Chapter 2
Order Relations and Ordering Cones

In this chapter, first, we give an introduction to order relations and cone properties.
Then we present a detailed overview of solution concepts in vector-valued as well as
set-valued optimization. We introduce and discuss the following solution concepts
for set-valued optimization problems:

* solution concepts based on vector approach,
* solution concepts based on set approach,
* solution concepts based on lattice structure.

Furthermore, we present the embedding approach by Kuroiwa and show
how it is possible to transform a set-valued optimization problem into a vector
optimization problem using this embedding approach. Solution concepts for
set-valued optimization problems with respect to abstract preference relations
and for set-valued problems with variable order structure are studied. Moreover,
we introduce approximate solutions of set-valued optimization problems. Finally,
relationships between different solution concepts are studied.

2.1 Order Relations

In this section, our objective is to study some useful order relations. We begin by
recalling that given a nonempty set M, by M x M we represent the set of ordered
pairs of elements of M, that is,

M x M = {(x1,x2) | x1,x2 € M}.

The following definition gives the notion of an order relation.

Definition 2.1.1. Let M be a nonempty set and let % be a nonempty subset of
M x M. Then & is called an order relation (or a binary relation) on M and the
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12 2 Order Relations and Ordering Cones

pair (M, Z) is called a set M with order relation &%. The containment (x, x;) € Z
will be denoted by x;Zx,. The order relation % is called:

(a) reflexive if for every x € M, we have xZx;
(b) transitive if for all x;, x,, x3 € M, the relations x; Zx, and x, % x3 imply that

X];@)Q;
(c) antisymmetric if for all x;,x, € M, the relations x1Zx; and x,Zx; imply
that x; = x,.

Moreover, an order relation & is called a preorder on M if & is transitive,
a quasiorder if % is reflexive and transitive and a partial order on M if %
is reflexive, transitive, and antisymmetric. In all the three cases, the containment
(x1,x2) € Z is denoted by x; <z x;, or simply by x; < x; if there is no risk of
confusion. The binary relation Z is called a linear or total order if % is a partial
order and any two elements of M are comparable, that is

(d) forall x;,x, € M either x; < x; or x, <z Xi.

Furthermore, if each nonempty subset M’ of M has a first element x’ (meaning
that x’ € M’ and x’ <4 x ¥V x € M’), then M is called well-ordered.

We recall Zermelo’s theorem: For every nonempty set M there exists a partial
order Z on M such that (M, %) is well-ordered.

An illustrative example of a relation is Ay = {(x,x) | x € M} which
is reflexive, transitive, and antisymmetric, but it satisfies (d) only when M is a
singleton.

We recall that the inverse of the relation Z C M x M is the relation
A= {(x1,;00) € M X M | (x2,x1) € Z},
and if ./ is a relation on M, then the composition of &% and . is the relation
S o ={(x1,x3)|Tx2 € M | (x1,x2) € Z, (x2,x3) € S}.

Using these two notations, the conditions (a), (b), (c), and (d) are equivalent to
Ay CRRRCRRENKE C Ay and ZU %' = M x M, respectively.

Definition 2.1.2. Let % be an order relation on the nonempty set M and let M, C
M be nonempty. An element xo € M is called a maximal (minimal) element of
M, relative to Z if for every x € My,

Xo#x = XxAEx¢ (xZxy = xoZx). 2.1

The collection of all maximal (minimal) elements of M, with respect to (W.r.t.
for short) & is denoted by Max(My, Z) Min(My, %Z)).

Note that x( is a maximal element of My w.r.t. Z if and only if x; is a minimal
element of My w.r.t. 27", and hence Max(My, Z) = Min(My, Z~).
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Remark 2.1.3. 1. If the order relation % in Definition 2.1.2 is antisymmetric, then
Xo € My is maximal (minimal) if and only if for every x € M,

XoZx = x =x9 (x%Zx9 = xo0 = x). (2.2)

2. If #Z is an order relation on M and @ # My C M, then %, := Z N (Mo x M) is
an order relation on M. In such a situation, the set M, will always be endowed
with the order structure %, if not stated explicitly otherwise. If Z is a preorder
(partial order, linear order) on M, then %, is a preorder (partial order, linear
order) on M. Therefore, x is a maximal (minimal) element of M, relative to %
iff xo is a maximal (minimal) element of M| relative to Z,.

In the following, we give some examples to illustrate the above notions.

Example 2.1.4. (1) Assume that X is a nonempty set and M := Z(X) represents
the collection of subsets of X. Then the order relation % := {(A4, B) € M xM |
A C B} is a partial order on M. However, if X contains at least two elements,
then % is not a linear order.

(2) Assume that N is the set of non-negative integers and

L@N::{(}11’}12)EI\IXRIIEPGI\I . n2=nl+p}'

Then N is well-ordered by #y. Note that Zy defines the usual order relation on
N, and n;%Znn, will always be denoted by n; < n, or, equivalently, n, > n;.

(3) LetR be the set of real numbers and let R4 := [0, co[ be the set of non-negative
real numbers. The usual order relation on R is defined by

By = {(x1,x) eERxR|Iy eRy 1 xp = x1 + y}.

Then %) is a linear order on R, but R is not well-ordered by Z;. In the
following, the fact x| %) x, will always be denoted by x; < x; or, equivalently,
Xy > X1.

(4) Givenn € N, n > 2, we consider the binary relation %, on R” defined by

Ky = {(x,y) eR"xR" |Vieln : x <y},

where x = (X1,....%,), ¥y = V1,...,yp)and I,n == {i e N| 1 <
i < n}. Then %, is a partial order on R”, but &%, is not a linear order.
For example, the elements e¢; and e, are not comparable w.r.t. %,, where
e; :=(0,...,0,1,0,...,0) € R". As usual, by e¢; we denote the vector whose
entries are all 0 except the i th one, which is 1).

Remark 2.1.5. Every well-ordered subset W of R (equipped with its usual partial
order defined above) is at most countable. Indeed, every element y € W, except
the greatest element w of W (provided that it exists), has a successor s(y) € W.
Clearly, if y,y" € W, y < y’, then s(y) < y’. Therefore, fixing ¢, € Q such that
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y <qy, <s(y) fory e W\ {w}, we get an injective function from W \ {w} into Q,
and so W is at most countable.

We emphasize that even when & is a partial order on M, a nonempty subset M
of M may have zero, one, or several maximal elements, but if & is a linear order,
then every subset has at most one maximal (minimal) element.

Definition 2.1.6. Let @ # My C M and let % be an order relation on M. Then:

1. M, is lower (upper) bounded (w.r.t. Z) if there exists a € M such that aZx
(xZa) for every x € M. In this case, the element « is called a lower (upper)
bound of M, (w.r.t. #).

2. If, moreover, Z is a partial order, we say thata € M is the infimum (supremum)
of My if a is a lower (upper) bound of M, and for any lower (upper) bound &’ of
M, we have that a’ Za (aZ#a’).

In set-valued optimization, the existence of maximal elements w.r.t. order
relations is an important problem. For this, the following Zorn’s lemma (or Zorn’s
axiom) plays a crucial role.

Axiom 2.1.7 (Zorn) Let (M, <) be a reflexively preordered set. If every nonempty
totally ordered subset of M is upper bounded, then M has maximal elements.

We recall that given a linear space X, a nonempty set M C X is affine (or a
linear manifold) if Ax + (1 — A1)y € M forall x,y € M and A € R. A nonempty
set C of X is called convex if [x, y] ;= {Ax + (1 —A)y | A € [0, 1]} C C forall
x,y € C. By convention the empty set @ is considered to be affine and convex. It
is obvious that a linear subspace is affine and an affine set is convex. Moreover, any
intersection of linear subspaces, affine sets, or convex sets is a linear subspace, an
affine set, or a convex set, respectively. These properties allow us to introduce the
linear hull, the affine hull, and the convex hull of a nonempty set A C X as being,
respectively,

linA := ﬂ{Y C X | ACY, Y linear subspace} ,
aff A := (\{M C X | A C M. M linear manifold} .
convA4 = ﬂ{C C X |AcCC, C convex set} .
Clearly, for X = R" and Z = %, (from Example 2.1.4 (4)), we have

Vxi,xo€ X, VAR : x;%x3, 0 <A = Ax1%Ax2, (2.3)
Vxi,x,x €X 1 X1 Zx2 = (x1 + x)Z(x2 + X). (2.4)
It is easy to find examples of relations satisfying (2.4). In fact, a nonempty

relation & on the linear space X satisfies (2.4) if and only if there exists @ # D C X
such that Z = %p, where
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%D = {(xl,xz)EXXX|x2—x1 ED}

Moreover, % is reflexive if and only if 0 € D, and % is transitive if and only
if D+ D C D.

Definition 2.1.8. Let % be an order relation on the linear space X ; we say that #
is compatible with the linear structure of X if (2.3) and (2.4) hold.

In linear spaces, a large number of relations % can be defined by cones which are
compatible with the linear structure of the space. For this we first give the following:

Definition 2.1.9. A nonempty set C C X is a cone if for every x € C and for
every A € R4 we have Ax € C. Clearly, if C is a cone, then 0 € C. The cone C is
called

(a) convex if for all x|, x, € C we have x; + x; € C,
(b) nontrivial or proper if C # {0} and C # X,
(c) reproducingif C —C = X,
(d) pointed if C N (—C) = {0}.
Clearly, the cone C satisfies condition (b) in the definition above iff, C is a
convex set.
In the following, we collect a few examples of cones.

Example 2.1.10. (1) Let
R :={xeR"|x; >0Viel,n}={xeR"|(0,x) € X%} (2.5)
R’ is obviously a cone in the linear space R", which fulfills all the conditions
of Definition 2.1.9.
(2) Let C[0, 1] be the linear space of all real functions defined and continuous on

the interval [0, 1] C R. Addition and multiplication by scalars are defined, as
usual, by

(x+ @) =x@)+y@), Ax)¢)=Ax(t) Vite]0,1]
for x,y € C[0,1] and A € R. Then
Ci[0,1]:={x € C[0,1] | x(t) =0Vt €[0,1]} (2.6)

is a convex, nontrivial, pointed, and reproducing cone in C [0, 1]. Note that the
set

Q :={x € C4]0,1] | x is nondecreasing} 2.7)
is also a convex, nontrivial, and pointed cone in the space C [0, 1], but it doesn’t

satisfy condition (c) from Definition 2.1.9: Q — Q is the proper linear subspace
of all functions with bounded variation of C [0, 1].
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(3) Consider the set C C R” defined by

C:={x=(....x))T €eR" | x; >0, or

X1=0, XZ>O, or

X1 =++=x,—1 =0, x, >0, or
x = 0}.
Then the cone C satisfies all the conditions of Definition 2.1.9.

In the following result, we characterize compatibility between linear and order
relations:

Theorem 2.1.11. Let X be a linear space and let C be a cone in X. Then the
relation

Fe ={(x1,x) € X XX |x,—x, €C} 2.8)

is reflexive and satisfies (2.3) and (2.4). Moreover, C is convex if and only if Zc
is transitive, and, respectively, C is pointed if and only if Zc is antisymmetric.
Conversely, if Z is a reflexive relation on X satisfying (2.3) and (2.4), then C =
{x e X | 0%x} isaconeand Z = Zc.

Proof. See [214, Theorem 2.1.13]. O

The above result shows that when @ # C C X, the relation Z¢ defined by (2.8)
is a reflexive preorder iff C is a convex cone, and Zc is a partial order iff C is a
pointed convex cone.

We note that %Rgr = %, (defined in Example 2.1.4 (4)), while the relation
Zc with C C R" defined in Example 2.1.10 (3) is a linear order, called the
lexicographic order on R”.

Let Y be a linear topological space, partially ordered by a proper pointed convex
closedcone C C Y.

Denote this order by “<(”. Its ordering relation is described by

y1 <c y» ifandonlyif y,—y, e€C forally,y, €Y. 2.9)

In the sequel, we omit the subscript C as no confusion occurs.
As usual, we denote by

CHi={y"eY"|y"(»)20VyeC}
the continuous positive dual cone of C, and by
Chi={"eCh |y (»>0VyeC\{0}}

the quasi-interior of C .
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We recall that the interior and the closure of the subset A of the topological
space (X, t) are defined, respectively, by

intA := U{D C X | D C A, D open},
cld:=4 := [ (B CX|ACB. B closed}.

Clearly, int A is open and cl A is closed.

2.2 Cone Properties Related to the Topology and the Order

We discuss now the connections between topology and order. Unlike the notion
of an ordered linear space (i.e., a linear space equipped with a compatible reflexive
preorder), the notion of an ordered topological linear space does not demand for
any direct relation between the order and the involved topology. However, because
a compatible reflexive preorder on a linear space is defined by a convex cone, it
is customary to ask that the cone defining the order be closed, have nonempty
interior, or be normal. Before introducing the notion of a normal cone, we recall
that a nonempty set A of the linear space X is full with respect to the convex cone
C C X if A = [A]¢, where

[Alc == (A+C)N(A—C).

Note that [A]¢ is full w.r.t. C for every set A C X.

Definition 2.2.1. Let (X,7) beat.v.s. and let C C X be a convex cone. Then C is
called normal (relative to 7) if the origin 0 € X has a neighborhood base formed
by full sets w.r.t. C.

In the next result we give several characterizations of normal cones. We are using
the notation .4y for the set of balanced neighborhoods of 0 € X in the t.v.s. (X, 7).

Theorem 2.2.2. Let (X, 1) be a topological linear space and let C C X be a
convex cone. Then the following statements are equivalent:

(i) C is normal,
(i) VV ey, AU e #x : [Ulc CV,
>iii) for all nets (x;)ier, (¥i)ier C X such that 0 <¢ x; <c y; foreveryi € I one
has (y;) > 0= (x;) =0,
@iv) cl1C is normal.
Proof. See [214, Theorem 2.1.22]. |

The following corollary is immediate.
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Corollary 2.2.3. Let (X, t) be a Hausdorfft.v.s. and let C C X be a convex cone.
If C is normal, then cl C is pointed, and so C is pointed, too.

Let (X, t) be a Hausdorff t.v.s. partially ordered by the convex cone C. We say
that a net (x;);e; C X is nonincreasing if

Vi,jel 1 j>=i=x;=<cx. (2.10)

Given § # A C X, we say that A is lower bounded with respect to C if A
is lower bounded with respect to Z¢ (see Definition 2.1.6). Similarly,a € X is a
lower bound (infimum) of A4 w.r.t. C if a is so for Z¢. Hence a € X is a lower
bound of A w.r.t. C if a <¢ x for every x € A. An element a is the infimum of A
w.r.t. C if a is a lower bound and for any lower bound a’ of A we have thata’ <¢ a.
The infimum of A w.r.t. C will be denoted by infc A when it exists.

Proposition 2.2.4. Let (X, t) be a Hausdorff t.v.s. partially ordered by the closed
convex cone C. If the net (x;)ie; C X is nonincreasing and convergent to x € X,
then {x; | i € 1} is bounded below and x = inf{x; | i € I}.

Proof. See [214, Proposition 2.1.24]. O

We emphasize that in ordered topological linear spaces, the classical result
concerning the bounded monotone sequences is not generally true. We consider
the linear space £ of all bounded sequences x = (x¥);>; C R endowed with the
norm ||x|| = sup{|x¥| | k = 1,2,...}. In £%° we consider the “usual” partial order
generated by the cone E‘f ={x €[> xk>0vk > 1}; E‘f is a pointed closed
convex cone (even reproducing and with nonempty interior).

Example 2.2.5 (Peressini [475, p. 91]). The sequence {x,} C £°°, defined by (for
n fixed)

k= —1ifl <k <n,
"0 ifk>n,
is nonincreasing w.r.t. C, and inf{x, | n > 1} = ¢’ := —e wheree = (1,1,1,...) €
£%°. But ||x, —¢’|| = 1 for every n > 1. Consequently, {x,},>; does not converge

to its infimum.

We also recall that a cone C that partially orders a Hausdorff linear topological
space (X, 7) is said to be Daniell if any nonincreasing net having a lower bound
T-converges to its infimum (see Jahn [292, p.29], Luc [402, p. 47], Borwein [67]).

In the following, let us recall some useful notions of cones which play an
important role in proving existence results for solutions of optimization problems
in infinite dimensional spaces.

Definition 2.2.6. Let Y be a Hausdorff topological vector space and C C Y a
proper convex cone.
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Fig. 2.1 Cone properties C=clC, Y=R"

C well-based <= C pointed
ﬂ Y normed W
C nuclear — C normal

ﬂ C complete

C Daniell — C compact base.

(i) C is based if there exists a nonempty convex subset B of C such that C =
Ry B (where Rt B := {Ab | b € B and A > 0}) and O ¢ cl B; the set B is
called a base for C.

(i) C is called well-based if C has a bounded base.

(iii) Let the topology of Y be defined by a family &2 of seminorms. C is called
supernormal or nuclear if for each p € &2 there exists y* € Y*, such that
p(») < {y,y*) forall y € C;itholds y* € C in this case.

(iv) C is said to be Daniell if any nonincreasing net having a lower bound
converges to its infimum.

(iv) C is said to be regular if any decreasing (increasing) net which has a lower
bound (upper bound) is convergent.

