mid-convex, nearly convex,
convex) if graph F is ˛-convex (mid-convex, nearly convex, convex). It is obvious
that if F is ˛-convex (mid-convex, nearly convex, convex), so are dom F; Im F , and
F.x/ for every x 2 X . It is easy to see that F is ˛-convex if and only if

8 x; x0 2 dom F W ˛F.x/ C .1 � ˛/F.x0/ 	 F
�
˛x C .1 � ˛/x0� I

in the relation above x; x0 2 dom F can be replaced by x; x0 2 X:

To F W X � Y we associate the set-valued maps cl F , conv F , convF W X � Y

defined by

.cl F /.x/ WD clŒF .x/�; .conv F /.x/ WD convŒF .x/�;

.convF /.x/ WD convŒF .x/� .x 2 X/:

It is almost obvious that cl F , conv F and convF are ˛-convex (mid-convex, nearly
convex, convex) if F is ˛-convex (mid-convex, nearly convex, convex).

To F W X � Y and y� 2 Y �, where Y � is the topological dual of Y , we also
associate

�y� WD �F
y� W X ! R; �y� .x/ WD inf fhy; y�i j y 2 F.x/g .x 2 X/;

(2.18)

where, as usual, inf ; WD C1; then dom �y� D dom F for every y� 2 Y � and
�0 D �dom F . Clearly, �F

y� D �cl F
y� D �conv F

y� D �convF
y� for every y� 2 Y �. The

function �y� (but with sup instead of inf) was introduced in [138], and used (for
example) in [422, 423, 518], too.

Proposition 2.3.6. Let F W X � Y .

(i) If F is convex then �y� is convex for every y� 2 Y �:

(ii) Assume that Y is a locally convex space. If �y� is convex for every y� 2 Y �
then convF is convex.

Proof. (i) Consider x; x0 2 dom �y� and ˛ 2 �0; 1Œ. Take �; � 0 2 R such that
�y� .x/ < �; �y� .x0/ < � 0. Then there exist y 2 F.x/, y0 2 F.x0/ such that
hy; y�i < � , hy0; y�i < � 0. Then ˛y C.1�˛/y0 2 F .˛x C .1 � ˛/x0/, and so

�y�

�
˛x C .1 � ˛/x0� � ˝

˛y C .1 � ˛/y0; y�˛ D ˛ hy; y�i C .1 � ˛/
˝
y0; y�˛

< ˛� C .1 � ˛/� 0:

Letting � ! �y�.x/; � 0 ! �y� .x0/ we get �y� .˛x C .1 � ˛/x0/ �
˛�y� .x/ C .1 � ˛/�y� .x0/. Hence �y� is convex.

(ii) Since �F
y� D �convF

y� for every y� 2 Y �, we may (and do) assume that F D
convF . We have that dom F D dom �0 is convex, �0 D �dom F being convex.
Assume that F is not convex. Then there exist x; x0 2 dom F; y 2 F.x/, y0 2
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F.x0/ and ˛ 2 �0; 1Œ such that z WD ˛y C .1 � ˛/y0 … F .˛x C .1 � ˛/x0/ DW
A. Since A is a nonempty closed convex set, there exists y� 2 Y � such that
hz; y�i < inf fhv; y�i j v 2 Ag D �y� .˛x C .1 � ˛/x0/. Since

˛�y� .x/ C .1 � ˛/�y� .x0/ � ˛ hy; y�i C .1 � ˛/
˝
y0; y�˛ D hz; y�i

< �y�

�
˛x C .1 � ˛/x0� ;

we get the contradiction that �y� is not convex. Hence F is convex. ut
Let C 	 Y be a convex cone. We say that F is C -˛-convex (C -mid-convex,

C -nearly convex, C -convex) if the set-valued map

FC W X � Y; FC .x/ WD F.x/ C C;

is ˛-convex (mid-convex, nearly convex, convex). Of course, F is C -˛-convex if
and only if

8 x; x0 2 dom F W ˛F.x/ C .1 � ˛/F.x0/ 	 F
�
˛x C .1 � ˛/x0�C C:

Note that sometimes graph FC is denoted by epiC F , or simply epi F , and is
called the epigraph of F .

Corollary 2.3.7. Let F W X � Y and C � Y be a convex cone.

(i) If F is C -convex then �y� is convex for every y� 2 C C:

(ii) Assume that Y is a locally convex space and �y� is convex for every y� 2 C C.
Then convFC is convex; in particular, if F.x/ C C is closed and convex for
every x 2 X , then F is C -convex.

Proof. Of course, F is C -convex if and only if FC is convex. Let us set Q�y� WD
�convF

y� . Note that Q�y� D �F
y� D �y� for y� 2 C C, while for y� 2 Y � n C C,

Q�y�.x/ D C1 for x 2 dom F and Q�y� .x/ D �1 for x 62 dom F . Hence Q�y� is
convex for every y� 2 Y � if and only if �y� is convex for every y� 2 C C. The
conclusion follows applying Proposition 2.3.6 to FC : ut

Of course, Proposition 2.3.6 can be obtained from Corollary 2.3.7 taking
C D f0g. Corollary 2.3.7 can be found, essentially, in [138, Proposition 1.6]
and [518, Lemma 3].

The sublevel set of F of height y (w.r.t. C ) is the set

levF .y/ WD fx 2 X j F.x/ \ .y � C / ¤ ;gI

when int C ¤ ; we also consider the strict sublevel set of F of height y (w.r.t. C )
defined by

lev<
F .y/ WD fx 2 X j F.x/ \ .y � int C / ¤ ;g:
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In this way we get the sublevel and strict sublevel set-valued maps levF ; lev<
F W

Y � X .
We say that F is C -˛-quasiconvex (C -mid-quasiconvex, C -nearly quasi-

convex, C -quasiconvex) if for every z 2 Y the sublevel set levF .z/ is ˛-convex
(mid-convex, nearly convex, convex). An equivalent definition of C -˛-quasi-
convexity is that

8 x; x0 2 dom F W .F.x/ C C / \ .F.x0/ C C / 	 F
�
˛x C .1 � ˛/x0�C C:

Notice that F is C -˛-quasiconvex whenever

8x; x0 2 dom F W F.x/ 	 F
�
˛x C .1 � ˛/x0�C C or

F.x0/ 	 F
�
˛x C .1 � ˛/x0�C C:

Note also that F is C -˛-quasiconvex (C -mid-quasiconvex, C -nearly quasiconvex,
C -quasiconvex) whenever F is C -˛-convex (C -mid-convex, C -nearly convex, C -
convex).

The set-valued map F is C -convexlike if

8x1; x2 2 X; 8y1 2 F.x1/; 8y2 2 F.x2/; 8� 2 �0; 1Œ;

9x3 2 X W �y1 C .1 � �/y2 2 F.x3/ C C;

or, equivalently, F.X/ C C is convex, that is F.X/ is C -convex. Of course, if F is
C -convex then F is C -convexlike.

Li and Chen [387] (see also [602]) say that F is C -subconvexlike if

9k 2 int C; 8˛ > 0; 8x; x0 2 X; 8� 2 �0; 1Œ W ˛kC�F.x/C.1��/F.x0/ 	 F.X/CC:

Using Proposition 2.3.5 (iii), F is C -subconvexlike iff int C ¤ ; and F.X/ is
closely C -convex.

We say that f W X ! Y � is C -˛-convex (C -mid-convex, C -nearly convex,
C -convex, C -˛-quasiconvex, C -mid-quasiconvex, C -nearly quasiconvex, C -
quasiconvex) if the set-valued map Ff;C is C -˛-convex (C -mid-convex, C -nearly
convex, C -convex, C -˛-quasiconvex, C -mid-quasiconvex, C -nearly quasiconvex,
C -quasiconvex); in particular, f is C -convex if and only if

8 x; x0 2 X; 8 ˛ 2 Œ0; 1� W f
�
˛x C .1 � ˛/x0� �C f̨ .x/ C .1 � ˛/f .x0/:

If f is C -˛-convex (C -mid-convex, C -nearly convex, C -convex), then dom f

is so, and f is C -˛-quasiconvex (C -mid-quasiconvex, C -nearly quasiconvex,
C -quasiconvex).
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2.4 Solution Concepts in Vector Optimization

In this section, we first recall concepts of Pareto minimal points, weakly and
properly minimal points, then we introduce the concept of Q-minimal points and
establish relations among them.

Unless otherwise mentioned, in the following we consider a linear topological
space Y , partially ordered by a proper pointed convex closed cone C and a
nonempty set A � Y .

We introduce the following sets of Pareto minimal points (Pareto maximal points,
respectively) of A with respect to C :

Definition 2.4.1 (Pareto Minimal (Maximal) Points). Consider

Min.A; C / WD fy 2 A j A \ .y � C / D fygg: (2.19)

An element y 2 Min.A; C / is called a Pareto minimal point of A with respect
to C .

Furthermore, consider

Max.A; C / WD fy 2 A j A \ .y C C / D fygg: (2.20)

An element y 2 Max.A; C / is called a Pareto maximal point of A with respect
to C .

Moreover, in order to describe weak minimality we will study the following
solution concept in Y . Many solution procedures for vector optimization problems
generate weakly minimal elements.

Definition 2.4.2 (Weakly Minimal (Maximal) Points). Suppose that int C ¤ ;.
Consider

WMin.A; C / WD fy 2 A j A \ .y � int C / D ;g: (2.21)

An element y 2 WMin.A; C / is called a weakly minimal point of A with respect
to C . Furthermore, consider

WMax.A; C / WD fy 2 A j A \ .y C int C / D ;g: (2.22)

An element y 2 WMax.A; C / is called a weakly maximal point of A with respect
to C .

Moreover, we introduce the concept of strongly minimal points:

Definition 2.4.3. Consider

StrMin.A; C / WD fy 2 A j A 	 y C C g: (2.23)
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An element y 2 StrMin.A; C / is called a strong minimal point of A with respect
to C .

In the following, we introduce different concepts of properly minimal points.
Properly minimal points are important in the proofs of many theoretical asser-
tions because corresponding scalarizing functionals (see Sect. 5.1) are strictly
C -monotone. The first concept for proper minimality in the following definition (cf.
Ha [228]) is based on scalarization by means of (strictly C -monotone) functionals
y� 2 C #.

Definition 2.4.4 (Properly Minimal Points).

(a) Suppose that C # ¤ ; and consider

S-PMin.A; C / WD fy 2 A j 9y� 2 C #; 8y 2 A W y�.y/ � y�.y/g:
(2.24)

An element y 2 S-PMin.A; C / is called a S-properly minimal point of A

w.r.t. C .
(b) Let

Hu-PMin.A; C / WD fy 2 A j .cl conv coneŒ.A � y/ [ C �/ \ .�C / D f0gg:

An element y 2 Hu-PMin.A; C / is called a Hurwicz properly minimal point
of A w.r.t. C .

(c) Assume that Y is a n.v.s.; y is a Hartley properly minimal point of A w.r.t.
C (y 2 Ha-PMin.A; C /) if y 2 Min.A; C / and there exists a constant M > 0

such that, whenever there is � 2 C C with �.y � y/ > 0 for some y 2 A, one
can find 	 2 C C with

�.y � y/=k�k � �M.	.y � y/=k	k/:

(d) Consider

Be-PMin.A; C / WD fy 2 A j cl coneŒ.A � y/ C C � \ .�C / D f0gg:

y 2 Be-PMin.A; C / is called a Benson properly minimal point of A w.r.t. C .
(e) Consider

Bo-PMin.A; C / WD fy 2 A j cl cone.A � y/ \ .�C / D f0gg:

y 2 Bo-PMin.A; C / is called a Borwein properly minimal point of A w.r.t. C .



30 2 Order Relations and Ordering Cones

(f) Consider

GHe-PMin.A; C / WD fy 2 A j 9 proper convex pointed cone D with C n
f0g � int D such that .A � y/ \ .�intD/ D ;g.
y 2 GHe-PMin.A; C / is called a Henig global properly minimal point of A

w.r.t. C .
(g) Suppose that Y is a n.v.s., C has a base 
 and consider

He-PMin.A; C / WD fy 2 A j 9 " > 0 such that cl cone.A � y/ \ .�
 C
"BY / D ;g:

y 2 He-PMin.A; C / is called a Henig properly minimal point of A w.r.t. to C .
(h) Assume that Y is a n.v.s. Consider

Sup-PMin.A; C / WD fy 2 A j 9 � > 0 such that cl cone.A � y/ \ .BY � C / 	
�BY g:

y 2 Sup-PMin.A; C / is called a super efficient point of A w.r.t. C .

For the notions of minimal points in Definition 2.4.4, we refer to [292, 293, 402]
and [228]. The concepts of Henig proper minimality and Henig global proper
minimality have been presented in [242]. The above definition of Henig properly
minimal points can be found in [71, 627]; see also [228, 242, 618, 619]. For an
equivalent definition of Henig properly minimal points by means of a functional
from C # the reader is referred to [619]. We note that positive proper minimality
has been introduced by Hurwicz [11], and super efficiency has been introduced by
Borwein and Zhuang [71]. We refer the reader to [219] for a survey and materials
on proper efficiency.

In the sequel, when speaking of weakly minimal points (resp. S-properly minimal
points) we mean that int C (resp. C #) is nonempty, when speaking of Henig minimal
points we mean that C has a base 
 and when speaking that C has a bounded base
we mean that 
 is bounded.

Let B � Y be a convex set such that 0 … cl B (that is B is a base for cone B);
we set

N B
Y WD N B WD fV 2 NY j V convex, V \ B D ;g I (2.25)

clearly, N B
Y ¤ ;. For V 2 N B we set

P B
V WD cone.B C V /I

then P B
V is a proper convex cone with int P B

V D P.B C int V / ¤ ;:
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Similar to the case of normed vector spaces, if 
 is a base of C , we set

He-PMin.A; 
/ WD fy 2 A j 9V 2 N 

Y W Œcl cone.A � y/� \ .V � 
/ D ;g:

Observe that

He-PMin.A; 
/ D fy 2 A j 9V 2 N 

Y W .A � y/ \ ��P 


V

� D f0gg (2.26)

D fy 2 A j 9V 2 N 

Y W .A � y/ \ �� int P 


V

� D ;g: (2.27)

Indeed, Œcl cone.A � y/� \ .V � 
/ D ; ) .A � y/ \ cone.V � 
/ D f0g and
.A � y/ \ cone.V � 
/ D f0g ) Œcl cone.A � y/� \ .int V � 
/ D ;:

Moreover, the super efficiency in the case in which Y is a locally convex space
is defined by

Sup-PMin.A; C / WD fy 2 A j 8V 2 NY ; 9U 2 NY W cl cone.A � y/ \
.U � C / 	 V g:

The following two Propositions 2.4.5 and 2.4.6 are shown under weaker assump-
tions concerning the cone C � Y (Y a linear topological space), namely that C is a
proper convex cone, for the corresponding solution concepts.

