
2Coherence and Photons

In the year 1900 Max PLANCK postulated – at the beginning
very reluctantly – an energy packet W = hν, today known as the
“photon”. In 1905, the famous “annus mirabilis” of EINSTEIN,
classical physics finally broke down: EINSTEIN explained the
photoelectric effect based on PLANCK’s quantum of action h, he
also formulated the theory of special relativity, declared the
equivalence of mass and energy, and presented an atomistic
explanation of BROWN’s motion. However, only in the middle
the 1950ies – nearly 50 years later – quantum optics came to
life and remains a very active field of modern research until
now. The present chapter gives a first introduction into some of
its basics.

Overview
After the previous extensive exploration into the wave character of light, the
present chapter focuses on its particle properties and on the statistical prop-
erties of photons. In Sect. 2.1 concepts such as “quasi-monochromatic” and
“partially coherent” light will be defined and exemplified by simple models
for a laser and a classical light source. We shall familiarize ourselves with
the fundamental experiments, beginning with the famous “Hanbury BROWN-
TWISS experiment”. In Sect. 2.2 we shall try to find a pragmatic approach to
the quantum mechanical description of photon states – giving an introduction
for “pedestrians” so to say. Finally, we shall in Sect. 2.3 apply the new tools
to the theory of absorption and emission of light – this time with explicit con-
sideration of the quantum nature of photons. This will allow us for the first
time to derive the basic formulas for spontaneous emission – as opposed to
the previous, hand waving introduction of this inherently quantum mechanical
phenomenon.
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72 2 Coherence and Photons

2.1 Some Basics for Quantum Optics

2.1.1 Introduction

Ground breaking work on the quantum statistics of light has been carried out in 1954
and the following years. Of fundamental importance are the experiments of R. Han-
bury BROWN1 and R.Q. TWISS (1954, 1956a, 1956b, 1958). Roy J. GLAUBER was
one of the pioneers of theoretical quantum statistics (see e.g. GLAUBER 1963) and
received the NOBEL prize for his work 2005 – together with John HALL and Ted
HÄNSCH as already noted in the context of precision spectroscopy and frequency
combs. The work of GLAUBER provides much of the essential theoretical back-
ground for the present chapter.

We start by describing a continuous light source, be it a laser beam whose light
is not strictly monochromatic, be it a completely chaotic light source such as an
incandescent bulb, our sun, or a fluorescent lamp. It has a finite bandwidth δωc

around a central frequency ωc, and is called quasi-monochromatic, if

δωc � ωc. (2.1)

We shall see that the concept of quasi-monochromaticity is closely related to co-
herence or partial coherence onto which this section will focus, and which we
shall meet time and again later on. For further details we refer the interested
reader to the standard work of LOUDON (2000), by which much of this chapter
has been inspired, as well as to WEISSBLUTH (1989) and the more recent mono-
graph by LAMBROPOULOS and PETROSYAN (2007) who also give many further
references.

We now deal with continuous light beams which can no longer be described in a
neat analytic form as wave-packets. Nevertheless, these light beams are still capable
to generate typical interference structures, similar to those reported for light pulses
in Sect. 1.5. The property that both have in common is quantified by the degree of
coherence.

2.1.2 First-Order Degree of Coherence

Correlation functions have already been introduced in Sect. 1.5.2, and more details
are found in Appendix G.2, Vol. 1. Now we shall use these correlation functions
to characterize the coherence properties of electromagnetic radiation. For the field
amplitude E+(t) = (E−(t))∗ as defined by (1.36) we write2

1The experiment is usually referred to as “Hanbury BROWN-TWISS Experiment”, but one should
know that “Hanbury” is a first name, and the second author’s name is “Twiss”.
2Note that this definition differs slightly from LOUDON (2000) (δ → −δ) who uses a somewhat
unconventional definition of the FOURIER transform.
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G(1)(δ) = 〈
E−(t)E+(t + δ)

〉
(2.2)

=
∫ ∞

−∞
E−(t)E+(t + δ)dt for a pulse, and (2.3)

= 1

Tav

∫ Tav/2

−Tav/2
E−(t)E+(t + δ)dt for a CW source. (2.4)

The mode of averaging 〈. . . 〉 depends on the specific case. Note that the averaging
time Tav for the CW case has to be sufficiently long, so that G(1)(δ) does no longer
change when Tav is extended. As just defined, the dimension of G(1)(δ) depends
on the case (pulse or CW). Thus it is advantageous to introduce the dimensionless
first-order degree of temporal coherence:

g(1)(δ) = 〈E−(t)E+(t + δ)〉
〈E−(t)E+(t)〉 = 〈E−(t − δ)E+(t)〉

〈E−(t)E+(t)〉 = g(1)(−δ)∗ (2.5)

with 0 ≤ ∣∣g(1)(δ)
∣∣ ≤ 1.

In general g(1)(δ) is complex and |g(1)(δ)| gives a quantitative measure of coher-
ence. It determines how far the field E+(t) and its displaced image E+(t + δ) may
be separated in time and still have a memory of each other. If they fully overlap
g(1)(0) = 1 and the light is said to be fully coherent, if they are far apart g(1)(∞) = 0
the light is incoherent.

In the case of a wave-packet (1.107), with an envelope E0h(t) according to
(1.109), the degree of coherence with (2.2) becomes simply

g(1)(δ) = eiωcδ

∫ ∞

−∞
h(t)h(t + δ)dt

/∫ ∞

−∞
h2(t)dt. (2.6)

Note that h(t) is an analytic, square integrable function, representing a pulse or a
finite sequence of pulses. Using the WIENER-KHINCHIN theorem (I.17), Vol. 1 for
the FOURIER transform of auto-correlation function of the field, we may write the
intensity spectrum:

Ĩ (ω) = ε0c

4π

∣∣Ẽ+(ω)
∣∣2 = ε0c

4π

∫ ∞

−∞
e−iωδdδ

∫ ∞

−∞
E−(t)E+(t + δ)dt. (2.7)

For normalization we can use the fluence of the light source

F =
∫ ∞

−∞
I (t)dt = ε0c

2

∫ ∞

−∞
E−(t)E+(t)dt = I0

∫ ∞

−∞
h2(t)dt, (2.8)

with I0 = ε0cE
2
0/2. Inserting this into (2.7) and applying the definition (2.5) of

g(1)(δ) we obtain

Ĩ (ω) = F

2π

∫ ∞

−∞
g(1)(δ)e−iωδdδ. (2.9)
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Thus, the intensity spectrum is given by the inverse FOURIER transform of the first-
order degree of temporal coherence of a light source.

It is also useful to recall the units [Ĩ (ω)] = J s m−2, while
∫ ∞
−∞ Ĩ (ω)dω = F

(which is easily verified from Eq. (2.9)) has indeed the unit [F ] = J m−2.
Specifically for a Gaussian pulse with the field amplitude (1.110), one finds from

the convolution (2.6)

g(1)(δ) = eiωcδe
− 1

2 ( δ
τG

)2

. (2.10)

With this and (2.9) the intensity spectrum of a Gaussian pulse follows (see also
Appendix I.4.1 in Vol. 1):

Ĩ (ω) = F

ωG
√

π
exp

[
−

(
ω − ωc

ωG

)2]
= I0

ω2
G

exp

[
−

(
ω − ωc

ωG

)2]
(2.11)

with F = √
π/2I0τG, and ωG = √

2/τG.

In contrast, for CW light the evaluation may not be that trivial, since any realistic
model will have to describe a stationary light source as a random ensemble of wave-
packets. It turns out to be more convenient to average in frequency space. To this
end, we adapt the spectral intensity distribution (2.7) appropriately, and replace the
integrals (2.3) by averages (2.4):

Ĭ (ω) = ε0c

4π

∫ ∞

−∞
e−iωδdδ

{
1

Tav

∫ −Tav/2

−Tav/2
E−(t)E+(t + δ)dt

}

= I

2π

∫ ∞

−∞
g(1)(δ)e−iωδdδ (2.12)

with I = ε0c

2

〈
E−(t)E+(t)

〉 = 1

Tav

∫ Tav/2

−Tav/2
I (t)dt. (2.13)

We have used here the symbol Ĭ (ω) (unit [Ĭ (ω)] = W s m−2) for the intensity spec-
trum of the CW light, in order to indicate its different definition. From this follows∫ ∞
−∞ Ĭ (ω)dω = I , which is now the average intensity of the stationary source, mea-

sured in units [I ] = W m−2 (rather than the fluence as in the case of a pulse).
We finally invert (2.9) and (2.12) and find the useful relations by which thefirst-

order degree of coherence can be derived in both cases (properly normalized) as
inverse FOURIER transform of the spectrum. For pulsed and CW sources we obtain

g(1)(δ) = 1

F

∫ ∞

−∞
Ĩ (ω)eiωδdω and (2.14)

= 1

I

∫ ∞

−∞
Ĭ (ω)eiωδdω, respectively. (2.15)

The next two subsections are devoted to quasi-monochromatic light beams, with
their degree of coherence g(1)(δ) and their interference properties.



2.1 Some Basics for Quantum Optics 75

Fig. 2.1 (a) Illustration of
the wave-packet described by
(2.16), (b) schematic
representation of the model
for a stationary,
quasi-monochromatic laser
composed of such
wave-packets (for visual
clarity we have drawn Tc
much too large; in reality, of
course, we have Tc � τi )
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2.1.3 Quasi-Monochromatic Light

We recall that the laser pulses which we have discussed in the previous chapter
have been introduced in Sect. 1.4.1 as coherent superposition of plane waves from a
limited frequency range of a FWHM �ω1/2. Such a light pulse has a finite duration
τ ∝ 1/�ω1/2. Alternatively we have described in Sect. 1.4.3 periodic pulse trains as
a FOURIER series. Obviously, neither of these two descriptions can lead to a realistic
model of a quasi-monochromatic and continuous laser beam, since such a CW laser
radiates effectively from t = −∞ to t = +∞ without obvious intermission (at least
for a couple of hours or days). With some effort and good electronics the frequency
may be stabilized for a long time to a few Hz. Still it cannot be modelled by a plane
(or Gaussian) continuous wave – nor by any kind of a wave-packet.

Such a CW light beam has to be modelled with “stationary and ergodic statistical
properties, so that ensemble averages over the probability distribution are equivalent
to long-time averages over the beams in a single experiment” (LOUDON 2000). Let
us imagine – as a simple model3 – a laser beam to be composed of a large number
of rectangular wave trains (see Appendix I.4.3 in Vol. 1) of constant amplitude but
different, finite durations. One such wave-packet is illustrated in Fig. 2.1(a) as a
function of time at a fixed position in space (without loss of generality we choose
again r = 0 ⇒ kz = 0). Thus, in our standard notation (1.36) we have

E+
i (t) =

{
E0ei(ωct−ωcti−φi) for ti < t < ti + τi,

0 else,
(2.16)

and the intensity is as usual I0 = ε0cE
2
0/2 in the wave-packet and zero outside.