In Fig. 2.1 we give an overview of such additional cone properties and corre-
sponding relations for the case that Y is a Banach space, C a proper and convex
conein Y.

The following result gives useful information for cones with bases:

Theorem 2.2.7. Let X be a Hausdorff locally convex space and C C X a proper
convex cone. Then C has a base if and only if C* # @.

Proof. See [214, Theorem 2.2.12]. |
In the following, we collect a few examples of Daniell cones.

Example 2.2.8. 1. We recall that if (x,)ye4 is a net which is increasing (decreasing)
in a topological vector space (Y, ) ordered by a closed convex cone C and if X is
a cluster point of (xy), then X = sup,c4 X¢ (X = infye 4 X) (see Peressini [475,
Proposition 3.1]). Therefore, any regular cone is Daniell.

2. If (Y, || - ||) is a Banach lattice, that is, Y is a Banach space, vector lattice and the
norm is absolute, i.e., ||x|| = || |x]| || for any x € Y, then the cone Y = {y €
Y | y = 0} is Daniell if ¥ has weakly compact intervals.

3. A convex cone with a weakly compact base is a Daniell cone.

The following result connects some useful cones.
Proposition 2.2.9 (Isac [280]). Let (Y, &?) be a Hausdorff locally convex space

and C C Y a proper convex cone. Then

C well-based —> C nuclear —> C normal.
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If Y is a normed space, then
C nuclear = C well-based.

Remark 2.2.10. Among the classical Banach spaces their usual positive cones
are well-based only in /' and L'(£2) (but /' is not an Asplund space (see
Definition 3.5.3)).

Let Y be a topological vector space over R. Assume (Y, C) is simultaneously a
vector lattice with the lattice operations x +— xT, x = x7, x — |x|, (x,y) —

sup{x, y} and (x, y) — inf{x, y}.
Definition 2.2.11. A set A C Y is called solid, if x € A and |y| < |x| implies

y € A. The space Y is called locally solid, if it possesses a neighborhood of 0
consisting of solid sets.

Lemma 2.2.12. The following properties are equivalent:

(1) Y is locally solid.
(ii) C is normal, and the lattice operations are continuous.

In order to derive optimality conditions or duality statements in general spaces
(cf. Chaps. 8, 12), the ordering cone is often required to have a nonempty interior.
Therefore, in the following, we give some examples of convex cones with nonempty
interior.

Example 2.2.13. 1. Any closed convex cone C in the Euclidean space (R”, (-,))
such that C is self-adjoint (i.e., C = C ™) has a nonempty interior.

2. Consider the space of continuous functions C[a,b] with the norm ||x|| =
sup{|x(¢)| | ¢ € [a, b]}. Then the cone of positive functions in C[a, b]

Cla.b], := {x € Cla.b] |V € [a.b] : x(t) = 0}

has a nonempty interior.
3. Let Y = [?(N*, R) with the well-known structure of a Hilbert space. The convex
cone

o0
Cp:={x={xi}i>1 | x1 > 0and lez < xlz}
i=2
has a nonempty interior
o0
int Cp» 1= {x = {x;};>1 | x; > 0and Zx,z < xih
i=2

4. Let [*° be the space of bounded sequences of real numbers, equipped with the
norm ||x|| = sup,ent|*x|}. The cone
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14 :={x = {xXu}nen | X, > 0 forany n € N}
has a nonempty interior (cf. Peressini [475], p. 186).

5. Let C'[a,b] be the real vector space formed by all real continuously
differentiable functions defined on [a,b] (a,b € R,a < b), equipped with
the norm

b b
= {/ () di +/ (@) iy

for any f € C!'[a, b]. Using a Sobolev’s imbedding theorem, we can show that
the natural ordering cone

Clla.bly :=={f €C'la.b] | f =0}

has a nonempty interior. The proof is based on some technical details (cf. da
Silva [532]).

6. About the locally convex spaces, we put in evidence the following result. If (Y, 7)
is a real locally convex space, then for every closed convex pointed cone C C Y,
with nonempty interior, there exists a continuous norm || - || on ¥ such that C
has a nonempty interior in the normed space (Y, || - ||).

Proof. Take yy € intC and A := (yo—C)N(C —yp). Then A is a closed convex
and balanced set with 0 € int A such that the Minkowski functional p4 : ¥ — R
defined by

pa(y):=inf{t > 0|y € tA}

is a seminorm. Because int A = coreA ={y € Y | pa(y) <1} C A= {y €
Y | pa(y) < 1} (see Proposition 6.2.1), p4 is also continuous. Take y € Y with
pa(y) =0.Then y € n='A forevery n > 1, whence n~'yo & y € C for such
n. It follows that £y € c1C = C, and so y = 0. Hence ||| := p4 is a norm
and A = B(Y,”.”), and so yg € int”.” C. O

Finally, we give an example of a normed (vector) space (n.v.s.) where the natural
ordering cone has a nonempty interior as well as the Daniell property.

Example 2.2.14 (see Jahn [293]). Consider the real linear space L*°(£2) of all
(equivalence classes of) essentially bounded functions f : 2 — R (0 # 2 C R")
measurable with the norm || - || oo () given by

[| fllLoo() i=esssup,eof| f(x)|} forall f € L=(£2).

The ordering cone
L*®(82), :={f € L*(£2) | f(x) = 0 almost everywhere on £2}

has a nonempty interior and is weak™® Daniell.
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2.3 Convexity Notions for Sets and Set-Valued Maps

Throughout this section X, Y are real topological vector spaces.

Definition 2.3.1. Let A C X be a nonempty set. We say that A4 is ¢-convex, where
a €]0,1[,ifax + (1 —w)y € Aforall x,y € A. The set A is mid-convex if 4 is
%-convex. The set A is nearly convex if A is ¢-convex for some o €]0, 1[. The set
A is closely convex if cl A is convex. The empty set is «-convex for all o« €]0, 1] and

closely convex (and so nearly convex).

Of course, A is convex if and only if A4 is ¢-convex for every a €]0, 1[. Moreover,
if T : X — Y isalinear operatorand A C X, B C Y are a-convex (nearly convex,
convex), then T'(A) and T~!(B) are a-convex (nearly convex, convex), too.

Some properties of nearly convex sets are mentioned in the next result (see [214,
Proposition 2.4.3, Corollary 2.4.4]).

Proposition 2.3.2. Let A C X be a nonempty nearly convex set. Then

(i) cl A is convex.
(ii)) If x eictrAandy € A, then [x,y] € A. Moreover, if x € intA and y € A,
then [x, y[ C int A.
(iii) If int A # @, then int A is convex and icr A = int A.
(iv) If A is open or closed, then A is convex.

Definition 2.3.3. Let C C Y be a convex cone. We say that A C Y is C-¢-convex
if A+ C is a-convex; A is nearly C-convex if A + C is nearly convex; A is closely
C-convex if A 4 C is closely convex. Moreover, A is closely c-C-convex (nearly
C -subconvexlike in [601]) if cl (P(A + C)) is convex; A is ic-C -convex (see [517])
if int (P(4 4 C)) is convex and P(4 + C) C cl (int (P(4 + C))).

The next result, stated essentially in [79, Lemma 2.5], proves to be useful in the
following sections.

Lemma 2.3.4. Assume that C C Y is a convex cone withintC # @ andlet A C Y.

Then
cd(A+C)=cl(clA+C) =cl(A+intC), (2.11)
A+ intC =clA+intC =int(4 + C) = int(cl A + C) = int(cl(4 + C)).
2.12)

Therefore, cl(A + C) is convex iff A + int C is convex.

Proof. The equalities in (2.11) follow immediately from the known relation
cl(A+ B) =cl(clA + B) = cl(clA + cl B), (2.13)

valid for all subsets A, B C Y, and the fact that c1C = cl(intC).
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Note that A + int C is open being the union U,ec4(a + int C) of open sets. The
inclusions 4 +intC C cl A+ intC and int(4A + C) C int(cl(A 4 C)) are obvious.
Take y eclAand k € intC. Since k — intC € 45 (0), we havethat AN (y + k —
intC) # @, whence y + k € A+ intC; hencecl A + intC C A + intC, and so
the first equality in (2.12) is true.

The inclusion A + intC < int(4 + C) is obvious because A + intC is open.
Fix k° € intC and take y € int(4 4+ C). Then there exists & > 0 such that
y—ak® € A+ C,whencey € A+ C +intC = A + intC. It follows that
int(A + C) € A + intC, and so the second equality in (2.12) is true. The third
equality in (2.12) follows immediately from the first two equalities.

Clearly, cl(A + C) = cl(A + C) + C; using the first three equalities in (2.12)
we get

int(cl(A+C)) =int(cl(A+C)+C)=cl(A+C)+intC
=(A+C)+intC = A+ intC.
If cl(A + C) is convex then A + int C = int(cl(A + C)) is convex. Conversely,

if A + intC is convex, then cl(A + C) = cl (4 + int C) is convex. The proof is
complete. O

It is worth observing that
PMA+C)=PA+C, PA+intC)=PA+intC. (2.14)
Moreover, if int C # @, using (2.14) and (2.12) we get
int(P(4 + C)) =PA + intC = int(cl(P(4 + C))). (2.15)

In the next result we establish some relationships between the C-convexity
notions above.

Proposition 2.3.5. Let A C Y. The following assertions hold:

(i) Leta €]0,1[. Then A is C-a-convex iffaA + (1 —a)A C A+ C.

(ii) A is closely C-convex iff A\A+ (1 —A)A Ccl(A+ C) forall A €10, 1].
(iii) A is closely C-convex and intC # 0 iff

dk €eintC, Vo >0, VA€ ]0,1[:ak +AA+(1—-2)AC A+ C. (2.16)

@iv) If A is nearly C-convex then A is closely C-convex.

(v) If A is closely C-convex then A is closely c-C -convex.
(vi) Aisic-C-convexiff A is closely c-C-convex and

int (c1 (P(4 + C))) = int (P(A + C)) # 0. 2.17)

(vil) Assume thatintC # Q. Then A is ic-C -convex iff A is closely c-C -convex.



24 2 Order Relations and Ordering Cones

Proof. All the assertions a clearly true if A is empty. Therefore, we assume that
A#0.

(i) The assertion is (almost) evident.
(i) Assume that A is closely C-convex and take A € ]0, 1[. Since cl(4 + C) is
convex we get

M4+ (1 =DACAAA+C)+ (1 =A)cl(A+C) =cl(4 + C).

Conversely, assume that A4 + (1 —1)A € cl(A+ C) forall A € ]0, 1[. Taking
A €]0,1[, wehave that (A + C)+ (1 —A)(A+C) S cl(A+C)+C =
cl(A+C). Using (2.13) we get Acl(A+C)+(1—-A) cl(A+C) C cl(A+C),
and so cl(4 + C) is convex.

(iii) Assume that (2.16) holds; then clearly int C # @. Take y;,y, € A and A €
10,1[. Thenn ™'k + Ay; + (1 — L)y, € A + C for every n € N*; taking the
limit we get Ay; + (1 — A1)y, € cl(A + C), and so A is closely C-convex.

Assume now that A is closely C-convex and intC # . Consider k €
intC. Take « > 0, y;,y2 € Aand A € ]0,1[. Then Ay; + (1 — )y, €
cl(A + C). Then using (2.12),

ak + Ay + (1= A)y; € cl(4 + C)
+intC =(A+C)+intC =A+intC C A+ C.

(iv) Assume that A is nearly C-convex. Then, using (i), A 4+ C is nearly convex.
Then, by Proposition 2.3.2 (i) we obtain that cl(4 + C) is convex, that is A4 is
closely C-convex.

(v) Clearly, cl(P(A + C)) = cl(P(cl(A + C))). Since cl(A + C) is convex,
from the preceding relation we obtain that cl (P(4 4+ C)) is convex, that is A
is c-C-convex.

(vi) Assume that 4 is ic-C-convex. From the definition of the ic-C -convexity we
have that B := int(P(4A + C)) is nonempty and convex, and P(4 + C) <
cl B. It follows that int(clB) = B € P(A4 + C) and cl(P(4 + C)) 2
cl B, and so cl(P(A + C)) = clB is convex. Therefore, 4 is closely c-
C-convex. Moreover, since B is open, convex and nonempty, we have that
int (cl(P(A + C))) = int(cl B) = B. Therefore, (2.17) holds.

Assume now that A4 is closely c-C-convex and (2.17) holds. Then C :=
cl(P(A 4 C)) is convex int C = int(P(A 4+ C)) =: B # 0. Then clearly B
isconvex and cl B = cl(intC) = C 2 P(A + C). Hence A is ic-C -convex.

(vii) LetintC # @. Then (2.15) holds and int (P(4 4+ C)) # @. The conclusion
follows using (vi). The proof is complete. O

Note that Proposition 2.3.5 (vii) is stated in [601, Theorem 3.1], while the fact
that A is closely c-C-convex if A4 is ic-C-convex in Proposition 2.3.5 (vi) is proved
in [601, Theorem 3.2]
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Let F : X == Y. We say that F is a-convex (mid-convex, nearly convex,
convex) if graph F is o-convex (mid-convex, nearly convex, convex). It is obvious
that if F is «-convex (mid-convex, nearly convex, convex), so are dom F, Im F, and
F(x) forevery x € X. Itis easy to see that F' is «-convex if and only if

Vx,x' €domF :aF(x) + (1 —a)F(x') C F (ax + (1 —a)x’);

in the relation above x, x” € dom F can be replaced by x, x’ € X.
To F : X == Y we associate the set-valued maps cl F', conv F,convF : X =3 Y
defined by

(cl F)(x) :=cl[F(x)], (conv F)(x) := conv[F(x)],
(convF)(x) :=conv[F(x)] (x € X).

It is almost obvious that cl F', conv F' and conv F are a-convex (mid-convex, nearly
convex, convex) if F is o-convex (mid-convex, nearly convex, convex).

To F: X = Y and y* € Y*, where Y* is the topological dual of Y, we also
associate

by =i X >R, ¢y (x) = inf{(y,y*) [y € F¥)} (x € X),
(2.18)

where, as usual, inf@ := 4o0; then dom¢,+ = dom F for every y* € Y* and
@0 = tgom . Clearly, f* = ¢;1*F = ¢>;3“"F = ¢>;?§"F for every y* € Y*. The
function ¢+ (but with sup instead of inf) was introduced in [138], and used (for
example) in [422,423,518], too.

Proposition 2.3.6. Let F : X = Y.

(i) If F is convex then ¢« is convex for every y* € Y™,
(ii) Assume that Y is a locally convex space. If ¢+ is convex for every y* € Y'*
then convF is convex.

Proof. (i) Consider x,x’ € dom¢,+ and o € ]0,1[. Take y,y’ € R such that
¢y (x) < v, ¢y (x") < y’. Then there exist y € F(x), ' € F(x’) such that
(v, y*) <y, (y/,y*) <y’ . Thenay+(1—a)y’ € F (ax + (1 —a)x’), and so

¢y (ax + (1 —)x’) <{ay + (1—)y .y ) =a(y,y*) + (1 —a) (¥, »)
<ay+ (1 -a)y.

Letting y — ¢y+(x), ¥/ — ¢+ (x') we get ¢y« (ax + (1 —)x’) <
apyx (x) + (1 —a)py+(x"). Hence ¢+ is convex.

(ii) Since ¢pF, = ¢°IVF for every y* € Y*, we may (and do) assume that F =
convF. We have that dom F' = dom ¢y is convex, ¢9 = lgom F Deing convex.
Assume that F is not convex. Then there exist x,x’ € dom F, y € F(x), y’ €




26 2 Order Relations and Ordering Cones

F(x’)and o €10, 1[suchthatz ;= ay + (1 —a)y’ ¢ F (ax + (1 —a)x’) =:
A. Since A is a nonempty closed convex set, there exists y* € Y* such that
(z.y*) <inf{(v,y*) | v € A} = ¢y* (ax + (1 —)x’). Since

adys (x) + (1 =)y (x) <o (y.y*) + (1 —a) (y'.y") = (z. ™)
< ¢y (ax + (1 —a)x’),

we get the contradiction that ¢, is not convex. Hence F is convex. O

Let C C Y be a convex cone. We say that F is C-a-convex (C-mid-convex,
C-nearly convex, C-convex) if the set-valued map

Fc: XY, Fcx):=Fkx)+C,

is a-convex (mid-convex, nearly convex, convex). Of course, F is C-x-convex if
and only if

Vx,x' €domF :aF(x)+ (1 —a)F(x") € F (ax + (1 —a)x’) + C.

Note that sometimes graph F¢ is denoted by epi.- F, or simply epi F', and is
called the epigraph of F.

Corollary 2.3.7. Let F : X =3 Y and C C Y be a convex cone.

(i) If F is C-convex then ¢« is convex for every y* € C*.

(ii) Assume that Y is a locally convex space and ¢« is convex for every y* € Ct.
Then convFc is convex; in particular, if F(x) + C is closed and convex for
every x € X, then F is C-convex.

Proof. Of course, F is C-convex if and only if F¢ is convex. Let us set q;y* =
¢;S’KWF. Note that ¢, = qbf* = ¢y« for y* € CT, while for y* € Y*\ CT,
qu* (x) = +oo for x € dom F and ¢~>y* (x) = —oo for x ¢ dom F. Hence $y* is
convex for every y* € Y* if and only if ¢, is convex for every y* € C ™. The
conclusion follows applying Proposition 2.3.6 to F¢. O

Of course, Proposition 2.3.6 can be obtained from Corollary 2.3.7 taking
C = {0}. Corollary 2.3.7 can be found, essentially, in [138, Proposition 1.6]
and [518, Lemma 3].