Proposition 2.4.5. Let A � Y be nonempty. Then

(i) StrMin.A; C / 	 T˚
arg minA y� j y� 2 C C n 0

�
, with equality if Y is a l.c.s.

and C is closed.
(ii) S-PMin.A; C / D S˚

arg minA y� j y� 2 C #
� D S-PMin.A C C; C /:

(iii) If int C ¤ ;, then Min.A; C / 	 WMin.A; C / and

WMin.A; C / D A \ WMin.A C C; C / D A \ bd.A C C / (2.28)


 S˚
arg minA y� j y� 2 C C n f0g� ; (2.29)

with equality if A is closely C -convex.
(iv) We have that GHe-PMin.A; C / 	 Min.A; C / and

GHe-PMin.A; C / D S fWMin.A; D/ j D 2 DC g
D GHe-PMin.A C C; C / 
 S-PMin.A; C / (2.30)

with equality if A is closely C -convex, where

DC WD fD � Y j D proper pointed convex cone with C n f0g � int Dg:
(2.31)

(v) Assume that 
 is a base of C . Then

He-PMin.A; 
/ D S fWMin.A; D/ j D 2 D
g D He-PMin.A C C; 
/

(2.32)
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 S farg minA y� j y� 2 Y �; inf y�.
/ > 0g ; (2.33)

with equality if A is closely C -convex, where

D
 WD fP 

V j V 2 N 


Y g: (2.34)

(vi) If 
 is a base of C then D
 	 DC ; consequently, He-PMin.A; 
/ 	
GHe-PMin.A; C /:

Proof. (i) Let y 2 StrMin.A; C /, that is y 2 A 	 y C C . Then clearly
StrMin.A; C / D fyg and the inclusion holds. Assume that Y is a l.c.s. and
C is closed, and take y 2 T˚

arg minA y� j y� 2 C C�. Then y 2 A and
hy � y; y�i � 0 for all y 2 A and y� 2 C C. By the bipolar theorem we get
y � y 2 C CC D cl C D C , whence A 	 y C C:

(ii) The first equality is given by the definition of S-PMin.A; C /. The inclusion
S-PMin.A; C / 	 S-PMin.A C C; C / is obvious. If y 2 S-PMin.A C C; C /,
then y D a C c for some a 2 A, c 2 C , and there exists y� 2 C # such that
ha C c; y�i � hy; y�i for all y 2 A C C . In particular ha C c; y�i � ha; y�i ;

whence hc; y�i � 0. It follows that c D 0, and so y D a 2 A. Consequently,
y 2 S-PMin.A; C /:

(iii) Assume that int C ¤ ;. Taking into account that int C 	 C nf0g, the inclusion
Min.A; C / 	 WMin.A; C / follows.
For y 2 Y , using Lemma 2.3.4, we have

.A�y/\.� int C / D ; , y … ACint C , y … ACC Cint C , y … int.ACC /:

It follows that

y 2 WMin.A; C / , Œy 2 A; .A C C � y/ \ .� int C / D ;�

, y 2 A \ WMin.A; C /

, Œy 2 A; y … int.A C C /� , y 2 A \ bd.A C C /:

Hence the equalities in (2.28) hold.
Take y 2 arg minA y� for some y� 2 C C n f0g. Because int C 	

fy 2 Y j hy; y�i > 0g, we obtain that .A � y/ \ .� int C / D ;; and so
y 2 WMin.A; C /. Hence the inclusion in (2.28) holds.

Assume now that A is closely C -convex and y 2 WMin.A; C / Œ	
WMin.A C C; C /�: Then .A C C / \ .y � int C / D ;; it follows that
cl.A C C / \ .y � int C / D ;: Because cl.A C C / is convex, by a separation
theorem (see [293, Theorem 3.16]) there exists y� 2 Y � n f0g such that
hy C v; y�i � hy � v0; y�i for all y 2 A and v; v0 2 C . It follows that
y� 2 C C and hy � y; y�i � 0 for every y 2 A, and so y� 2 C C n f0g
and y 2 arg minA y�:
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(iv) The first equality in (2.30) is just the definition of GHe-PMin.A; C /:

Take y 2 GHe-PMin.A; C /; then y 2 WMin.A; D/ for some D 2 DC , and
so .A � y/ \ .� int D/ D ;. Because C C int D D int D (for every D 2 DC ),
we clearly have that GHe-PMin.A; C / 	 GHe-PMin.A C C; C /:

Take y 2 GHe-PMin.A C C; C /; then y D y C v for some y 2 A, v 2 C .
Assuming that v ¤ 0, we get the contradiction v 2 .C n f0g/ \ .A C C � y/ 	
.� int D/ \ .A C C � y/ D ;. Hence y D y 2 A:

Take y 2 S-PMin.A; C /. Then there exists y� 2 C # with 0 �
hy � y; y�i � hy C v � y; y�i for all y 2 A, v 2 C: Take D WD
f0g [ fy 2 Y j hy; y�i > 0g. Then D is a pointed convex cone with
int D D fy 2 Y j hy; y�i > 0g. It follows that .A C C � y/ \ .� int D/ D ;,
and so y 2 GHe-PMin.A; C /. Hence S-PMin.A; C / 	 GHe-PMin.A; C /:

Assume that A is closely C -convex and take y 2 GHe-PMin.A; C /. Then
there exists D 2 DC such that .A � y/ \ .� int D/ D ;. It follows that
y 2 A \ WMin.A; D/. Since A is closely C -convex and C 	 D, A is closely
D-convex. From (iii) we get y� 2 DCnf0g such that y 2 arg minA y�. Because
DC n f0g 	 C #, we obtain that y 2 S-PMin.A; C /:

(v) The first equality in (2.32) is given in (2.27). For the equality He-PMin.A; 
/ D
He-PMin.ACC; 
/ use a similar argument to that used in (iv) (possibly taking
into account that D
 	 DC ).

Take y 2 arg minA y� for some y� 2 Y � with 2� WD inf y�.
/ > 0 and
set V WD fy 2 Y j jhy; y�ij < �g 2 N 


Y . Clearly, D WD P 

V 2 D
 .

Because y� 2 DC n f0g, from (iii) we get y 2 WMin.A; D/, and so y 2
He-PMin.A; 
/. Hence the inclusion in (2.33) holds.

The proof of the equality in (2.33) for A closely C -convex is similar to the
proof of the corresponding equality in (2.30).

(vi) The arguments used at the beginning of the proof of (v) show that D
 	 DC :

ut
Proposition 2.4.6. Let A � Y be nonempty.

(i) One has

S-PMin.A; C / 	 Hu-PMin.A C C; C / 	 Hu-PMin.A; C / 	 Be-PMin.A; C /

D Be-PMin.A C C; C / (2.35)

with Hu-PMin.A; C / D Be-PMin.A; C / if A is closely C -convex, and

Be-PMin.A; C / D Bo-PMin.A C C; C / 	 Bo-PMin.A; C / 	 Min.A; C /;

(2.36)

GHe-PMin.A; C / 	 Be-PMin.A; C /: (2.37)

Moreover, if Y has the property that for any closed convex cone K 	 Y there
exists y� 2 Y � such that hy; y�i > 0 for every y 2 Kn.�K/ (for example if Y

is a separable normed vector space) then S-PMin.A; C / D Hu-PMin.A; C /:
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(ii) Assume that 
 is a base of C and Y is a locally convex space. Then
Sup-PMin.A; C / 	 He-PMin.A; 
/. Moreover, if 
 is bounded, then
Sup-PMin.A; C / D He-PMin.A; 
/:

(iii) Assume that 
 is a compact base of C and Y is a locally convex space. Then

S-PMin.A; C / D Hu-PMin.A; C / and He-PMin.A; 
/ D GHe-PMin.A; C /:

Moreover, if A is closely C -convex, then S-PMin.A; C / D Be-PMin.A; C /,
while if A is closely convex then S-PMin.A; C / D Bo-PMin.A; C /:

(iv) Assume that StrMin.A; C / ¤ ;. Then StrMin.A; C / D Min.A; C /. If C is
closed (or, more generally, cl C \ .�C / D f0g), then

StrMin.A; C / D Hu-PMin.A; C / D Hu-PMin.A C C; C /I (2.38)

if C # ¤ ; then

StrMin.A; C / D S-PMin.A; C / D GHe-PMin.A; C /; (2.39)

and StrMin.A; C / D He-PMin.A; 
/ for every base 
 of C if, furthermore,
Y is a locally convex space.

Proof. (i) Take y 2 S-PMin.A; C /. Then y 2 A and there exists y� 2 C # such
that hy; y�i � hy; y�i for all y 2 A. It follows that 0 � hy; y�i for all y 2
E1 WD cl conv cone.A C C � y/, and so E1 \ .�C / D f0g, because y� 2 C #.
Hence the first inclusion in (2.35) holds.

Take y 2 Hu-PMin.ACC; C / .	 ACC /. Hence y D yCv with y 2 A, v 2
C . Then �v 2 .A C C � y/ \ .�C / 	 .cl conv cone.A C C � y// \ .�C / D
f0g. Therefore, v D 0, and so y 2 A. It follows that y 2 Hu-PMin.A; C /:

Take y 2 Hu-PMin.A; C /. Then .A � y/ [ C 	 E2 WD cl
conv cone Œ.A � y/ [ C �, whence .A � y/ C C 	 E2. It follows that
F WD cl cone.A C C � y/ 	 E2, and so y 2 Be-PMin.A; C /. Assuming
that A is closely C -convex and y 2 Be-PMin.A; C /, we have that F is a
convex cone and F \ .�C / D f0g: Since .A�y/[C 	 ACC �y, it follows
that E2 	 F , and so y 2 Hu-PMin.A; C /:

The equalities in (2.35) and (2.36) follow directly from the definitions of the
corresponding sets.

Take y 2 Bo-PMin.A C C; C /. Then y D y C v for some y 2 A, v 2 C .
Then �v 2 .A C C � y/ \ .�C / 	 .�C / \ cl cone .A C C � y/ D f0g.
Hence y 2 A, and so y 2 Bo-PMin.A; C /:

Take y 2 Bo-PMin.A; C /. Since cl cone .A � y/ 
 A � y, it follows that
y 2 Min.A; C /:

Take y 2 GHe-PMin.A; C / D GHe-PMin.A C C; C /. Then there exists
D 2 DC such that .A C C � y/ \ .� int D/ D ;, and so ŒRC.A C C � y/� \
.� int D/ D ;, whence Œcl cone.A C C � y/� \ .� int D/ D ;. Hence y 2
Be-PMin.A; C /. Therefore, (2.37) holds.
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Assume now that for any closed convex cone K � Y there exists y� 2 Y �
such that hy; y�i > 0 for every y 2 K n .�K/, and take y 2 Hu-PMin.A; C /.
Then E3 \ .�C / D f0g, or, equivalently, .C nf0g/\ .�E3/ D ;, where E3 WD
cl conv cone Œ.A � y/ [ C �. Then there exists y� 2 Y � such that hy; y�i > 0

for every y 2 E3n.�E3/. Because C 	 E3, if y 2 C nf0g then y 2 E3n.�E3/,
and so hy; y�i > 0. Hence y� 2 C #. Therefore, y 2 S-PMin.A; C /:

(ii) Assume that 
 is a base of C and Y is a locally convex space. Because 
 is
a base of C , there exists V0 2 N c

Y such that .2V0/ \ 
 D ;, or, equivalently,
V0 \ .V0 � 
/ D ;. Take y 2 Sup-PMin.A; C /, that is y 2 A and for every
V 2 NY there exists U 2 NY such that K \ .U � C / 	 V . Therefore, there
exists U0 2 N c

Y such that U0 	 V0 and ŒK \ .U0 � 
/� 	 K \.U0 �C / 	 V0.
It follows that K \ .U0 � 
/ 	 V0 \ .U0 � 
/ 	 V0 \ .V0 � 
/ D ;. Hence
y 2 He-PMin.A; 
/:

Assume, moreover, that 
 is bounded and take y 2 He-PMin.A; 
/.
Then there exists V0 2 NY such that K \ .V0 � 
/ D ;. Suppose that
y … Sup-PMin.A; C /. Then there exists V1 2 N c

Y such that for every U 2 N c
Y

one has K \ .U � C / 6	 V0. Hence, for every U 2 N c
Y there exists yU 2 U ,

tU 2 RC, zU 2 
 such that yU � tU zU 2 K nV0. Clearly, tU > 0 for every U 2
N c

Y with U 	 V0; otherwise we get the contradiction yU 2 .K nV0/\V0 D ;:

Taking p WD pV0 the Minkowski functional of V0, p is a continuous seminorm
with int V0 D fy 2 Y j p.y/ < 1g (see Proposition 6.2.1). Clearly,
t�1
U yU � zU 2 K . Because K \ .V0 � 
/ D ; we get t�1

U yU … V0 for
U 	 V0, and so t�1

U p.yU / D p.t�1
U yU / � 1 for such U . It follows that

tU � p.yU / for U 	 V0. Hence .tU /U 2N c
Y

! 0. Since .yU /U 2N c
Y

! 0 and
.zU /U 2N c

Y
is bounded, it follows that .yU � tU zU /U 2N c

Y
! 0, contradicting

the fact that yU � tU zU 2 K n V0 for every U . This contradiction shows that
y 2 Sup-PMin.A; C /:

(iii) Assume that 
 is a compact base of C and Y is a locally convex space.
Take y 2 Hu-PMin.A; C /, that is y 2 A and E4 \ .�C / D f0g, where

E4 WD cl conv cone
�
.A � y/ [ C

�
: It follows that E4 \ .�
/ D ;. Using a

separation theorem, there exist y� 2 Y � and ˛; ˇ 2 R such that

8y 2 .A � y/ [ C; v0 2 
; t 2 RC W t hy; y�i � ˛ > ˇ � ˝�v0; y�˛ :
(2.40)

It follows that ˛ � 0, 2� WD inf
 y� > 0; whence y� 2 C #, and hy � y; y�i �
0 for every y 2 A. Hence y 2 S-PMin.A; C /: Taking into account (2.35) we
obtain that S-PMin.A; C / D Hu-PMin.A; C /:

Take y 2 GHe-PMin.A; C /. There exists D 2 DC such that .A � y/ \
.� int D/ D ;. Clearly, 
 	 int D. Since 
 is compact and Y is a l.c.s.,
there exists V 2 N 