The pulse begins at t = ti , it has a duration τi and its relative phase φi is statistically
distributed. To make things not too complicated we assume, however, that the period
Tc = 2π/ωc (or its wavelength λc) is constant. Such a wave-packet may typically
contain 108 to 1011 periods. The spectral intensity distribution of this pulse is given

3Similarly one has to treat any chaotic light, with large phase and intensity fluctuations, as e.g.
emitted from a collision or DOPPLER broadened gas discharge, an incandescent bulb or an en-
semble of excited atoms – even if the spectrum may be different, the bandwidth larger and the
coherence time to be introduced here correspondingly shorter.
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by (I.53), Vol. 1:

Ĩi (ω) = I0τ
2
i

2π
sinc2

[
τi(ω − ωc)

2

]
with sincx = sinx

x
. (2.17)

A real quasi-monochromatic light beam, which extends over large times and dis-
tances, can now be modelled by many such pulse trains as indicated in Fig. 2.1(b).
They may, of course, also overlap each other. The frequency bandwidth in a CW
laser is usually determined by mechanical and thermal instabilities of the experi-
mental setup, such as vibrations of the mirrors, collision processes in the amplifier
medium, dust particles accidentally passing the laser beam etc. These processes oc-
cur completely statistically, let us assume with a constant average rate 1/τc. We
further assume that such events after the times τ1, τ2, . . . , τi just change the phase
φ1, φ2, . . . , φi . The amplitude is kept constant. The probability that such a wave-
packet has a duration between τi and τi + dτi , is described by an exponential distri-
bution as outlined in our elementary introduction to statistics, Sect. 1.3.1 in Vol. 1:

w(τi)dτi = 1

τc
e−τi/τc dτi . (2.18)

The average time between the phase changes is τc. We call it coherence time. The
corresponding length of the wave-packet sketched in Fig. 2.1(b) is the so called
coherence length

�c = τcc. (2.19)

The whole light beam is described by this statistical distribution of individual
wave-packets. Each of them is characterized by a spectral distribution according to
(2.17) and an arbitrary statistical phase φi . We emphasize again, that this continu-
ous light beam cannot be described by any kind of coherent, linear superposition of
waves. Its overall spectral distribution is found as the statistical average of the in-
dividual spectral distributions for all possible durations τi of the wave-packets and
re-normalization according to (I.32), Vol. 1. With (2.17) and (2.18) the integration
can be carried out in closed form:

Ĭ (ω) = 〈
Ĩi (ω)

〉 = I0

2πτc

∫ ∞

0
w(τi)τ

2
i sinc2

[
τi(ω − ωc)

2

]
dτi

= τc

π

I

1 + (ω − ωc)2(τc)2
= I

2π

�ω1/2

(ω − ωc)2 + (�ω1/2/2)2
, (2.20)

with a FWHM �ω1/2 = 2/τc = 2c/�c.

Thus, one finds a LORENTZ profile. It is normalized here so that the integration over
all frequencies gives the local average intensity I = I0 = ε0cE

2
0/2 of the laser beam

(assumed to be independent of time). The profile is characterized by the coherence
time τc. The maximum of the spectral intensity distribution (intensity per angular
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Table 2.1 Coherence time τc and first-order degree of coherence g(1)(δ) for different spectral
distributions with FWHM �ω1/2

Spectrum �ω1/2 g(1)(δ) × e−iωcδ g(1)(τc)

Lorentziana [τ 2
c (ω − ωc)

2 + 1]−1 2/τc exp[−|δ|/τc] 1/e

Gaussianb exp[−τ 2
c (ω − ωc)

2] 2
√

ln 2/τc exp[−(δ/τc)
2] 1/e

Rectangle 1 for − π
τc

≤ ω − ωc ≤ π
τc

2π/τc sinc(πδ/τc) 0

aNote that this definition for the LORENTZ profile differs slightly from (5.8), Vol. 1, used there for
spontaneous emission with a FWHM of �ω1/2 = 1/τnat

bCoherence time and the usual Gaussian time are related by τc = √
2τG

frequency) at ω = ωc is

Ĭ (ωc) = 2I

π�ω1/2
. (2.21)

For the first-order degree of temporal coherence (2.5) one obtains

g(1)(δ) = eiωcδe−|δ|/τc (2.22)

for the LORENTZ profile (2.20), as can easily be verified with (2.12).
By way of example, a continuous dye laser (often used in spectroscopy) may

provide an intensity I � 1 W cm−2 with a typical bandwidth of �ν1/2 � 1 MHz.
Coherence time and coherence length are then τc � 320 ns and �c � 100 m, respec-
tively. The peak spectral intensity is Ĭ (ωc) � 5 × 10−8 W cm−2 s. We may compare
this to the spectral intensity of the sun at 555 nm which according to (1.85), Vol. 1
is Ĭ (ωc) � 3.5 × 10−12 W s cm−2 (at the surface of the sun!).

The above description of a quasi-monochromatic light beam is just one possible
model. In principle, one has to start from a detailed analysis of a given experimen-
tal situation. A variety of wave-packets differing from those shown in Fig. 2.1 are
conceivable. In any case, g(1)(δ) and the spectral distribution Ĭ (ω) are related by
(2.12)–(2.15). If e.g., the radiation source is mainly DOPPLER broadened, it will
be characterized by a distribution of frequencies corresponding to a Gaussian with
statistically distributed phases. The corresponding degree of coherence will be the
same as that derived for the Gaussian pulse (2.10) and the coherence time is then
τc = √

2τG.
The definition of a coherence time τc (or the coherence length �c = cτc) must,

inevitably, be somewhat arbitrary. We shall use the time for which g(1)(τc) = 1/e,
unless it passes through g(1)(τc) = 0 at a finite delay time, in which case that time
is taken.

In Table 2.1 we summarize the spectra and first-order coherence properties for
three important cases of quasi-monochromatic light. Their first-order degree of co-
herence is plotted in Fig. 2.2 as a function of delay time δ. They are compared with
strictly monochromatic light (Ĩ (ω) ∝ δ(ω − ωc)) which – in contrast to the three
statistical light sources – shows no fluctuations at all, i.e. |g(1)(δ)| ≡ 1 holds inde-
pendent of δ.
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Fig. 2.2 Magnitude of the
first-order degree of
coherence, |g(1)(δ)|, for
chaotic light with a coherence
time τc. Compared are light
sources with Gaussian,
Lorentzian and rectangular
spectral profiles; they are
confronted with a fully
coherent wave (infinite
coherence time) |g(1)(δ)| = 1

δ/τc-3 10 2

|g (1)(δ )|
fully coherent
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2.1.4 Temporal or Longitudinal Coherence

To develop the concept of coherence further, we return to interference experiments
as discussed in Sect. 1.5.3 and apply the just defined first-order degree of coherence.
This will also be a useful preparation for later discussions of polarization and state
distribution in atoms (Chap. 9).

Let us take a closer look on first-order coherence observed e.g. in YOUNG’s dou-
ble slit experiment, or in a MICHELSON interferometer. Here, as a first step, we
idealize the light beam and assume it to be parallel (e.g. originating form a point
like source). In Fig. 2.3 the key elements of such an experiment are illustrated very
schematically. The electric field E(r, t) is split into two parts, E(r1, t) and E(r2, t),
i.e. by a double slit in the diffraction experiment, or with the help of a beam splitter
in the interferometer experiment. Both rays A and B propagate along different opti-
cal pathways s1 and s2, respectively – be it due to diffraction, changes of the index
of refraction or just due different distances. This leads to a time delay δ between the
two partial beams. Finally, both parts are superposed and interfere – effectively at
different individual times, t1 and t2. Using the terminology (1.36), we write

E+(r, t) = [
a1E

+(r1, t1) + a2E
+(r2, t2)

]
.

s1

s2

parallel

light rays

collimator

lense

point

source

double slit or 

beam splitter

interference

optical delay

light

detector

ray 1

ray 2

r

f

r1 ,  k

r2 ,  k

Fig. 2.3 Very schematic layout of an interference experiment with two parallel light rays originat-
ing from a point like light source; the brace on the right just indicates that the two rays are made to
interfere – it does not sketch a light path
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The prefactors a1 and a2 account for the fact the ray A and B are only a fraction of
the beam and may even be further reduced before reaching the detector. If only ray
A or only ray B were present, the signals would be

I1 = ε0c

2
a2

1

∣∣E+(r1, t1)
∣∣2 = a2

1I or

I2 = ε0c

2
a2

2

∣∣E+(r2, t2)
∣∣2 = a2

2I, respectively,

(2.23)

with I being the averaged total intensity of the original beam. For a first-order pro-
cess (N = 1) we write the averaged time dependent intensity (1.134) at the detector
as

I (r, t) = ε0c

2
E−(r, t)E+(r, t) = I1 + I2 + I12. (2.24)

The interference term in which we are mostly interested, is given by

I12 = C2[E−(r1, t1)E
+(r2, t2) + E+(r1, t1)E

−(r2, t2)
]

= 2C2 Re
[
E−(r1, t1)E

+(r2, t2)
]

with C2 = ε0c

2
a1a2, (2.25)

t1 = t − s1

c
, t2 = t − s2

c
= t1 + δ, and δ = s1 − s2

c
.

The expected pattern is a function of the relative phase ωδ between rays A and B.
Since partially coherent light with a coherence time τc has a bandwidth �ω � 1/τc
of different frequencies, one expects the interference structure to smear out when
�ωδ ≥ π , i.e. if δ ≥ πτc. The detector usually integrates over times �τc.

For a quantitative evaluation we have to keep in mind, that in any model of quasi-
monochromatic light the electric field will be described as a statistical ensemble of
many individual wave-packets E+

i (r, t), e.g. as described by (2.16). Thus, we have
to average the interference term in (2.24) temporally – or to find the ensemble aver-
age. It turns out that this is done most conveniently in frequency space: we rewrite
the interference term (2.25) by using the (inverse) FOURIER transform (1.106), with
Ẽ+(k) being independent of the direction of k (parallel light with k = ω/c):

I12 = 2

(
C

2π

)2〈∫
dω

∫
dω′(Ẽ+

i (ω)
)∗ei(k·r1−ωt1)Ẽ+

j

(
ω′)e−i(k′·r2−ω′t2)

〉
. (2.26)

Obviously, only Ẽ−
i (ω)Ẽ+

j (ω′) is affected by the statistical averaging over wave-
packets. We also observe that each of the wave-packets i and j carries its own
statistical phase φi or φj , respectively – as exemplified by (I.51), Vol. 1. Thus, these
complex quantities are distributed at random on a circle in the complex plane – and
hence they average out over the whole ensemble. Only those terms which are caused
by the same wave-packet i = j contribute to (2.26). Somewhat laxly one says:

Each photon interferes only with itself.
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We also note that Ẽ−
i (ω)E+

i (ω′) according to (I.51), Vol. 1 contains the function
exp[i(ω − ω′)ti]. Averaging over the statistically distributed starting times ti (i.e.
integrating over all times ti ) lets all terms with ω′ �= ω disappear. Thus

〈(
Ẽ+

i (ω)
)∗

Ẽ+
j

(
ω′)〉 = 2πδij δ

(
ω − ω′)〈∣∣Ẽ+

i (ω)
∣∣2〉

. (2.27)

In summary, the ensemble average of the interference term (2.26) is simply

I12 = 2
C2

2π
Re

∫
dωeik·(r1−r2)eiω(t2−t1)

〈∣∣Ẽ+
i (ω)

∣∣2〉 (2.28)

= 2a1a2 Re
∫

dωeik·(r1−r2)eiω(t2−t1)
〈
Ĩi (ω)

〉
,

where we have used (I.32), Vol. 1. With k ⊥ (r1 − r2) in our model geometry
Fig. 2.3, and with the time delay t2 − t1 = δ we obtain the sought-after interfer-
ence term as:

I12 = 2C2 Re
〈
E−(r1, t1)E

+(r2, t2)
〉

= 2a1a2 Re
∫

eiωδĬ (ω)dω = 2
√

I1I2 Re
[
g(1)(δ)

]
. (2.29)

Ĭ (ω) = 〈Ĩi (ω)〉 is the ensemble averaged intensity spectrum. In the last step, using
(2.15), we have identified the resulting integral as the first-order degree of (longitu-
dinal) coherence and use the abbreviations (2.23).

For quasi-monochromatic light with a carrier frequency ωc the first-order degree
of coherence always assumes the form ±|g(1)(δ)| exp(iωcδ) (see the examples given
in Table 2.1). Thus, inserting (2.29) into (2.24) we obtain the interference signal
(first-order) as a function of the delay time δ:

I (δ) = I1 + I2 ± 2
√

I1I2
∣∣g(1)(δ)

∣∣ cosωcδ. (2.30)

We emphasize that the above derivation is characteristic for any kind of quasi-
monochromatic light composed of an ensemble of wave-packets with statistically
distributed phases. The |g(1)(δ)| is the quantitative measure for temporal coherence
we have been looking for. One calls this property temporal coherence or longitu-
dinal coherence, since coherence time and coherence length are directly related by
�c = cτc: �c gives the distance by which a wave-packet may be displaced from its
image so that the degree of coherence decreases to 1/e.