The sublevel set of F of height y (w.r.t. C) is the set

leve(y):={xe X [F(x)N(y—C) # 0}

when int C # @ we also consider the strict sublevel set of F of height y (w.r.t. C)
defined by

levi(y) :={x € X | F(x)N(y —intC) # @}.
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In this way we get the sublevel and strict sublevel set-valued maps levy, levy :
Y = X.

We say that F is C-¢-quasiconvex (C-mid-quasiconvex, C-nearly quasi-
convex, C-quasiconvex) if for every z € Y the sublevel set levg(z) is a-convex
(mid-convex, nearly convex, convex). An equivalent definition of C-a-quasi-
convexity is that

Vx,x' €domF : (F(x)+ C)N(F(x')+C) S F (ax + (1 —a)x’) + C.
Notice that F is C-a-quasiconvex whenever

Vx,x' €edomF : F(x) € F (ax+ (1 —a)x’)+C or
F(xX') CF(ax+(1—-a)x')+C.

Note also that F is C-a-quasiconvex (C -mid-quasiconvex, C-nearly quasiconvex,
C-quasiconvex) whenever F is C-a-convex (C-mid-convex, C -nearly convex, C -
convex).

The set-valued map F is C-convexlike if

Vxi,x2 € X, Vy1 € F(x1), Vy2 € F(x2), YA €]0,1],
dxs e X Ay+(1—A)y€ F(x3)+C,

or, equivalently, F(X) 4 C is convex, that is F'(X) is C-convex. Of course, if F' is
C-convex then F is C-convexlike.
Li and Chen [387] (see also [602]) say that F is C-subconvexlike if

Jk €intC, Ya > 0, Vx,x" € X, VA €]0,1[: ak+AF(x)+(1-A) F(x") € F(X)+C.

Using Proposition 2.3.5 (iii), F is C-subconvexlike iff int C # @ and F(X) is
closely C-convex.

We say that f : X — Y* is C-a-convex (C-mid-convex, C-nearly convex,
C-convex, C-x-quasiconvex, C-mid-quasiconvex, C-nearly quasiconvex, C-
quasiconvex) if the set-valued map Frc is C-a-convex (C-mid-convex, C-nearly
convex, C-convex, C-a-quasiconvex, C-mid-quasiconvex, C -nearly quasiconvex,
C-quasiconvex); in particular, f is C-convex if and only if

Vx,x' € X, Vae[0,1]: f (ax + (1 —a)x’) <¢ af(x) + (1 —a) f(x).
If f is C-a-convex (C-mid-convex, C-nearly convex, C-convex), then dom f

is so, and f is C-a-quasiconvex (C-mid-quasiconvex, C-nearly quasiconvex,
C-quasiconvex).
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2.4 Solution Concepts in Vector Optimization

In this section, we first recall concepts of Pareto minimal points, weakly and
properly minimal points, then we introduce the concept of O-minimal points and
establish relations among them.

Unless otherwise mentioned, in the following we consider a linear topological
space Y, partially ordered by a proper pointed convex closed cone C and a
nonempty set A C Y.

We introduce the following sets of Pareto minimal points (Pareto maximal points,
respectively) of A with respect to C:

Definition 2.4.1 (Pareto Minimal (Maximal) Points). Consider
Min(A4,C):={y e A| AN (Y —-C) = {J}}. (2.19)

An element y € Min(A, C) is called a Pareto minimal point of A with respect
toC.
Furthermore, consider

Max(A,C) ={y e A| AN T+ C) = {J}}. (2.20)
An element y € Max(4, C) is called a Pareto maximal point of A with respect

to C.

Moreover, in order to describe weak minimality we will study the following
solution concept in Y. Many solution procedures for vector optimization problems
generate weakly minimal elements.

Definition 2.4.2 (Weakly Minimal (Maximal) Points). Suppose that intC # 0.
Consider

WMin(4,C) :={y € 4| AN —intC) = B}. 2.21)

An elementy € WMin(4, C) is called a weakly minimal point of A with respect
to C. Furthermore, consider

WMax(4,C):={F € A| AN (¥ +intC) = @}. (2.22)

An elementy € WMax(A4, C) is called a weakly maximal point of A with respect
to C.

Moreover, we introduce the concept of strongly minimal points:

Definition 2.4.3. Consider

StMin(4,C):={y € A| A<y + C}. (2.23)
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Anelement y € StrMin(A4, C) is called a strong minimal point of A with respect
to C.

In the following, we introduce different concepts of properly minimal points.
Properly minimal points are important in the proofs of many theoretical asser-
tions because corresponding scalarizing functionals (see Sect. 5.1) are strictly
C-monotone. The first concept for proper minimality in the following definition (cf.
Ha [228]) is based on scalarization by means of (strictly C -monotone) functionals
y* e C*.

Definition 2.4.4 (Properly Minimal Points).
(a) Suppose that C* # ¢ and consider

S-PMin(4,C) :=={y € A|Iy* e C*, Vye A: y*¥) < y*()}
(2.24)

An element y € S-PMin(A4, C) is called a S-properly minimal point of A4
wrt. C.
(b) Let

Hu-PMin(A4, C) :={y € A | (cl conv cone[(4 —y) U C]) N (—=C) = {0}}.
An element y € Hu-PMin(A, C) is called a Hurwicz properly minimal point
of Awrt. C.
(c) Assume that Y is a n.v.s.; y is a Hartley properly minimal point of 4 w.r.t.
C (y € Ha-PMin(4, C)) if y € Min(4, C) and there exists a constant M > 0

such that, whenever there is A € C* with A(y — ) > 0 for some y € 4, one
can find u € CT with

A =D/IAN = =My = 3)/llwlD-
(d) Consider
Be-PMin(A4,C) :={y € A | clcone[(4 —y) + C] N (=C) = {0}}.

¥ € Be-PMin(A4, C) is called a Benson properly minimal point of 4 w.r.t. C.
(e) Consider

Bo-PMin(A4,C) :={y € A|clcone(A —y) N (—=C) = {0}}.

y € Bo-PMin(4, C) is called a Borwein properly minimal point of A w.r.t. C.
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(f) Consider

GHe-PMin(A,C) := {y € A | 3 proper convex pointed cone D with C \
{0} C int D such that (A —y) N (—intD) = @}.
¥ € GHe-PMin(4, C) is called a Henig global properly minimal point of A
wrt. C.

(g) Suppose that Y is an.v.s., C has a base ® and consider

He-PMin(A4,C) := {y € A | 3 ¢ > 0 suchthat clcone(4 —y) N (—O® +
€By) = @}

¥ € He-PMin(4, C) is called a Henig properly minimal point of A w.r.t. to C.
(h) Assume that Y is a n.v.s. Consider

Sup-PMin(A4,C) :={y € A |3 p > 0 such that cl cone(4—y)N(By —C) C
pBy}.

¥ € Sup-PMin(A4, C) is called a super efficient point of A w.r.t. C.

For the notions of minimal points in Definition 2.4.4, we refer to [292,293,402]
and [228]. The concepts of Henig proper minimality and Henig global proper
minimality have been presented in [242]. The above definition of Henig properly
minimal points can be found in [71, 627]; see also [228, 242, 618, 619]. For an
equivalent definition of Henig properly minimal points by means of a functional
from C*# the reader is referred to [619]. We note that positive proper minimality
has been introduced by Hurwicz [11], and super efficiency has been introduced by
Borwein and Zhuang [71]. We refer the reader to [219] for a survey and materials
on proper efficiency.

In the sequel, when speaking of weakly minimal points (resp. S-properly minimal
points) we mean that int C (resp. C*) is nonempty, when speaking of Henig minimal
points we mean that C has a base ® and when speaking that C has a bounded base
we mean that ® is bounded.

Let B C Y be a convex set such that 0 ¢ cl B (that is B is a base for cone B);
we set

ME = N/B =V ey |V convex,V N B =0}; (2.25)
clearly, 4,2 # @.For V € A48 we set
Plf :=cone(B + V);

then P2 is a proper convex cone with int P = P(B + intV) # 0.
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Similar to the case of normed vector spaces, if @ is a base of C, we set
He-PMin(4, ©) :={y € A| 3V € A7 : [clcone(A — y)| N (V — O) = 0}.
Observe that

He-PMin(4,0) ={y € A |3V e M7 : (A—y) N (-P7) = {0}} (2.26)

={yed|Wen :(A-—y)n(-intP’)=0}. (227

Indeed, [clcone(A — y)]N (V —O) = 0 = (A —y) Ncone(V — ®) = {0} and
(A—y)Ncone(V —O) = {0} = [clcone(4 — y)] N (intV — O) = @.

Moreover, the super efficiency in the case in which Y is a locally convex space
is defined by

Sup-PMin(4,C) = {y € A | VV € Ay, U € Ay : clcone(4 — y) N
U-c)cvy

The following two Propositions 2.4.5 and 2.4.6 are shown under weaker assump-
tions concerning the cone C C Y (Y a linear topological space), namely that C is a
proper convex cone, for the corresponding solution concepts.

Proposition 2.4.5. Let A C Y be nonempty. Then
(i) StMin(4,C) € () {argminy y* | y* € C* \ 0}, with equality if Y is a l.c.s.
and C is closed.
(ii) S-PMin(4,C) = {argmin, y* | y* € C*} = S-PMin(4 + C,C).
(iii) IfintC # @, then Min(A, C) € WMin(4, C) and
WMin(4,C) = ANWMin(A + C,C) =ANbd(A+C) (2.28)
2 U {argming y* | y* € CT\ {0}}, (2.29)
with equality if A is closely C -convex.
(iv) We have that GHe-PMin(A4, C) € Min(A4, C) and
GHe-PMin(A4,C) = | J{WMin(4,D) | D € Z¢}
= GHe-PMin(4 4+ C,C) 2 S-PMin(4, C) (2.30)
with equality if A is closely C -convex, where
Dc :={D C Y | D proper pointed convex cone with C \ {0} C int D}.
(2.31)
(v) Assume that O is a base of C. Then

He-PMin(4, ®) = | J{WMin(4, D) | D € 99} = He-PMin(4 + C, ®)
(2.32)
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2 U{argming y* | y* € Y™, infy*(®) > 0}, (2.33)

with equality if A is closely C -convex, where
Do :={PZ |V € 47} (2.34)

If © is a base of C then Y9 < ¢, consequently, He-PMin(A, ®) C
GHe-PMin(4, C).

Proof. (i) Let y € SuMin(A4,C), thatisy € A < y + C. Then clearly

(i1)

(iii)

StrMin(A4, C) = {J} and the inclusion holds. Assume that ¥ is a l.c.s. and
C is closed, and take y € ({argming y* | y* € C*}. Then y € 4 and
(y —¥,y*) >0forall y € A and y* € C™. By the bipolar theorem we get
y—yeCtt =clC =C,whence A Cy +C.

The first equality is given by the definition of S-PMin(A, C). The inclusion
S-PMin(4,C) € S-PMin(A4 + C, C) is obvious. If y € S-PMin(4 + C,C),
theny = @ + ¢ for some @ € A, ¢ € C, and there exists * € C* such that
(@a+7¢, 5y < (y,y*)forall y € A+ C.Inparticular (@ +¢,y*) < (a,7"),
whence (¢,7*) < 0. It follows that ¢ = 0, and so y = @ € A. Consequently,
¥ € S-PMin(4, C).

Assume that int C # @. Taking into account that int C € C \ {0}, the inclusion
Min(4, C) € WMin(4, C) follows.

For y € Y, using Lemma 2.3.4, we have

(A-—y)N(=intC) =P & y ¢ A+intC & y ¢ A+C+intC & y ¢ int(A+C).
It follows that

¥ € WMin(4,C) & [F € 4, (A+C —F) N (=intC) = 9]
& ¥ € AN WMin(4, C)
& [yed yé¢int(d+C) < FeAnbd(A+ C).

Hence the equalities in (2.28) hold.

Take ¥ € argminy y* for some y* € C7T \ {0}. Because intC C
{y €Y | (y,y*) >0}, we obtain that (A —y) N (—intC) = @, and so
¥ € WMin(A4, C). Hence the inclusion in (2.28) holds.

Assume now that A is closely C-convex and y € WMin(A4,C) [C
WMin(4 + C,C)]. Then (A + C) N (y — intC) = @; it follows that
cl(A+C)N (y —intC) = @. Because cl(4 + C) is convex, by a separation
theorem (see [293, Theorem 3.16]) there exists y* € Y* \ {0} such that
(y +v,y*) > (—V,y*) forall y € A4 and v,v/ € C. It follows that
y* € Ct and (y —¥,y*) > O forevery y € A4, and so y* € C* \ {0}
andy € argminy y*.
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(iv) The first equality in (2.30) is just the definition of GHe-PMin(4, C).

Take y € GHe-PMin(A4, C); theny € WMin(4, D) forsome D € 9, and
s0o (A—=y)N(—int D) = @. Because C +int D = int D (forevery D € 9c),
we clearly have that GHe-PMin(4, C) € GHe-PMin(4 + C,C).

Take y € GHe-PMin(4 + C,C);theny = y + vforsome y € A,v € C.
Assuming that v # 0, we get the contradictionv € (C\{0})N(A+C —7) C
(—intD)N(A+C —y)=0.Hencey =y € A.

Take ¥ € S-PMin(A4,C). Then there exists y* € C* with 0 <
(y=7,9*) < (y+v=y,y") forall y € A, v € C. Take D :=
{0 U{y € Y | (y,¥»*) > 0}. Then D is a pointed convex cone with
intD ={yeY | (y,y*) > 0}. It follows that (A + C —y) N (—int D) = @,
and so y € GHe-PMin(4, C). Hence S-PMin(A4, C) € GHe-PMin(4, C).

Assume that A is closely C-convex and take y € GHe-PMin(A, C). Then
there exists D € Z¢ such that (A —y) N (—intD) = @. It follows that
¥y € AN WMin(4, D). Since A is closely C-convex and C C D, A is closely
D-convex. From (iii) we get y* € D*\{0} such thaty € argminy y*. Because
D%\ {0} € C*#, we obtain that € S-PMin(4, C).

(v) The first equality in (2.32) is given in (2.27). For the equality He-PMin(4, ®) =
He-PMin(A4 + C, ®) use a similar argument to that used in (iv) (possibly taking
into account that Yo C Z¢).

Take y € argminyg y* for some y* € Y* with 2y := inf y*(®) > 0 and
set Vi={y € Y | |[(y,y*)] < y} € M. Clearly, D := PP € p.
Because y* € D7 \ {0}, from (iii) we get y € WMin(4, D), and so ¥ €
He-PMin(A4, ®). Hence the inclusion in (2.33) holds.

The proof of the equality in (2.33) for A closely C-convex is similar to the
proof of the corresponding equality in (2.30).

(vi) The arguments used at the beginning of the proof of (v) show that Zp € Zc.
O

Proposition 2.4.6. Let A C Y be nonempty.
(i) One has

S-PMin(4, C) € Hu-PMin(4 + C, C) € Hu-PMin(4, C) € Be-PMin(4, C)
= Be-PMin(4 + C,C) (2.35)

with Hu-PMin(A4, C) = Be-PMin(A4, C) if A is closely C -convex, and

Be-PMin(A4, C) = Bo-PMin(4 + C, C) € Bo-PMin(4, C) € Min(4, C),
(2.36)

GHe-PMin(4, C) € Be-PMin(4, C). (2.37)
Moreover, if Y has the property that for any closed convex cone K C Y there

exists y* € Y* such that (y, y*) > O0forevery y € K\(—K) (for example if Y
is a separable normed vector space) then S-PMin(A, C) = Hu-PMin(4, C).
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(i) Assume that © is a base of C and Y is a locally convex space. Then
Sup-PMin(4,C) < He-PMin(4, ®). Moreover, if © is bounded, then
Sup-PMin(4, C) = He-PMin(4, ©).

(iii) Assume that © is a compact base of C and Y is a locally convex space. Then

S-PMin(4, C) = Hu-PMin(4,C) and He-PMin(A4, ®) = GHe-PMin(4, C).

Moreover, if A is closely C-convex, then S-PMin(A, C) = Be-PMin(4, C),
while if A is closely convex then S-PMin(A4, C) = Bo-PMin(4, C).
(iv) Assume that SttMin(A, C) # @. Then SttMin(A4, C) = Min(A4,C). If C is
closed (or, more generally, c1C N (=C) = {0}), then

StrMin(A4, C) = Hu-PMin(A4, C) = Hu-PMin(4 + C,C); (2.38)
if C* = @ then
StrMin(A4, C) = S-PMin(4, C) = GHe-PMin(4, C), (2.39)

and StrtMin(A, C) = He-PMin(4, ®) for every base ® of C if, furthermore,

Y is a locally convex space.

Proof. (i) Take y € S-PMin(A4,C). Then ¥ € A and there exists y* € C* such
that (y,7*) < (y,y*) forall y € A. It follows that 0 < (y,y*) forall y €
E; := clconvcone(4 + C — ), and so E; N (—C) = {0}, because y* € C*.
Hence the first inclusion in (2.35) holds.