Y such that 
 C V 	 int D. Taking D0 WD P 

V we have

that D0 2 D
 and y 2 WMin.A; D0/, and so y 2 He-PMin.A; 
/. Hence
He-PMin.A; 
/ D GHe-PMin.A; C /:
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Assume now that A is closely C -convex and take y 2 Be-PMin.A; C /,
that is y 2 A and cl cone.A C C � y/ \ .�C / D f0g. Since A is closely
C -convex, we obtain that cl cone .A C C � y/ is a closed convex cone. From
our hypothesis we have that cl cone .A C C � y/ \ .�
/ D ;. Using a
separation theorem, there exist y� 2 Y � and ˛; ˇ 2 R such that (2.40) holds
with y 2 A C C � y instead of y 2 .A � y/ [ C . It follows that ˛ � 0;

2� WD inf
 y� > 0, whence y� 2 C #, and hy � y; y�i � 0 for every y 2 A.
Hence y 2 S-PMin.A; C /. Hence Be-PMin.A; C / D S-PMin.A; C /:

Assume now that A is closely convex and take y 2 Bo-PMin.A; C /, that is
y 2 A and

cl cone .A � y/ \ .�C / D f0g;

whence cl cone .A � y/ \ .�
/ D ;. Since A is closely convex,
cl cone .A � y/ is convex. Using a separation theorem, as above, we get
y 2 S-PMin.A; C /. Hence S-PMin.A; C / D Bo-PMin.A; C /:

(iv) Assume now that StrMin.A; C / ¤ ;. Because C is pointed we have that
StrMin.A; C / D fyg for some y 2 A; hence A 	 y C C . Clearly,
.A � y/ \ .�C / 	 C \ .�C / D f0g, and so y 2 Min.A; C /. Conversely,
take y 2 Min.A; C /I then f0g D .A � y/ \ .�C / 3 y � y, and so
y D y 2 StrMin.A; C /. Therefore, StrMin.A; C / D Min.A; C /:

Since A � y 	 C , we have that .A � y/ [ C D .A C C � y/ [ C D C:

Assume, moreover, that C is closed; then

cl conv cone Œ.A C C � y/ [ C � D C;

and so y 2 Hu-PMin.A; C /. Then (2.38) follows from Min.A; C / D fyg and
relations (2.35), (2.36).

Assume that C # ¤ ;. Because y 2 A 	 y C C , clearly, arg minA y� D fyg
for every y� 2 C #. Hence S-PMin.A; C / D fyg. The second equality in (2.39)
follows using Proposition 2.4.5 (iv).

Assume that Y is a l.c.s. and 
 is a base of C . Since 0 … cl 
, there exists
y� 2 Y � with inf
 y� > 0. Hence y� 2 C #, and so arg minA y� D fyg.
Using Proposition 2.4.5 (v) we have that y 2 S-PMin.A; C /. Using (2.39) and
Proposition 2.4.5 (vi) we get He-PMin.A; 
/ D fyg: ut

It is worth observing that for y� 2 Y � n f0g and C WD Ky� WD f0g [
fy 2 Y j hy; y�i > 0g we have that C # D Py� and S-PMin.A; C / D Min.A; C / D
arg minA y�; and so all the efficiency sets used in Propositions 2.4.5, 2.4.6,
excepting StrMin, reduce to arg minA y�. Moreover, StrMin.A; C / ¤ ; if and only
if y� has a unique minimum point on A:

The inclusions in assertions (i), and (iii), (iv) of Proposition 2.4.5, as well as
the corresponding equalities for C closed or A convex, respectively, are established
in [175, Theorem 3.1]. The most part of the inclusions in assertions (i) and (iii)
of Proposition 2.4.6, as well as the mentioned equalities, can be found [392]; note
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that the hypothesis that 
 is compact can be replaced by the fact that 
 is weakly
compact (for this just apply the corresponding result for the weak topology on
Y ). Assertion (ii) of Proposition 2.4.6 can be found in [618], while the equality
S-PMin.A; C / D Hu-PMin.A; C / in Proposition 2.4.6 (i) is obtained in [271,
Theorem V.2.4]; the case of separable normed vector spaces in (i) is based on
the following extension of the Krein–Rutman theorem obtained by Hurwicz [271,
Lemma V.2.2].

Theorem 2.4.7. Let .Y; k�k/ be a separable normed vector space and C 	 Y be
a closed convex cone. Then there exists y� 2 Y � such that hy; y�i > 0 for every
y 2 C n .�C /:

Proof. If C n.�C / D ; (that is C is a linear space) we can take y� D 0. So, assume
that C n .�C / 6D ;: Because C CC D C , C C is not trivial, too. The set C1 WD
C C \UY � is a weakly� closed subset of UY � (hence C1 is w�-compact). Because Y

is separable, the weak� topology on UY � is metrizable (see [108, Theorem V.5.1]),
and so C1 (being w�-compact) is w�-separable. Let A D fy�

1 ; y�
2 ; : : :g 	 C1 be

w�-dense in C1: Take

y� WD
1X

kD1

1

2k
y�

k I

the series is strongly convergent because it is absolutely convergent and Y � is a
Banach space. Clearly, y� 2 C1 	 C C. Assume that there exists y 2 C n.�C / such
that hy; y�i D 0. Because

˝
y; y�

k

˛ � 0 for every k � 1, we obtain that hy; y�i D 0

for every y� 2 A: With the set A being w�-dense in C1, we obtain that hy; y�i D 0

for every y� 2 C1, and so h�y; y�i D 0 � 0 for every y� 2 C C D RCC1.
Therefore, we get the contradiction �y 2 C CC D C: ut

In order to describe weak and proper minimality in a unified way, we use the
notation of Q-minimal points (compare Ha [228]).

Definition 2.4.8. Assume that D � Y is a proper cone with nonempty interior and
put Q WD int D. We say that y is a Q-minimal point of A (y 2 QMin.A; C /) if

A \ .y � Q/ D ;

or, equivalently,

.A � y/ \ .�Q/ D ;:

In the paper by Gerstewitz and Iwanow [197] properly minimal elements are
defined using a set Q � Y with 0 2 bd Q and cl Q C .C n f0g/ � int Q. This
approach is related to the well-known concept of dilating cone (or a dilation) of C :

Definition 2.4.9. Suppose that D � Y is a proper cone with nonempty interior and
put Q WD int D. Q is said to be a dilation of C , or dilating C if it contains C n f0g.
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Remark 2.4.10. Makarov and Rachkovski [409] studied more detailed some con-
cepts of proper efficiency and introduced the notion of B-efficiency, i.e., efficiency
w.r.t. a family of dilations of C . Namely, given B 2 F .C /, where F .C / is
the class of families of dilations of C , y is said to be a B-minimal point of A

(y 2 B Min.A; C /) if there exists B 2 B such that

.A � y/ \ .�B/ D ;:

It has been established that Borwein proper efficiency, Henig global proper
efficiency, Henig proper efficiency, super efficiency and Hartley proper efficiency
are B-efficiency with B being appropriately chosen family of dilating cones.
The reader will see that in contrast with B-efficiency, the concept introduced in
Definition 2.4.8 includes not only some concepts of proper efficiency among which
are these ones considered in [409] but also the concepts of strong efficiency and
weak efficiency.

In order to study the relationships between weakly / properly minimal points and
Q-minimal points let Y be a n.v.s. and 
 as before a base of C . Setting

ı WD ı
 WD d.0; 
/ D inffk�k j � 2 
g > 0;

for each 0 < 
 < ı, we can associate to C a convex, pointed and open set V
,
defined by

V
 WD cone.
 C 
 VBY /: (2.41)

For each scalar " > 0, we also associate to C an open set C."/

C."/ WD fy 2 Y j d.y; C / < "d.y; �C /g:

We are going to show that the weakly / properly minimal points introduced in
Definitions 2.4.2 and 2.4.4 are in fact Q-minimal points (Definition 2.4.8) with Q

being appropriately chosen sets. The following result is shown in [228].

Theorem 2.4.11. (a) y 2 WMin.A; C / iff y 2 QMin.A; C / with Q D intC .
(b) y 2 S-PMin.A; C / iff y 2 QMin.A; C / with Q D fy 2 Y j y�.y/ > 0g and

y� 2 C #.
(c) y 2 Hu-PMin.A; C / iff y 2 QMin.A; C /, with Q D Y n �cl conv coneŒ.A �

y/ [ C �.
(d) y 2 Be-PMin.A; C / iff y 2 QMin.A; C /, with Q D Y n �cl coneŒ.A � y/ C

C �.
(e) y 2 Ha-PMin.A; C / iff y 2 QMin.A; C / with Q D C."/ for some " > 0.
(f) y 2 Bo-PMin.A; C / iff y 2 QMin.A; C /, with Q being some dilation of C .
(g) y 2 GHe-PMin.A; C / iff y 2 QMin.A; C /, with Q D int D, being some

dilation of C , where D is a proper pointed convex cone in Y .
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(h) (supposing that Y is a n.v.s.) y 2 He-PMin.A; C / iff y 2 QMin.A; C / with
Q D V
 and 
 is some scalar satisfying 0 < 
 < ı D d.0; 
/.

(i) (supposing that Y is a n.v.s. and C has a bounded base 
) y 2 Sup-PMin.A/

iff y 2 QMin.A; C / with Q D V
 and 
 is some scalar satisfying 0 < 
 < ı D
d.0; 
/.

Proof. Using Definitions 2.4.4 and 2.4.8 one can easily prove the assertions (a)–
(d) and (g). The assertions (e)–(f) are formulated in a slightly different form as
established by Makarov and Rachkovski [409].

We prove now the assertion (h), namely, we show that y 2 He-PMin.A; C / iff
there is a scalar 
 with 0 < 
 < ı such that

.A � y/ \ .�V
/ D ;: (2.42)

Recall that by definition, y 2 He-PMin.A; C / iff

cl cone.A � y/ \ .
 C "BY / D ;: (2.43)

It is also known [619] that y 2 He-PMin.A; C / iff

.A � y/ \ .�Sn/ D f0g (2.44)

for some integer n 2 N , where Sn D cl cone.
 C ı=.2n/BY /: Now, suppose that
y 2 He-PMin.A; C /. Then (2.43) holds. Without loss of generality we can assume
that 0 < " < ı. We show that (2.43) holds with 
 D ". Suppose to the contrary that
there is y0 2 A�y such that y0 2 �V". Clearly, y0 2 cl cone.A�y/\.�cl cone.
C
"BY //. On the other hand, as 0 < 
 D " < ı and by the definition of ı, 0 … V".
Hence y0 ¤ 0. This is a contradiction to (2.43). Next, suppose that (2.42) holds for
some 
. Let n be an integer satisfying n � 1 > ı=.2
/ or ı=.2n � 2/ < 
. By (2.42)
we have

.A � y/ \ .�Vı=.2n�2// 	 .A � y/ \ .�V
/ D ;:

Then .A � y/ \ .�Vı=.2n�2/ [ f0g/ D f0g. On the other hand, [619, Lemma 2.1]
states that if .A � y/ \ .�Vı=.2n�2/ [ f0g/ D f0g, then .A � y/ \ .�Sn/ D f0g.
Thus, (2.44) holds and therefore, y 2 He-PMin.A; C /, as it was to be shown.

To complete the proof note that the last assertion (i) of this theorem follows from
(h) and the assertion (ii) in Proposition 2.4.6. ut
Remark 2.4.12. The assertion (h) in the above theorem is inspired by the definition
of Henig properly minimal points for sets in locally convex spaces given by Gong
in [213]. One can deduce that any Henig properly minimal point is a global Henig
properly minimal point.

Furthermore, we mention solution concepts for vector optimization problems
introduced by ElMaghri–Laghdir[175] where it is not supposed that the ordering
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cone C � Y is pointed and closed. This concept is based on a generalization of
the concept of dilations of a cone C � Y (see Definition 2.4.9). In the text below
we follow the presentation in [175]. We assume that X; Y; Z are topological vector
spaces and S is a subset of X . For the following notations and results the lineality
of C , defined by

l.C / WD C \ .�C /;

is very important. Of course, C is pointed if l.C / D f0g.
Unlike the assumptions made before we assume in the sequel in this section that

Y is ordered by the proper convex cone C (C is proper if C ¤ l.C /, or equivalently,
C is not a linear subspace of Y ).

Furthermore, using l.C / we introduce

C & WD fy� 2 Y � j hy; y�i > 0 8y 2 C n l.C /g D .C n l.C //
#

:

Hence, if C is pointed then C & D C #. Note that Theorem 2.4.7 gives sufficient
conditions for C & ¤ ;.

We use the notations y 5 y0 if y0 � y 2 C ; y < y0 if y0 � y 2 int C and
furthermore, y � y0 if y0 � y 2 C n l.C /:

In the following we consider a proper vector-valued objective function f W X !
Y �, S 	 X and use the notation

f .S/ WD ff .x/ j x 2 S \ dom f g � Y:

Consider now the vector optimization problem

minimze f .x/ subject to x 2 S: (VP)

Using the lineality of C and without assuming the pointedness and closedness
of C we introduce the following solution concepts for (VP). These concepts are
extensions of the solution concepts introduced in Definitions 2.4.1, 2.4.2 and 2.4.4.

Definition 2.4.13. x 2 S \ dom f is

• strongly l(C)-minimal if f .x/ 5 f .x/ for all x 2 S , or equivalently

f .S/ 	 f .x/ C C;

• Pareto l(C)-minimal if f .x/ 5 f .x/ ) f .x/ 5 f .x/ for all x 2 S , or
equivalently

f .S/ \ .f .x/ � .C n l.C /// D ;;

• weakly l(C)-minimal if f .x/ 6< f .x/ for all x 2 S , or equivalently
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f .S/ \ .f .x/ � int C / D ;;

• l(C)-properly minimal if there exists D � Y a proper convex cone with C n
l.C / 	 int D such that x is efficient with respect to D, f .S/ \ .f .x/ � D n
l.D// D ;:

Definition 2.4.14. Suppose that D � Y is a proper convex cone with nonempty
interior. Put Q WD int D. Q is said to be a generalized dilation of C or generalized
dilating C if it contains C n l.C /.