Some Examples In practice, interference fringes often show less contrast than
expected from (2.30) where Re[g(1)(0)] = 1. Instrumental imperfections or spatial
incoherences can be responsible, as we shall discuss Sect. 2.1.7. To quantify this
reduction of contrast one introduces a parameter

visibility, V = Imax − Imin

Imax + Imin
, (2.31)
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Fig. 2.4 Interference pattern for two rays with a rectangular spectrum according to (2.32). The
dotted line represents suitably processed experimental data, measured at the CHARA high resolu-
tion stellar interferometer array, extracted from TEN BRUMMELAAR et al. (2005). The full black
line is proportional to sinc(π�νδ)

by which the interference term in (2.30) has to be multiplied. Visibility can be mea-
sured by registering I (δ) in a delay scan. It may contain valuable information about
the light source as we shall discuss in Sects. 2.1.7–2.1.8. In the following we as-
sume for an ideal interferometric measurement I1 = I2 and normalize the signal to
the uncorrelated limit I (∞). Finally, the expressions given in Table 2.1 have to be
inserted.

First we consider a rather broad band CW light source which is passed through
a narrow-band spectral filter, as done e.g. in stellar interferometry. If the filter has
a rectangular profile with a bandwidth �ω as described in Appendix I.4.4, Vol. 1,
we obtain from (2.14) and (I.56), Vol. 1 Re[g(1)(δ)] = sinc(�ωδ/2) cosωcδ. The
normalized interference signal is thus

I (δ)

I (∞)
= 1 + 2V sinc(�ωδ/2) cosωcδ. (2.32)

Figure 2.4 shows such an interference pattern. For reference we note that the fringes
vanishes for the first time at �ωδ/2 = π�νδ, with �ν given in frequency units. The
fringes are caused by the cosωcδ term in (2.32) and depend on the phase difference
ωcδ = k(s1 − s2) between rays 1 and 2. The contrast clearly changes with delay
time and is given by V ×|g(1)(δ)|. It has its maximum for δ = 0 where |g(1)(δ)| = 1,
while it disappears for long delay times. To compare the above theoretical derivation
with some real experiment, we show in Fig. 2.4 a “fringe scan” extracted from one
of the first publications of the CHARA optical/infrared interferometric array located
on Mount Wilson, CA (TEN BRUMMELAAR et al. 2005). The spectra were taken in
the K band at 2.133 µm with one of their 15 very long baseline interferometers.
The agreement with (2.32) is impressive, albeit – as expected with such simple
modelling – not perfect. We shall come back to these experiments in Sect. 2.1.8.

For the quasi-monochromatic light model introduced in the previous subsection,
the spectrum Ĭ (ω) is a LORENTZ distribution (2.20). Its first-order degree of coher-
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ence g(1)(δ) is given by (2.22). Thus, the interference pattern (2.30) becomes

I (δ)

I (∞)
= 1 + 2V e−|δ|/τc cosωcδ. (2.33)

We recall: the coherence time τc corresponds here to the average duration of the
wave-packets which define the temporal properties of the quasi-monochromatic
light.

If the light originates from a DOPPLER broadened (Gaussian) source, with (2.10)
the interference pattern (2.30) becomes

I (δ)

I (∞)
= 1 + 2V e

− 1
2 ( δ

τG
)2

cosωcδ. (2.34)

2.1.5 Higher-Order Degree of Coherence

To extend the concept “degree of coherence” introduced in Sect. 2.1.2 one defines a
general degree of coherence of N th order as

g(N )(r1, t1, . . . rN , tN , . . . r2N , t2N ) (2.35)

= 〈E−(r1, t1) . . .E−(rN , tN )E+(rN+1, tN+1) . . .E+(r2N , t2N )〉
[〈|E+(r1, t1)|2〉 . . . 〈|E+(rN , tN )|2〉 . . . 〈|E+(r2N , t2N )|2〉]−1/2

,

with |E+(rN , tN )|2 ≡ E−(rN , tN )E+(rN , tN ) ∝ I (rN , tN ).
For details the interested reader is referred to the specialized literature (see e.g.

LOUDON 2000; GLAUBER 2006). In the following we refer again to the dependence
on time t only – which may be replaced by t − rk/ω if the r is explicitly needed –
and discuss some basic aspects of the particularly important second-order degree of
temporal coherence

g(2)(δ) = 〈I (t)I (t + δ)〉
〈I (t)〉2

= 〈E−(t)E−(t + δ)E+(t)E+(t + δ)〉
〈E−(t)E+(t)〉2

, (2.36)

where the brackets 〈. . . 〉 again imply the same kind of averaging as in (2.2)–(2.4).
The symmetry relation is now somewhat simpler than (2.5):

g(2)(δ) = g(2)(−δ). (2.37)

However, while for the first-order degree of coherence the limits 0 ≤ g(1)(δ) ≤ 1
hold, no general upper limit exists for g(2)(δ). Still, one may show that

0 ≤ g(2)(δ) and for δ = 0 : 1 ≤ g(2)(0) ≤ ∞.
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The latter follows from the CAUCHY-SCHWARZ inequality,4 which leads to I 2 =
〈I (t)〉2 ≤ 〈I (t)2〉.

Physically g(2)(δ) represents the correlation function of the light intensity, i.e. it
answers the question whether fluctuation in the light intensity is completely random
or whether there is some kind of memory effect. In a quantum picture the photon
flux, I (t)/�ω ∝ w(t) is proportional to probability for a photon to arrive (at time t)
per unit of time, and g(2)(δ) gives the probability w(t)w(t + δ) for two photons
to arrive with a specific time delay: do the photons arrive completely at random or
perhaps with an enhanced probability to come in pairs? At first thought this appears
a strange question. Why should it be more probable to find two photons at once than
at random – if the light is otherwise completely chaotic?

We cannot go into details of the statistics of chaotic light sources, but let us glance
over the key arguments. We recall the model of a chaotic light source presented in
Sect. 2.1.3 and assume the light to originate from many atoms. They all contribute
with their individual electric field E+

j (t), each characterized by its own statistical
phase. The overall field is thus given by

E+(t) =
∑

i

E+
i (t).

Using this expression one derives the second-order correlation function (i.e. the
nominator in Eq. (2.36))

G(2)(δ) = 〈
I (t)I (t + δ)

〉 = 〈
E−(t)E−(t + δ)E+(t)E+(t + δ)

〉
. (2.38)

Since uncompensated phases cancel out statistically in the averaging process, again
only those terms are kept, where the field from each atom is multiplied by its own
conjugate complex (at time t or t + δ). However, since now the products of four
amplitudes are involved, and a large number of atoms participates, the remaining,
dominant terms are those which arise from two pairs of atoms i �= j :

〈
E−

i (t)E+
i (t)E−

j (t + δ)E+
j (t + δ)

〉 = 〈
Ii(t)

〉〈
Ij (t + δ)

〉
and (2.39)

〈
E−

i (t)E+
i (t + δ)E−

j (t + δ)E+
j (t)

〉 = 〈
E−

i (t)E+
i (t + δ)

〉〈
E−

j (t + δ)E+
j (t)

〉
. (2.40)

As the average intensity Ī in a stationary source is independent of time, the first line
is simply = Ī 2. In the second line we recognize the first-order correlation function
(2.5) and its complex conjugate. Thus, in its normalized form (2.36) becomes

g(2)(δ) = 1 + ∣∣g(1)(δ)
∣∣2

. (2.41)

4The CAUCHY-SCHWARZ inequality may be written in an easy to comprehend relation between
N dimensional vectors: |a · b|2 ≤ |a|2 · |b|2. If one chooses the intensities I (tj ) as components of
a vector a and 1 as components of b, the latter relation follows immediately.
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Fig. 2.5 Second order degree of temporal for chaotic light. Compared are light sources with a
spectral distribution of LORENTZ, GAUSS and rectangular type. All are assumed to have equal
coherence time τc, i.e. the delay time δ is given in units of the coherence time. They are contrasted
with a classical source of radiation such as a CW laser of very large coherence length or an RF
generator

Specifically, for light with a Lorentzian or Gaussian type of spectrum the second-
order degree of temporal coherence (2.36) becomes

g(2)(δ) = 1 + exp
(−2|δ|/τc

)
, and (2.42)

g(2)(δ) = 1 + exp
(−2δ2/τ 2

c

) = 1 + exp
(−δ2/τ 2

G

)
, respectively. (2.43)

These functions are illustrated schematically in Fig. 2.5. We recall that the correla-
tion times τc are related to the respective spectral distributions by Table 2.1.

An important limiting case is the classical continuous, constant and coherent
wave, e.g. a highly stabilized RF generator or an ideal CW laser. In that case
〈I (t)I (t + δ)〉 ≡ Ī 2, there are no intensity fluctuations and

g(2)(δ) = 1.

It may sound somewhat surprising at first sight, but in a fully coherent radiation
source, such as an ideal laser, the photons are distributed as randomly as possible!

Quite generally, for long delay times δ there are no correlations in the statistical
intensity fluctuations and thus

g(2)(δ) → 1 always holds for δ � τc.

2.1.6 Photon “Bunching” Experiments

The proposal of Hanbury BROWN and TWISS (1954) for “A new type of interferom-
eter for use in radio astronomy” marks the beginning of quantum optics (GLAUBER

2006). In their pioneering investigations, correlations in the intensity of an extended
light source were measured for the first time – both in a table top laboratory exper-
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Fig. 2.6 Photon bunching experiment according to PHILLIPS et al. (1967). (a) Schematic of the
experimental setup with two photo-multipliers P1 and P2, time to height converter (THC) and
pulse height analyzer (PHA). (b) Observed true two photon coincidence rate (normalized) as a
function of time delay between the two photons; light filtered with a 3 cm FPI; the maximum is
ρ(0) ∼ 17.3 %

iment (1956a, 1958) and for light from a star (1956b). In such an HBT experiment
the intensity of chaotic light is registered by two spatially separated detectors whose
signal is then correlated – in contrast to YOUNG’s double slit experiment where the
electric field amplitudes of the light are superposed. However, before we can dis-
cuss HBT type experiments, we shall have to introduce spatial or lateral coherence
in Sect. 2.1.7.

Conceptually somewhat more straight forward are so called photon “bunching”
experiments – a number of which were performed in the years following the original
HBT experiment. One with particular nice data by PHILLIPS et al. (1967) is sketched
schematically in Fig. 2.6(a). Quasi-monochromatic light from a mercury spectral
lamp passes a narrow band filter and then an FPI to select the 435.8 nm line and
reduce the bandwidth, i.e. to increase the coherence time. The light beam is then
strongly collimated by pin holes with diameters of 0.3 mm and 2 mm, separated by
1.5 m before it reaches a beam splitter which provides two branches of equal light
intensity. Two separate photo-multipliers P1 and P2 are setup to detect individual,
single photons, which are recorded after amplification and clipping as pulses with
a rise time of less than 2 ns. The time delay between these pulses is registered by
the combination of a time to pulse height analyzer (THC) and a multichannel pulse
height analyzer (PHA). Data storage and communication with a computer was at
that time still done by punched paper-tape.

The experiment thus determines coincidence rates for counting a photon in
branch 2 after a time δ when a photon has been registered in branch 1 (or vice
versa). If the individual count rate at P1 is R1 and at P2 it is R2 (in this experiment
some 104counts/ s). The coincidence rate is R1(t) × R2(t + δ) × �δ, in this exper-
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Fig. 2.7 Interference from
two sources

iment <10 s−1 with �δ (here some ns) being the time resolution of the electronics.
One subtracts the statistical coincidence rate R1 × R2 × �δ (corresponding to the
coincidence rate for δ → ∞). In summary, one records the true coincidence rate,
which properly normalized is

ρ(δ) = R1(t) × R2(t + δ)

R1(t) × R2(t)
− 1 ∝ g(2)(δ) − 1 = [

g(1)(δ)
]2

.

A typical result is shown in Fig. 2.6(b). The frequency bandwidth of the FABRY-
PÉROT filter was in this case ca. �ν1/2 � 160 MHz, in fair agreement with 208 MHz
gleaned from the correlation measurement. The maximum of the normalized true
coincidence was found to be ρ(0) ∼ 17.3 % – the authors attribute the fact that
it is not = 1 to the finite temporal resolution of the electronics, but also to finite
lateral coherence (a compromise had to be found between a reasonable count rate
and low angular divergence of the beam). But clearly, the experiment shows beyond
any doubt, that the probability to register two photons at the same time is signifi-
cantly higher than expected by purely random coincidences (observed at long delay
times) – in full agreement with the considerations outlined in Sect. 2.1.5.