Take y € Hu-PMin(A+C,C) (€ A+C).Hencey = y+vwithy € 4,v €
C.Then—ve(A+C—-y)N(—C) C (clconvcone(A + C —y))N(-C) =
{0}. Therefore, v = 0, and so y € A. It follows that y € Hu-PMin(4, C).

Take vy € Hu-PMin(4,C). Then (A —y) U C < E, :=
conveone[(A —7)UC], whence (A — y) + C < E;. It follows that
F := clcone(A + C —y) C E,, and so y € Be-PMin(4, C). Assuming
that A is closely C-convex and y € Be-PMin(4, C), we have that F is a
convex cone and F N (—C) = {0}. Since (A—y)UC € A+ C —7, it follows
that £, € F,and soy € Hu-PMin(4, C).

The equalities in (2.35) and (2.36) follow directly from the definitions of the
corresponding sets.

Take y € Bo-PMin(A + C,C). Theny = y + vforsomey € A,v € C.
Then —v € (A+C—-y)N(-C) € (-C) Nclcone(A+C —y) = {0}.
Hencey € A, and so ¥ € Bo-PMin(4, C).

Take y € Bo-PMin(4, C). Since clcone (4 —7y) 2 A — 7, it follows that
¥ € Min(4, C).

Take ¥ € GHe-PMin(A, C) = GHe-PMin(A + C, C). Then there exists
D e Pcsuchthat (A+C —y)N(—intD) =@,andso [Ry(4A+C —y)|N
(—int D) = @, whence [clcone(A + C —y)] N (—int D) = @. Hence y €
Be-PMin(A4, C). Therefore, (2.37) holds.



2.4 Solution Concepts in Vector Optimization 35

(ii)

(iii)

Assume now that for any closed convex cone K C Y there exists y* € Y*

such that (y, y*) > 0 forevery y € K \ (—K), and take y € Hu-PMin(4, C).
Then E3 N (—C) = {0}, or, equivalently, (C \ {0}) N (—E3) = @, where E3 :=
clconvcone [(A —y) U C]. Then there exists y* € Y* such that (y, y*) > 0
forevery y € E3\(—E3).Because C C Ej,if y € C\{0}then y € E3\(—Ej3),
and so (y, y*) > 0. Hence y* € C*. Therefore, y € S-PMin(4, C).
Assume that © is a base of C and Y is a locally convex space. Because © is
a base of C, there exists Vj € 44 such that (2Vp) N ® = @, or, equivalently,
VonN (Vo —®) = 0. Take y € Sup-PMin(4, C), thatis y € A and for every
V € Ay there exists U € Ay such that K N (U — C) C V. Therefore, there
exists Uy € A5 such that Uy € Vyand [K N (Uy — @)] € KN(Uy—C) C V.
It follows that K N (Uy — ®) C Vo N (Up— ®) C Vo N (Vo — ®) = @. Hence
¥ € He-PMin(4, ©).

Assume, moreover, that ® is bounded and take y € He-PMin(4, ®).
Then there exists Vy € Ay such that K N (1 — ®) = @. Suppose that
¥ ¢ Sup-PMin(4, C). Then there exists V| € .4} such that forevery U € A4{f
one has K N (U — C) & Vy. Hence, for every U € 4} there exists yy € U,
ty € Ry, zy € O suchthat yy —tyzy € K\ Vp. Clearly, ty > O forevery U €
A with U C Vg; otherwise we get the contradiction yy € (K\ Vo)NVy = @.
Taking p := py, the Minkowski functional of Vj, p is a continuous seminorm
with intVy = {y € Y | p(y) < 1} (see Proposition 6.2.1). Clearly,
t7'yv —zv € K. Because K N (Vo — @) = @ we get t;;'yy ¢ V, for
U C V, and so t;'p(yuv) = p@y'yy) > 1 for such U. It follows that
ty < p(yy) for U C V. Hence (ZU)UG,A/; — 0. Since (yU)Ue,Axyc — 0 and
(zv)ve.ss is bounded, it follows that (yy — ZUZU)UG,/VYF — 0, contradicting
the fact that yy — tyzy € K \ Wy for every U. This contradiction shows that
¥ € Sup-PMin(4, C).

Assume that © is a compact base of C and Y is a locally convex space.

Take ¥ € Hu-PMin(4, C), thatis y € A and E4 N (—C) = {0}, where
E4 := clconvcone [(4 —¥) U C]. It follows that E4 N (=) = @. Using a
separation theorem, there exist y* € Y* and o, § € R such that

Vye(A-yUC Ve®, teRy t(yy)=a>p= (- y").
(2.40)

It follows that o < 0,2y := infg y* > 0, whence y* € C*,and (y — 7y, y*) >
0 for every y € A. Hence y € S-PMin(4, C). Taking into account (2.35) we
obtain that S-PMin(4, C) = Hu-PMin(4, C).

Take ¥ € GHe-PMin(A4, C). There exists D € Z¢ such that (4 —7y) N
(—int D) = 0. Clearly, ® C int D. Since ® is compact and Y is a l.c.s.,
there exists V € A4, such that ©® 4+ V C int D. Taking D’ := P we have
that D' € P99 and y € WMin(4, D’), and so y € He-PMin(4, ®). Hence
He-PMin(4, ®) = GHe-PMin(4, C).
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Assume now that A is closely C-convex and take y € Be-PMin(4, C),
thatis y € A and clcone(A + C —7y) N (—C) = {0}. Since A4 is closely
C-convex, we obtain that clcone (A + C — ) is a closed convex cone. From
our hypothesis we have that clcone(A +C —y) N (—®) = . Using a
separation theorem, there exist y* € Y* and «, B € R such that (2.40) holds
withy € A+ C — 7y instead of y € (A —7y) U C. It follows that « < 0,
2y := infg y* > 0, whence y* € C* and (y — ¥, y*) > 0 forevery y € A.
Hence y € S-PMin(4, C). Hence Be-PMin(4, C) = S-PMin(4, C).

Assume now that A is closely convex and take y € Bo-PMin(4, C), that is
¥ € A and

clcone (4 —y) N (—=C) = {0},
whence clcone(A—7y) N (—®) = @. Since A is closely convex,

clcone (A —7y) is convex. Using a separation theorem, as above, we get
¥ € S-PMin(A4, C). Hence S-PMin(A4, C) = Bo-PMin(4, C).

(iv) Assume now that StrMin(A4,C) # @. Because C is pointed we have that

StuMin(A4,C) = {y} for some ¥ € A; hence A € 3y + C. Clearly,

A-9)N(=C) € CN(-C) = {0}, and so y € Min(4, C). Conversely,

take y € Min(4,C); then {0} = (4 —y) N (-C) > ¥y — y, and so

y =7 € SttMlin(A, C). Therefore, StMin(4, C) = Min(4, C).
Since A —y C C,wehavethat (A —y)UC =(A+C—-y)UC =C.
Assume, moreover, that C is closed; then

clconveone[(A+C —y)UC] =C,

and so y € Hu-PMin(4, C). Then (2.38) follows from Min(4, C) = {y} and
relations (2.35), (2.36).

Assume that C* # ). Because y € A € y + C, clearly, argminy y* = {y}
forevery y* € C*. Hence S-PMin(4, C) = {¥}. The second equality in (2.39)
follows using Proposition 2.4.5 (iv).

Assume that Y is a l.c.s. and @ is a base of C. Since 0 ¢ cl ®, there exists
y* € Y* with infg y* > 0. Hence y* € C¥, and so argminy y* = {7}.
Using Proposition 2.4.5 (v) we have that y € S-PMin(A4, C). Using (2.39) and
Proposition 2.4.5 (vi) we get He-PMin(4, ®) = {y}. O

It is worth observing that for y* € Y* \ {0} and C = K+ = {0} U

{y €Y | (y,y*) > 0} we have that C* = Py* and S-PMin(4, C) = Min(4,C) =
argming y*, and so all the efficiency sets used in Propositions 2.4.5, 2.4.6,
excepting StrMin, reduce to arg ming y*. Moreover, StrtMin(4, C) # @ if and only
if y* has a unique minimum point on A.

The inclusions in assertions (i), and (iii), (iv) of Proposition 2.4.5, as well as

the corresponding equalities for C closed or A convex, respectively, are established

in

[175, Theorem 3.1]. The most part of the inclusions in assertions (i) and (iii)

of Proposition 2.4.6, as well as the mentioned equalities, can be found [392]; note
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that the hypothesis that ® is compact can be replaced by the fact that @ is weakly
compact (for this just apply the corresponding result for the weak topology on
Y). Assertion (ii) of Proposition 2.4.6 can be found in [618], while the equality
S-PMin(A4,C) = Hu-PMin(A4, C) in Proposition 2.4.6 (i) is obtained in [271,
Theorem V.2.4]; the case of separable normed vector spaces in (i) is based on
the following extension of the Krein—Rutman theorem obtained by Hurwicz [271,
Lemma V.2.2].

Theorem 2.4.7. Let (Y, ||-||) be a separable normed vector space and C C Y be
a closed convex cone. Then there exists y* € Y™ such that {y, y*) > 0 for every
yeC\(-0).

Proof. If C\ (—C) = 0 (thatis C is a linear space) we can take y* = 0. So, assume
that C \ (—C) # @. Because C*™+ = C, C™ is not trivial, too. The set C; :=
CtNUyxisa weakly™ closed subset of Uy+ (hence C) is w*-compact). Because Y
is separable, the weak™ topology on Uy+ is metrizable (see [108, Theorem V.5.1]),
and so C; (being w*-compact) is w*-separable. Let A = {y{,y5,...} S C; be
w*-dense in C;. Take

21
yri= Z Z—ky;:;
k=1

the series is strongly convergent because it is absolutely convergent and Y™ is a
Banach space. Clearly, 7* € C; € Ct. Assume that there exists ¥ € C \ (—C) such
that (¥, ") = 0. Because (?, y;:) > 0 for every k > 1, we obtain that (y, y*) =0
for every y* € A. With the set A being w*-dense in C;, we obtain that (y, y*) =0
for every y* € Cy, and so (—y,y*) = 0 > 0 for every y* € C* = R,4C,.
Therefore, we get the contradiction —y € Ct+ = C. O

In order to describe weak and proper minimality in a unified way, we use the
notation of Q-minimal points (compare Ha [228]).

Definition 2.4.8. Assume that D C Y is a proper cone with nonempty interior and
put Q :=int D. We say that y is a Q-minimal point of A (y € QMin(4, C)) if
ANG-0)=0

or, equivalently,

(A=y)N(=Q) =0

In the paper by Gerstewitz and Iwanow [197] properly minimal elements are
defined using aset Q C Y with0 € bdQ and c1 Q + (C \ {0}) C int Q. This
approach is related to the well-known concept of dilating cone (or a dilation) of C:

Definition 2.4.9. Suppose that D C Y is a proper cone with nonempty interior and
put Q :=int D. Q is said to be a dilation of C, or dilating C if it contains C \ {0}.
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Remark 2.4.10. Makarov and Rachkovski [409] studied more detailed some con-
cepts of proper efficiency and introduced the notion of Z-efficiency, i.e., efficiency
w.rt. a family of dilations of C. Namely, given # € % (C), where .%(C) is
the class of families of dilations of C, y is said to be a ZA-minimal point of A
(y € BMin(A4, C)) if there exists B € A such that

(A—3)N (=B) = 0.

It has been established that Borwein proper efficiency, Henig global proper
efficiency, Henig proper efficiency, super efficiency and Hartley proper efficiency
are H-efficiency with & being appropriately chosen family of dilating cones.
The reader will see that in contrast with Z-efficiency, the concept introduced in
Definition 2.4.8 includes not only some concepts of proper efficiency among which
are these ones considered in [409] but also the concepts of strong efficiency and
weak efficiency.

In order to study the relationships between weakly / properly minimal points and
Q-minimal points let Y be a n.v.s. and @ as before a base of C. Setting

§:=680:=d(0,0)=inf{|0]| | 6 € ®} >0,

for each 0 < n < §, we can associate to C a convex, pointed and open set V,,
defined by

V, := cone(® + 7]1;;)/). (2.41)
For each scalar ¢ > 0, we also associate to C an open set C(¢)
Cle):=={yeY [d(y,C) <ed(y,—C)}.

We are going to show that the weakly / properly minimal points introduced in

Definitions 2.4.2 and 2.4.4 are in fact Q-minimal points (Definition 2.4.8) with Q
being appropriately chosen sets. The following result is shown in [228].

Theorem 2.4.11. (a) ¥ € WMin(4,C) iff ¥ € QMin(4, C) with Q = intC.
(b) ¥ e S-PMin(4,C)iff ¥ € QMin(A4, C) with Q = {y € Y | y*(y) > 0} and

y* e C*

(¢) ¥ € Hu-PMin(4, C) iff ¥ € QMin(4, C), with Q = Y \ —cl conv cone[(A —
y)uCl.

(d) ¥ € Be-PMin(4,C) iff ¥ € QMin(A4, C), with Q =Y \ —cl cone[(A —7¥) +
Cl.

(e) ¥y e Ha-PMin(4,C) iff y € QMin(4, C) with Q = C(¢) for some ¢ > 0.
(f) ¥ € Bo-PMin(4,C) iff y € QMin(A4, C), with Q being some dilation of C.
(g) ¥ € GHe-PMin(A4,C) iff ¥ € QMin(4, C), with Q = int D, being some

dilation of C, where D is a proper pointed convex cone in Y .
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(h) (supposing that Y is a n.v.s.)y € He-PMin(4, C) iff y € QMin(A, C) with
Q =V, and n is some scalar satisfying 0 <n < § = d(0, O).

(i) (supposing that Y is a n.v.s. and C has a bounded base ®)y € Sup-PMin(A)
iff y € QMin(4, C) with Q =V, and 1 is some scalar satisfying 0 <n < § =
d(0,®).

Proof. Using Definitions 2.4.4 and 2.4.8 one can easily prove the assertions (a)—
(d) and (g). The assertions (e)—(f) are formulated in a slightly different form as
established by Makarov and Rachkovski [409].

We prove now the assertion (h), namely, we show that y € He-PMin(A4, C) iff
there is a scalar 1 with 0 < n < § such that

A=-y)NnE=V) =0. (2.42)
Recall that by definition, ¥ € He-PMin(4, C) iff
clcone(A —y)N (O + eBy) = 0. (2.43)
It is also known [619] that y € He-PMin(4, C) iff
(A=) N (=S, = {0} (2.44)

for some integer n € N, where S, = cl cone(® + §/(2n)By). Now, suppose that
¥ € He-PMin(4, C). Then (2.43) holds. Without loss of generality we can assume
that 0 < & < §. We show that (2.43) holds with n = &. Suppose to the contrary that
thereis y’ € A—y suchthat y’ € —V,. Clearly, y’ € cl cone(A—y)N(—cl cone(®+
€By)). On the other hand, as 0 < n = ¢ < § and by the definition of §, 0 ¢ V..
Hence y’ # 0. This is a contradiction to (2.43). Next, suppose that (2.42) holds for
some 7. Let n be an integer satisfyingn — 1 > §/(2n) or §/(2n —2) < n. By (2.42)
we have

(A=9)N(=Vsjon—2) S (A=) N(=V,) = 0.

Then (A —7¥) N (—=Vsy2n—2) U {0}) = {0}. On the other hand, [619, Lemma 2.1]
states that if (4 —¥) N (=Vs/@n—2) U {0}) = {0}, then (4 —y) N (=S,) = {0}
Thus, (2.44) holds and therefore, y € He-PMin(A4, C), as it was to be shown.

To complete the proof note that the last assertion (i) of this theorem follows from
(h) and the assertion (ii) in Proposition 2.4.6. O

Remark 2.4.12. The assertion (h) in the above theorem is inspired by the definition
of Henig properly minimal points for sets in locally convex spaces given by Gong
in [213]. One can deduce that any Henig properly minimal point is a global Henig
properly minimal point.

Furthermore, we mention solution concepts for vector optimization problems
introduced by ElMaghri-Laghdir[175] where it is not supposed that the ordering
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cone C C Y is pointed and closed. This concept is based on a generalization of
the concept of dilations of a cone C C Y (see Definition 2.4.9). In the text below
we follow the presentation in [175]. We assume that X, Y, Z are topological vector
spaces and S is a subset of X . For the following notations and results the lineality
of C, defined by

I(C):=C N (=C),

is very important. Of course, C is pointed if /(C) = {0}.

Unlike the assumptions made before we assume in the sequel in this section that
Y is ordered by the proper convex cone C (C is properif C # [(C), or equivalently,
C is not a linear subspace of Y).

Furthermore, using /(C') we introduce

CY:={y* eY* | (y.y*)>0Vy e C\I(C)} = (C\I(C))".

Hence, if C is pointed then C% = C¥. Note that Theorem 2.4.7 gives sufficient
conditions for C¥ # @.

We use the notations y = y' if yy —y € C;y < y'if yy —y € intC and
furthermore, y < y’if y/ —y € C \ I(C).

In the following we consider a proper vector-valued objective function f : X —
Y*, S C X and use the notation

) ={fx)|xeSNdom f}CY.
Consider now the vector optimization problem
minimze f(x) subjectto x € S. (VP)
Using the lineality of C and without assuming the pointedness and closedness

of C we introduce the following solution concepts for (VP). These concepts are
extensions of the solution concepts introduced in Definitions 2.4.1, 2.4.2 and 2.4.4.