Set

QC WD fD � Y j D is a proper convex cone with C n l.C / � int Dg :

Lemma 2.4.15. Let C � Y be a proper convex cone. Then QC ¤ ; if and only if
C & ¤ ;. Moreover, if C & ¤ ; then

C C int D D int D 8D 2 QC (2.45)

and

C & D [D2QC .DC n f0g/: (2.46)

Proof. Assume that QC ¤ ; and take D 2 QC . Since D is proper, int D ¤ Y:

Take q0 2 Y n int D. By a separation theorem there exists y� 2 Y � such that
hq0; y�i � 0 < hy; y�i for all y 2 int D. It follows that y� 2 C &:

Conversely, assume that C & ¤ ; and take y� 2 C &: Consider D WD fy 2 Y j
hy; y�i � 0g. From the very definition of C & we have that C n l.C / � fy 2 Y j
hy; y�i > 0g D int D:

Let us prove (2.45). First note that C 	 cl .C n cl C /. Indeed, there exists k0 2
C n l.C /. Let k 2 C . Then k C �k0 2 C C .C n l.C // D C n l.C / for every
� > 0. The claim follows taking the limit for � ! 0. Then, taking D 2 QC and
using repeatedly [79, Lemma 2.5] we get

int D 	 C C int D D cl.C n l.C // C int D D .C n l.C // C int D 	 int D;

and so (2.45) holds.
Take now D 2 QC ; then C n l.C / 	 int D, and so C & D .C n l.C //# 


.int D/# D DC n f0g. Hence the inclusion 
 holds in (2.46). Let now y� 2 C &.
Then D WD fy 2 Y j hy; y�i � 0g 2 QC and y� 2 DC n f0g. It follows that (2.46)
holds. ut
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For A � Y we set

Es.A/ WD EC
s .A/ WD fa 2 A j A 	 a C C g;

Ee.A/ WD EC
e .A/ WD fa 2 A j A \ .a � .C n l.C /// D ;g;

Ew.A/ WD EC
w .A/ WD fa 2 A j A \ .a � int C / D ;g;

Ep.A/ WD EC
p .A/ WD [ ˚ED

e .A/ j D 2 QC

�
:

Since int C 	 C n l.C / 	 int D, we have that

Ep.A/ 	 Ee.A/ 	 Ew.A/; (2.47)

the last inclusion makes sense for int C ¤ ;. It is worth to observe that

Ep.A/ D [ ˚ED
w .A/ j D 2 QC

�
: (2.48)

Indeed, the inclusion 	 in (2.48) follows from the last inclusion in (2.47). Take
a 2 ED

w .A/ for some D 2 QC and consider D0 WD f0g [ int D. Then D0 2 QC

and a 2 ED0

w .A/ because D0 	 D. Since ED0

w .A/ D ED0

e .A/, we obtain that
a 2 Ep.A/:

Lemma 2.4.16. E� .A/ D A\E� .ACC / for � 2 fs; e; w; pg. Moreover, if l.C / D
f0g, that is C is pointed, then E� .A/ D E� .A C C / for � 2 fs; e; pg. Generally,
Ew.A/ D A \ bd.A C C / (for int C ¤ ;/; and so Ew.A/ and Ew.A C C / (D
bd.A C C /) might be different (take A D f0g).

Proof. For � D s use the fact that A 	 a C C ) A 	 A C C 	 a C C . For � D e

use the fact that C n l.C / D C C .C n l.C //, while for � D w use the fact that
C C int C D int C:

For � D p one uses (2.45). If a 2 Ep.A/ then there exists D 2 QC such
that A \ .a � int D/ D ;: Hence 0 … A � a C int D D .A C C / � a C int D

by (2.45), and so a 2 Ep.A C C /. Conversely, let a 2 A \ Ep.A C C /. Then
0 … .A C C / � a C int D D A � a C int D, and so a 2 Ep.A/:

Assume that l.C / D f0g. We have to prove that E� .A C C / 	 A for � 2
fs; e; pg. Assume that a C k 2 E� .A C C / for some a 2 A and k 2 C n f0g. For
� D s we get a C k 5 a, whence the contradiction k 2 �C . For � D e we get
the contradiction a 2 .A C C / \ .a C k � .C n f0g/. For � D p, we have that
Ep.A/ 	 Ee.A/ 	 A: ut

Generally, Es.A/ D ;:

Lemma 2.4.17. If Es.A/ ¤ ; then Es.A/ D Ee.A/. Moreover, if C & ¤ ; then
Es.A/ D Ep.A/ D Ee.A/:

Proof. Because 0 … C n l.C / D C C .C n l.C // we have that

C \ .� .C n l.C /// D ;:
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Fix a 2 Es.A/. Let a 2 Es.A/. Then A 	 a C C , and so

A\.a�.C nl.C /// 	 .aCC /\.a�.C nl.C /// D aCŒC \ .�.C n l.C ///� D ;:

Hence a 2 Ee.A/, and so Es.A/ 	 Ee.A/:

Take now a 2 Ee.A/ 	 A 	 a C C . Hence a D a C k for some k 2 C . If
k … l.C / then a 2 A \ ..a � .C n l.C ///, contradicting the fact that a 2 Ee.A/.
Hence k 2 l.C /, and so A 	 a C C D a � k C C 	 a C C , which shows that
a 2 Es.A/:

Assume, moreover, that C & ¤ ;, and take y� 2 C &: It follows that D WD fy 2
Y j hy; y�i � 0g 2 QC . Using (2.45) we have that C \ .� int D/ D ;, and so

A \ .a � int D/ 	 .a C C / \ .a � int D/ D a C .C \ .� int D// D ;I

therefore, a 2 EpA. Hence Es.A/ 	 Ep.A/. Since always Ep.A/ 	 Ee.A/ we get
the conclusion. ut

The corresponding sets of solutions for (VP) are denoted by Es.f; S/; Ee.f; S/,
Ew.f; S/, Ep.f; S/, respectively. More precisely,

E� .f; S/ WD fx 2 S \ dom f j f .x/ 2 E� .f .S \ dom f //g ; � 2 fs; e; w; pg:

2.5 Vector Optimization Problems with Variable Ordering
Structure

Yu introduced in [606] nondominated solutions of vector optimization problems
with variable ordering structure based on general domination set mappings, compare
also Chen, Huang, Yang [91]. Vector optimization problems with variable ordering
structure are studied intensively by Eichfelder in [162, 164–166], Eichfelder,
Ha [168] where corresponding solution concepts, characterizations by scalarization
methods, optimality conditions and numerical procedures are presented. Eich-
felder [163, 166] gives a very detailed overview on solution concepts for vector
optimization problems with variable ordering structure and presents a complete
characterization of these solution concepts (see also Eichfelder, Kasimbeyli [170]
and Eichfelder, Gerlach [167]).

Let X and Y be Banach spaces, ; ¤ S � X , f W X ! Y and let C W X � Y

be a set-valued map such that for each x 2 X , C.x/ is a nonempty convex set with
0 2 bd C.x/.

We consider the following vector optimization problems with variable ordering
structure

v-minimize f .x/ subject to x 2 S:
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The solution concept for this problem is given in the following definition (com-
pare [91, Definition 1.15]):

Definition 2.5.1 (v-Minimal Points, Weakly v-Minimal Points). Let C W X � Y

be a set-valued map with 0 2 bd C.x/, C.x/ a convex set for all x 2 X , S � X and
f W S ! Y . An element x 2 S is said to be a v-minimal point of f w.r.t. C.�/ if

.f .S/ � f .x// \ .�.C.x/ n f0g// D ;:

The set of all f .x/ with x a v-minimal point of f w.r.t. C.�/ is denoted by
Min.f .S/; C.�//.

Suppose that for all x 2 X , int C.x/ ¤ ;. An element x 2 S is said to be a
weakly v-minimal point of f w.r.t. C.�/ if

.f .S/ � f .x// \ .� int C.x// D ;:

The set of all f .x/ with x a weakly v-minimal point of f w.r.t. C.�/ is denoted by
WMin.f .S/; C.�//.
Remark 2.5.2. For further solution concepts, especially nondominated elements, of
vector optimization problems with variable ordering structure see Eichfelder [166].

In the case that we ask for v-minimal points of f w.r.t. C.�/ the vector
optimization problem with variable ordering structure is given by

Min.f .S/; C.�//: (VPv)

When we are looking for weakly v-minimal points of f w.r.t. C.�/ we study the
problem

WMin.f .S/; C.�//:

The following relationships between v-minimal solutions of the vector optimiza-
tion problem (VPv) and solutions of suitable scalarized problems are shown by
Chen, Huang and Yang [91, Theorem 2.18].

Theorem 2.5.3. Consider the vector optimization problem with variable ordering
structure (VPv), where C W X � Y is a set-valued map such that for each x 2 X ,
C.x/ is a convex subset of Y with 0 2 bd C.x/ and int C.x/ ¤ ;. Then:

(a) Let x 2 S . Suppose that there exists y� 2 Y � with y�.y/ > 0 for all y 2
C.x/ n f0g such that x 2 S is a minimal solution of the scalar optimization
problem

min
x2S

y�.f .x//: (Py� )
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Then x is a v-minimal point of f w.r.t. C.�/ concerning the vector optimization
problem (VPv).

(b) Let f .S/ be a convex subset of Y and x a v-minimal point of the problem
(VPv). Then there exists y� 2 Y � satisfying y�.y/ > 0 for all y 2 int C.x/,
such that x is a minimal solution of the scalar optimization problem .Py� /.

Remark 2.5.4. Characterizations of solutions of general vector optimization prob-
lems with variable ordering structure by means of nonlinear scalarizing functionals
are given by Eichfelder in [163, 164, 166] and by Eichfelder, Ha [168].

2.6 Solution Concepts in Set-Valued Optimization

Unless otherwise mentioned, let Y be a linear topological space, partially ordered
by a proper pointed convex closed cone C . Let P.Y / D 2Y be the power set of Y .

We consider a set-valued optimization problem with a general geometric con-
straint:

minimize F.x/ subject to x 2 S; (SP)

where S is a subset of X , X is a linear space and the cost mapping F W S �
Y is a set-valued mapping. As already introduced, we use the notations F.S/ D
[x2SF.x/ and dom F D fx 2 S j F.x/ ¤ ;g.

In Sects. 2.6.1, 2.6.2 and 2.6.3 we introduce different solution concepts for the
problem .SP/. Furthermore, in Sect. 2.6.4 we present the embedding approach by
Kuroiwa [353, 354, 357], in Sect. 2.6.5 we discuss solution concepts with respect
to abstract preference relations by Bao and Mordukhovich [28], in Sect. 2.6.6
we introduce solution concepts for set-valued optimization problems with variable
ordering structure, in Sect. 2.6.7 we study approximate solutions of set-valued
optimization problems and finally, in Sect. 2.7 we discuss relations between the
solution concepts.

2.6.1 Solution Concepts Based on Vector Approach

First, we introduce a solution concept where “minimization” in .SP/ is to be
understood with respect to the partial order �C defined in (2.9). In contrast to
single-valued functions, for every x 2 dom F there are many distinct values y 2 Y

such that y 2 F.x/. Hence, in the first approach, when studying minimizers
of a set-valued mapping, we fix one element y 2 F.x/, and formulate the
following solution concept based on the concept of Pareto minimality introduced
in Definition 2.4.1.
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Definition 2.6.1 (Minimizer of (SP)). Let x 2 S and .x; y/ 2 graph F . The pair
.x; y/ 2 graph F is called a minimizer of the problem (SP) if y 2 Min

�
F.S/; C

�
.

Furthermore, also the other notions of weakly / properly minimal points for sets
(see Definitions 2.4.2 and 2.4.4) naturally induce corresponding notions of weak /
proper minimizers to the corresponding set optimization problems (see Ha [228]).

Definition 2.6.2 (Weak Minimizer of (SP)). Let x 2 S and .x; y/ 2 graph F .
The pair .x; y/ 2 graph F is called a weak minimizer of the problem (SP) if y 2
WMin

�
F.S/; C

�
.

Let D � Y be as before (see Definition 2.4.8) a proper cone with nonempty
interior and Q WD int D.

Definition 2.6.3 (Q-Minimizer of (SP)). Consider the set-valued optimization
problem (SP). Let x 2 S and .x; y/ 2 graph F . We say that .x; y/ is an
S-proper minimizer (Hurwicz proper minimizer, Hartley proper minimizer,
Benson proper minimizer, Borwein proper minimizer, Henig global proper
minimizer, Henig proper minimizer, super minimizer and Q-minimizer, respec-
tively) of .SP / if y is an S-properly minimal (Hurwicz properly minimal, Hartley
properly minimal, Benson properly minimal, Borwein properly minimal, Henig
global properly minimal, Henig properly minimal, super efficient and Q-minimal,
respectively) point of F.S/, i.e., y 2 S-PMin.F.S/; C / ( y 2 Hu-PMin.F.S/; C /,
y 2 Ha-PMin.F.S/; C /, y 2 Be-PMin.F.S/; C /,
y 2 Bo-PMin.F.S/; C /, y 2 GHe-PMin.F.S/; C /, y 2 He-PMin.F.S/; C /,
y 2 Sup-PMin.F.S/; C /, y 2 Q-Min.F.S/; C /, respectively).

Moreover, especially in Chaps. 8 and 15 we study set-valued optimization
problems, where the set-valued objective map F W X � Y is to be maximized
over the feasible set S 	 X (X is a linear space)

maximize F.x/ subject to x 2 S: (SPmax)

Analogously to Definitions 2.6.1 and 2.6.2 we now introduce maximizers and
weak maximizer of .SPmax/.

Definition 2.6.4 (Maximizer of .SPmax/). Let x 2 S and .x; y/ 2 graph F .
The pair .x; y/ 2 graph F is called a maximizer of the problem (SPmax) if
y 2 Max

�
F.S/; C

�
.

Definition 2.6.5 (Weak Maximizer of .SPmax/). Consider the set-valued opti-
mization problem .SPmax/. Let x 2 S and .x; y/ 2 graph F . We say that .x; y/

is a weak maximizer of .SPmax/ if y is a weakly maximal point of F.S/, i.e.,
y 2 WMax.F.S/; C /.

Furthermore, we consider set-valued optimization problems with a special
structure concerning the restrictions, namely inequality restrictions: Let X , Y , Z

be real locally convex Hausdorff spaces, Y , Z be ordered by proper pointed closed
convex cones C , K , respectively, F W X � Y and G W X � Z. Under these
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assumptions we study a set-valued optimization problem of the following form (see
Tasset [570]):

minimize F.x/ subject to x 2 S; (SPT)

where M � X is a set satisfying M 	 dom F \ dom G and

S WD fx 2 M j G.x/ \ .�K/ ¤ ;g: (2.49)

For set-valued problems .SPT / with a feasible set S given by (2.49) we derive
duality assertions in Sect. 8.1 using the following solution concept with respect to
the quasi(-relative) interior of a cone C � Y .