2.1.7 Spatial or Lateral Coherence

So far, in our discussion of coherence experiments we have assumed strictly par-
allel, quasi-monochromatic light rays. (In the experiment just explained, this was
approximated well enough by the high efforts to collimate the light.) Now we also
give up this usually somewhat unrealistic assumption. Even laser beams have a finite
angular divergence, as we have discussed in Sect. 1.2. The problem with this fact
and the measurement of interference patterns is, that different incident angles lead
also to a phase difference, and hence, to shifted interference fringes. Let us start with
a rough estimate of this effect, before we enter into a more rigorous treatment. We
consider two point like sources at very large distance. Their (quasi-monochromatic)
light is assumed to be parallel and to be diffracted by a YOUNG’s double slit ar-
rangement, the slit distance being B . As sketched in Fig. 2.7, the first interference
minimum from source S1 (red fringe pattern) is found at an angle ϑmin for which
λ/2 � Bϑmin. Source S2, which is seen under an angle ϑc, generates its own inter-
ference pattern (grey) with its main maximum at an angle ϑc. Sketched is a partial
overlap for both fringe patterns. If the two sources were still further apart, so that
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Fig. 2.8 On spatial coherence: very schematic diagram of an interference experiment with slightly
diverging light rays 1 and 2 from an extended source (uniform disc angular diameter ϑd)

ϑc = ϑmin, the maximum from S2 would fully coincide with the first minimum from
S1: hence, the fringe patterns would disappear: interference structures can only be
discerned if

ϑc ≤ λ

2B
. (2.44)

The light is said to be spatially or laterally coherent if ϑc is smaller than this limit.
Even though the assumed limit is somewhat arbitrary, clearly this spatial coherence
or incoherence will influences the fringe visibility discussed in Sect. 2.1.4 for tem-
poral (or longitudinal) coherence.

To obtain a quantitative understanding we now consider an extended, station-
ary light source of diameter D0(= 2w0) which is collimated by a lens with a focal
length f and a (useable) diameter D(= 2w), as sketched in Fig. 2.8. The initial
divergence of this “beam” is given by ϑ0 ≈ D0/f (angular diameter), quite anal-
ogous to the situation for a Gaussian beam according to Fig. 1.16, if we identify
the disc radius w0 with the beam waist and the Gaussian divergence angle θe with
ϑ0/2. For not too large aperture angles ϑ0, the (full) angular divergence ϑd after
collimation is

wϑd � w0ϑ0, (2.45)

if the lens is used up to a diameter 2w. With this more realistic description of a light
beam we have to modify our treatment of the interference experiment presented in
Sect. 2.1.4.

The following derivation is completely independent of the origin of the two
slightly divergent light rays. The source-collimator arrangement (grey shaded area
in Fig. 2.8) may e.g. be replaced by a distant star that emits light with a small diver-
gence angle ϑd (“uniform disc angular diameter” equivalent to its diameter divided
by its distance). The light may be collected by two different mirrors or telescopes
placed at a distance B(= 2w). In the context of astronomical interferometry this
distance is called baseline. We shall come back to this context in Sect. 2.1.8.
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Comparison of Figs. 2.3 and 2.8 shows that we now have to treat interferences
of plane waves with wave vectors ki around the mean wave vector k. In analogy
to the averaging over frequencies, we now have to sum in addition over the contri-
butions from all ki . As before the contributions from superpositions belonging to
different ki and kj statistically average out: as before “each photon interferes only
with itself”.

The key question is now whether, and to what extent, the interference patterns
from different ki disturb each other. We start again from (1.106) and write the elec-
tric fields propagating from r1 and being detected at time t1 = t − s1/c as

E+
i (r1, t1) =

∫
E+

i (ω)ei(kr1−ωt1+�ki ·r1)dω. (2.46)

The propagation vectors ki of the individual wave-packets is now written with ref-
erence to the central wave vector k

ki = k + �ki . (2.47)

The interference term I12 ∝ 〈E+
i (r1, t1)E

−
j (r2, t2)〉 – after summation over differ-

ent wave-packets and exploiting the “one photon interferes only with itself” rule –
becomes in analogy to (2.28)

I12 = 2
C2

2π
Re

∫
dω

〈∣∣Ei(ω)
∣∣2

ei[k·(r1−r2)−ω(t1−t2)+�ki ·(r1−r2)]〉. (2.48)

The averaging 〈. . .〉 must include the angular divergence reflected in �ki · (r1 −r2).
We write the distance vector r1 − r2 = �r , with |�r| = B , and account for the fact
that �r is per definition perpendicular to k, hence k · �r = 0 holds. The delay time
is again given by δ = t1 − t2 = (s1 − s2)/c. Thus, (2.48) becomes

I12 = 2a1a2 Re
∫

dωeiωδ
〈
Ĩi (ω)ei�ki ·�r

〉
. (2.49)

The averaging 〈. . . 〉 is greatly simplified by assuming ki � ωc/c = k, i.e. keeping
it constant at its average value. This is a reasonable approximation for narrow band
radiation �ω1/2 � ωc, so that k does not change significantly over the spectral
distribution I (ω). Then the averaging in (2.49) can be factorized.

To evaluate the angular part determined by exp(�k · �r), we read from Fig. 2.8
for small angular divergence ϑd, that the projection of �k onto the drawing plane is
essentially parallel to �r so that

�k · �r = |�k|B cosϕ = u cosϕ, with u = |�k|B = kBθ (2.50)

representing the polar angle θ at which the light from the source enters, while ϕ

is the azimuthal angle of �k in respect of �r = B in a plane perpendicular to k.
We recall that we consider a light source with a small angular diameter ϑd, e.g. a
collimated disc or a distant star, with an intensity distribution I (θ,ϕ) = I (u/kB,ϕ).
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The averaging over the angular part in (2.49) (essentially over a cone with 0 ≤ θ �
ϑd/2 or 0 ≤ u � kBϑd/2), properly normalized, may be written

g(1s)(x) = Re
〈
ei�ki ·�r

〉 = Re

∫
udu

∫ 2π

0 I (u/kB,ϕ)eiu cosϕdϕ
∫ ∫ 2π

0 I (u/kB,ϕ)ududϕ

= Re

∫ ∫
I (ξ, η)eik(pξ+qη)dξdη
∫ ∫

dξdηI (ξ, η)
.

(2.51)

In the second line, the integrals are just rewritten from cylindrical coordinates u,ϕ

into a Cartesian ξη plane perpendicular to the average wave vector k (for details see
BORN and WOLF 2006, Chap. 10.4). In analogy to (2.29), g(1s)(x) is called degree
of spatial coherence (or spatial correlation function), and (2.51) represents the VAN

CITTERT-ZERNICKE theorem according to which the degree of spatial coherence
is equal to the normalized FOURIER transform of the intensity distribution of the
source.

We specialize now to an “uniform disc” model for the light source, with constant
emission I (u/kB,ϕ) for 0 ≤ θ ≤ ϑd/2, independent of ϕ and obtain

g(1s)(x) = 〈
ei�ki ·�r

〉 = 1

πu2
d

∫ x

0
udu

∫ 2π

0
eiu cosϕdϕ. (2.52)

The prefactor 1/πu2
d ensures proper normalization. The double integral here is the

same as that encountered in Sect. 1.2.2 where we have derived the diffraction pattern
from a uniform circular aperture.5 With (1.66) for n = 0 it can be expressed by the
first-order BESSEL function J1(x),

g(1s)(x) = 2J1(x)

x
with x = kBϑd/2 = πϑdB/λ (2.53)

as illustrated in Fig. 2.9. For x = 3.83 (2.53) reaches zero and interference structures
disappear: one says that the light is laterally coherent if

πϑdB

λ
< 3.83 or ϑd <

1.22λ

B
. (2.54)

This may be compared to our initial, crude estimate (2.44) – giving the right order of
magnitude. We recognize the second inequality as the famous RAYLEIGH criterium
for the angular resolution of optical instruments, if we interpret B as diameter of
the objective lens. One may also convert this into lateral resolution by setting ϑd =
w0/f , where w0 is the smallest object that can be resolved and f the focal length

5Note, however, that here the diameter B of the entrance pupil replaces the radius of the aper-
ture w0 there: essentially, (2.52) describes how the diffraction pattern from the source affects the
interference patterns in the experimental scheme Fig. 2.8.
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Fig. 2.9 Absolute value of
the degree of spatial
coherence (2.53) as a function
of x = πBϑd/λ, with the
baseline B , the angular
diameter of the light source
ϑd and wavelength λ; note
that 3.83/π = 1.22 so that the
first diffraction minimum is
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of the objective. Note that for larger opening angles ϑd, as often encountered in
optical instruments, the

lateral coherence condition is sinϑd < 1.22λ/B.

The final evaluation proceeds as in Sect. 2.1.4. Thus, the overall interference
patterns given by

I (δ) = I1 + I2 + 2
√

I1I2 Re
[
g(1)(δ)

]
g(1s)(πϑdB/λc) cosωcδ, (2.55)

replacing (2.30). The visibility of the interference fringes (2.31) is thus determined
by |g(1s)|. For I1 = I2 we obtain at δ = 0:

V = Imax − Imin

Imax + Imin
= ∣∣g(1s)(x)

∣∣ =
∣∣∣∣
2J1(x)

x

∣∣∣∣ with x = πϑdB/λc. (2.56)

We recall that our derivation is for a circular disc light source with a uniform angular
diameter ϑd, such as a distant star. A systematic measurement of the visibility V as
a function of baseline B at well defined wavelengths λc thus allows one to extract
ϑd as will be discussed in the next subsection.

To summarize: the interference structure is lost not only for long delay times
|δ| � τc – as a consequence of an optical path difference larger than the coherence
length, |s1 − s2| � �c. It also disappears for a light beam with too large lateral
extension or to large angular divergence (2.54). This can be rewritten for a light
beam of a half divergence angle θe = ϑd/2, a radius w = B/2 (see Fig. 2.8) and
with 3.83 � 4:

w <
λ

πθe
� 2

θek
:= wcoh. (2.57)

Light is considered coherent if the left inequality holds. We have defined here (some-
what arbitrary) wcoh, a spatial (lateral) coherence radius of a light source. Corre-
spondingly, for a source of radius w we call θe = λ/πw the coherence angle.

This description implies that all wave-packets originating from a cross section
�πw2

coh are considered coherent: their respective interference patterns do not dis-



2.1 Some Basics for Quantum Optics 91

turb each other significantly. Hence,

Acoh = πw2
coh = λ2

πθ2
e

= λ2

δΩe
(2.58)

is the coherence area of a light source, where δΩe = πθ2
e is the solid divergence

angle of the beam. Correspondingly, for a given width w of a source, we call
δΩe = λ2/πw2 the coherence (solid) angle. We finally combine the lateral coher-
ence area (2.58) with the longitudinal coherence length according to (2.20) – slightly
arbitrarily and for a Lorentzian frequency distribution – and define a coherence vol-
ume

Vcoh = Acoh2�c = 4cλ2

�ω1/2δΩe
. (2.59)

Photons are considered as coherent if they originate from a cylindrical volume ex-
tending from +�c to −�c in k direction around the center of the beam with of radius
wcoh (beam waist) with a solid divergence angle δΩe.

For a “beam” of light derived from a chaotic (or natural) source, these consid-
erations just imply that phase fluctuations within the so defined coherence volume
are small enough so that interference structures are not disturbed significantly. For
a freely propagating, stationary laser beam the definition of a coherence volume
comes even more naturally: Let the radial profile of the beam be Gaussian, and
the frequency profile Lorentzian. The lateral coherence radius is identified as the
beam waist w0 (we recall that according to Table 1.1 86 % of the total power flows
through the corresponding cross section). On the other hand, the relation of w0 to
the divergence angle (1.55) is identical to that of wcoh according to (2.57). And the
(longitudinal) coherence lengths Table 2.1 is the same as just assumed. In summary,
expressions (2.57)–(2.59) also hold for a Gaussian laser beam with a Lorentzian
spectral profile.

2.1.8 Astronomical Interferometry

A direct application of the concept of spatial coherence just developed, is the lateral
or angular characterization of extended light sources emitting at far distances: this
is exploited by astronomical interferometry which dates back to MICHELSON and
PEASE (1921) who mounted a steel beam of initially 6 m length with four mirrors on
top of a 2.5 m diameter telescope on mount Wilson, California, in order to determine
the lateral degree of coherence of stellar light.