Definition 2.4.13. ¥ € S Ndom f is
e strongly I(C)-minimal if f(X) = f(x) forall x € S, or equivalently
f8)cfx®+C,

¢ Pareto 1(C)-minimal if f(x) = f(X) = f(x) = f(x) forall x € S, or
equivalently

SN (&) = (C\IC))) =0,

* weakly I(C)-minimal if f(x) £ f(X) forall x € S, or equivalently
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S NfF) —intC) =0,

e 1(C)-properly minimal if there exists D C Y a proper convex cone with C \
[(C) C int D such that X is efficient with respect to D, f(S) N (f(xX) — D \
(D)) = 0.

Definition 2.4.14. Suppose that D C Y is a proper convex cone with nonempty
interior. Put Q := int D. Q is said to be a generalized dilation of C or generalized
dilating C if it contains C \ /(C).

Set
Q¢ :={D C Y | D is aproper convex cone with C \ /(C) CintD}.

Lemma 2.4.15. Let C C Y be a proper convex cone. Then 2¢ # 9 if and only if
C& #£ @. Moreover, if C* # @ then

C+intD =intD VD e Z2¢ (2.45)
and
C¥ = Upege (DT \ {0}). (2.46)

Proof. Assume that 2¢ # @ and take D € 2. Since D is proper, int D # Y.
Take go € Y \ int D. By a separation theorem there exists y* € Y* such that
(g0, y*) <0 < (y,y*) forall y € int D. It follows that y* € C&,.

Conversely, assume that C¥ # @ and take y* € C&. Consider D := {y € Y |
(y,y*) > 0}. From the very definition of C* we have that C \ [(C) C {y € Y |
(y,y*) >0} =int D.

Let us prove (2.45). First note that C C cl(C \ cl C). Indeed, there exists ko €
C\I(C).Letk € C. Thenk 4+ Ako € C + (C \ I(C)) = C \ I(C) for every
A > 0. The claim follows taking the limit for A — 0. Then, taking D € 2¢ and
using repeatedly [79, Lemma 2.5] we get

intD CC+intD =cl(C\I(C))+intD = (C\I(C))+intD CintD,

and so (2.45) holds.

Take now D € Z¢; then C \ I[(C) C intD, and so C& = (C \ I[(C))* D
(int D)* = DT \ {0}. Hence the inclusion D holds in (2.46). Let now y* € C¥.
Then D :={y € Y | (y.y*) >0} € D¢ and y* € D \ {0}. It follows that (2.46)
holds. O
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For A C Y we set

Ei(A):=ES(A):={aeA|ACa+C},
E((A):=EJ(4):={aeA|An@—(C\I(C)) = 0},
E,(A):=ES(A):={@aeA|ANn@—intC) = @},
Ep(A):= ES(A):==U{EP(A) | D € 2c}.
Since intC € C \ I[(C) C int D, we have that
Ep(A) € E.(4) € E(A), (2.47)
the last inclusion makes sense for int C # @. It is worth to observe that
E,(A) =U{EP(4)| D € 2¢}. (2.48)

Indeed, the inclusion C in (2.48) follows from the last inclusion in (2.47). Take
a € EP(A) for some D € 2¢ and consider D’ := {0} U int D. Then D' € 2
and @ € EP'(A) because D' C D. Since EP'(A) = EP’(A), we obtain that
ac E,A).

Lemma 2.4.16. E,(A) = ANE;(A+C) foro € {s,e,w, p}. Moreover, if [(C) =
{0}, that is C is pointed, then E;(A) = E;(A + C) for o € {s,e, p}. Generally,
E.(A) = ANbd(A + C) (for intC # @), and so E,,(A) and E,,(A + C) (=
bd(A + C)) might be different (take A = {0}).

Proof. Foro = susethefactthat A Ca+C = ACA+C Ca+C.Foro=e
use the fact that C \ [(C) = C + (C \ I(C)), while for ¢ = w use the fact that
C +intC =intC.

For 0 = p one uses (2.45). If a € E,(A) then there exists D € Z¢ such
that AN (a —intD) = 0. Hence 0 ¢ A —a +intD = (A+C)—a + intD
by (2.45), and so a € E,(A + C). Conversely, leta € AN E,(A + C). Then
0¢(A+C)—a+intD =A—a+intD,andsoa € E,(A).

Assume that [(C) = {0}. We have to prove that E;(A + C) C A for o €
{s,e, p}. Assume thata + k € E;(A + C) forsomea € A and k € C \ {0}. For
o = s we geta + k = a, whence the contradiction k € —C. For 0 = e we get
the contradictiona € (A + C) N (a + k — (C \ {0}). For ¢ = p, we have that
Ey(4) C E.(4) € A. 0

Generally, E;(A) = 0.

Lemma 2.4.17. If E;(A) # 0 then Es(A) = E.(A). Moreover, if C¥ # @ then
E(A) = E,(A) = E.(4).

Proof. Because 0 ¢ C \ [(C) = C + (C \ /(C)) we have that

C N (=(C\I(C)) = 0.
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Fixa € E;(A). Leta € E;(A). Then A C a + C, and so
AN@—(C\I(C))) € (a+C)N(a—(C\I(C))) = a+[C N(=(C\I(C)))] = 0.

Hencea € E.(A),and so E(A) C E.(A).

Take now a € E.(A) C A Ca+ C.Hencea = a + k forsome k € C. If
k ¢ [(C)thena € AN ((a — (C \ [(C))), contradicting the fact thata € E,(A).
Hence k € [(C),andso A Ca+ C =a—k + C C a+ C, which shows that
a € E;(A).

Assume, moreover, that C* # @, and take y* € C&. It follows that D := {y €
Y | (y.y*) = 0} € 2¢. Using (2.45) we have that C N (—int D) = @, and so

AN@-intD)C @+ C)N(@—intD)=a+ (CN(=intD)) = @;

therefore, @ € E,A. Hence E;(A) C E,(A). Since always E,(A4) € E.(A) we get
the conclusion. O

The corresponding sets of solutions for (VP) are denoted by E(f, S), E.(f,S),
E.(f.S), E,(f.S), respectively. More precisely,

E,(f,S):={xeSNdomf | f(X) € E,(f(S Ndom f))}, o €{s,e,w,p}.

2.5 Vector Optimization Problems with Variable Ordering
Structure

Yu introduced in [606] nondominated solutions of vector optimization problems
with variable ordering structure based on general domination set mappings, compare
also Chen, Huang, Yang [91]. Vector optimization problems with variable ordering
structure are studied intensively by Eichfelder in [162, 164—166], Eichfelder,
Ha [168] where corresponding solution concepts, characterizations by scalarization
methods, optimality conditions and numerical procedures are presented. Eich-
felder [163, 166] gives a very detailed overview on solution concepts for vector
optimization problems with variable ordering structure and presents a complete
characterization of these solution concepts (see also Eichfelder, Kasimbeyli [170]
and Eichfelder, Gerlach [167]).

Let X and Y be Banach spaces, @ # S C X, f: X -> Y andletC : X =3 Y
be a set-valued map such that for each x € X, C(x) is a nonempty convex set with
0 € bd C(x).

We consider the following vector optimization problems with variable ordering
structure

v-minimize f(x) subjectto x € S.
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The solution concept for this problem is given in the following definition (com-
pare [91, Definition 1.15]):

Definition 2.5.1 (v-Minimal Points, Weakly v-Minimal Points). LetC : X = Y
be a set-valued map with 0 € bd C(x), C(x) a convex set forall x € X, S C X and
f:S —Y.Anelement X € S is said to be a v-minimal point of / w.r.t. C(-) if

(f(S) = SN N (=(CE) \ {0}) = 2.

The set of all f(x) with x a v-minimal point of f w.rt. C(-) is denoted by

Min(f(S). C()).
Suppose that for all x € X, intC(x) # @. An element X € S is said to be a
weakly v-minimal point of f w.r.t. C(-) if

(f(S) = f(x) N (=intC(X)) = 0.

The set of all f(x) with x a weakly v-minimal point of f w.r.t. C(-) is denoted by
WMin(f(S), C(-)).

Remark 2.5.2. For further solution concepts, especially nondominated elements, of
vector optimization problems with variable ordering structure see Eichfelder [166].

In the case that we ask for v-minimal points of f w.rt. C(-) the vector
optimization problem with variable ordering structure is given by

Min(f(S), C(-)). (VP))

When we are looking for weakly v-minimal points of f w.r.t. C(-) we study the
problem

WMin( f(S), C(:)).

The following relationships between v-minimal solutions of the vector optimiza-
tion problem (VP,) and solutions of suitable scalarized problems are shown by
Chen, Huang and Yang [91, Theorem 2.18].

Theorem 2.5.3. Consider the vector optimization problem with variable ordering
structure (VP,), where C : X = Y is a set-valued map such that for each x € X,
C(x) is a convex subset of Y with 0 € bd C(x) and int C(x) # 0. Then:

(a) Let x € S. Suppose that there exists y* € Y* with y*(y) > 0 forall y €
C(x) \ {0} such that x € S is a minimal solution of the scalar optimization
problem

min y*(f(x))- (Py+)
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Then X is a v-minimal point of f w.r.t. C(-) concerning the vector optimization
problem (VP,).

(b) Let f(S) be a convex subset of Y and X a v-minimal point of the problem
(VP,). Then there exists y* € Y™ satisfying y*(y) > 0 for all y € intC(X),
such that X is a minimal solution of the scalar optimization problem (P ).

Remark 2.5.4. Characterizations of solutions of general vector optimization prob-
lems with variable ordering structure by means of nonlinear scalarizing functionals
are given by Eichfelder in [163, 164, 166] and by Eichfelder, Ha [168].

2.6 Solution Concepts in Set-Valued Optimization

Unless otherwise mentioned, let ¥ be a linear topological space, partially ordered
by a proper pointed convex closed cone C. Let Z(Y) = 2¥ be the power set of Y .

We consider a set-valued optimization problem with a general geometric con-
straint:

minimize F(x) subjectto x €S, (SP)

where S is a subset of X, X is a linear space and the cost mapping F : S =
Y is a set-valued mapping. As already introduced, we use the notations F(S) =
UresF(x)anddom F = {x € S | F(x) # 0}.

In Sects. 2.6.1, 2.6.2 and 2.6.3 we introduce different solution concepts for the
problem (SP). Furthermore, in Sect. 2.6.4 we present the embedding approach by
Kuroiwa [353, 354, 357], in Sect. 2.6.5 we discuss solution concepts with respect
to abstract preference relations by Bao and Mordukhovich [28], in Sect. 2.6.6
we introduce solution concepts for set-valued optimization problems with variable
ordering structure, in Sect. 2.6.7 we study approximate solutions of set-valued
optimization problems and finally, in Sect. 2.7 we discuss relations between the
solution concepts.

2.6.1 Solution Concepts Based on Vector Approach

First, we introduce a solution concept where “minimization” in (SP) is to be
understood with respect to the partial order <¢ defined in (2.9). In contrast to
single-valued functions, for every X € dom F' there are many distinct valuesy € ¥
such that ¥ € F(x). Hence, in the first approach, when studying minimizers
of a set-valued mapping, we fix one element y € F(x), and formulate the
following solution concept based on the concept of Pareto minimality introduced
in Definition 2.4.1.
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Definition 2.6.1 (Minimizer of (SP)). Letx € S and (X,y) € graph F. The pair
(x,7) € graph F is called a minimizer of the problem (SP) if ¥ € Min (F (), C )

Furthermore, also the other notions of weakly / properly minimal points for sets
(see Definitions 2.4.2 and 2.4.4) naturally induce corresponding notions of weak /
proper minimizers to the corresponding set optimization problems (see Ha [228]).

Definition 2.6.2 (Weak Minimizer of (SP)). Let X € § and (¥,y) € graph F.
The pair (X,y) € graph F is called a weak minimizer of the problem (SP) if y €
WMin (F(S),C).

Let D C Y be as before (see Definition 2.4.8) a proper cone with nonempty
interior and Q := int D.

Definition 2.6.3 (Q-Minimizer of (SP)). Consider the set-valued optimization
problem (SP). Let X € S and (¥,y) € graph F. We say that (X,y) is an
S-proper minimizer (Hurwicz proper minimizer, Hartley proper minimizer,
Benson proper minimizer, Borwein proper minimizer, Henig global proper
minimizer, Henig proper minimizer, super minimizer and Q-minimizer, respec-
tively) of (SP) if y is an S-properly minimal (Hurwicz properly minimal, Hartley
properly minimal, Benson properly minimal, Borwein properly minimal, Henig
global properly minimal, Henig properly minimal, super efficient and Q-minimal,
respectively) point of F(S),i.e., ¥y € S-PMin(F(S), C) (¥ € Hu-PMin(F(S), C),
¥ € Ha-PMin(F(S),C),y € Be-PMin(F(S),C),

¥ € Bo-PMin(F(S),C), ¥y € GHe-PMin(F(S),C), y € He-PMin(F(S),C),
¥y € Sup-PMin(F(S),C),y € Q-Min(F(S), C), respectively).

Moreover, especially in Chaps. 8 and 15 we study set-valued optimization
problems, where the set-valued objective map F : X =2 Y is to be maximized
over the feasible set S € X (X is a linear space)

maximize F(x) subjectto x € S. (SPpax)

Analogously to Definitions 2.6.1 and 2.6.2 we now introduce maximizers and
weak maximizer of (SPyqx)-

Definition 2.6.4 (Maximizer of (SP,,,)). Let X € S and (x,y) € graphF.
The pair (X,y) € graph F is called a maximizer of the problem (SP,,y) if
¥ € Max (F(S).C).

Definition 2.6.5 (Weak Maximizer of (SP,,.)). Consider the set-valued opti-
mization problem (SP,..). Let X € S and (X,y) € graph F. We say that (X,y)
is a weak maximizer of (SP,,.) if ¥ is a weakly maximal point of F(S), i.e.,
y € WMax(F(S),C).

Furthermore, we consider set-valued optimization problems with a special
structure concerning the restrictions, namely inequality restrictions: Let X, Y, Z
be real locally convex Hausdorff spaces, Y, Z be ordered by proper pointed closed
convex cones C, K, respectively, F : X == Y and G : X = Z. Under these



2.6 Solution Concepts in Set-Valued Optimization 47

assumptions we study a set-valued optimization problem of the following form (see
Tasset [570]):

minimize F(x) subjectto x €S, (SP7)
where M C X is a set satisfying M € dom F N dom G and
S:={xeM|Gx)N(—K) # d}. (2.49)
For set-valued problems (SPr) with a feasible set S given by (2.49) we derive
duality assertions in Sect. 8.1 using the following solution concept with respect to
the quasi(-relative) interior of acone C C Y.
Let B C Y be a nonempty convex set; the quasi interior of B is
qiB:={yecB|cR(B—-y) =TV}
and the quasi-relative interior of B is

qri B :={y € B | cI (R (B — y)) is a linear space} .

Because cl (R4 (B — y)) C claff B—y, we have that claff B = Y whenever qi B #
@. In fact we have

0e€qi(B—B) < claffB=Y —> qiB = qri B. (2.50)
It is worth to observe that for yo € B we have that
Yo ¢ qriB < Fy* € Y* :inf y*(B) > (yo.y*) < supy*(B); (2.51)
in particular,
yo € B\ qriB = 3y* € Y*\ {0} : inf y*(B) = (0, ¥™). (2.52)
Note that in the above implications we do not assume that qri B # . Note
that (2.51) covers [72, Theorem 2.7].
Observe also that for B = C a convex cone,
y €4qiC, y* € CT\{0} = (y.y*) > 0. (2.53)
Indeed, if (y, y*) = O then (y’ — y, y*) > 0 forevery y’ € C, and so (y”,z*) > 0
for every y” € cl (R4 (C — y)) = Y. We get so the contradiction y* = 0.

Using these notations Tasset [570] introduced the following solution concept for
the set-valued problem (SP7) with restrictions given by (2.49) .
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Definition 2.6.6 (Quasi-Weak Minimizer of (SPr)). Assume qi C # @ and con-
sider the set-valued optimization problem (SPr) with restrictions given by (2.49).
LetX € S and (x,y) € graph F. The pair (X, y) is called a quasi-weak minimizer
of the problem (SPr) with restrictions given by (2.49) if F(S) N (y —qiC) = 0,
and we denote this by ¥ € Min(F(S),qi C).

2.6.2 Solution Concepts Based on Set Approach

Although the concept of a minimizer of the set-valued problem (SP) given in
Definitions 2.6.1 and 2.6.3 is of mathematical interest, it cannot be often used in
practice. It is important to mention that a minimizer (X, y) depends on only certain
special element y of F(x) and other elements of F(x) are ignored. In other words,
an element X € S for that there exists at least one element y € F(X) which is a
Pareto minimal point (Definition 2.4.1) of the image set of F even if there exist
many bad elements in F(X), is a solution of the set-valued optimization problem
(SP). For this reason, the solution concepts introduced in Sect. 2.6.1 are sometimes
improper.

In order to avoid this drawback it is necessary to work with practically relevant
order relations for sets. This leads to solution concepts for set-valued optimization
problems based on comparisons among values of the set-valued objective map F'.