Let B � Y be a nonempty convex set; the quasi interior of B is

qi B WD fy 2 B j cl .RC.B � y// D Y g

and the quasi-relative interior of B is

qri B WD fy 2 B j cl .RC.B � y// is a linear spaceg :

Because cl .RC.B � y// � cl affB �y, we have that cl affB D Y whenever qi B ¤
;. In fact we have

0 2 qi.B � B/ ” cl affB D Y H) qi B D qri B: (2.50)

It is worth to observe that for y0 2 B we have that

y0 … qri B ” 9y� 2 Y � W inf y�.B/ � hy0; y�i < sup y�.B/I (2.51)

in particular,

y0 2 B n qri B H) 9y� 2 Y � n f0g W inf y�.B/ D hy0; y�i : (2.52)

Note that in the above implications we do not assume that qri B ¤ ;. Note
that (2.51) covers [72, Theorem 2.7].

Observe also that for B D C a convex cone,

y 2 qi C; y� 2 C C n f0g H) hy; y�i > 0: (2.53)

Indeed, if hy; y�i D 0 then hy0 � y; y�i � 0 for every y0 2 C , and so hy00; z�i � 0

for every y00 2 cl .RC.C � y// D Y: We get so the contradiction y� D 0:

Using these notations Tasset [570] introduced the following solution concept for
the set-valued problem .SPT / with restrictions given by (2.49) .
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Definition 2.6.6 (Quasi-Weak Minimizer of .SPT /). Assume qi C ¤ ; and con-
sider the set-valued optimization problem .SPT / with restrictions given by (2.49).
Let x 2 S and .x; y/ 2 graph F . The pair .x; y/ is called a quasi-weak minimizer
of the problem (SPT ) with restrictions given by (2.49) if F.S/ \ .y � qi C / D ;,
and we denote this by y 2 Min.F.S/; qi C /:

2.6.2 Solution Concepts Based on Set Approach

Although the concept of a minimizer of the set-valued problem .SP/ given in
Definitions 2.6.1 and 2.6.3 is of mathematical interest, it cannot be often used in
practice. It is important to mention that a minimizer .x; y/ depends on only certain
special element y of F.x/ and other elements of F.x/ are ignored. In other words,
an element x 2 S for that there exists at least one element y 2 F.x/ which is a
Pareto minimal point (Definition 2.4.1) of the image set of F even if there exist
many bad elements in F.x/, is a solution of the set-valued optimization problem
.SP/. For this reason, the solution concepts introduced in Sect. 2.6.1 are sometimes
improper.

In order to avoid this drawback it is necessary to work with practically relevant
order relations for sets. This leads to solution concepts for set-valued optimization
problems based on comparisons among values of the set-valued objective map F .

First, we will introduce several order relations that are used in order to formulate
corresponding solution concepts for the set-valued problem .SP/. The set less order
relation �s

C is introduced independently by Young [605] and Nishnianidze [443]
(cf. Eichfelder, Jahn [169]) for the comparison of sets:

Definition 2.6.7 (Set Less Order Relation).
Let C � Y be a proper closed convex and pointed cone. Furthermore, let

A; B 2 P.Y / be arbitrarily chosen nonempty sets. Then the set less order relation
is defined by

A �s
C B W” A 	 B � C and A C C 
 B:

Remark 2.6.8. Of course, we have

A 	 B � C ” 8a 2 A 9b 2 B W a �C b

and

A C C 
 B ” 8b 2 B 9a 2 A W a �C b:

Kuroiwa [347, 349, 351] introduced the following order relations:
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Definition 2.6.9 (Lower (Upper) Set Less Order Relation). Let C � Y be a
proper closed convex and pointed cone. Furthermore, let A; B 2 P.Y / be arbitrary
nonempty sets. Then the lower set less order relation �l

C is defined by

A �l
C B W” A C C 
 B

and the upper set less order relation �u
C is defined by

A �u
C B W” A 	 B � C:

The lower set less order relation �l
C is illustrated in Fig. 2.2 and the upper set less

order relation �u
C in Fig. 2.3.

Remark 2.6.10. There is the following relationship between the lower set less order
relation �l

C and the upper set less order relation �u
C :

A �l
C B W” ACC 
 B ” B 	 A�.�C/ ”W B �u

�C A ” .�B/ �u
C .�A/:

Remark 2.6.11. It is easy to see that A �l
C B is equivalent to

A C C 
 B C C:

Furthermore, A �u
C B is equivalent to

A � C 	 B � C:

Fig. 2.2 Lower set less order
relation 4l

C

A

B

Fig. 2.3 Upper set less order
relation 4u

C

B

A



50 2 Order Relations and Ordering Cones

It is important to mention that

A �l
C B and B �l

C A ” A C C D B C C:

Under our assumption that C is a pointed closed convex cone it holds Min.A C
C; C / D Min.A; C / and Min.B C C; C / D Min.B; C / such that we get

A �l
C B and B �l

C A H) Min.A; C / D Min.B; C /:

Under the additional assumptions A 	 Min.A; C / C C and B 	 Min.B; C / C C

(domination property, see [47, 400]) we have

Min.A; C / D Min.B; C / ” A C C D B C C

and so

A �l
C B and B �l

C A ” Min.A; C / D Min.B; C /:

Similarly,

A �u
C B and B �u

C A ” A � C D B � C

and because of Max.A � C; C / D Max.A; C / and Max.B � C; C / D Max.B; C /

it holds

A �u
C B and B �u

C A H) Max.A; C / D Max.B; C /:

Under the additional assumption A 	 Max.A; C / � C and B 	 Max.B; C / � C it
holds

Max.A; C / D Max.B; C / ” A � C D B � C

and so

A �u
C B and B �u

C A ” Max.A; C / D Max.B; C /:

In interval analysis there are even more order relations in use, like the certainly
less order relation �c

C (Kuroiwa [347–349, 351], compare Eichfelder, Jahn [169]):

Definition 2.6.12 (Certainly Less Order Relation �c
C ). For arbitrary nonempty

sets A; B 2 P.Y / the certainly less order relation �c
C is defined by

A �c
C B W” .A D B/ or .A ¤ B; 8a 2 A 8b 2 B W a �C b/:

An illustration of the certainly less order relation �c
C is given in Fig. 2.4.
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Fig. 2.4 Certainly less order
relation 4c

C

B

A

Fig. 2.5 Possibly less order
relation 4p

C

A B

Moreover, the possibly less order relation �p
C (Kuroiwa [348,349,351]) is given

in the following definition:

Definition 2.6.13 (Possibly Less Order Relation �p
C ). For arbitrary nonempty

sets A; B 2 P.Y / the possibly less order relation �p
C is defined by

A �p
C B W” .9a 2 A; 9b 2 B W a �C b/:

The possibly less order relation �p
C is illustrated in Fig. 2.5.

Remark 2.6.14. It is clear that A �c
C B implies

9a 2 A such that 8b 2 B W a �C b: (2.54)

Moreover, (2.54) implies A �l
C B (see Definition 2.6.9) such that

A �c
C B H) A �l

C B:

Furthermore, A �l
C B implies

9a 2 A; 9b 2 B such that a �C b: (2.55)
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Taking into account Definition 2.6.13, we have

A �c
C B H) A �l

C B H) A �p
C B: (2.56)

Remark 2.6.15. The relation A �c
C B implies

9b 2 B such that 8a 2 A W a �C b: (2.57)

Moreover, (2.57) implies A �u
C B (see Definition 2.6.9) such that

A �c
C B H) A �u

C B:

Furthermore, A �u
C B implies

9a 2 A; 9b 2 B such that a �C b; (2.58)

such that we get

A �c
C B H) A �u

C B H) A �p
C B

taking into account Definition 2.6.13.

Furthermore, the minmax less order relation �m
C is introduced for sets A, B

belonging to

F WD fA 2 P.Y / j Min.A; C / ¤ ; and Max.A; C / ¤ ;g:

Note that for instance in a topological real linear space Y for every compact set
in P.Y / minimal and maximal elements exist.

Definition 2.6.16 (Minmax Less Order Relation). Let A; B be sets belonging to
F . Then the minmax less order relation �m

C is defined by

A �m
C B W” Min.A; C / �s

C Min.B; C / and Max.A; C / �s
C Max.B; C /:

The minmax certainly less order relation �mc
C is introduced in the next definition:

Definition 2.6.17 (Minmax Certainly Less Order Relation). For arbitrary
A; B 2 F the minmax certainly less order relation �mc

C is given by

A �mc
C B W” .A D B/ or .A ¤ B; Min.A; C / �c

C Min.B; C /

and Max.A; C / �c
C Max.B; C //:

Finally, we introduce the minmax certainly nondominated order relation �mn
C (see

Jahn, Ha [295]).
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Definition 2.6.18 (Minmax Certainly Nondominated Order Relation). For arbi-
trary nonempty A; B 2 P.Y / the minmax certainly nondominated order relation
�mn

C is defined by

A �mn
C B W” .A D B/ or .A ¤ B; Max.A; C / �s

C Min.B; C //:

The set less order relation �s
C and the order relations �l

C , �u
C , �m

C , �mc
C and

�mn
C are preorders. If �C denotes one of these order relations, then we can define

optimal solutions with respect to the preorder �C and the corresponding set-valued
optimization problem is given by

�C �minimize F.x/; subject to x 2 S; (SP � �C )

where we assume again (compare (SP)) that Y is a linear topological space, partially
ordered by a proper pointed convex closed cone C , S is a subset of X , X is a linear
space, F W X � Y .

Definition 2.6.19 (Minimal Solutions of (SP � �C ) w.r.t. the Preorder �C ). An
element x 2 S is called a minimal solution of problem (SP��C ) w.r.t. the preorder
�C if

F.x/ �C F.x/ for some x 2 S H) F.x/ �C F.x/:

Remark 2.6.20. When we use the set relation �l
C introduced in Definition 2.6.9

in the formulation of the solution concept, i.e., when we study the set-valued
optimization problem .SP � �l

C /, we observe that this solution concept is based
on comparisons among sets of minimal points of values of F (see Definition 2.4.1).
Furthermore, considering the upper set less order relation �u

C (Definition 2.6.9), i.e.,
considering the problem .SP � �u

C / we recognize that this solution concept is based
on comparisons of maximal points of values of F (see Definition 2.4.1).

When x 2 S is a minimal solution of problem .SP � �l
C / there does not exist

x 2 S such that F.x/ is strictly smaller than F.x/ with respect to the set order �l
C .

In the following we give three examples (see Kuroiwa [347]) of set-valued opti-
mization problems in order to illustrate the different solution concepts introduced in
Definitions 2.6.1 and 2.6.19.

Example 2.6.21. Consider the set-valued optimization problem

minimize F1.x/; subject to x 2 S;

with X D R, Y D R
2, C D R

2C, S D Œ0; 1� and F1 W S � Y is given by

F1.x/ WD
�

Œ.1; 0/; .0; 1/� if x D 0

Œ.1 � x; x/; .1; 1/� if x 2 .0; 1�;

where Œ.a; b/; .c; d /� is the line segment between .a; b/ and .c; d /.
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Only the element x D 0 is a minimal solution in the sense of Definition 2.6.19
w.r.t. �l

C . However, all elements .x; y/ 2 graph F1 with x 2 Œ0; 1�, y D .1 �
x; x/ for x 2 .0; 1� and y D .1; 0/ for x D 0 are minimizers of the set-valued
optimization problem in the sense of Definition 2.6.1. This example shows that the
solution concept with respect to the set relation �l

C (see Definition 2.6.19) is more
natural and useful than the concept of minimizers introduced in Definition 2.6.1.

Example 2.6.22. Now we discuss the set-valued optimization problem

minimize F2.x/; subject to x 2 S;

with X D R, Y D R
2, C D R

2C, S D Œ0; 1� and F2 W S � Y is given by

F2.x/ WD
� �

.1; 1
3
/; . 1

3
; 1/
�

if x D 0

Œ.1 � x; x/; .1; 1/� if x 2 .0; 1�:

The set of minimal solutions in the sense of Definition 2.6.19 w.r.t. �l
C is the

interval Œ0; 1�, but the set of minimizers in the sense of Definition 2.6.1 is given by

f.x; y/ 2 graph F2 j x 2 .0; 1�; y D .1 � x; x/g:

Here we observe that x D 0 is a �l
C -minimal solution but the set F2.x/ (x D 0)

has no Pareto minimal points.

Example 2.6.23. In this example we are looking for minimal solutions of a
set-valued optimization problem with respect to the set relation �u

C introduced in
Definition 2.6.9.

�u
C �minimize F3.x/; subject to x 2 S; (SP � �u

C )

with X D R, Y D R
2, C D R

2C, S D Œ0; 1� and F3 W S � Y is given by

F3.x/ WD
�

ŒŒ.1; 1/; .2; 2/�� if x D 0

ŒŒ.0; 0/; .3; 3/�� if x 2 .0; 1�;

where ŒŒ.a; b/; .c; d /�� WD f.y1; y2/ j a � y1 � c; b � y2 � d g.
Then a minimal solutions of .SP � �u

C / in the sense of Definition 2.6.19 is only
x D 0. On the other hand, x 2 .0; 1� are not minimal solutions of .SP � �u

C / in the
sense of Definition 2.6.19, but for all x 2 .0; 1� there are y 2 F3.x/ such that .x; y/

are minimizers in the sense of Definition 2.6.1.

Further relationships between different solution concepts in set-valued optimiza-
tion are discussed in Sect. 2.7.

Applications of solution concepts based on set approach introduced in this
section are given in Sect. 15.4 concerning robustness, in Sect. 1.1 concerning
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game theory. Furthermore, in Sect. 8.2 we present duality assertions for the primal
problem .SP � �l

C /.

2.6.3 Solution Concepts Based on Lattice Structure

We recall in this section the concept of an infimal set (resp. supremal set), which is
due to Nieuwenhuis [442], was extended by Tanino [563], and slightly modified with
respect to the elements ˙1 by Löhne and Tammer [397]. We will shortly discuss
the role of the space of self-infimal sets, which was shown in [397] to be a complete
lattice. As we will see in Sect. 15.1, this complete lattice is useful for applications
of set-valued approaches in the theory of vector optimization, especially in duality
theory.