The scheme is sketched in Fig. 2.10. If one changes the distance B (the so called
baseline) between the two light receiving mirrors M1 and M2, according to (2.54)
interference is only observable for ϑd ≤ 1.22λ/B . This allows one to determine the
angular diameter ϑd at which the object studied is seen (e.g. a disc like star, double
stars). If the distance of the star is known, one may thus determine its diameter.

The resolving power of such an astronomical interferometer depends on the
fringe spatial frequency B/λ: the larger it is, the smaller divergence angles can
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Fig. 2.10 Scheme of the
original MICHELSON stellar
interferometer
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be determined. For example, for a baseline of B = 20 m and observation of visi-
ble light an angular divergence of about θ = 0.007′′ = 7 mas can still be resolved.6

MICHELSON, his coworkers and his successors determined quite a number of an-
gular diameters in that way. Immense technical and methodological progress has
been made since MICHELSON’s ground breaking work, now nearly a century ago.
The interested reader is referred to the excellent review by MONNIER (2003) as a
starting point.

The most dramatic advances seem to have been made during the past decade – at
least thats how it looks from the outside of this specialized field of research (i.e. to
the authors of this textbook). A hole flock (at least a dozen with more to come) of
very powerful optical/infrared interferometric arrays (as opposed to single baseline
interferometers) has started operation during the past years, exploiting all advanced
techniques one might dream of in this context (including adaptive optics, fast high
precision optical delay lines, low noise high speed VIS and near IR detectors, highly
sensitive digital imaging, advanced control and evaluation algorithms, fast comput-
ers).

Figure 2.11(a) schematically illustrates the design of modern stellar interferom-
eters, which may be compared to the original MICHELSON setup Fig. 2.10. Key
elements are the two light receiving telescopes, the beam guiding (“relay”) optics,
the delay lines and the beam combining unit. Note that the effective baseline B used
for interferometry is the “projected baseline” (perpendicular to the direction of the
incident radiation) – as opposed to the distance between the two telescopes b.

Today, the world’s largest telescopes, the two 10 m diameter KECK telescopes in
Hawaii as well as the four 8.5 m telescopes at the European southern observatory
in Chile (ESO) can ‘of course’ be combined to interferometric setups (the latter up
to a baseline of 100 m) – even if only for rather limited observation times. Spe-
cialized sites such as CHARA on Mount Wilson provide a facility for astronomical

61 milli-arcsecond = 1 mas = 2π × 10−3/(60 × 60 × 360) = 4.848 × 10−9 rad.
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Fig. 2.11 Schematic of modern astronomical interferometers adapted from MONNIER (2003).
(a) Overall layout with the telescopes, the beam guiding optics, delay line and beam combina-
tion. Two types of beam combination schemes are shown: (b) image plane interference (similar
to YOUNG’s double slit setup), and (c) pupil plane where the collimated beams are brought to
interference by a beam splitter

interferometry in the optical/infrared spectral range. Its 6 collecting telescopes with
diameters of “only” 1 m each, are arranged in a “Y” configuration and can be com-
bined to a total of 15 baselines, ranging from b = 31 to 331 m. The limiting angular
resolution is specified with 0.65 mas in the NIR and 0.15 mas in the VIS – that cor-
responds to about the diameter of Nils Armstrong’s helmet on the moon, if directly
viewed from the earth. Anyone who ever adjusted a laser system on a laboratory
table may vaguely imagine the technological challenges to stabilize and manipulate
an interferometer mirror setup over distances of more than 300 m with the necessary
sub-wavelengths distance control and angular alignment precision! Laser metrology
makes it possible.

These facilities are by now extremely productive, with measuring angular di-
ameters of astronomical objects as well as in interferometric image reconstruction.
BOYAJIAN et al. (2012) point out that 8231 stellar objects with known angular di-
ameters were listed as of July 2004. However, of these the angular diameters for
only 24 main sequence stars had been determined with an accuracy of better than
5 %, thus giving hope for quantitative modelling. Their 2012 paper alone reports
angular diameters for 44 main sequence stars with a precision of better than 4 %!

Figure 2.12 illustrates typical data obtained in this work for two arbitrary exam-
ples. Plotted are the visibilities at λ = 2.14 µm, derived from temporal interference
patterns of the type shown in Fig. 2.4 (after suitable calibration). The individual data
points are measured at the 15 baselines of CHARA. Since the projected baseline B

depends on the inclination of the observed star, which changes with time due to earth
rotation, the number of data points is much greater than 15 and allows for sufficient
precision. The data sets for each star are then fitted by functions similar to (2.56)
(see Fig. 2.9). As illustrated in Fig. 2.4, quite different parts of the spatial correlation
function (2.56) are exploited in these measurements, depending on the respective
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Fig. 2.12 Examples of visibilities for two stellar objects as determined by BOYAJIAN et al. (2012)
at the CHARA interferometric array. The (red) data points were taken at a series of values (base-
line/wavelength) = Bλ−1. Note that the full black curves are not straight lines; rather they are
fits by functions essentially of the type (2.56), from which the disc diameter angle is derived:
ϑLD = 1.623 ± 0.004 mas for HD4614 and ϑLD = 0.780 ± 0.017 mas for HD146233

angular diameters of the stars, here exemplified for ϑLD = 1.623 ± 0.004 mas and
ϑLD = 0.780 ± 0.017 mas.7

We cannot close this topic without at least mentioning radio-frequency interfer-
ometry. Radio astronomy is a very powerful and highly developed area of modern
astronomy, with hundreds of modern facilities worldwide, operating at wavelengths
between 1.3 mm and several metres. Baselines of radio-frequency interferometers
must be much larger than optical or infrared interferometers to allow detection of the
same angular diameters ϑd � λ/B . However, radio-frequencies have the great ad-
vantage that amplitudes and phases can be recorded directly, while at optical wave-
lengths typically only cycle averaged intensities can be detected. Hence, amplitudes
have to be superposed locally in a beam combining unit to record interference pat-
terns.

In contrast, radio frequency interferometry correlates the amplitudes electroni-
cally, and no local superposition on the detector is needed. The signals (amplitudes
and phases) may be collected anywhere in the world and be brought to “interfere”
later on by a mathematical algorithm in a powerful computer.

This concept is realized in very long baseline (radio) interferometry networks,
e.g. in the global mm-VLBI array in which several dozens of the most powerful
radio telescopes of the world co-operate – including very large single dishes such
as the 100 m diameter telescope at Effelsberg (Germany) and the 305 m telescope
at Arecibo (Puerto Rico), as well as a number of large radio telescope arrays. All
what needs to be done is to record simultaneously the electric field of a particular
frequency and direction received from space, store it on a tape, and provide that
with an accurate time marker – based essentially on synchronized atomic clocks
(or masers). With baselines of more than 10000 km an angular resolutions of about

7While (2.56) is exact for a uniform disc (UD), astronomical models also account for limb-
darkening (LD), which in the present case leads to a correction of about 2 %.
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50 micro-arcsec can be obtained at 3 mm wavelength – which in spite of the much
longer wavelengths is a factor of three better than today’s best optical resolution.

At present, the transport of data by magnetic tape is still a bottle neck. But re-
search is underway to use fast optical networks (the next generation internet) for
rapid data transfer into the central processing computer. Located anywhere in the
world – it constitutes, so to say, a very flexible “beam combining unit”.

Of course, different information from space is carried by optical/infrared vs.
radio-frequency emission. Thus, both types of interferometry are complementary,
and progress will continue. Even space based interferometry is discussed, both for
the optical and for the radio-frequency range.

2.1.9 HANBURY BROWN-TWISS Stellar Interferometer

One may determine the degree of lateral coherence also by measuring the second-
order correlation function, i.e. by recording the intensity correlations and exploiting
(2.41). Hanbury BROWN and TWISS have suggested for the first time such an ex-
periment in 1954. They tested it in a laboratory setup with a spectral lamp (1956a,
1958) and performed the first successful astronomical measurement determining the
angular diameter of Sirius (1956b) based on a measurement of intensity correlation.

In principle, such kind of measurement is much more flexible than the interfer-
ometry just described – one simply has to record intensities at two detectors, sep-
arated by a baseline B , and to determine the correlation g(2)(B) ∝ 〈I (r1)I (r2)〉 =
〈I (r1)I (r1 +B)〉 between these signals according to (2.36). With (2.41) one derives
the first-order degree of coherence g(1)(πϑdB/λ), the same quantity as measured by
an interferometer. But with such technique there is no need for a highly stable setup,
precisely adjusted to a fraction of a wavelength over long distances, and even the
telescopes do not require high quality as long as one can resolve the object stud-
ied. The baseline B can easily be varied and may, in principle, be chosen very long
as the signal can be registered at widely separated locations. The setup originally
used by BROWN and TWISS (1956b) is shown in Fig. 2.13(a). They actually used
two standard search light mirrors of 1.56 m diameter as telescopes. The normalized
second-order correlation function is recorded as a function of the projected base-
line distance B . One expects a signal corresponding to Fig. 2.5, convoluted with
the experimental resolution. As an example, in Fig. 2.13(b) the normalized signal
g(2)(B) − 1 is plotted for the star Sirius, which was the test object of BROWN and
TWISS (1956b). From the fit shown in the graph an angular diameter of 63 mas was
determined.

Hanbury BROWN continued a successful carrier as a radio astronomer, but still
made several contributions to measuring stellar diameters based on his method in
the optical spectral region. However, according to DAVIS and LOVELL (2003), “with
rapid improvements in the technology of the phase-correlation interferometer, Han-
bury’s intensity interferometer did not survive as a technique for the measurement
of the angular sizes of radio sources. As Hanbury later remarked, he had spent two
years ‘building a steamroller to crack a nut’.”
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Fig. 2.13 Hanbury BROWN-TWISS stellar interferometer. (a) Experimental setup according to
BROWN and TWISS (1956b). The two “telescopes” where standard searchlight mirrors of 1.56 m
diameter and the baseline was varied up to B � 10 m. The detector also acts as integrator. (b) Com-
parison of experiment and theory for a measurement of the angular diameter of Sirius determining
the angular diameter to be 63 mas; adapted from BROWN and TWISS (1956b)
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Fig. 2.14 Two varieties of the basic concept for Hanbury BROWN-TWISS type experiments. In
each case the signals from the two detectors P1 and P2 are correlated (see text). (a) Radiation
(photons or other particles) originate from a point like source with limited temporal coherence; the
total flux is split into two equal branches, one of which can be delayed by a variable time δ. (b) The
two branches originate from an extended source with limited lateral coherence, corresponding to a
phase difference πϑdB/λ

To fully appreciate the impact that the HBT concept and its realization had, as
a starting point of quantum optics, let us look again at its essential ingredients.
Figure 2.14(a) gives a highly simplified schematic of the photon bunching exper-
iment (temporal/longitudinal coherence) introduced in Sect. 2.1.6. The incoming
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light, highly collimated from a point like source, is split into two equal branches and
is detected by two photo-multipliers. One records the probability for detecting one
photon at detector (P1) and another photon at the other detector (P2) – with some
time-delay δ, corresponding to a phase difference ωδ. This time delay between pairs
of photons is measured electronically (see e.g. Fig. 2.6). Figure 2.14(b) shows the
scheme of the original HBT experiment with an extended light source. It differs
from (a) by the fact that now the lateral extension of the source (angular diameter
ϑd) creates a phase difference πϑdB/λ between the two detectors as explicated in
Sect. 2.1.7. In this case, the baseline B is varied.

In both cases one measures the second-order correlation function (2.38). And in
either case one finds (in an ideal experiment) for statistical light sources that the
correlated signal at δ = 0 (or at b = 0) is twice that for δ → ∞ (or for b → ∞,
respectively) – provided the detectors are sufficiently fast, i.e. their response time is
much shorter that the temporal coherence time of the source (for that purpose the
light is passed through a narrow band pass filter prior to detection). In contrast, a
fully classical source, such as an ideal, intense CW laser beam, shows no enhanced
second-order correlation at any time – the photons are distributed completely at
random as we shall discuss in Sect. 2.2.

As recently pointed out by KLEPPNER (2008), the Hanbury BROWN-TWISS ef-
fect is one of those rare occasions where a classical explanation is quite straight
forward, while at first sight it appears to contradict intuition from a quantum point
of view: As we have seen in Sect. 2.1.7 the HBT effect arises essentially from the
statistical fluctuations of the amplitudes of the radiation.8 Hanbury BROWN actually
started as a radio engineer and was quite familiar with noisy signals. The mathemati-
cian TWISS helped him to work out the theory for his experiment on a fully classical
basis.