First, we will introduce several order relations that are used in order to formulate
corresponding solution concepts for the set-valued problem (SP). The set less order
relation <7, is introduced independently by Young [605] and Nishnianidze [443]
(cf. Eichfelder, Jahn [169]) for the comparison of sets:

Definition 2.6.7 (Set Less Order Relation).

Let C C Y be a proper closed convex and pointed cone. Furthermore, let
A, B € Z(Y) be arbitrarily chosen nonempty sets. Then the set less order relation
is defined by

A=< Bi <<= ACB-CandA+C 2DB.
Remark 2.6.8. Of course, we have

ACB—-C<«=VaeAdbeB:a<ch
and

A+C OB« VbeBIacA:a<ch.

Kuroiwa [347,349,351] introduced the following order relations:
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Definition 2.6.9 (Lower (Upper) Set Less Order Relation). Let C C Y be a

proper closed convex and pointed cone. Furthermore, let A, B € Z(Y) be arbitrary

nonempty sets. Then the lower set less order relation flc is defined by
A<LB:&= A+C2B

and the upper set less order relation <¢ is defined by

A<L B ACB-C.

The lower set less order relation 5IC is illustrated in Fig. 2.2 and the upper set less
order relation <¢ in Fig. 2.3.

Remark 2.6.10. There is the following relationship between the lower set less order

relation jlc and the upper set less order relation <{-:
A<L B:e= A4+C 2B <> BC A—(-C) <: B <" A < (—B) <% (—A).
Remark 2.6.11. ltis easy to see that A 5IC B is equivalent to

A+C2B+C.

Furthermore, A <¢ B is equivalent to

A-CCB-C.

Fig. 2.2 Lower set less order
relation <%
A

Fig. 2.3 Upper set less order
relation <¢
B
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It is important to mention that
A<L. Band B<L A<= A+C=B+C.

Under our assumption that C is a pointed closed convex cone it holds Min(A4 +
C,C) =Min(A4, C) and Min(B + C,C) = Min(B, C) such that we get

A <L Band B <. 4 = Min(4, C) = Min(B, C).

Under the additional assumptions A € Min(4,C) + C and B € Min(B,C) + C
(domination property, see [47,400]) we have

Min(4,C) =Min(B,C) <= A+ C=B+C
and so
A <L Band B <. 4 <= Min(4,C) = Min(B, C).
Similarly,
A=XtBandBX{ A= A-C=B-C

and because of Max(A4 — C, C) = Max(A4, C) and Max(B — C,C) = Max(B, C)
it holds

A <¢ B and B X A = Max(4,C) = Max(B, C).

Under the additional assumption A € Max(A4,C) — C and B € Max(B,C)—C'it
holds

Max(A,C) =Max(B,C) <= A—-C=B-C
and so
A <¢ Band B <X A <= Max(4,C) = Max(B,C).

In interval analysis there are even more order relations in use, like the certainly
less order relation <. (Kuroiwa [347-349,351], compare Eichfelder, Jahn [169]):

Definition 2.6.12 (Certainly Less Order Relation <{,). For arbitrary nonempty
sets A, B € () the certainly less order relation <. is defined by

A=l Bie=> (A=B)or(A# B,Yaec AVb e B:a <cb).

An illustration of the certainly less order relation <{, is given in Fig. 2.4.
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Fig. 2.4 Certainly less order
relation <.

Fig. 2.5 Possibly less order
relation <7

Moreover, the possibly less order relation jg (Kuroiwa [348,349,351]) is given

in the following definition:

Definition 2.6.13 (Possibly Less Order Relation <7). For arbitrary nonempty
sets A, B € 2 (Y) the possibly less order relation <7 is defined by

A=<l B (FacAIbeB:a=<ch).

The possibly less order relation <Z. is illustrated in Fig. 2.5.

Remark 2.6.14. Itis clear that A <{. B implies
dae A suchthat Vb e B:a <cb. (2.54)
Moreover, (2.54) implies A 5ZC B (see Definition 2.6.9) such that
A< B= A <L B
Furthermore, 4 </ B implies

Jda € A, 3b € B suchthata <c¢ b. (2.55)
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Taking into account Definition 2.6.13, we have
A< B = A<LB = A=<lB. (2.56)
Remark 2.6.15. The relation A <¢ B implies
db € B suchthat Vae€ A:a <c b. 2.57)
Moreover, (2.57) implies A <{- B (see Definition 2.6.9) such that
A=¢ B= A={ B
Furthermore, A < B implies
da € A, 3b € B suchthata <¢ b, (2.58)
such that we get
A<(B = A=<t B = A=<lB

taking into account Definition 2.6.13.

Furthermore, the minmax less order relation <7 is introduced for sets A, B
belonging to

F ={Ae P(Y)| Min(4,C) # @ and Max(4, C) # @}.

Note that for instance in a topological real linear space Y for every compact set
in Z(Y) minimal and maximal elements exist.
Definition 2.6.16 (Minmax Less Order Relation). Let A, B be sets belonging to
Z . Then the minmax less order relation <" is defined by

A <% B <= Min(4, C) < Min(B, C) and Max(4, C) < Max(B, C).

The minmax certainly less order relation <{* is introduced in the next definition:
Definition 2.6.17 (Minmax Certainly Less Order Relation). For arbitrary
A, B € % the minmax certainly less order relation <7 is given by

A= B i< (A= B)or (A# B,Min(4, C) <¢ Min(B, C)
and Max(4, C) <¢ Max(B, C)).

Finally, we introduce the minmax certainly nondominated order relation <" (see
Jahn, Ha [295]).
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Definition 2.6.18 (Minmax Certainly Nondominated Order Relation). For arbi-
trary nonempty A, B € (YY) the minmax certainly nondominated order relation
<¢" is defined by

A =" B <= (A= B)or (A # B,Max(4,C) <. Min(B, C)).

The set less order relation <i. and the order relations jlc, =<, X6, X¢° and
=<¢" are preorders. If <¢ denotes one of these order relations, then we can define
optimal solutions with respect to the preorder <¢ and the corresponding set-valued
optimization problem is given by

<¢ —minimize F(x), subjectto x € S, (SP — =<¢)

where we assume again (compare (SP)) that Y is a linear topological space, partially
ordered by a proper pointed convex closed cone C, S is a subset of X, X is a linear
space, F : X =z Y.

Definition 2.6.19 (Minimal Solutions of (SP — <) w.r.t. the Preorder <¢). An
element X € S is called a minimal solution of problem (SP — <¢) w.r.t. the preorder
<c if

F(x) X¢ F(x) forsome x €S = F({X) =<¢ F(x).

Remark 2.6.20. When we use the set relation flc introduced in Definition 2.6.9
in the formulation of the solution concept, i.e., when we study the set-valued
optimization problem (SP — j’c), we observe that this solution concept is based
on comparisons among sets of minimal points of values of F' (see Definition 2.4.1).
Furthermore, considering the upper set less order relation <{- (Definition 2.6.9), i.e.,
considering the problem (SP — <{ ) we recognize that this solution concept is based
on comparisons of maximal points of values of F' (see Definition 2.4.1).

When ¥ € § is a minimal solution of problem (SP — jlc) there does not exist
x € § such that F(x) is strictly smaller than F(X) with respect to the set order flc-

In the following we give three examples (see Kuroiwa [347]) of set-valued opti-
mization problems in order to illustrate the different solution concepts introduced in
Definitions 2.6.1 and 2.6.19.

Example 2.6.21. Consider the set-valued optimization problem
minimize Fj(x), subjectto x € S,

with X =R, Y =R2, C =R1,S =[0,1]and F; : S =2 Y is given by

[(1,0),(0,1)] ifx=0

Fi(x) == [(1—x,x), (1, 1] if x € 0, 1],

where [(a, b), (c, d)] is the line segment between (a, b) and (c, d).
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Only the element X = 0 is a minimal solution in the sense of Definition 2.6.19
w.r.t. j’c. However, all elements (X,y) € graph F; with X € [0,1], 7y = (1 —
x,x) forx € (0,1] and y = (1,0) for x = 0 are minimizers of the set-valued
optimization problem in the sense of Definition 2.6.1. This example shows that the
solution concept with respect to the set relation flc (see Definition 2.6.19) is more

natural and useful than the concept of minimizers introduced in Definition 2.6.1.

Example 2.6.22. Now we discuss the set-valued optimization problem
minimize F>(x), subjectto x €S,

with X =R, Y =R2, C =R1,S =[0,1]and F, : S =2 Y is given by

[ hd ] ifx=0
B =010 Zx ey, (1) if x e (0. 1],

The set of minimal solutions in the sense of Definition 2.6.19 w.r.t. flc is the
interval [0, 1], but the set of minimizers in the sense of Definition 2.6.1 is given by

{(x,y) e graph F, | x € (0,1], y = (1 =X, X)}.
Here we observe that X = Ois a j’c-minimal solution but the set F>(X) (x = 0)
has no Pareto minimal points.

Example 2.6.23. In this example we are looking for minimal solutions of a
set-valued optimization problem with respect to the set relation <¢ introduced in
Definition 2.6.9.

<¢ —minimize F3(x), subjectto x € S, (SP—=5)
with X =R, Y =R*, C =R3,S =[0,1]and F3 : S = Y is given by

A D, 2.2)]]ifx =0
BO=1 10,00, .3 it x € (0.1,
where [[(a.b), (c.d)]] :={(y1.y2) [a=y1=c, b=y, =d}.

Then a minimal solutions of (SP — <¢.) in the sense of Definition 2.6.19 is only
X = 0. On the other hand, x € (0, 1] are not minimal solutions of (SP — <{-) in the
sense of Definition 2.6.19, but for all X € (0, 1] there are y € F5(X) such that (X, )
are minimizers in the sense of Definition 2.6.1.

Further relationships between different solution concepts in set-valued optimiza-
tion are discussed in Sect. 2.7.

Applications of solution concepts based on set approach introduced in this
section are given in Sect. 15.4 concerning robustness, in Sect. 1.1 concerning
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game theory. Furthermore, in Sect. 8.2 we present duality assertions for the primal
problem (SP — <%.).

2.6.3 Solution Concepts Based on Lattice Structure

We recall in this section the concept of an infimal set (resp. supremal set), which is
due to Nieuwenhuis [442], was extended by Tanino [563], and slightly modified with
respect to the elements 00 by Lohne and Tammer [397]. We will shortly discuss
the role of the space of self-infimal sets, which was shown in [397] to be a complete
lattice. As we will see in Sect. 15.1, this complete lattice is useful for applications
of set-valued approaches in the theory of vector optimization, especially in duality
theory.

First, we recall the definitions of lower and upper bounds as well as the infimum
and supremum of a subset of a partially ordered set. Consider a partially ordered set
(Y,<)and A C Y. As already introduced in Definition 2.1.6, an element [ € Y is
called a lower bound of A if / < y forall y € A. Furthermore, an elementu € Y is
called an upper bound of A if u > y forall y € A. Using lower and upper bounds,
the infimum and supremum for a subset A of a partially ordered set (Y, <) is defined
in Definition 2.1.6. An element [ € Y is called greatest lower bound or infimum of
A C Y if [is alower bound of A and for every other lower bound / of A it holds
I < I.If the infimum of A exists we use the notation / = inf A for it. Analogously,
we define the least upper bound or supremum of A C Y and denote it by sup A.

Based on the definition of the infimum and supremum we introduce the notion of
a complete lattice that is important for the approach in this section.

Definition 2.6.24. A partially ordered set (Y, <) is called a complete lattice if the
infimum and supremum exist for every subset 4 C Y.

A characterization of a complete lattice based on the existence of the infimum of
subsets A C Y is given by Lohne [395, Proposition 1.6].

Proposition 2.6.25. A partially ordered set (Y, <) is a complete lattice if and only
if the infimum exists for every subset A C Y.

Let us give some examples for complete lattices (compare [395]).

Example 2.6.26. Tt is well known that R = R U {200} equipped with the natural
order relation < provide a complete lattice.

Example 2.6.27. Consider a nonempty set Y and let 2(Y) = 2" be the power set
of Y. (Z(Y),2) is a complete lattice. The infimum and supremum of a nonempty
subset &7 € H(Y) are described by

infor = (] A, supe/ = () 4. (2.59)

A€/ Aed
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If o7 is empty, we put sup.e/ = Y and infe/ = 0. Y € Z(Y) is the least
element and @ € Z(Y) is the greatest element in (Z(Y), 2).

Example 2.6.28. Consider a linear space Y and let 4’ (Y') be the family of all convex
subsets of Y. (4 (Y), 2) provides a complete lattice. The infimum and supremum
of a nonempty subset &7 C €' (Y) is described by

inf o7 = conv |_J 4. sup/ = [ A (2.60)
Aed Aed

If &7 is empty, we put again sup.«/ = Y and inf &/ = 0.

Example 2.6.29. Consider a topological space Y and let .% (Y') be the family of all
closed subsets of Y. (Z(Y), D) provides a complete lattice. By

inf.o/ = cl U A, sup o = ﬂ A (2.61)
Aedd Aed

the infimum and supremum of a nonempty subset &7 C % (Y') are given.
If o7 is empty, we put again sup.e/ = Y and inf &/ = 0.

Results concerning the infimum and supremum in the space of upper closed sets
are given in Proposition 2.6.40.

In the sequel, in this section we assume that (Y, <) is a partially ordered linear
topological space, where the order is induced by a proper pointed convex cone C
satisfying @ # intC # Y. Here we do not assume that C is closed. However,
in Sect. 15.1 we will give a reformulation of a vector optimization problem as .7 -
valued problem, where the closedness of C is important (compare Proposition 2.17
in [395] and Sect. 2.7). We write y < y'iff y’—y e Candy < y'iff y’—y € int C.
We denote by Y* := Y U {—o0} U {400} the extended space, where the ordering
is extended by the convention

VyeY: —oco<y < +o0.

The linear operations on Y'* are extended by the following calculus rules in analogy
to that ones stated for the extended real space R:

0-(+00) =0, 0-(—00) =0,

Ya >0 T (400) = 400,
Ya >0 To- (—00) = —00,
VyeY* 1y 4 (+00) = +o0 +y = 400,

VyeY U{-oo}:y+ (—00) =—00+y = —00.

The extended space Y * is not a linear space.
In the following definition we introduce the upper closure of A C Y* (see [395,
397]) that is important for the formulation of the solution concept.
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Definition 2.6.30. The upper closure (with respect to C) of A C Y * is defined to
be the set

Y if —oc0 €A
ClyAd:=10 if A = {+o00}
{yeY |{y}+intC C A\ {+o00} +intC} otherwise.

We have [395, Proposition 1.40]

Y if —0 €A
Clyd:=10 if A = {+o0} (2.62)
cl((A \ {+o0}) + C) otherwise.

As introduced in Definition 2.4.2, the set of weakly minimal points of a subset
A C Y (with respect to C) is defined by

WMin(4,C) ={y € A| AN ({y} —intC) = 0},
and the set of weakly maximal points of A is defined by
WMax(A,C)={ye A|AN({y}+intC) = @}.
If A # 0, A CY we have [442, Theorem I-18]
WMin(Cl14,C) =0 <= A+intC =Y <= Cl; A=7Y.

In order to formulate set-valued optimization problems where the solution
concept is based on the lattice structure we introduce the notion of an infimal
set for a subset of Y* (see Nieuwenhuis [442], Tanino [563, 566] and Lohne,
Tammer [397]).

Definition 2.6.31 (Infimal Set). The infimal set of A C Y * (with respect to C) is
defined by

WMin(Cl4A,C) if 0 £Cl A#Y
InfA:={ {—o0! if ClyA=Y
{400} if Cl,A=0.

Remark 2.6.32. We see that the infimal set of a nonempty set A C Y (with respect
to C) coincides with the set of weakly minimal elements of the set cl (4 4+ C) with
respect to C (WMin(cl (4 + C), C)), if c1 (4 + C) # Y. Note that if A C Y then
WMin(4,C) = A NInf A.

By our conventions, Inf A is always a nonempty set. Clearly, if —oo belongs
to A, we have Inf A = {—o0}, in particular, Inf{—oco} = {—oo}. Furthermore, it
holds Inf@® = Inf{4+oc0} = {400} and C1 A = Cl1(4 U {+o00}) and hence
InfA = Inf(A U {+o00}) forall 4 C Y°.
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Considering the set of weakly maximal points WMax(A, C) ofaset A C Y with
respect to C (see Definition 2.4.2) we define analogously the lower closure Cl_ A
and the supremal set Sup A of aset A C Y *. It holds

Sup A = —Inf(—A).

The following assertions were proved by Nieuwenhuis [442] and, in an extended
form, by Tanino [563].

Proposition 2.6.33. For A,B C Y with@ #Cl A # Y and® #Cl4 B #7Y it
holds

) InfA={yeY|ydA+intC, {y} +intC € A+ intC},
(ii)) A+intC = B+ intC <= InfA =InfB,
(iii)) A+ intC =InfA + intC,
@iv) Cl4A =InfAU (InfA + intC),
(v) InfA, (Inf A — int C) and (Inf A + int C) are disjoint,
(vi) InfAU (InfA—intC)U (InfA +intC) =Y.