First, we recall the definitions of lower and upper bounds as well as the infimum
and supremum of a subset of a partially ordered set. Consider a partially ordered set
.Y; �/ and A 	 Y . As already introduced in Definition 2.1.6, an element l 2 Y is
called a lower bound of A if l � y for all y 2 A. Furthermore, an element u 2 Y is
called an upper bound of A if u � y for all y 2 A. Using lower and upper bounds,
the infimum and supremum for a subset A of a partially ordered set .Y; �/ is defined
in Definition 2.1.6. An element l 2 Y is called greatest lower bound or infimum of
A 	 Y if l is a lower bound of A and for every other lower bound l of A it holds
l � l . If the infimum of A exists we use the notation l D inf A for it. Analogously,
we define the least upper bound or supremum of A 	 Y and denote it by sup A.

Based on the definition of the infimum and supremum we introduce the notion of
a complete lattice that is important for the approach in this section.

Definition 2.6.24. A partially ordered set .Y; �/ is called a complete lattice if the
infimum and supremum exist for every subset A 	 Y .

A characterization of a complete lattice based on the existence of the infimum of
subsets A 	 Y is given by Löhne [395, Proposition 1.6].

Proposition 2.6.25. A partially ordered set .Y; �/ is a complete lattice if and only
if the infimum exists for every subset A 	 Y .

Let us give some examples for complete lattices (compare [395]).

Example 2.6.26. It is well known that R D R [ f˙1g equipped with the natural
order relation � provide a complete lattice.

Example 2.6.27. Consider a nonempty set Y and let P.Y / D 2Y be the power set
of Y . .P.Y /; 
/ is a complete lattice. The infimum and supremum of a nonempty
subset A 	 P.Y / are described by

inf A D
[

A2A

A; sup A D
\

A2A

A: (2.59)
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If A is empty, we put sup A D Y and inf A D ;. Y 2 P.Y / is the least
element and ; 2 P.Y / is the greatest element in .P.Y /; 
/.

Example 2.6.28. Consider a linear space Y and let C .Y / be the family of all convex
subsets of Y . .C .Y /; 
/ provides a complete lattice. The infimum and supremum
of a nonempty subset A 	 C .Y / is described by

inf A D conv
[

A2A

A; sup A D
\

A2A

A: (2.60)

If A is empty, we put again sup A D Y and inf A D ;:

Example 2.6.29. Consider a topological space Y and let F .Y / be the family of all
closed subsets of Y . .F .Y /; 
/ provides a complete lattice. By

inf A D cl
[

A2A

A; sup A D
\

A2A

A (2.61)

the infimum and supremum of a nonempty subset A 	 F .Y / are given.
If A is empty, we put again sup A D Y and inf A D ;:

Results concerning the infimum and supremum in the space of upper closed sets
are given in Proposition 2.6.40.

In the sequel, in this section we assume that .Y; �/ is a partially ordered linear
topological space, where the order is induced by a proper pointed convex cone C

satisfying ; ¤ int C ¤ Y . Here we do not assume that C is closed. However,
in Sect. 15.1 we will give a reformulation of a vector optimization problem as I -
valued problem, where the closedness of C is important (compare Proposition 2.17
in [395] and Sect. 2.7). We write y � y0 iff y0�y 2 C and y < y0 iff y0�y 2 int C .
We denote by Y � WD Y [ f�1g [ fC1g the extended space, where the ordering
is extended by the convention

8y 2 Y W �1 � y � C1:

The linear operations on Y � are extended by the following calculus rules in analogy
to that ones stated for the extended real space R:

0 � .C1/ D 0; 0 � .�1/ D 0;

8˛ > 0 W ˛ � .C1/ D C1;

8˛ > 0 W ˛ � .�1/ D �1;

8y 2 Y � W y C .C1/ D C1 C y D C1;

8y 2 Y [ f�1g W y C .�1/ D �1 C y D �1:

The extended space Y � is not a linear space.
In the following definition we introduce the upper closure of A 	 Y � (see [395,

397]) that is important for the formulation of the solution concept.
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Definition 2.6.30. The upper closure (with respect to C ) of A 	 Y � is defined to
be the set

Cl CA WD
8
<

:

Y if �1 2 A

; if A D fC1g
fy 2 Y j fyg C int C 	 A n fC1g C int C g otherwise.

We have [395, Proposition 1.40]

Cl CA WD
8
<

:

Y if �1 2 A

; if A D fC1g
cl ..A n fC1g/ C C / otherwise.

(2.62)

As introduced in Definition 2.4.2, the set of weakly minimal points of a subset
A 	 Y (with respect to C ) is defined by

WMin.A; C / D fy 2 A j A \ .fyg � int C / D ;g ;

and the set of weakly maximal points of A is defined by

WMax.A; C / D fy 2 A j A \ .fyg C int C / D ;g :

If A ¤ ;, A 	 Y we have [442, Theorem I-18]

WMin.Cl CA; C / D ; ” A C int C D Y ” Cl CA D Y:

In order to formulate set-valued optimization problems where the solution
concept is based on the lattice structure we introduce the notion of an infimal
set for a subset of Y � (see Nieuwenhuis [442], Tanino [563, 566] and Löhne,
Tammer [397]).

Definition 2.6.31 (Infimal Set). The infimal set of A 	 Y � (with respect to C) is
defined by

Inf A WD
8
<

:

WMin.Cl CA; C / if ; ¤ Cl CA ¤ Y

f�1g if Cl CA D Y

fC1g if Cl CA D ;:

Remark 2.6.32. We see that the infimal set of a nonempty set A � Y (with respect
to C ) coincides with the set of weakly minimal elements of the set cl .A C C / with
respect to C (WMin.cl .A C C /; C /), if cl .A C C / ¤ Y . Note that if A � Y then
WMin.A; C / D A \ Inf A.

By our conventions, Inf A is always a nonempty set. Clearly, if �1 belongs
to A, we have Inf A D f�1g, in particular, Inf f�1g D f�1g. Furthermore, it
holds Inf ; D Inf fC1g D fC1g and Cl CA D Cl C.A [ fC1g/ and hence
Inf A D Inf.A [ fC1g/ for all A 	 Y �.
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Considering the set of weakly maximal points WMax.A; C / of a set A � Y with
respect to C (see Definition 2.4.2) we define analogously the lower closure Cl� A

and the supremal set Sup A of a set A 	 Y �. It holds

Sup A D � Inf.�A/:

The following assertions were proved by Nieuwenhuis [442] and, in an extended
form, by Tanino [563].

Proposition 2.6.33. For A; B 	 Y with ; ¤ Cl CA ¤ Y and ; ¤ Cl CB ¤ Y it
holds

(i) Inf A D fy 2 Y j y 62 A C int C; fyg C int C 	 A C int C g,
(ii) A C int C D B C int C ” Inf A D Inf B ,

(iii) A C int C D Inf A C int C ,
(iv) Cl CA D Inf A [ .Inf A C int C /,
(v) Inf A, .Inf A � int C / and .Inf A C int C / are disjoint,

(vi) Inf A [ .Inf A � int C / [ .Inf A C int C / D Y .

Proposition 2.6.34. For A 	 Y �it holds

(i) Inf Inf A D Inf A, Cl CCl CA D Cl CA, Inf Cl CA D Inf A, Cl C Inf A D
Cl CA,

(ii) Inf.Inf A C Inf B/ D Inf.A C B/,
(iii) ˛ Inf A D Inf.˛A/ for ˛ > 0.

Proposition 2.6.35. Let Ai � Y � for i 2 I , where I is an arbitrary index set. Then
it holds

(i) Cl C
[

i2I

Ai D Cl C
[

i2I

Cl CAi ,

(ii) Inf
[

i2I

Ai D Inf
[

i2I

Inf Ai .

Proof. (i) As Cl C fC1g D ; and Cl CA D Cl C.A n fC1g/ we can assume that
C1 62 S

i2I Ai . We also assume f�1g 62 S
i2I Ai , because the statement is

otherwise obvious.
So we have

ClC
[

i2I

Ai D cl

 
[

i2I

Ai C C

!
D cl

 
[

i2I

cl.Ai C C /

!
CC D ClC

[

i2I

ClCAi :

(ii) Follows from (i) and Proposition 2.6.33 (iv). ut
In order to formulate set-valued optimization problems in an appropriate form for

deriving duality assertions (see Sects. 8.3 and 15.1) we introduce in the following
definitions the hyperspaces of upper closed sets and self-infimal sets.

Using the upper closure of A 	 Y (Definition 2.6.30) we introduce the
hyperspace of upper closed sets (compare Löhne, Tammer [397]).
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Definition 2.6.36 (Hyperspace of Upper Closed Sets).
The family F WD FC .Y / of all sets A 	 Y with

Cl CA D A

is called the hyperspace of upper closed sets.

In F we introduce an addition ˚F W F � F ! F , a multiplication by non-
negative real numbers ˇF W IRC � F ! F and an order relation 4F as follows:

A ˚F B WD cl .A C B/;

˛ ˇF A WD Cl C.˛ � A/

A 4F B W ” A 
 B:

We use the rule 0 � ; D f0g. This implies 0 ˇF ; D Cl Cf0g D cl C .
Furthermore, using the infimal set of A 	 Y � (Definition 2.6.31) we introduce

the hyperspace of self-infimal sets (compare [397]).

Definition 2.6.37 (Hyperspace of Self-Infimal Sets). The family I WD IC .Y �/

of all self-infimal subsets of Y �, i.e., all sets A 	 Y � satisfying

Inf A D A

is called hyperspace of self-infimal sets.

In I we introduce an addition ˚I W I � I ! I , a multiplication by non-
negative real numbers ˇI W IRC � I ! I and an order relation 4I as follows:

A ˚I B WD Inf.A C B/;

˛ ˇI A WD Inf.˛ � A/

A 4I B W ” Cl CA 
 Cl CB:

Note that the definition of ˚I is based on the inf-addition in Y �. As a consequence
we obtain f�1g ˚I fC1g D fC1g. Of course, for all A 2 I we get 0 ˇI A D
Inff0g D bd C . In the space of self-supremal sets the sup-addition in Y � is the
underlying operation (Fig. 2.6).

Lemma 2.6.38. For A; B 2 I with ; ¤ Cl CA ¤ Y and ; ¤ Cl CB ¤ Y we
have

A 4I B ” A \ .B C int C / D ;:

Proof. If Cl CA D ; or Cl CB D ; the proof is immediate, such that we assume
that Cl CA ¤ ; and Cl CB ¤ ;.
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Fig. 2.6 The addition and the ordering in I for C D IR2
C

Suppose that A 4I B . Taking into account the definition of 4I it holds
Cl CB 	 Cl CA. By Proposition 2.6.33 (iv) we have Cl CB D B [ .B C int C /.
This yields .B [ .B C int C // \ .A � int C / D ; because of Cl CB 	 Cl CA.
Therefore A \ .B C int C / D ;.

Conversely, if A\.B C int C / D ; then B C int C � AC int C . Hence Cl CB �
Cl CA and so A 4I B . ut

Proposition 2.6.39. The spaces .F ; ˚F ; ˇF ; 
/ and .I ; ˚I ; ˇI ; 4I / are iso-
morphic and isotone. The corresponding bijection is given by

j W F ! I ; j. � / D Inf. � /; j �1. � / D Cl C. � /:

Proof. By Proposition 2.6.34 (i), j is a bijection between F and I .
For A1; A2 2 F , we have j.A1/ ˚I j.A2/ D j.A1 ˚ A2/. This follows from

Proposition 2.6.34 (ii).
Similarly, we can easily verify that for ˛ � 0 and A; B 2 F we have

˛ ˇI j.A/ D j.˛ ˇF A/ and A 
 B ” j.A/ 4 j.B/: ut
Proposition 2.6.40. .F ; 
/ and .I ; 4/ are complete lattices. For nonempty
subsets A 	 F and B 	 I the infimum and supremum can be expressed by

inf A D cl
[

A2A

A; sup A D
\

A2A

A;

inf B D Inf
[

B2B

Cl CB; sup B D Inf
\

B2B

Cl CB:

Proof. For the space .F ; 
/ the statements are obvious and for .I ; 4/ they follow
from Proposition 2.6.39. ut
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Fig. 2.7 The infimum and supremum in I for C D IR2
C

As usual, if A � F and B � I are empty we define the infimum (supremum) to
be the largest (smallest) element in the corresponding complete lattice, i.e., inf A D
;, sup A D Y , inf B D fC1g and sup B D f�1g.

It follows the main result of this section, which shows that the infimum as well
as the supremum in I can be expressed in terms that frequently are used in vector
optimization (compare [442], [145, 563, 566]), but up to now not in the framework
of complete lattices (see Fig. 2.7).

Theorem 2.6.41. For nonempty sets B � I it holds

inf B D Inf
[

B2B

B; sup B D Sup
[

B2B

B:

Proof. (i) It holds inf B D Inf
S

B2B Cl CB D Inf Cl C
S

B2B Cl CB D
Inf Cl C

S
B2B B D Inf

S
B2B B .

(ii) We have to show that

Sup
[

B2B

B D Inf
\

B2B

Cl CB:

Then the assertion follows with Proposition 2.6.40.

a) If fC1g 2 B we have C1 2 S
B2B B and hence Sup

S
B2B B D fC1g.

On the other hand, since Cl C fC1g D ;, we have Inf
T

B2B Cl CB D Inf ; D
fC1g.

b) Let fC1g 62 B but f�1g 2 B. If f�1g is the only element in B the assertion
is obvious, otherwise we can omit this element without changing the expressions.

c) Let fC1g 62 B and f�1g 62 B. Then, B 	 Y and ; ¤ Cl CB ¤ Y for all
B 2 B, i.e., we can use the statements of Proposition 2.6.33. Define the sets

V WD
[

B2B

.B � int C / D
 
[

B2B

B

!
� int C
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and

W WD
\

B2B

Cl CB:

We show that V \W D ; and V [W D Y . Assume there exists some y 2 V \W .
Hence there is some NB 2 B such that y 2 � NB�int C

�\Cl C NB D ;, a contradiction.
Let y 2 Y n W (we have W ¤ Y , because otherwise it holds Cl CB D Y for
all B 2 B and hence f�1g 2 B). Then there exists some NB 2 B such that
y 62 Cl C NB . By Proposition 2.6.33 (iv), (vi) we obtain y 2 NB � int C � V .

If Cl �V D Y we have W D ;, hence Sup
S

B2B B D Sup V D fC1g D
Inf ; D Inf W . Otherwise, we have ; ¤ Cl �V ¤ Y and ; ¤ Cl CW ¤ Y . By
Proposition 2.6.33, we obtain

Sup
[

B2B

B D fy 2 Y j y 62 V; fyg � int C � V g

D fy 2 Y j y 2 W; .fyg � int C / \ W D ;g
D WMin.W; C / D WMin.Cl CW; C / D Inf W

and so the proof is completed. ut
We will see in Sect. 15.1 that the infimum/supremum in I is closely related

to the solution concepts of vector optimization because the infimal/supremal set is
closely related to the set of weakly minimal/maximal elements (see also Sect. 2.7).