However, from a quantum point of view the experiment was completely puzzling
and started a vivid and controversial discussion: a photon is either here or there.
Why should the probability of finding one simultaneously at each of the detectors
(g(2)(δ) = 2) be higher than the statistical probability for random coincidence? But
the experiment shows, even at low count rates, that if a photon is registered at (P1)
the probability to register at the same time a photon at (P2) is twice that (g(2)(δ) = 2)
for purely random arrival of completely uncorrelated beams. The answer to this
puzzle is quite simple: photons are bosons, so they may occupy the same phase
space – and in a chaotic sources they have indeed a clear tendency to bunch, rather
then to occupy all modes equally. Consequently, for electrons and other fermions
one may expect the opposite: anti-bunching as we shall see in the next subsection.

8We also recall that the second-order degree of coherence (autocorrelation function of the intensity)
is efficiently used for measuring the duration of femtosecond pulses (Sect. 1.5). There, nonlinear
processes such as SHG are applied to detect a signal which is proportional to the square of the
intensity (compare Table 1.5, for N = 2 with (2.43)). Note, however, that the results differ in the
prefactor of the exponential (2 vs. 1), owing to the fully coherent nature of the laser pulse vs. the
chaotic light source assumed here.
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2.1.10 Bunching and Anti-Bunching

GLAUBER developed the quantum theory of light which also explains the HBT ef-
fect, consistent with the particle nature of photons (a summary of his work is avail-
able as GLAUBER 2007). But intensity interferometry has in the mean time suc-
cessfully been adapted for other particles, exploiting the advances with fast imaging
detector arrays. In high energy heavy ion and particle collisions, two particle corre-
lations between protons, pions, or even photons again, are studied to obtain infor-
mation on the “space-time geometry” of such collisions (BAYM 1998). For fermions
one expects and observes anti-bunching (HENNY et al. 1999; HASSELBACH 2010).
Fermions cannot occupy the same phase space, they avoid each other and this can
indeed be observed experimentally.

In this context it is appropriate to mention that even in photon correlations one
may encounter situations where anti-bunching is observed (KIMBLE et al. 1977): if
a single atom fluoresces while being excited by a not too intense radiation field, this
atom will have zero probability for emitting a second photon immediately after it
has just decayed from its excited state into its ground state. Even more decisive is
the experiment of GRANGIER et al. (1986). They prepared a genuine single photon
source: photons emerging from an atomic cascade are detected only when triggered
by the first photon in the cascade. As expected, they observe strong anti-correlation
between the triggered detection on both sides of a beam splitter. We shall come back
to further experiments of this type in Chap. 10.

A relatively new field for fascinating applications of the HBT effect appears
to be – quite unexpectedly – the physics of ultracold quantum gases, where com-
plex phases and structures are revealed by such experiments. We cannot go into de-
tails here. We show, however, one particularly neat experiment on ultracold helium,
which bears out the difference between fermions and bosons.

JELTES et al. (2007) prepared in a magnetic trap ultracold, metastable 3He∗ or
alternatively 4He∗ at 0.5 µK. The trapped samples were approximately Gaussian
ellipsoids of 110×12×12 µm3 size. The atoms are released from the trap by turning
off the magnetic field – the atoms fall under the influence of gravity and the cloud
expands. They are detected by a position-sensitive detector (micro-channel plate and
delay-line anode) that detects single atoms. The single atom signal simply reflects
the overall shape of the (expanded) cloud.

However, the two particle coincidences allow in principle to determine a full 3D
second-order correlation function g(2)(x, y, z) of the particle positions – analogous
to the (one dimensional) schematic shown in Fig. 2.14(b) for photons. The best
resolution is obtained in z-direction (determined by the arrival time of the atoms at
the detector). The results for g(2)(0,0,�z) shown in Fig. 2.15 give a very clear and
impressive picture of anti-bunching in 3He∗ (fermions) and of bunching for 4He∗
(bosons).

Section summary

• The intensity spectrum of a light pulse is given by the (inverse) FOURIER

transform of the first-order degree of temporal coherence of the field ampli-
tude.
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Fig. 2.15 Boson and fermion
two particle correlation from
an ultracold gas of 3He∗
(fermions, grey symbols) or
4He* (red symbols). If two
atoms originate from the
same position in space
(�z = 0), very clear
anti-bunching or bunching is
observed for fermions and
bosons, respectively. Adapted
from JELTES et al. (2007) c
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• With (2.16)–(2.20) we have modelled a “quasi-monochromatic”, stationary
light beam. Its coherence properties are described by the first-order degree of
coherence. This is summarized in Table 2.1.

• Using these classical concepts we have quantified the conditions for coher-
ent interference of electromagnetic as observed e.g. in YOUNG’s double slit
experiment. As a general rule, in quasi-monochromatic (chaotic) light each
photon interferes only with itself.

• The interference fringes can be expressed by the first-order degree of coher-
ence. The characteristic patterns observed as a function of time delay between
the interfering beams depend on the spectral characteristic of light source. The
overall visibility V contains valuable information about the lateral coherence
of such a light source.

• Higher order correlation functions are defined. The (normalized) second-order
degree of coherence g(2)[δ] describes the correlation of field intensities at
different positions in time and space. It also gives the probability to detect
two photons in (delayed) coincidence. For chaotic light g(2) can be expressed
in terms of g(1).

• Thus, the first-order degree of coherence can be derived from intensity cor-
relations. This photon bunching was first observed by Hanbury BROWN and
TWISS. Although classically well understood, the HBT effect is conceptually
more difficult to reconcile with the particle nature of photons, and has started
quantum optics in the mid 1950ies.

• Spatial (lateral) coherence complements the concept of temporal (longi-
tudinal) coherence. Lateral coherence is lost for extended light sources at too
large divergence angles since interference patterns from different parts of the
source cancel each other.

• Lateral coherence is used in astronomical interferometry to determine the
angular diameters of stars. Historically, the HBT effect was also exploited
for this purpose. Today powerful facilities for (amplitude) interferometry are
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used almost exclusively: arrays of interferometers in the visible and infrared
spectral range, worldwide antennae networks in the radio-frequency region.

• The HBT effect can only be observed since photons are bosons. Today it is
applied successfully also to other particles, including fermions for which anti-
bunching is observed.

2.2 Photons, Photon States, and Radiation Modes

In this section we prepare the quantization of the electromagnetic radiation field,
in the following section we shall actually present the essential steps. As through-
out this book, we shall do this in a heuristic manner with focus on understanding the
physics – for which we may sacrifice some mathematical strictness. By no means do
we intend to give a stringent introduction into quantum electrodynamics and quan-
tum optics – for which a rich literature exists. Among the references to this chapter
the ambitious reader finds several fine textbooks for further reading (LOUDON 2000;
GLAUBER 2007; GRYNBERG et al. 2010; MANDEL and WOLF 1995; WEISSBLUTH

1978; MILLONI and EBERLY 2010).
Up to now, we have treated light as a completely classical radiation field. For the

interaction of matter with light we have used the semiclassical approach presented
in Chap. 4, Vol. 1: atoms are treated quantum mechanically, the electromagnetic
field classically. For a laser beam this turns out to be a rather correct description,
even though we know that light has also particle properties manifested by photons.

In fact, a laser beam contains a very large number of photons. We shall clarify in
Sect. 2.2.4 what precisely that means. And we shall see, that it is this very fact which
makes the semiclassical description a very good approximation. On the other hand,
photon counting experiments as discussed in the previous section call for a quantum
mechanical interpretation – even though a classical explanation was possible in the
cases discussed so far.

For at least two reasons the introduction of a fully quantized description of the
field appears to be compelling: one is spontaneous emission which in the semiclassi-
cal approach occurs only as a kind of afterthought and cannot really be understood.
However, spontaneous emission is a key phenomenon in many areas of physics.
The second reason is of a more fundamental – one might say aesthetical – nature:
to document energy conservation for radiation induced processes. Clearly, energy
is needed to excite an atom, and conversely, it cannot be lost when the atom is de-
excited. The semiclassical picture does not account for this explicitly; energy comes
from somewhere and gets lost to somewhere. In contrast, the fully quantized de-
scription will connect absorption and emission with the annihilation and creation of
a photon, respectively, and thus expresses energy conservation explicitly.

2.2.1 Towards Quantization of the Radiation Field

Before going into details, let us get our bearings with the overall picture. Quan-
tum mechanics, as we have used it so far, is essentially particle wave mechanics in
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the SCHRÖDINGER picture. Historically, particles (electrons, atoms, nuclei) existed
a long time before the invention of SCHRÖDINGER, DIRAC or KLEIN-GORDON

equations. With photons,the situation is exactly opposite: the wave equation for pho-
tons, i.e. for electromagnetic radiation (based on MAXWELL’s equations) existed a
long time before the photon was discovered (or should we say, was “invented” as
a concept?). Thus, we know the wave equation for photons already. What is re-
quired at this point is a genuine quantization of the field. We have to find a common
framework for describing the states of electrons and those of photons – and their
interaction. There is, however, one major difference between electrons and photons:
while the former are fermions the latter are bosons. For electrons the PAULI prin-
ciple holds and any state can only be occupied by one electron. In contrast, many
photons can, in principle, occupy any given photon state.

Thus, the programme is as follows: We first recall the basic properties of photons
and introduce the concept of photon states. Secondly, we take a more detailed look
at the photon wave functions, called modes of the electromagnetic field. Thirdly, we
introduce a convenient scheme of book-keeping for photons, called second quanti-
zation, which characterizes photon states by their occupation numbers.9 In the usual
SCHRÖDINGER picture the electromagnetic field itself (as an observable) is then
represented by a time independent operator, all time dependence will be cast into
the evolution of the photon states.

We begin by recalling the well known experimental facts about photons. From
the photoelectric effect we know that the energy in the electromagnetic fields is
quantized in well defined packets of

Wph = �ω, (2.60)

associated with the particle photon. The photon travels (in vacuum) with the speed of
light c and has no rest mass. We may attribute to it a relativistic mass mph = �ω/c2.
The momentum of the photon, also known from experiment (COMPTON effect) is

pph = �k with pph = h

λ
= hν̄. (2.61)

Finally, photons have an intrinsic angular momentum, the photon spin S, with a spin
quantum number S = 1. This too is based on experimental evidence (BETH 1936),
as reported in Sect. 4.1.4, Vol. 1.

Photon states |k, e〉 may be characterized by the photon’s propagation vector
k and its polarization e according to Sect. 1.3. One may introduce a photon spin
operator Ŝ and its components, in particularly Ŝz and express the photon states in
the helicity basis |eq〉, where the z-axis is chosen parallel to k. The states |e±〉 refer
to circularly polarized light, and the usual angular momentum algebra applies:

Ŝ
2|eq〉 = �

2S(S + 1)|eq〉 with S = 1, (2.62)

9Actually, a similar scheme can be applied to the electronic states of atoms. But that scheme is
much simpler since these states can only be occupied or not be occupied.
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Ŝz|eq〉 = q�|eq〉 with q = ±1 and (2.63)

〈eq |eq ′ 〉 = δqq ′ . (2.64)

Alternatively, we may use basis states for linearly polarized photons,

|ex〉 = − 1√
2

[|e+1〉 − |e−1〉
]

and |ey〉 = i√
2

[|e+1〉 + |e−1〉
]
, (2.65)

following (4.7) in Vol. 1. With (2.63) one verifies that these linearly polarized states
are eigenstates of Ŝ 2

z :

Ŝ 2
z |ex〉 = �

2|ex〉 and Ŝ 2
z |ey〉 = �

2|ey〉 (2.66)

but not of Ŝz. Rather, the expectation value of Ŝz becomes zero for the |ex〉 as well
as for the |ey〉 state. This too is confirmed by experiment. And in complete analogy
to (1.85), the most general, elliptically polarized photon may be represented by

|e〉 = e−iδ cosβ|e+1〉 − eiδ sinβ|e−1〉. (2.67)

We emphasize that (2.63) includes only two states, with q = ±1, i.e. angular mo-
mentum components ±� in z-direction. Even though in conventional angular mo-
mentum algebra (2.62) and (2.63) would formally define three substates (with q = 0,
±1), the particle “photon” exists only with the two angular projections, q = ±1.
This somewhat unusual behaviour reflects the transverse nature of the polarization
of light and the fact that photons do not have a rest mass, i.e. always propagate with
the speed of light. Classically we had associated the spherical basis vectors with
three oscillators: two of them oscillating in the xy plane (q = ±1) while the third
oscillates along the z-axis. The corresponding radiation characteristics are described
in Chap. 4, Vol. 1. Somewhat loosely one might say that the photon state with q = 0
does not propagate along the z-axis.