Proposition 2.6.34. For A C Y *it holds

(1) InfInfA = InfA, C14Cl4+A = Cl4A, InfCl4A = InfA, ClyInfA =
CliA,
(i) Inf(Inf A + Inf B) = Inf(A + B),
(iii) aInfA = Inf(aA) for a > 0.

Proposition 2.6.35. Let A; C Y* fori € I, where I is an arbitrary index set. Then
it holds

i cy(Ja =ayJaa,

iel iel
(ii) Inf( J 4; = Inf(_JInf 4;.
iel iel

Proof. (1) AsCly {+oo} =@ andCl+A = Cl (A \ {+00}) we can assume that
+oo & |J;¢; Ai. We also assume {—oo} & | J,¢; Ai, because the statement is
otherwise obvious.

So we have
cly | 4 =d (U A; + c) =cl (Ucl(Ai + C)) +C =l 4,
iel iel iel iel
(i1) Follows from (i) and Proposition 2.6.33 (iv). O

In order to formulate set-valued optimization problems in an appropriate form for
deriving duality assertions (see Sects. 8.3 and 15.1) we introduce in the following
definitions the hyperspaces of upper closed sets and self-infimal sets.

Using the upper closure of A < Y (Definition 2.6.30) we introduce the
hyperspace of upper closed sets (compare Lohne, Tammer [397]).
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Definition 2.6.36 (Hyperspace of Upper Closed Sets).
The family .% := Z¢(Y) of all sets A C Y with

ClyAd=A

is called the hyperspace of upper closed sets.

In .% we introduce an addition & : .F x % — .%, a multiplication by non-
negative real numbers Oz : R4 x % — .% and an order relation < & as follows:

A®z B :=cl(A+ B),
a0z A:=Cly(x-A)

A<z B:<—= ADB.

We use the rule 0 - @ = {0}. This implies 0 ©.# @ = Cl ;.{0} = cIC.
Furthermore, using the infimal set of A C Y * (Definition 2.6.31) we introduce
the hyperspace of self-infimal sets (compare [397]).

Definition 2.6.37 (Hyperspace of Self-Infimal Sets). The family . := ¢ (Y*)
of all self-infimal subsets of Y *, i.e., all sets A C Y *® satisfying

InfA=4

is called hyperspace of self-infimal sets.

In . we introduce an addition &, : ¥ x ¢ — #, a multiplication by non-
negative real numbers © » : Ry x ¢ — . and an order relation < » as follows:

A® s B :=Inf(A+ B),
a Oy A:=Inf(a-A)

A<j B:. <= C1+A 2C1+B

Note that the definition of @ is based on the inf-addition in Y'*. As a consequence
we obtain {—oo} @ s {+00} = {+00}. Of course, forall A € £ weget0 O» A =
Inf{0} = bdC. In the space of self-supremal sets the sup-addition in Y* is the
underlying operation (Fig. 2.6).

Lemma 2.6.38. For A, B € . with® # Cl4A # Y and® # Cl4+B # Y we
have

A<, B < AN(B+intC)=0.

Proof. If Cl1+ A = @ or Cl1 + B = @ the proof is immediate, such that we assume
that Cl 1 A # @ and Cl + B # 0.
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Fig. 2.6 The addition and the ordering in .# for C = ]R%F

Suppose that A <, B. Taking into account the definition of < it holds
Cl+B < Cl4A. By Proposition 2.6.33 (iv) we have C1 4 B = B U (B + intC).
This yields (B U (B 4+ intC)) N (A —intC) = @ because of Cl B € ClA.
Therefore AN (B 4+ intC) = @.

Conversely, if AN (B +intC) = @then B+intC C A+intC.Hence Cl + B C
Cl Aandso A <X B. O

Proposition 2.6.39. The spaces (¥, ®7,0%,D) and (S, ® s, Oz, <.s) are iso-
morphic and isotone. The corresponding bijection is given by

jF > 7, j(-)=If(-), jN()=Cle(-).

Proof. By Proposition 2.6.34 (i), j is a bijection between .# and .#.

For Ay, Ay € %, we have j(A)) ®s j(A2) = j(A1 D A3). This follows from
Proposition 2.6.34 (ii).

Similarly, we can easily verify that for @ > 0 and A, B € .# we have

20y j(A) = jl@OzA) and A2 B = j(4) = j(B). o

Proposition 2.6.40. (#,2) and (,<X) are complete lattices. For nonempty
subsets of C F and B C I the infimum and supremum can be expressed by

info = cl U A, sup o = ﬂ A,

Aed Aed
inf# =Inf JCl4B.  sup#=Inf()ClyB.
Bex Bex

Proof. For the space (%, D) the statements are obvious and for (.#, <) they follow
from Proposition 2.6.39. O
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Fig. 2.7 The infimum and supremum in . for C = ]R%i-

Asusual, if & C .% and B C .# are empty we define the infimum (supremum) to
be the largest (smallest) element in the corresponding complete lattice, i.e., inf .o/ =
@,supo/ =Y,inf B = {400} and sup B = {—oo}.

It follows the main result of this section, which shows that the infimum as well
as the supremum in . can be expressed in terms that frequently are used in vector
optimization (compare [442], [145,563,566]), but up to now not in the framework
of complete lattices (see Fig. 2.7).

Theorem 2.6.41. For nonempty sets 8 C .7 it holds

inf#=Inf( ] B. supzB=Sup|J B
Be# Be#

Proof (i) It holds inf# = InfJzey Cl4B = InfCly |Jpey Cl1B =

InfCl+ Upey B = InflUgey B.
(ii) We have to show that

Sup | J B =1Inf (") Cl;B.
Bex Be%#

Then the assertion follows with Proposition 2.6.40.

a) If {+o00} € # we have +00 € (Jgey B and hence Sup|Jpzey B = {+00}.
On the other hand, since Cl 4 {+oc0} = @, we have Inf() 3., Cl+ B = Inf@ =
{+o0}.

b) Let {+o00} & £ but {—oco} € A. If {—oo} is the only element in & the assertion
is obvious, otherwise we can omit this element without changing the expressions.

c) Let {+o00} & A and {—oo} & . Then, B C Y and @ # ClLB # Y forall
B € A, i.e., we can use the statements of Proposition 2.6.33. Define the sets

V= |J(B-intC) = (U B)—intC

Be# Be#
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and

W= (") ClyB.
Be#A

We show that VNW = @ and VUW = Y. Assume there exists some y € VNW.
Hence there is some B € % such that y € (B —intC ) NCl 4 B = @, a contradiction.
Lety € Y \ W (we have W # Y, because otherwise it holds Cl1 B = Y for
all B € % and hence {—oo} € ). Then there exists some B € % such that
y & Cl 4 B. By Proposition 2.6.33 (iv), (vi) we obtain y € B —intC C V.

IfCI_V =Y we have W = @, hence Sup|Jgey B = SupV = {+o0} =
Inf@ = Inf W. Otherwise, we have § # Cl_V # Y and @ # Cl.W # Y. By
Proposition 2.6.33, we obtain

Sup | JB={yeY|ygV {y}—inC CV}

Be#
={yeY|yeW.(y}—intC)NW =@}
= WMin(W,C) = WMin(Cl + W, C) = Inf W
and so the proof is completed. O

We will see in Sect. 15.1 that the infimum/supremum in .# is closely related
to the solution concepts of vector optimization because the infimal/supremal set is
closely related to the set of weakly minimal/maximal elements (see also Sect. 2.7).

We next show some calculus rules in the hyperspace .# of self-infimal sets given
by Lohne, Tammer [398] and Lohne [395, Proposition 1.56].

Proposition 2.6.42. For subsets o/, 8 C ¥ we have

(i) inf &y B = inf.f ®_ s inf B
(ii) sup @y B < supf @ sup B.

Proof. (i) If & = @,itholdsinfe/ @y B = inf &/ = {400} and so
info/ @y B =infod &y inf B = {+00}.
Otherwise, we have

info @, Z=Inf | )] Ae@,B=If () 4+B

A€o/ ,BEA A€o/ ,BEA
=Inf(| J A+ [ JB)=Inf| ] 4@,Inf ] B
A€o Be# A€o Be#

= inf/ @, inf B. (2.63)
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(i) Forall A € o/ and B € # we have A @y B < sup/ @ supAB. As ¥
is a complete lattice we can take the supremum on the left-hand side of the
inequality. This yields (ii).

0

In the same manner like .% and .# we define the space .%#° of lower closed
subsets of ¥ and the space . of self-supremal subsets of Y*, where we underlie
the sup-addition in Y * in the latter case.

Using the infimal set given by Definition 2.6.31 we formulate set-valued
optimization problems based on lattice structure:

For an arbitrary set S, consider the following set-valued optimization problem

Inf |_J F(x) (SPy)

X€ES

with a set-valued objective map F : S = Y*. We denote the domain of F : S =
Y*byDomF :={x € S| F(x) # @ and F(x) # {+o0o}}.

Next, we introduce a solution concept for set-valued optimization problems in
the hyperspace of self-infimal sets (£, @, ©.s <,) (see Definition 2.6.37 and
Definition 2.6.31 for infimal sets).

Definition 2.6.43 (Infimal Set of (SPy)). The set P := Inf|J o5 F(x) is the
solution set of the set-valued optimization problem (SPy).

Since Inf| J, . F(x) = Inf|J ¢ Inf F(x), (SPy) can be expressed as an .#-
valued problem; without loss of generality we can assume that the sets F(x) are
self-infimal, i.e., F : § — .#. Thus we consider the following problem.

P =Inf| JF(x) = inf F(x). (SP— <)

x€S

Furthermore, in Sect. 8.3.1 we derive duality assertions for .% -valued optimiza-
tion problems. We consider the space (%, 2) (see Definition 2.6.36), where the
order relation is given by

for subsets A, B of .%.

In order to formulate the .% -valued optimization problem we study an objective
map F : X — %, ie., the objective function values of F are subsets of
the hyperspace of upper closed sets introduced in Definition 2.6.36. Using these
notations we study the .%-valued problem

P = inf P (x) =cl J F . (SP— =7)

xeX
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Remark 2.6.44. In Sect. 8.3 we will show duality assertions for .%-valued (.-
valued, respectively) primal problems and corresponding dual problems based on
conjugation as well as Lagrangian technique. Furthermore, in Sect. 15.1 we will use
the lattice approach for deriving duality assertions for vector optimization problems.

Remark 2.6.45. 1In the special case of single-valued functions F = f : § — Y
the problems (SP— < ) and (SP— < #) coincide.

In Sect. 14.2 we will present an algorithm for solving set-valued optimization
problems where the objective map has a polyhedral convex graph. There we will
need the following notions and assertions concerning the infimum and supremum
in a subspace of the hyperspace of upper closed sets (%,®z,Oz,2) (see
Definition 2.6.36), see Lohne [395].

Definition 2.6.46. The subspace of all closed convex subsets of an extended
partially ordered linear topological space Y *® is given by

Ty ={ACF|VAE(0,1) : AOA D (1—X1) O A=A}

The space F.ony can be characterized using the convex hull (compare
Lohne [395, Proposition 1.59]).

Proposition 2.6.47. Assume that Y is a linear topological space ordered by a
proper pointed convex cone C C Y withintC # @ and let & = F¢c(Y). Then

Feomw ={A CY | Clyconv A = A}.
Proof. Taking into account

A=ClyconvA <= A=convAAA=Cli A

VAe[0,1]: 4 =Cly(A + (1 — ) A4) &
Vie[0.1]:A=104 & (1-1) 04 0

Proposition 2.6.48. (F .o, D) is a complete lattice. For nonempty subsets of C
Feony the infimum and supremum can be expressed by

inf &/ = cl conv U A, sup .o/ = ﬂ A.
Aed A€ot

Proof. For all A € «f, where &/ is a nonempty subset of %.,,, we get with
Proposition 2.6.47 A = Cl; conv A. This yields

clconv U A = clconv U Cl4 conv A = clconv U clconv(4 + C)
Aes/ Aes/ Aes/
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= clconv U A+C)= cl((conv U A) + C)
Aed Aed

= Cl; conv U A.
Aed/

So we get cl conv UAE% A € Feony. Since ﬂAeﬂ A is convex and upper closed, we
can conclude [ ey A € Feonv. So we get the assertions of the proposition. O

2.6.4 The Embedding Approach by Kuroiwa

An important approach for deriving optimality conditions and algorithms for
solving set-valued optimization problems is based on the introduction of an
embedding space into which the set-valued optimization problem is embedded
(see Kuroiwa [353, 354]). With this approach Kuroiwa [354] defines notions of
directional derivatives for set-valued maps and derives corresponding necessary and
sufficient optimality conditions (compare Sect. 12.10). In this section we present
results given by Kuroiwa in [353,354,357].

Let Y be an.v.s., let C be a proper closed convex pointed cone in ¥ with int C #
@andintC+ # 9.

The set relation 52’ discussed in this section is defined as follows (cf. Defini-
tion 2.6.9):For A, B CY,

A<¢ Bie=cl(4+C) D B. (2.64)
We consider minimal solutions with respect to the quasi-order jccl given in (2.64)
in the sense of Definition 2.6.19, and the corresponding set-valued optimization
problem is given by

<¢ —minimize F(x), subjectto x €S, (SPs— <)

where F : § =2 Y is a set-valued objective mapping and S is a set.
We are looking for minimal solutions of (SP4 — 5‘8) in the sense of Defini-
tion 2.6.19, i.e., for elements x € S with

F(x) 5%’ F(x) forsome x €S —=— F(X) 5%1 F(x).

As already mentioned, a subset A of Y is said to be C -convex if A+ C is convex.
Furthermore, A C Y is said to be C *-bounded if (y*, 4) is bounded from below
for any y* € C*, where C T is the positive dual cone of C.

Let ¢ be the family of all nonempty C-convex and C *-bounded subsets of
Y. In the following, we introduce a process of construction of a normed space ¥
into which ¢ is embedded. This approach goes back to Kuroiwa and Nuriya [357].
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At first, we introduce an equivalence relation = on %> : For all
(A,B), (D.E) e 9?,

(ABy=D,E)y <= cl(A+E+C)=cl(B+D +C).
The quotient space ¢/ = is denoted by ¥, where
¥ = {[A, B]|(4, B) € 4%},
where [4, B] := {(D,E) € 9*|(4,B) = (D, E)} .
Furthermore, we define addition and scalar multiplication on the quotient space
¥ as follows:

[A4,B]+ [D.E]:=[A+ D,B + E],

LA, LB] ifA>0

A-[A,B] = [(=1)B, (—A)A] if A <O.

Then (¥, +, -) is a vector space over R.
In order to introduce an order relation on ¥ we define the following subset of
¥ by
u(C):={[A, B € V|B <{ A}. (2.65)
It is easy to see that ;(C) is a pointed convex cone in 7.
Using the pointed convex cone j(C), we define an order relation <) on ¥
as follows:

[AsB] fu(C) [DvE] = [DvE] - [AvB] € H(C)

Then, (¥, +, -, <,.(c)) is an ordered vector space over R .
Let a function ¢ from ¢ to ¥ be given by

@(A) :=[A,{0}] forall Aec¥9,
then
A =¢ B & o(A) Zuc) ¢(B),

forany A, B € 9.
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By using this function ¢, the set optimization problem (SP4 — ffg ) can be
transformed into a vector optimization problem in the following sense: If F is
amap from S to ¢4, then X € S is a minimal solution of (SP4 — j‘g ) if and only if

po F(S)N(po F(X) —u(C)) ={po F(X)}. (2.66)

Formula (2.66) means that ¢ o F(X) is a Pareto minimal point of ¢ o F(S) with

respect to u(C), i.e., ¢ o F(x) € Min(p o F(S), u(C)) (see Definition 2.4.1).
Finally, we introduce a norm | - | in 42/ =. Consider ¢ € intC and a weak*

compact base W := {y* € CT | (y*,c) = 1} of C™, then for each [4, B] € ¥,

|[A, B]| := sup |inf(y*, A) —inf(y*, B)|,
y*ew

is well-defined. Furthermore, let
Y(W):={[A,B]l €V ||[A, B]| < +o0},

then (¥ (W), | - |) is a normed vector space, and . (C) is closed in (¥ (W), | -|) .
In Sect. 12.10 we derive necessary and sufficient conditions for solutions of
(SPy — j‘g) using this embedding approach.

2.6.5 Solution Concepts with Respect to Abstract Preference
Relations

In this section we present a solution concept for set-valued optimization problems
with geometric constraints useful in welfare economics (introduced by Bao and
Mordukhovich [28]).

minimize F(x) subjectto x €S, (SPy)

where the cost mapping F : X =2 Y is a set-valued mapping, X and Y are Banach
spaces and S is a subset of X.

The “minimization” in (SP,4) is understood with respect to a certain preference
relation on Y. This general (abstract) preference relation on Y is defined as follows
(see Sect. 2.1 or [431, Subsection 5.3.1]): For a given nonempty subset Z C Y x Y,
one says that y! is preferred to y> (we write y! < y?)if (y', y?) € Z.

Following Bao and Mordukhovich [28] we will study a preference on Y directly
in terms of a given preference mapping L : ¥ = Y instead of a preference < on ¥
described via a subset Z C Y x Y. The level-set mapping L : Y = Y associated
to the preference relation < is defined by

Ly):={ueY |u<y} (2.67)
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This means that u € Y is preferred to y if u € L(y).