We next show some calculus rules in the hyperspace I of self-infimal sets given
by Löhne, Tammer [398] and Löhne [395, Proposition 1.56].

Proposition 2.6.42. For subsets A ; B 	 I we have

(i) inf A ˚I B D inf A ˚I inf B
(ii) sup A ˚I B 4 sup A ˚I sup B.

Proof. (i) If A D ;, it holds inf A ˚I B D inf A D fC1g and so

inf A ˚I B D inf A ˚I inf B D fC1g:

Otherwise, we have

inf A ˚I B D Inf
[

A2A ;B2B

A ˚I B D Inf
[

A2A ;B2B

A C B

D Inf.
[

A2A

A C
[

B2B

B/ D Inf
[

A2A

A ˚I Inf
[

B2B

B

D inf A ˚I inf B: (2.63)
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(ii) For all A 2 A and B 2 B we have A ˚I B 4 sup A ˚I sup B. As I
is a complete lattice we can take the supremum on the left-hand side of the
inequality. This yields (ii).

ut
In the same manner like F and I we define the space F˘ of lower closed

subsets of Y and the space S of self-supremal subsets of Y �, where we underlie
the sup-addition in Y � in the latter case.

Using the infimal set given by Definition 2.6.31 we formulate set-valued
optimization problems based on lattice structure:

For an arbitrary set S , consider the following set-valued optimization problem

Inf
[

x2S

F.x/ (SPY )

with a set-valued objective map F W S � Y �. We denote the domain of F W S �
Y � by Dom F WD fx 2 S j F.x/ ¤ ; and F.x/ ¤ fC1gg.

Next, we introduce a solution concept for set-valued optimization problems in
the hyperspace of self-infimal sets .I ; ˚I ; ˇI ;4I / (see Definition 2.6.37 and
Definition 2.6.31 for infimal sets).

Definition 2.6.43 (Infimal Set of .SPY /). The set NP WD Inf
S

x2S F.x/ is the
solution set of the set-valued optimization problem .SPY /.

Since Inf
S

x2S F.x/ D Inf
S

x2S Inf F.x/, .SPY / can be expressed as an I -
valued problem; without loss of generality we can assume that the sets F.x/ are
self-infimal, i.e., F W S ! I . Thus we consider the following problem.

NP D Inf
[

x2S

F.x/ D inf
x2S

F.x/: (SP� �I )

Furthermore, in Sect. 8.3.1 we derive duality assertions for F -valued optimiza-
tion problems. We consider the space .F ; 
/ (see Definition 2.6.36), where the
order relation is given by

A 4F B W ” A 
 B

for subsets A, B of F .
In order to formulate the F -valued optimization problem we study an objective

map F W X ! F , i.e., the objective function values of F are subsets of
the hyperspace of upper closed sets introduced in Definition 2.6.36. Using these
notations we study the F -valued problem

NP WD inf
x2X

P .x/ D cl
[

x2X

F .x/: (SP� �F )



64 2 Order Relations and Ordering Cones

Remark 2.6.44. In Sect. 8.3 we will show duality assertions for F -valued (I -
valued, respectively) primal problems and corresponding dual problems based on
conjugation as well as Lagrangian technique. Furthermore, in Sect. 15.1 we will use
the lattice approach for deriving duality assertions for vector optimization problems.

Remark 2.6.45. In the special case of single-valued functions F D f W S �! Y

the problems (SP� �I ) and (SP� �F ) coincide.

In Sect. 14.2 we will present an algorithm for solving set-valued optimization
problems where the objective map has a polyhedral convex graph. There we will
need the following notions and assertions concerning the infimum and supremum
in a subspace of the hyperspace of upper closed sets .F ; ˚F ; ˇF ; 
/ (see
Definition 2.6.36), see Löhne [395].

Definition 2.6.46. The subspace of all closed convex subsets of an extended
partially ordered linear topological space Y � is given by

Fconv WD fA � F j 8� 2 .0; 1/ W � ˇ A ˚ .1 � �/ ˇ A D Ag:

The space Fconv can be characterized using the convex hull (compare
Löhne [395, Proposition 1.59]).

Proposition 2.6.47. Assume that Y is a linear topological space ordered by a
proper pointed convex cone C � Y with int C ¤ ; and let F D FC .Y /. Then

Fconv D fA 	 Y j ClC conv A D Ag:

Proof. Taking into account

A D ClC conv A ” A D conv A ^ A D ClCA ”

8� 2 Œ0; 1� W A D ClC.�A C .1 � �/A/ ”
8� 2 Œ0; 1� W A D � ˇ A ˚ .1 � �/ ˇ A ut

Proposition 2.6.48. .Fconv; 
/ is a complete lattice. For nonempty subsets A 	
Fconv the infimum and supremum can be expressed by

inf A D cl conv
[

A2A

A; sup A D
\

A2A

A:

Proof. For all A 2 A , where A is a nonempty subset of Fconv we get with
Proposition 2.6.47 A D ClC conv A. This yields

cl conv
[

A2A

A D cl conv
[

A2A

ClC conv A D cl conv
[

A2A

cl conv.A C C /
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D cl conv
[

A2A

.A C C / D cl
��

conv
[

A2A

A
�C C

�

D ClC conv
[

A2A

A:

So we get cl conv
S

A2A A 2 Fconv. Since
T

A2A A is convex and upper closed, we
can conclude

T
A2A A 2 Fconv. So we get the assertions of the proposition. ut

2.6.4 The Embedding Approach by Kuroiwa

An important approach for deriving optimality conditions and algorithms for
solving set-valued optimization problems is based on the introduction of an
embedding space into which the set-valued optimization problem is embedded
(see Kuroiwa [353, 354]). With this approach Kuroiwa [354] defines notions of
directional derivatives for set-valued maps and derives corresponding necessary and
sufficient optimality conditions (compare Sect. 12.10). In this section we present
results given by Kuroiwa in [353, 354, 357].

Let Y be a n.v.s., let C be a proper closed convex pointed cone in Y with int C ¤
; and int C C ¤ ;.

The set relation �cl
C discussed in this section is defined as follows (cf. Defini-

tion 2.6.9): For A, B � Y ,

A �cl
C B W” cl.A C C / 
 B: (2.64)

We consider minimal solutions with respect to the quasi-order �cl
C given in (2.64)

in the sense of Definition 2.6.19, and the corresponding set-valued optimization
problem is given by

�cl
C �minimize F.x/; subject to x 2 S; (SPA � �cl

C )

where F W S � Y is a set-valued objective mapping and S is a set.
We are looking for minimal solutions of (SPA � �cl

C ) in the sense of Defini-
tion 2.6.19, i.e., for elements x 2 S with

F.x/ �cl
C F.x/ for some x 2 S H) F.x/ �cl

C F.x/:

As already mentioned, a subset A of Y is said to be C -convex if ACC is convex.
Furthermore, A 	 Y is said to be C C-bounded if hy�, Ai is bounded from below
for any y� 2 C C, where C C is the positive dual cone of C .

Let G be the family of all nonempty C -convex and C C-bounded subsets of
Y . In the following, we introduce a process of construction of a normed space V
into which G is embedded. This approach goes back to Kuroiwa and Nuriya [357].
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At first, we introduce an equivalence relation � on G 2 : For all
.A; B/; .D; E/ 2 G 2 ,

.A; B/ � .D; E/ W” cl.A C E C C / D cl.B C D C C /:

The quotient space G 2= � is denoted by V , where

V WD fŒA; B�j.A; B/ 2 G 2g;

where ŒA, B� WD f.D; E/ 2 G 2j.A; B/ � .D; E/g .
Furthermore, we define addition and scalar multiplication on the quotient space

V as follows:

ŒA; B� C ŒD; E� WD ŒA C D; B C E� ;

� � ŒA; B� WD
�

Œ�A; �B� if � � 0

Œ.��/B; .��/A� if � < 0:

Then .V ; C; �/ is a vector space over R.
In order to introduce an order relation on V we define the following subset of

V by

	.C / WD fŒA; B� 2 V jB �cl
C Ag: (2.65)

It is easy to see that 	.C / is a pointed convex cone in V .
Using the pointed convex cone 	.C /, we define an order relation �	.C / on V

as follows:

ŒA; B� �	.C / ŒD; E� W” ŒD; E� � ŒA; B� 2 	.C /:

Then, .V , C, �, �	.C // is an ordered vector space over R .
Let a function ' from G to V be given by

'.A/ WD ŒA; f0g� for all A 2 G ;

then

A �cl
C B , '.A/ �	.C / '.B/;

for any A, B 2 G .
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By using this function ', the set optimization problem (SPA � �cl
C ) can be

transformed into a vector optimization problem in the following sense: If F is
a map from S to G , then x 2 S is a minimal solution of (SPA � �cl

C ) if and only if

' ı F.S/ \ .' ı F.x/ � 	.C // D f' ı F.x/g: (2.66)

Formula (2.66) means that ' ı F.x/ is a Pareto minimal point of ' ı F.S/ with
respect to 	.C /, i.e., ' ı F.x/ 2 Min.' ı F.S/; 	.C // (see Definition 2.4.1).

Finally, we introduce a norm j � j in G 2= �. Consider c 2 int C and a weak*
compact base W WD fy� 2 C C j hy�; ci D 1g of C C, then for each ŒA; B� 2 V ,

j ŒA; B� j WD sup
y�2W

j infhy�; Ai � infhy�; Bij;

is well-defined. Furthermore, let

V .W / WD fŒA; B� 2 V j j ŒA; B� j < C1g;

then .V .W /; j � j/ is a normed vector space, and 	.C / is closed in .V .W /; j � j/ .
In Sect. 12.10 we derive necessary and sufficient conditions for solutions of

(SPA � �cl
C ) using this embedding approach.

2.6.5 Solution Concepts with Respect to Abstract Preference
Relations

In this section we present a solution concept for set-valued optimization problems
with geometric constraints useful in welfare economics (introduced by Bao and
Mordukhovich [28]).

minimize F.x/ subject to x 2 S; (SPA)

where the cost mapping F W X � Y is a set-valued mapping, X and Y are Banach
spaces and S is a subset of X .

The “minimization” in (SPA) is understood with respect to a certain preference
relation on Y. This general (abstract) preference relation on Y is defined as follows
(see Sect. 2.1 or [431, Subsection 5.3.1]): For a given nonempty subset R � Y �Y ,
one says that y1 is preferred to y2 (we write y1 � y2) if .y1; y2/ 2 R.

Following Bao and Mordukhovich [28] we will study a preference on Y directly
in terms of a given preference mapping L W Y � Y instead of a preference � on Y

described via a subset R � Y � Y . The level-set mapping L W Y � Y associated
to the preference relation � is defined by

L.y/ WD fu 2 Y j u � yg: (2.67)
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This means that u 2 Y is preferred to y if u 2 L.y/.
An abstract preference � has to satisfy some requirements in order to be useful

in optimization and applications, especially in economics and engineering. In [431,
Definition 5.55] three properties imposed in order to postulate the notion of closed
preference relations as follows:

• The preference relation � is nonreflexive, this means that .y; y/ … R for all
y 2 Y ;

• Given some y 2 Y (a local minimizer in the sequel), the preference � is locally
satiated around y in the sense that y 2 cl L.y/ for all y in some neighborhood
of y.

• The preference � is almost transitive meaning that

Œu 2 L.y/; v 2 cl L.u/� H) v 2 L.y/: (2.68)

Especially, in the study of vector optimization problems the almost transitivity
property is widely used (under different names) ; see, e.g., [41, 431, 433, 624, 625]
and the references therein. However, the almost transitivity property turns out to be
rather restrictive, in contrast to the first two properties of � formulated above. In
particular, for the Pareto minimality (compare Definition 2.4.1) defined by

y1 � y2 W” y2 � y1 2 C n f0g (2.69)

via an ordering cone C � Y , the preference � is almost transitive if and only if C

is convex and pointed; see [431, Proposition 5.56]. For the lexicographical order on
R

q and other natural preference relations important in vector optimization and its
applications including those to welfare economics (see Sect. 15.3) this property of
the ordering cone is not fulfilled.

Bao and Mordukhovich [28] developed an approach to preference relations in
set-valued optimization that is motivated by applications to models in welfare
economics and allows to avoid the almost transitivity condition (2.68), which does
not usually hold for many economies. They required the most natural local satiation
property of the preference mapping L formulated at the reference optimal solution.
The following solution concept is introduced by Bao and Mordukhovich [28,
Definition 3.1]:

Definition 2.6.49 (Fully Localized Minimizers for Constrained Set-Valued
Optimization Problems). Consider the problem (SPA). Let .x; y/ 2 graph F

and x 2 S . Then

• .x; y/ is called a fully localized weak minimizer for (SPA) if there exist
neighborhoods U of x and V of y such that there is no y 2 F.S \ U / \ V

preferred to y, i.e.,

F.S \ U / \ L.y/ \ V D ;: (2.70)
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• .x; y/ is called a fully localized minimizer for (SPA) if there exist neighbor-
hoods U of x and V of y such that there is no y 2 F.S \ U / \ V with y ¤ y

and y 2 cl L.y/, i.e.,

F.S \ U / \ cl L.y/ \ V D fyg: (2.71)

• .x; y/ is called a fully localized strong minimizer for (SPA) if there exist
neighborhoods U of x and V of y such that there is no .x; y/ 2 graph F \
.U � V / with .x; y/ ¤ .x; y/ satisfying x 2 S and y 2 cl L.y/, i.e.,

graph F \ .S � cl L.y// \ .U � V / D f.x; y/g: (2.72)

In Sect. 12.11, Theorem 12.11.3 we derive first order necessary conditions
for fully localized minimizers. Furthermore, we study applications in welfare
economics in Sect. 15.3.

Remark 2.6.50. It is easy to see that each fully localized strong minimizer for (SPA)
is also a fully localized minimizer for (SPA). Furthermore, each fully localized
minimizer for (SPA) is also a fully localized weak minimizer for (SPA). In the
case S D X in Definition 2.6.49, we speak about the corresponding fully localized
minimizers for the mapping F.

Remark 2.6.51. For all of the concepts in Definition 2.6.49 (see Bao and Mor-
dukhovich [28, Definition 3.1]) the underlying feature is that one introduces the
image localization of minimizers in constructions (2.70), (2.71), (2.72). These
concepts introduced in [28, Definition 3.1] are different from the concepts discussed
before even for minimal points and weakly minimal points of single-valued
objectives F WD f W X �! Y and allow to study local Pareto-type optimal
allocations of welfare economics (see Sect. 15.3). The concept of (global or
local) strong minimizers was first time introduced in [28, Definition 3.1] for
set-valued optimization problems; it is related to Khan’s notion of strong Pareto
optimal allocations for models of welfare economics (compare Khan [324]) and the
corresponding relationships established in Sect. 15.3.