2.2.2 Modes of the Radiation Field

The photon states |k, eq〉 discussed above correspond to a single photon with polar-
ization eq , wave vector k, and frequency ω = k/c. A realistic light beam consists
of many photons and a range of wave vectors. As a complete basis set for con-
structing any “photon wave function” one could e.g. take all plane waves with all
possible values of k – as we have already shown in the previous Sect. 2.1. A quasi-
monochromatic, stationary light beam with a mean wave vector kc would contain a
narrow range of angular frequencies δω around ωc (or δk = δω/c around the mag-
nitude of the wave vector kc) and have an angular distribution of wave vectors in an
angular range δθ (or solid angle δΩ = πδθ2, respectively).

Of course, photons are in principle unbound particles, so that we would have to
deal with an infinite number of basis states and an infinite number of energies. To
avoid these complications, one usually switches to a very large but finite normal-
ization volume (in real position space), say a cubic cavity of edge length L, and
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Fig. 2.16 Two dimensional
cut through k space, divided
into a grid of unit length
2π/L. A light beam is
characterized by the
probability to find a certain
wave vector ki around the
mean wave vector k, and by
the number of photons
populating this cell
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perfectly conducting walls where the electric field must vanish. Mathematically this
is equivalent to introducing periodic boundary conditions10

kx = mx

2π

L
, ky = my

2π

L
, kz = mz

2π

L
(2.68)

with mx,my,mz = 0,1,2,3, . . . .

Thus, a countable number of bound states emerges, called modes of the radiation
field, to each of which we attribute a photon state |k, e〉.

The whole k space is thus divided into very small but finite cells as sketched in
Fig. 2.16. The size of the cells is determined by �kx = �ky = �kz = 2π/L, so that

�3k = �kx�ky�kz =
(

2π

L

)3

. (2.69)

Only a finite number of these modes is needed to describe a quasi-monochromatic
light beam with an average wave vector kc – as indicated by the red dashed area in
Fig. 2.16. Each mode is characterized by its wave vector k (and polarization) and
may be occupied by any number of photons.

We note an important consequence of this structure of k space. With p = �k we
may write

�3k = �3p

�3

L3

L3
=

(
2π

L

)3
�3pL3

h3
. (2.70)

Obviously (2.69) and (2.70) can only hold simultaneously if the size of

a unit cell in phase space is �3pL3 = h3. (2.71)

10The treatment given here is quite analogue to that for electrons in a 3D box, presented in
Sect. 2.4.2, Vol. 1 – except that there fermions (spin 1/2) were described and each cell in k space
was only filled by at most two electrons (of opposite spin).
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It is important to point out here that in the preceding paragraph one key assump-
tion has been made which is crucial (albeit plausible) for the following considera-
tions: periodic boundary conditions in k space (2.68) for the electromagnetic field. –
One may, of course, also turn the arguments around and define (2.71) as the funda-
mental theorem: the minimal cell size in phase space is h3. This, together with the
well defined energy �ω of a photon, may be seen as the key paradigm beyond the
quantization of the electromagnetic wave field. It will turn out to have decisive con-
sequences, e.g. in the context of spontaneous emission.

We note that the size of the box, L3, which is our reference volume, does not
necessarily refer to a real physical situation. Usually it is just a mathematical con-
struct introduced to avoid an infinite number of photon states with which one would
otherwise have to deal, and one simply has to choose L just large enough so that the
grid is sufficiently fine for describing the properties of the radiation field applied.

On the other hand, there are situations where the normalization volume really
refers to a genuine physical geometry, e.g. to a laser resonator or any type of optical
cavity in which light may be confined. The genuine modes of this cavity will have
to be used if one wants to describe an experimental situation quantitatively. Laser
theory is one such application. Another field is the so called “cavity QED” which
we shall touch briefly in Sect. 2.3.7. If the size of the cavity becomes comparable to
the wavelength of the radiation studied one finds that even spontaneous emission is
substantially modified.

Later on we shall need an expression for the number of modes in a specified range
of k vectors with a given polarization. This can now easily be derived. The number
of modes dmke between k = (kx, ky, kz) and k+dk = (kx +dkx, ky +dky, kz +dkz)

is obtained by dividing the volume element in k space dkxdkydkz by the size of the
unit cell (2.71):

dmke = dkxdkydkz

(2π/L)3
= L3

(2π)3
k2dkdΩ = ρ(k, e)dkdΩ. (2.72)

With ω = kc we may also refer this to the angular frequency interval dω:

dmωe = L3

(2πc)3
ω2dωdΩ = ρ(ω, e)dωdΩ. (2.73)

The values dmke and dmωe give the number of modes with polarization e propagat-
ing into a solid angle dΩk and with wave vectors between k and k + dk, or angular
frequencies between ω and ω + dω, respectively. The expressions

ρ(k, e) = dmke

dkdΩ
= L3 k2

(2π)3
, (2.74)

ρ(ω, e) = dmωe

dωdΩ
= L3 ω2

(2πc)3
, and (2.75)

ρ(ν, e) = dmνe

dνdΩ
= L3 ν2

c3
(2.76)
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are called mode density. The mode density obviously depends on the square of the
wavenumber or frequency.

After having identified the radiation field as a discrete and countable set of
modes, as a final step one extends the normalization volume L3 to values so large
(essentially to infinite) that the usual continuous spectrum is effectively recovered,
i.e. L is chosen large enough to obtain a sufficiently fine mesh �kx,y,z = 2π/L in k

space to describe the problem at hand to any degree of accuracy needed. This allows
one to finally replace all necessary summations over spectral modes by an integra-
tion over the solid angle Ω and k (or ω). With the mode densities (2.74) and (2.75)
just derived we may thus write symbolically

∑

k

. . . → L3

(2π)3

∫

k,Ω

. . . k2dkdΩ = L3

(2πc)3

∫

k,Ω

. . .ω2dωdΩ. (2.77)

As far as the radiation field is spatially isotropic one may carry out the angular
integration and obtains

∑

k

. . . → L3

2π2

∫

k

. . . k2dk = L3

2π2c3

∫

ω

. . .ω2dω (2.78)

for each specified polarization e. If one investigates optical transitions induced by
a well collimated radiation source, such as a laser beam, typically (2.78) cannot
be used and (2.77) must be applied. We have already mentioned this aspect in our
semiclassical treatment of light induced transitions in Chap. 4, Vol. 1.

Note that the mode density derived here is proportional to the normalization vol-
ume L3. Fortunately, as we shall see below, all measurable properties which we shall
compute are densities of some kind, i.e. have to be evaluated per volume. Thus, L3

will drop out of the final results.

2.2.3 Density of States and Black Body Radiation

We take here a little detour back to black body radiation. Dividing ρ(ν, e) given
in (2.74) by L3, and multiplying it by 8π (integration over the full solid angle and
summation over the two polarization directions) leads to the density of states (per
volume) as introduced in Sect. 1.3.4, Vol. 1. For photons one usually refers to fre-
quency space:

g(ν)dν = 8π

c3
ν2dν. (2.79)

Inserting this into the BOSE-EINSTEIN distribution (1.63), Vol. 1 for a black body
radiator in thermal equilibrium, we obtain the spectral photon density:

Ñ(ν)dν = 8πν2

c3

dν

exp(hν/kBT ) − 1
. (2.80)
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The chemical-potential of the massless particle photon has been set here m̄e = 0 –
it takes no energy to split or unite photons in statistical interactions (e.g. with the
surrounding walls) as long as the total energy remains constant. Note that the ν2

factor in the nominator prevents divergence for hν → 0 (i.e. avoids the so called in-
frared catastrophe). Integration of (2.80) over all (positive) frequencies gives a finite
value for the photon density in the black body, N = 16(kBT )3πζ(3)/(hc)3, with
the RIEMANN function ζ(x). N amounts to about 20 photons/cm3 at 1 K. We recall
now that PLANCK’s law describes the spectral energy density of the photons, i.e. it
is obtained from (2.80) by multiplication with the photon energy hν. Comparison
with (1.81), Vol. 1 shows that we have indeed derived PLANCK’s law.

2.2.4 Number of Photons per Mode

We still have to establish a quantitative relation between the number of photons
in a specific mode and the intensity I of the electromagnetic field – or its electric
field strengths E. The photon states |e〉 discussed above refer to a single photon
in a specific mode k, e. In reality, however, a light source such as a laser beam,
is characterized by many photons per mode. How is that number of “photons per
mode” determined?

Let us start with the total number of all photons Ne with polarization e in the nor-
malization volume L3 – assuming it is completely filled with radiation of intensity
I = cu at a photon energy �ω:

Ne = u
L3

�ω
= I

c

L3

�ω
. (2.81)

More specific, in an interval ω to ω + dω of angular frequencies we find

Ne(ω)dω = ũ(ω)
L3

�ω
dω = Ĩ (ω)

c

L3

�ω
dω (2.82)

photons, with ũ(ω) = Ĩ (ω)/c being the spectral radiation density and Ĩ (ω) intensity
spectrum (per unit angular frequency). Considering the finite divergence angle δΩ

of a light beam, the number of photons with polarization e in a frequency interval
dω per solid angle dΩ is

N (ω,Ω; e)dωdΩ = Ĩ (ω)

δΩ

L3

c�ω
dωdΩ. (2.83)

Finally, we recall dmωe, the number of modes (2.73) in a range dωdΩ of frequencies
and solid angles. With this we obtain the number of photons per mode:

Nke = N (ω,Ω; e)dωdΩ

dmω,e
= Ĩ (ω)

�ωcδΩ

(2πc)3

ω2
= Ĩ (ω)

δΩ

λ3

c�
. (2.84)
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We thus have worked out a relation between the quantum mechanically relevant
number of photons per mode and the measurable intensity per solid angle and an-
gular frequency. To be even more specific: with (2.21) for the maximum Ĩ (ωc) of a
Lorentzian spectral distribution (FWHM = �ω1/2 = 2/τc) we obtain

Nke = 2I

�ω1/2δΩ

λ3

πc�
= I

�ωδΩ
2τcλ

2. (2.85)

As expected, Nke is independent of the normalization volume (both the number of
photons and the mode density grow linearly with L3). But it is proportional to the
coherence time and inversely proportional to the divergence angle δΩ of the light
source.

It is instructive to look at some numbers Nke for some typical light sources. Let
us, e.g. take an ideal laser beam with a Gaussian radial profile and a Lorentzian
spectrum. In this case, the divergence angle of the source is diffraction limited, i.e.
δΩ = δΩe and with (2.59) we identify the coherence volume Vcoh. Thus, for a
diffraction limited beam we can write

Nke = I

c�ω
Vcoh. (2.86)

As I/(c�ω) is the photon number density, this relation can be read as: the number
Nkeof photons per mode is equivalent the number of photons in the coherence vol-
ume of the beam. We recall: for a laser beam Vcoh is simply its geometrical waist
cross section πw2 (at 1/e2 width) multiplied by 2�c = 2cτc.

A slightly different situation is encountered for a chaotic radiation source. Let it
have a small but finite diameter d = 2w and radiate with a total power P isotrop-
ically into the full solid angle δΩ = 4π . Coherent emission from its effective area
πw2 occurs into a solid angle δΩe = πθ2

e = λ2/πw2, with an intensity I = P/πw2.
Thus, (2.85) may be written

Nke = P

πw2�ω

4λ2

�ω1/24π
= P

�ω

δΩe

4π
2τc.

The second equality states that the number of photons per mode is equivalent to the
number of photons emitted coherently (i.e. into a solid angle δΩe) during twice the
coherence time.

Table 2.2 summarizes characteristic parameters for some typical radiation
sources: total power, lateral extension, wavelength, bandwidth and relative band-
width. From these one calculates coherence (half) angle, coherence time and coher-
ence lengths according to Table 2.1 as well as the rate of coherent photon emission
Pcoh/�ω and the number of photons per mode Nke according to (2.85).