An abstract preference < has to satisfy some requirements in order to be useful
in optimization and applications, especially in economics and engineering. In [431,
Definition 5.55] three properties imposed in order to postulate the notion of closed
preference relations as follows:

* The preference relation < is nonreflexive, this means that (y,y) ¢ Z for all
yeY;

* Givensomey € Y (alocal minimizer in the sequel), the preference < is locally
satiated around y in the sense that y € cl L(y) for all y in some neighborhood
of y.

* The preference < is almost transitive meaning that

[ue L(y), vecLu)]=>veL(). (2.68)

Especially, in the study of vector optimization problems the almost transitivity
property is widely used (under different names) ; see, e.g., [41,431,433, 624, 625]
and the references therein. However, the almost transitivity property turns out to be
rather restrictive, in contrast to the first two properties of < formulated above. In
particular, for the Pareto minimality (compare Definition 2.4.1) defined by

yl<y? = y?—yleC\ {0} (2.69)

via an ordering cone C C Y, the preference < is almost transitive if and only if C
is convex and pointed; see [431, Proposition 5.56]. For the lexicographical order on
R? and other natural preference relations important in vector optimization and its
applications including those to welfare economics (see Sect. 15.3) this property of
the ordering cone is not fulfilled.

Bao and Mordukhovich [28] developed an approach to preference relations in
set-valued optimization that is motivated by applications to models in welfare
economics and allows to avoid the almost transitivity condition (2.68), which does
not usually hold for many economies. They required the most natural local satiation
property of the preference mapping L formulated at the reference optimal solution.
The following solution concept is introduced by Bao and Mordukhovich [28,
Definition 3.1]:

Definition 2.6.49 (Fully Localized Minimizers for Constrained Set-Valued
Optimization Problems). Consider the problem (SP4). Let (x,y) € graph F
and X € S. Then

e (x,y) is called a fully localized weak minimizer for (SP,) if there exist
neighborhoods U of X and V of y such thatthereisnoy € F(SNU)NV
preferred to y, i.e.,

FSNU)NLG)NV =g. (2.70)
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e (x,V) is called a fully localized minimizer for (SP,) if there exist neighbor-
hoods U of X and V of 3 such thatthereisnoy € F(SNU)NV withy #7y
and y € cl L(3), i.e.,

F(SNU)NLFT) NV = {7} (2.71)

* (x,y) is called a fully localized strong minimizer for (SP,) if there exist
neighborhoods U of X and V of 7 such that there is no (x,y) € graph F N
(U x V) with (x,y) # (x,V) satisfying x € S and y € cl L(D), i.e.,

graph F N (S xclL() NU x V) ={(xX,7)}. (2.72)

In Sect. 12.11, Theorem 12.11.3 we derive first order necessary conditions
for fully localized minimizers. Furthermore, we study applications in welfare
economics in Sect. 15.3.

Remark 2.6.50. Itis easy to see that each fully localized strong minimizer for (SP4)
is also a fully localized minimizer for (SP4). Furthermore, each fully localized
minimizer for (SP,) is also a fully localized weak minimizer for (SP4). In the
case S = X in Definition 2.6.49, we speak about the corresponding fully localized
minimizers for the mapping F.

Remark 2.6.51. For all of the concepts in Definition 2.6.49 (see Bao and Mor-
dukhovich [28, Definition 3.1]) the underlying feature is that one introduces the
image localization of minimizers in constructions (2.70), (2.71), (2.72). These
concepts introduced in [28, Definition 3.1] are different from the concepts discussed
before even for minimal points and weakly minimal points of single-valued
objectives F := f : X — Y and allow to study local Pareto-type optimal
allocations of welfare economics (see Sect. 15.3). The concept of (global or
local) strong minimizers was first time introduced in [28, Definition 3.1] for
set-valued optimization problems; it is related to Khan’s notion of strong Pareto
optimal allocations for models of welfare economics (compare Khan [324]) and the
corresponding relationships established in Sect. 15.3.

Example 2.6.52. In this example we will see that a fully localized strong minimizer
may not provide a partially localized (i.e., with V' = Y) minimum or weak
minimum in (2.70) and (2.71). To see this, we consider a set-valued mapping
F : R = R defined by

{—x} ifx<0
F(x):=11{0,1} ifx=0
{x +1}ifx >0,

with respect to the usual order on R generating the level sets L(y) = (—oo, ),
it is easy to see that condition (2.72) is fulfilled at (0, 1) with U = (—%, %) and

V= (%, %) but conditions (2.70) and (2.71) do not hold with V' = R.
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Example 2.6.53. Now, we will see that the localized minimizers and weak
minimizers in Definition 2.6.49 are identical in the case of scalar set-valued
optimization with ¥ = R and L(y) = (—o0, y), but they may be quite different in
the vector-valued case. For example, if we consider an objective map F : R = R?
with F(x) = R?\ intR% and the usual weak preference on R? with the level sets
L(y) = y—intR? (see Definition 2.6.2), we have that (0, 0) € RxR? is a localized
weak minimizer for F, but it is not a localized minimizer for this mapping. Note
finally that localized strong minimizers reduce to standard isolate minimizers for
scalar single-valued optimization problems.

2.6.6 Set-Valued Optimization Problems with Variable
Ordering Structure

In the book by Chen, Huang and Yang [91] set-valued optimization problems with
variable ordering structure are introduced, where the solution concept is related
to the solution concept for vector optimization problems with variable ordering
structure given in Definition 2.5.1.

Let X and Y be Banach spaces, S C X be nonempty. Furthermore,letC : X =
Y be a cone-valued mapping. We assume that for every x € X, the set C(x) is a
proper closed convex cone with nonempty interior int C(x).

We consider a set-valued objective mapping F' : X =2 Y and a set-valued
optimization problem with variable ordering structure

v-minimize F(x) subjectto x € S, (SP,)

where “v-minimize” stands for problems with variable ordering structure with
respect to a cone-valued mapping C : X = Y in the following sense:
Definition 2.6.54 (Weak) v-Minimizer of (SP,)). Letx € S andy € F(X).

(a) The pair (¥, y) is called a v-minimizer of (SP,) if
(F(S)=y)N(=CX)) = {0}.

(b) The pair (x,7y) is called a weak v-minimizer of (SP,) if
(F(S)—y)N(—intC(x)) = 0.

In the following we will show that a set-valued optimization problem (SP,) can
be transformed into an equivalent vector-optimization problem in the sense that their
v-minimal solution pairs are identical.

Definition 2.6.55. A cone-valued map C : X =2 Y is pointed on S C X if the
cone UyegC(x) is pointed, i.e.,
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(UresC(x)) N (= Ures C(x)) = {0}.
Remark 2.6.56. A cone-valuedmap C : X =2 Y is pointed on § if and only if
Vxi,x, €8: C()Cl) N (—C()Cz)) = {0}

For deriving the relationships between v-minimizers of a set-valued problem with
variable ordering structure (SP,) in the sense of Definition 2.6.54 and v-minimal
points of a corresponding vector optimization problem with an objective function
f + X — Y (see Definition 2.5.1) we need a certain monotonicity property
concerning the set-valued map C with respect to f.

Definition 2.6.57. Let f : X — Y be a vector-valued functionand C : X =2 Y be
a cone-valued mapping. The cone-valued mapping C is called weakly f-monotone,
if for all x;, x, € X, ¢; € C(xy),

fx1) = f(x2) €c1 +C(x2) = C(x2) C C(xy).

The following relationships between v-minimal points of a vector optimization
problem (VP,) and v-minimizers of a set-valued optimization problem (SP,) are
shown by Chen, Huang and Yang [91, Proposition 2.63].

Proposition 2.6.58. Let S C X and C : X = Y be a pointed cone-valued
mapping on S. Furthermore, let f : X — Y be a vector-valued function and
F: X =Y be given by

Fx)=f(x)+C(x) (xeX). (2.73)

(a) Suppose that C is weakly f-monotone. If X € S is a v-minimal point of the
vector optimization problem (VP,):

Min(f(S).C(")).
then (x, f(X)) is a v-minimizer of the set-valued optimization problem (SP,):
v-minimize F(x) subjectto x € S.

(b) If (>,7) is a v-minimizer of the set-valued optimization problem (SP,), then X
is a v-minimal point of the vector optimization problem (VP,) andy = f(X).

Proof. First, we show that («) holds. Consider a v-minimal point X € S of the
problem (VP,). Then

VxeS: [fx)—fx) ¢-CEx) \{0}.
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This yields
VxeS: (f(x)—fX)+CHx)N(ECXx)\{0}) =4a. (2.74)
Indeed, if there exists X € S with
(f(X) = f(x) + C(X) N (=CX) \ {0}) # 0.

then there exists ¢ € C(X) and ¢ # 0 such that

—c e f(X) - fR)+CH).
This means

fx)— f(x) ec+ C(X).

Taking into account the weak f-monotonicity of C, we get

fX) - f(x) e —c—-CX).
Furthermore, since C is pointed and ¢ # 0, it follows that

JX) = f(x) € =C(x) \ {05,

in contradiction to the assumption that X is a v-minimal point of the problem (VP,).
Taking into account (2.73) and (2.74) we get

VyeF(x), xeS: y—f(X)¢-Cx\{0}
Hence, (X, f(X)) is a v-minimizer of the set-valued optimization problem (SP,).

Now, we will prove (). Let us assume that (X,y) is a v-minimizer of the set-
valued optimization problem (SP,). Then,

yeF® = f(X)+CX)
and
Vye F(S):  y—y¢—-C®\ {0} (2.75)
Of course, it holds ¥ = f(X). We have to show that X is a v-minimal point of

the vector optimization problem (V' P,). Contrarily, suppose that X is not a v-minimal
point of the vector optimization problem (V' P,). Then, for some element X € S\ {x},

J(X) = fX) € =CX) \ {0}.
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So we get

J(X) =y e -CX)\ {0},

because of f(X) = ¥, in contradiction to (2.75). Hence, X is a v-minimal point of
the vector optimization problem (VP,). O

Remark 2.6.59. In the book by Chen, Huang, Yang [91, Theorem 2.64] necessary
conditions for weak v-minimizers of (SP,) are shown using the contingent
derivative.

Remark 2.6.60. Necessary and sufficient optimality conditions in form of the
Fermat rule for nondominated solutions of unconstrained set-valued optimization
problems with variable ordering structure and the Lagrange multiplier rule for
the constrained set-valued problems with variable ordering structure are given by
FEichfelder and Ha in [168].

2.6.7 Approximate Solutions of Set-Valued Optimization
Problems

In this section we introduce a concept of approximate solutions in set-valued
optimization. Approximate solutions are of interest from the theoretical as well as
computational point of view. Especially, in order to formulate set-valued versions of
Ekeland’s variational principle (compare Chap. 10) and a subdifferential variational
principle for set-valued mappings (see Sect. 12.9) one is dealing with approximate
solutions.

We consider a set-valued optimization problem:

minimize F(x) subjectto x e X, (SP)

where X is a linear space, Y is a linear topological space, C C Y is a proper closed
convex cone and the cost mapping F' : X =2 Y is a set-valued mapping.

The following concepts for approximate solutions of the set-valued problem
(SP) was given by Bao and Mordukhovich [27, Definition 3.4] and is related to
minimizers introduced in Definition 2.6.1.

Definition 2.6.61 (Approximate Minimizers of Set-Valued Optimization Prob-
lems). LetXx € X and (x,y) € graph F. Then:

(i) Consider ¢ > 0 and k° € C \ {0}. The pair (X,y) € graph F is called an
approximate k°-minimizer for F if

y4+ek®¢y—C forall y € F(x) with x # Xx.
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(ii) Consider ¢ > 0 and k° € C \ {0}. The pair (X,y) € graph F is called a strict
approximate ck’-minimizer for F if there is a number 0 < & < ¢ such that
(X,7) is an approximate &k°-minimizer of this mapping.

In Sect. 12.9, Theorem 12.9.1, we will show necessary conditions for strict
approximate sk°-minimizers of F.

2.7 Relationships Between Solution Concepts

In this section we study the relationships between different solution concepts in
set-valued optimization. Furthermore, we discuss the special case that the objective
map is single-valued.

Let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C, X alinear space, S a subsetof X and F' : X =% Y. We consider the
set-valued optimization problem (SP):

minimize F(x) subjectto x € S. (2.76)

In the formulation of the solution concepts based on set approach the underlying
space is a linear topological space Y whereas the extended space Y * := Y U{—oo}U
{400} is considered in the formulation of the solution concepts based on lattice
approach in order to work with infimum and supremum.

Remark 2.7.1. The differences between the solution concepts based on
set-approach in Definition 2.6.19 and the solution concepts based on vector
approach in Definition 2.6.1 are already discussed in Examples 2.6.21, 2.6.22
and 2.6.23.

Remark 2.7.2. In the special case of single-valued functions F = f : X — Y
the concept of minimizers of the set-valued problem (SP) (see Definition 2.6.1)
coincides with the solution concept for Pareto minimal points of £(S) with respect
to C introduced in Definition 2.4.1: (¥, f(X)) € graph f is a minimizer in the sense
of Definition 2.6.1 if and only if f(x) is a Pareto minimal point of f(S) with respect
to C,i.e., f(x) € Min(f(S),C).

Remark 2.7.3. In the special case of single-valued functions F = f : X — Y
the concept of minimal solutions of the problem (SP — <) (see Definition 2.6.19)
w.r.t. the order relations introduced in Definition 2.6.9 coincides with the solution
concept for Pareto minimal points given in Definition 2.4.1.

In the following we consider a linear topological space Y, a linear space X,
S C X,aset-valuedmap F : X =2 Y, F(S) = (J,e5 F(x) # 0 and a proper
pointed closed convex cone C C Y with int C # @. The relationship between the
infimal set of F(S) (Definition 2.6.31) and weak minimizers of F(S) in the sense
of Definition 2.6.2 is given in the next proposition.
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Proposition 2.7.4. Under the assumption that F(S) = cl(F(S) + C) we get
WMin(F(S),C) = Inf F(S).

Proof. Taking into account the assumption F(S) = cl(F(S)+C) and the definition
of the infimal set we get

WMin(F(S), C) = WMin(cl(F(S)+C), C) = WMin(Cly F(S), C) = Inf F(S).

The proof is completed. O

The assertion of Proposition 2.7.4 says that the solution concept for .#-valued
problems coincides with the set WMin(F(S), C) in Definition 2.6.3 for weak
minimizers.

Furthermore, if we assume that F(S) 4+ C is closed we get the following
assertion.

Proposition 2.7.5. Under the assumption that F(S) 4+ C is closed we get
Inf F(S) = WMin(F(S) + C,C).
Proof. Because of the closedness of F(S) + C we get
WMin(F(S) + C,C) = WMin(cl(F(S) + C),C) = Inf F(S),

taking into account Definition 2.6.31. O

Corollary 2.7.6. Assuming that F(S) + C is closed and WMin(F(S) + C,C) =
WMin(F(S), C) we get

Inf F(S) = WMin(F(S), C).

In Sect. 15.1 we will use methods of set-valued optimization for deriving
duality assertions for vector optimization problems. The relationships between
vector optimization problems and .#-valued problems are discussed by Lohne and
Tammer [397] and in a comprehensive and detailed way by Lohne [395].

Let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C, X alinear space, S a subsetof X and f : X — Y *® a vector-valued
function. We consider the vector optimization problem

Min( £(S), C). (VOP)

In Sect. 15.1 we will see that it is very useful to assign to (VOP) a corresponding
.#-valued problem such that one can use the complete lattice structure of
(S, =<:==y), where (£, <) is defined with respect to the ordering cone C of
the vector optimization problem.
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For a given vector-valued function f : X — Y * we put

[iX— 7, [x):=Inf{f(x)}
and assign to (VOP) the .#-valued problem
< —minimize 7 subjectto x € S. (VOPy)

Problem (VOP ) is said to be the .#-extension of the vector optimization problem
(VOP) (see Lohne [395]). The lattice extension of the vector optimization problem
(VOP) allows us to handle the problem in the framework of complete lattices. For
this extension it is important that the ordering cone C is closed as we will see in the
proof of the following proposition.

The following assertion is shown by Lohne [395, Proposition 2.17].

Proposition 2.7.7. For all x,u € X it holds

f) <c fw) = f(x) = f.

Proof. Consider y = f(x) and z = f(u). Let Inf{y} < Inf{z}, then Cl{y} 2
Cl4{z}. With (2.62) we can conclude z € cl({z} + C) < cl({y} + C). Because of
the assumption that C is closed, we get z € {y} + C. This means y <¢ z. The
opposite inclusion is obvious. O

As a direct consequence of Proposition 2.7.7 we get corresponding assertions
concerning the solutions of (VOP) and (VOP ) (see Lohne [395, Proposition 2.18]).

Finally, it is important to mention the following references. In the paper by
Herndndez, Jiménez, Novo [244], Benson proper efficiency in set-valued opti-
mization is discussed. Herndndez, Jiménez, Novo study in [245] weak and proper
efficiency in set-valued optimization. Flores-Bazdn, Herndndez characterize effi-
ciency without linear structure in [189]. Moreover, Herndndez, Rodriguez-Marin,
Sama describe solutions of set-valued optimization problems [253]. Furthermore,
in Herndndez, Rodriguez-Marin [250] certain existence results for solutions of set
optimization problems are derived.
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