Example 2.6.52. In this example we will see that a fully localized strong minimizer
may not provide a partially localized (i.e., with V D Y ) minimum or weak
minimum in (2.70) and (2.71). To see this, we consider a set-valued mapping
F W R � R defined by

F.x/ WD
8
<

:

f�xg if x < 0

f0; 1g if x D 0

fx C 1g if x > 0;

with respect to the usual order on R generating the level sets L.y/ D .�1; y/,
it is easy to see that condition (2.72) is fulfilled at .0; 1/ with U D .� 1

2
; 1

2
/ and

V D . 1
2
; 3

2
/ but conditions (2.70) and (2.71) do not hold with V D R.
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Example 2.6.53. Now, we will see that the localized minimizers and weak
minimizers in Definition 2.6.49 are identical in the case of scalar set-valued
optimization with Y D R and L.y/ D .�1; y/, but they may be quite different in
the vector-valued case. For example, if we consider an objective map F W R � R

2

with F.x/ � R
2 n intR2� and the usual weak preference on R

2 with the level sets
L.y/ D y �intR2C (see Definition 2.6.2), we have that .0; 0/ 2 R�R

2 is a localized
weak minimizer for F, but it is not a localized minimizer for this mapping. Note
finally that localized strong minimizers reduce to standard isolate minimizers for
scalar single-valued optimization problems.

2.6.6 Set-Valued Optimization Problems with Variable
Ordering Structure

In the book by Chen, Huang and Yang [91] set-valued optimization problems with
variable ordering structure are introduced, where the solution concept is related
to the solution concept for vector optimization problems with variable ordering
structure given in Definition 2.5.1.

Let X and Y be Banach spaces , S � X be nonempty. Furthermore, let C W X �
Y be a cone-valued mapping. We assume that for every x 2 X , the set C.x/ is a
proper closed convex cone with nonempty interior int C.x/.

We consider a set-valued objective mapping F W X � Y and a set-valued
optimization problem with variable ordering structure

v-minimize F.x/ subject to x 2 S; (SPv)

where “v-minimize” stands for problems with variable ordering structure with
respect to a cone-valued mapping C W X � Y in the following sense:

Definition 2.6.54 ((Weak) v-Minimizer of .SPv/). Let x 2 S and y 2 F.x/.

(a) The pair .x; y/ is called a v-minimizer of .SPv/ if

.F.S/ � y/ \ .�C.x// D f0g:

(b) The pair .x; y/ is called a weak v-minimizer of .SPv/ if

.F.S/ � y/ \ .� int C.x// D ;:

In the following we will show that a set-valued optimization problem .SPv/ can
be transformed into an equivalent vector-optimization problem in the sense that their
v-minimal solution pairs are identical.

Definition 2.6.55. A cone-valued map C W X � Y is pointed on S � X if the
cone [x2S C.x/ is pointed, i.e.,
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.[x2SC.x// \ .� [x2S C.x// D f0g:

Remark 2.6.56. A cone-valued map C W X � Y is pointed on S if and only if

8x1; x2 2 S W C.x1/ \ .�C.x2// D f0g:

For deriving the relationships between v-minimizers of a set-valued problem with
variable ordering structure .SPv/ in the sense of Definition 2.6.54 and v-minimal
points of a corresponding vector optimization problem with an objective function
f W X ! Y (see Definition 2.5.1) we need a certain monotonicity property
concerning the set-valued map C with respect to f .

Definition 2.6.57. Let f W X ! Y be a vector-valued function and C W X � Y be
a cone-valued mapping. The cone-valued mapping C is called weakly f-monotone,
if for all x1; x2 2 X , c1 2 C.x1/,

f .x1/ � f .x2/ 2 c1 C C.x2/ H) C.x2/ � C.x1/:

The following relationships between v-minimal points of a vector optimization
problem (VPv) and v-minimizers of a set-valued optimization problem (SPv) are
shown by Chen, Huang and Yang [91, Proposition 2.63].

Proposition 2.6.58. Let S � X and C W X � Y be a pointed cone-valued
mapping on S . Furthermore, let f W X ! Y be a vector-valued function and
F W X � Y be given by

F.x/ D f .x/ C C.x/ .x 2 X/: (2.73)

(a) Suppose that C is weakly f -monotone. If x 2 S is a v-minimal point of the
vector optimization problem (VPv):

Min.f .S/; C.�//;

then .x; f .x// is a v-minimizer of the set-valued optimization problem (SPv):

v-minimize F.x/ subject to x 2 S:

(b) If .x; y/ is a v-minimizer of the set-valued optimization problem .SPv/, then x

is a v-minimal point of the vector optimization problem .VPv/ and y D f .x/.

Proof. First, we show that .a/ holds. Consider a v-minimal point x 2 S of the
problem .VPv/. Then

8x 2 S W f .x/ � f .x/ … �C.x/ n f0g:
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This yields

8x 2 S W .f .x/ � f .x/ C C.x// \ .�C.x/ n f0g/ D ;: (2.74)

Indeed, if there exists Qx 2 S with

.f . Qx/ � f .x/ C C. Qx// \ .�C.x/ n f0g/ ¤ ;;

then there exists c 2 C.x/ and c ¤ 0 such that

�c 2 f . Qx/ � f .x/ C C. Qx/:

This means

f .x/ � f . Qx/ 2 c C C. Qx/:

Taking into account the weak f-monotonicity of C , we get

f . Qx/ � f .x/ 2 �c � C.x/:

Furthermore, since C is pointed and c ¤ 0, it follows that

f . Qx/ � f .x/ 2 �C.x/ n f0g;

in contradiction to the assumption that x is a v-minimal point of the problem .VPv/.
Taking into account (2.73) and (2.74) we get

8y 2 F.x/; x 2 S W y � f .x/ … �C.x/ n f0g:

Hence, .x; f .x// is a v-minimizer of the set-valued optimization problem .SPv/.
Now, we will prove .b/. Let us assume that .x; y/ is a v-minimizer of the set-

valued optimization problem .SPv/. Then,

y 2 F.x/ D f .x/ C C.x/

and

8y 2 F.S/ W y � y … �C.x/ n f0g: (2.75)

Of course, it holds y D f .x/. We have to show that x is a v-minimal point of
the vector optimization problem .VPv/. Contrarily, suppose that x is not a v-minimal
point of the vector optimization problem .VPv/. Then, for some element Qx 2 Snfxg,

f . Qx/ � f .x/ 2 �C.x/ n f0g:



2.6 Solution Concepts in Set-Valued Optimization 73

So we get

f . Qx/ � y 2 �C.x/ n f0g;

because of f .x/ D y, in contradiction to (2.75). Hence, x is a v-minimal point of
the vector optimization problem .VPv/. ut
Remark 2.6.59. In the book by Chen, Huang, Yang [91, Theorem 2.64] necessary
conditions for weak v-minimizers of (SPv) are shown using the contingent
derivative.

Remark 2.6.60. Necessary and sufficient optimality conditions in form of the
Fermat rule for nondominated solutions of unconstrained set-valued optimization
problems with variable ordering structure and the Lagrange multiplier rule for
the constrained set-valued problems with variable ordering structure are given by
Eichfelder and Ha in [168].

2.6.7 Approximate Solutions of Set-Valued Optimization
Problems

In this section we introduce a concept of approximate solutions in set-valued
optimization. Approximate solutions are of interest from the theoretical as well as
computational point of view. Especially, in order to formulate set-valued versions of
Ekeland’s variational principle (compare Chap. 10) and a subdifferential variational
principle for set-valued mappings (see Sect. 12.9) one is dealing with approximate
solutions.

We consider a set-valued optimization problem:

minimize F.x/ subject to x 2 X; (SP)

where X is a linear space, Y is a linear topological space, C � Y is a proper closed
convex cone and the cost mapping F W X � Y is a set-valued mapping.

The following concepts for approximate solutions of the set-valued problem
.SP/ was given by Bao and Mordukhovich [27, Definition 3.4] and is related to
minimizers introduced in Definition 2.6.1.

Definition 2.6.61 (Approximate Minimizers of Set-Valued Optimization Prob-
lems). Let x 2 X and .x; y/ 2 graph F . Then:

(i) Consider " > 0 and k0 2 C n f0g. The pair .x; y/ 2 graph F is called an
approximate "k0-minimizer for F if

y C "k0 … y � C for all y 2 F.x/ with x ¤ x:
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(ii) Consider " > 0 and k0 2 C n f0g. The pair .x; y/ 2 graph F is called a strict
approximate "k0-minimizer for F if there is a number 0 < Q" < " such that
.x; y/ is an approximate Q"k0-minimizer of this mapping.

In Sect. 12.9, Theorem 12.9.1, we will show necessary conditions for strict
approximate "k0-minimizers of F .

2.7 Relationships Between Solution Concepts

In this section we study the relationships between different solution concepts in
set-valued optimization. Furthermore, we discuss the special case that the objective
map is single-valued.

Let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C , X a linear space, S a subset of X and F W X � Y . We consider the
set-valued optimization problem (SP):

minimize F.x/ subject to x 2 S: (2.76)

In the formulation of the solution concepts based on set approach the underlying
space is a linear topological space Y whereas the extended space Y � WD Y [f�1g[
fC1g is considered in the formulation of the solution concepts based on lattice
approach in order to work with infimum and supremum.

Remark 2.7.1. The differences between the solution concepts based on
set-approach in Definition 2.6.19 and the solution concepts based on vector
approach in Definition 2.6.1 are already discussed in Examples 2.6.21, 2.6.22
and 2.6.23.

Remark 2.7.2. In the special case of single-valued functions F D f W X �! Y

the concept of minimizers of the set-valued problem (SP) (see Definition 2.6.1)
coincides with the solution concept for Pareto minimal points of f .S/ with respect
to C introduced in Definition 2.4.1: .x; f .x// 2 graph f is a minimizer in the sense
of Definition 2.6.1 if and only if f .x/ is a Pareto minimal point of f .S/ with respect
to C , i.e., f .x/ 2 Min.f .S/; C /.

Remark 2.7.3. In the special case of single-valued functions F D f W X �! Y

the concept of minimal solutions of the problem .SP � �/ (see Definition 2.6.19)
w.r.t. the order relations introduced in Definition 2.6.9 coincides with the solution
concept for Pareto minimal points given in Definition 2.4.1.

In the following we consider a linear topological space Y , a linear space X ,
S 	 X , a set-valued map F W X � Y , F.S/ D S

x2S F.x/ ¤ ; and a proper
pointed closed convex cone C � Y with int C ¤ ;. The relationship between the
infimal set of F.S/ (Definition 2.6.31) and weak minimizers of F.S/ in the sense
of Definition 2.6.2 is given in the next proposition.
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Proposition 2.7.4. Under the assumption that F.S/ D cl.F.S/ C C / we get

WMin.F.S/; C / D Inf F.S/:

Proof. Taking into account the assumption F.S/ D cl.F.S/CC / and the definition
of the infimal set we get

WMin.F.S/; C / D WMin.cl.F.S/CC /; C / D WMin.ClCF.S/; C / D Inf F.S/:

The proof is completed. ut
The assertion of Proposition 2.7.4 says that the solution concept for I -valued

problems coincides with the set WMin.F.S/; C / in Definition 2.6.3 for weak
minimizers.

Furthermore, if we assume that F.S/ C C is closed we get the following
assertion.

Proposition 2.7.5. Under the assumption that F.S/ C C is closed we get

Inf F.S/ D WMin.F.S/ C C; C /:

Proof. Because of the closedness of F.S/ C C we get

WMin.F.S/ C C; C / D WMin.cl.F.S/ C C /; C / D Inf F.S/;

taking into account Definition 2.6.31. ut
Corollary 2.7.6. Assuming that F.S/ C C is closed and WMin.F.S/ C C; C / D
WMin.F.S/; C / we get

Inf F.S/ D WMin.F.S/; C /:

In Sect. 15.1 we will use methods of set-valued optimization for deriving
duality assertions for vector optimization problems. The relationships between
vector optimization problems and I -valued problems are discussed by Löhne and
Tammer [397] and in a comprehensive and detailed way by Löhne [395].

Let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C , X a linear space, S a subset of X and f W X �! Y � a vector-valued
function. We consider the vector optimization problem

Min.f .S/; C /: (VOP)

In Sect. 15.1 we will see that it is very useful to assign to (VOP) a corresponding
I -valued problem such that one can use the complete lattice structure of
.I ; �WD�I /, where .I ; �/ is defined with respect to the ordering cone C of
the vector optimization problem.
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For a given vector-valued function f W X �! Y � we put

f W X �! I ; f .x/ WD Infff .x/g

and assign to (VOP) the I -valued problem

� �minimize f subject to x 2 S: (VOPI )

Problem (VOPI ) is said to be the I -extension of the vector optimization problem
(VOP) (see Löhne [395]). The lattice extension of the vector optimization problem
(VOP) allows us to handle the problem in the framework of complete lattices. For
this extension it is important that the ordering cone C is closed as we will see in the
proof of the following proposition.

The following assertion is shown by Löhne [395, Proposition 2.17].

Proposition 2.7.7. For all x; u 2 X it holds

f .x/ �C f .u/ ” f .x/ � f .u/:

Proof. Consider y D f .x/ and z D f .u/. Let Inffyg � Inffzg, then ClCfyg 

ClCfzg. With (2.62) we can conclude z 2 cl.fzg C C / 	 cl.fyg C C /. Because of
the assumption that C is closed, we get z 2 fyg C C . This means y �C z. The
opposite inclusion is obvious. ut

As a direct consequence of Proposition 2.7.7 we get corresponding assertions
concerning the solutions of (VOP) and (VOPI ) (see Löhne [395, Proposition 2.18]).

Finally, it is important to mention the following references. In the paper by
Hernández, Jiménez, Novo [244], Benson proper efficiency in set-valued opti-
mization is discussed. Hernández, Jiménez, Novo study in [245] weak and proper
efficiency in set-valued optimization. Flores-Bazán, Hernández characterize effi-
ciency without linear structure in [189]. Moreover, Hernández, Rodríguez-Marín,
Sama describe solutions of set-valued optimization problems [253]. Furthermore,
in Hernández, Rodríguez-Marín [250] certain existence results for solutions of set
optimization problems are derived.
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