Among the sources compared are two essentially chaotic ones (spectral lamp and
atoms at rest) and three quasi-monochromatic sources with rather long coherence
times. The “spectral lamp” could be a typical, commercially available device, here
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Table 2.2 Characteristic parameters of five typical light sources: Total power of emitted light P ,
beam waist or source radius w, wavelength λ, FWHM of the spectral distribution δλ1/2 and δν1/2,
coherence (half) angle δθe, coherence time τc, coherence length �c, coherently emitted photon rate
Pcoh/�ω, number of photons per mode Nke

Source P/W
light (total)

w/mm λ �λ/nm �ν1/2 �ν1/2/ν

= �λ/λ

spectral lamp 0.5 5 590 nm 10−3 860 MHz 1.7 × 10−6

atoms at rest 10−6 0.05 780 nm 1.2 × 10−5 5.9 MHz 1.5 × 10−8

CW dye laser 1 0.5 590 nm 1.2 × 10−6 1 MHz 2 × 10−9

TiSa laser pulse 2.0 × 1010 0.1 800 nm 19 8.8 × 103 GHz 2.3 × 10−2

microwave oscillator 103 100 3 cm 0.3 100 Hz 1 × 10−8

derived from the above parameters:

Source δθe/ rad
= λ/πw

τc/ s−1

= 1/π�ν1/2

�c/m
= c× τc

Pcoh/�ω s−1

Photons/ s
Nke

spectral lamp 3.8 × 10−5 3.7 × 10−10 0.11 5.3 × 108 0.4

atoms at rest 5 × 10−3 5.4 × 10−8 16 2.3 × 107 2.5

CW dye laser 3.8 × 10−4 3.8 × 10−7 95 3 × 1018 1.9 × 1012

TiSa laser pulse 2.6 × 10−3 3.6 × 10−14 1 × 10−5 8 × 1028 5.8 × 1015

microwave oscillator 0.1 3.2 × 10−3 106 1.5 × 1026 1024

emitting at the Na wavelength. The “atoms at rest” might e.g. be a BOSE-EINSTEIN

condensate, assuming 105 excited 87Rb atoms to emit at the 780 nm, with the natu-
ral width of this resonance line. These two sources are assumed to emit isotropically
into the full solid angle 4π . The (half) angle θe indicates the maximum angle within
which the light can be considered as coherent. The other sources are highly direc-
tional and are assumed spatially coherent over their full cross section. The dye laser
is operating CW in the yellow spectral range, with reasonable stabilization and a
bandwidth as often used in spectroscopy. The pulsed source (ca. 1 mJ with a tempo-
ral FWHM of 50 fs at 800 nm) represents a standard femtosecond Titanium-sapphire
laser setup, with a beam focused moderately to w = 100 µm. We assume the whole
pulse to represent one mode of radiation – due to the short pulse duration with a
rather broad bandwidth. Finally, we also compare with a classical radiation source,
a microwave oscillator.

The characteristic quantity Nke derived here, the number of photons per mode,
gives of course an average value if many modes are needed to describe the spectrum
and the angular profile of a source. Note that these sources represent rather different
types of radiation: For the spectral lamp Nke is very small so that most modes do not
contain any photon at all; the atomic source shows already a significant probability
to find one or even more photons per mode; the highly coherent laser sources as well
as the microwave source contain a very large number of photons per mode, and the
field can be considered as essentially classic.
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2.2.5 The Multi-Mode Field and Energy

We may now explicitly write down the field variables of a multi-mode electromag-
netic radiation field, i.e. its vector potential A(r, t), and its electric E(r, t) and mag-
netic field B(r, t). They are related to each other as described in Appendix H.1.1,
Vol. 1. We focus again on the electric field vector. Following (1.35) we write now

E(r, t) = i

2

∑

kq

{
eqE−

kq
(t)eikr − e∗

qE+
kq

(t)e−ikr
}

(2.87)

with E−
kq

(t) = E−
kq

e−iωt and E+
kq

(t) = E+
kq

eiωkt . (2.88)

The summation has to be carried out over all occupied field modes. In a classical
description Ekq is the field amplitude in each mode, with wave vector k and po-
larization q . As discussed previously, random phase fluctuations will have to be
included if one wants to describe a stationary light beam.

We now have to make the translation to quantum mechanics, i.e. we are looking
for the field operator. A good starting point is the total energy W stored in the
electromagnetic field. By inserting (2.87) into (1.86) we obtain the intensity I and
the energy density u = I/c. Integration over the whole normalization volume L3

eventually leads to

W = L3ε0c
∣∣E(r, t)

∣∣2 (2.89)

= L3 ε0

2

∑

kq

E−
kq

(t)E+
kq

(t) = L3 ε0

2

∑

kq

E−
kq

E+
kq

. (2.90)

This convincingly clear result is essentially a consequence of the confinement to
a large normalization volume with periodic boundary conditions: squaring (2.87)
leads to a double sum over kq and k′q ′. However, with integration over L3 one
finds that exponential terms of the type exp[i(k − k′)r] lead to delta functions, so
that only contributions from terms diagonal in k remain. Finally, with (2.88) the
time dependence also drops out.

Section summary

• In this section several conceptual steps were taken to familiarize ourselves
with the notion of photon states, and to prepare the quantization of the elec-
tromagnetic field.

• After recalling the quantum properties of photons, we introduced modes of an
electromagnetic field by assuming a large but finite normalization volume L3

and demanding periodic boundary conditions. As a consequence we find that
�3pL3 = h3 is the smallest size of a phase space cell.
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• This concept allowed us to specify the number of modes, respectively to de-
termine the density of modes in k space.

• An important quantity which connects the classical view of a continuous elec-
tromagnetic field and the quantum description of photons is the (average)
number of photons Nke per mode with a specified wave vector k and polariza-
tion e. Quantitatively, Nke is related by (2.85) with intensity of the radiation,
its frequency spectrum, and its angular divergence.

• For several characteristic radiation sources Table 2.2 summarizes the relevant
parameters, coherence properties and numbers of photons per mode.

• Finally, we have – for the general case of a quasi-monochromatic light
source with finite divergence angle – rewritten the electric field vector and
the energy contained in the radiation field, using the language of field modes
introduced here.

2.3 Field Quantization and Optical Transitions

2.3.1 Second Quantization and Photon Number States

So far we have not really quantized the field yet. In order to do so, one needs some
quantum mechanical tools: the matrix formulation of the harmonic oscillator and
second quantization. The latter is a clever method of book keeping for the population
of states with particles – here of photon states with photons.

We start with the total energy (2.89) of the electromagnetic field, and consider
one single mode k, q populated. The field energy in this mode is

Wkq = L3 ε0

2
E−

kq
(t)E+

kq
(t) = L3 ε0

2
E−

kq
E+

kq
with E+

kq
(t) = E+

kq
eiωkt . (2.91)

In the following we drop the indices kq for simplicity of writing, and introduce new
variables:

Q =
√

L3ε0

2ω

[
E−(t) + E+(t)

]
and P = −i

√
L3ε0

2

[
E−(t) − E+(t)

]
. (2.92)

The inverse relations are

E−(t) =
√

1

L3ε0
(ωQ + iP ) and E+(t) =

√
1

L3ε0
(ωQ − iP ). (2.93)

With this the total energy (2.91) is written as

W = 1

2

(
P 2 + ω2Q2). (2.94)



2.3 Field Quantization and Optical Transitions 111

This expression looks very familiar: it is mathematically identical to the energy of
the harmonic oscillator in classical mechanics:

W = p2
x

2m
+ mω2

2
x2.

The key idea is now, to identify the oscillations of the electromagnetic radiation
field with the harmonic oscillator, and use the rules sketched in Chap. 2, Vol. 1
to translate the field modes into quantum mechanics. For this, Q and P must be
canonical conjugate coordinates. With (2.92) we find

Ṗ = −ω2Q and Q̇ = P,

and the partial derivatives of the energy (2.94) are

∂W

∂Q
= ω2Q = −Ṗ and

∂W

∂P
= P = Q̇.

This set of equations are the classical HAMILTON equations in one dimension with
Q and P being indeed canonical conjugates. Thus, W := H represents the Hamil-
tonian of the electromagnetic field!

What follows is the decisive step in the quantization process: canonical conju-
gates are replaced by operators which obey the commutation rule

[Q̂, P̂ ] = i�. (2.95)

We now rewrite the relations (2.93) in dimensionless form by multiplying them with√
L3ε0/(2�ω):

â = 1√
2�ω

(ωQ̂ + iP̂ ) and â+ = 1√
2�ω

(ωQ̂ − iP̂ ). (2.96)

With (2.95) one verifies that these operators obey the simple commutation rule

[
â, â+] = ââ+ − â+â = 1, (2.97)

which may be recast into

ââ+ = â+â + 1 = N̂ + 1. (2.98)

Here we have introduced the so called number operator

N̂ = â+â. (2.99)

The Hamiltonian of the electromagnetic field (2.94) takes now the form



112 2 Coherence and Photons

Fig. 2.17 Energy level
diagram for photons in a
mode of the electromagnetic
radiation field. Indicated it the
effect of photon creation and
annihilation operators, â+
and â, respectively, onto the
number states |N 〉
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2
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(2.100)

= �ω

(
N̂ + 1

2

)
. (2.101)

The derivation of the algebra for the operators N̂ , â and â+ is straight forward,
based on the commutation rule (2.97). It can be found in all quantum mechanics
text books. We thus only summarize here the results. The number operator N̂ is
Hermitian (while â and â+ are not). It has eigenstates |N 〉 with integer numbers N
as eigenvalues:

N̂ |N 〉 = N |N 〉 (2.102)

with N = 0,1,2, . . . and 〈N | N ′〉 = δNN ′ . (2.103)

With this the eigenvalues of the Hamiltonian (2.101) follow immediately:

ĤF |N 〉 = WN |N 〉 (2.104)

where WN = (N + 1/2)�ω for N = 0,1,2, . . . . (2.105)

We recognize the well known eigenenergies of the harmonic oscillator. One inter-
prets N as the number of photons present in the particular resonator mode under
consideration. Since photons are bosons, the mode may be populated with any num-
ber N photons.

This is illustrated in the energy diagram Fig. 2.17. The levels of the harmonic
oscillator are equally spaced, and the lowest energy is given by �ω/2, the “zero point
energy”. Excitation of the N th harmonic of the classical oscillator corresponds to a
state occupied by N photons.

The eigenstates |N 〉 of the number operator (and the harmonic oscillator) may
be generated from the vacuum state |0〉 by repetitive application of the operator â+
for which

â+|N 〉 = √
N + 1|N + 1〉. (2.106)
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Hence, â+ is called creation operator. In contrast, the operator â reduces the photon
number by one, when applied to a number state

â|N 〉 = √
N |N−1〉, (2.107)

and hence â is called annihilation operator. N such operations lead to the vacuum
state |0〉 for which the relation

â|0〉 ≡ 0 (2.108)

must hold, since a nonexisting photon cannot be destructed any further. The inverse
scheme starts with the vacuum state, from which one can generate any number state
by (â+)N |0) = √

N !|N 〉. The factors
√
N + 1 and

√
N in (2.106) and (2.107),

respectively, make sure that the number states are correctly normalized as stated by
(2.103).

Obviously, the number operator (2.99) counts the number of photons N in the
mode under consideration. This number is increased or decreased by one when the
operator â+ and â, respectively, acts on the photon states. Writing the Hamiltonian
in the form (2.101) implies simply counting the occupation number. This proce-
dure is called second quantization and may be applied to other quantum objects as
well.

The evolution of the photon states with time |ψN (t)〉 is obtained from the trivial
time dependent SCHRÖDINGER equation

ĤF

∣∣ψN (t)
〉 = i�

δ

δt

∣∣ψN (t)
〉
, (2.109)

which is solved as usual by

∣∣ψN (t)
〉 = e−iWN t/�|N 〉 = e−i(N+ 1

2 )ωkt |N 〉. (2.110)

Note that in all this discussion the SCHRÖDINGER picture is used. All time depen-
dence of the radiation field is now cast into the time dependence of the photon states.
The operators â and â+ are not time dependent.

2.3.2 The Electric Field Operator

Finally, we come back to the key question: how to quantize the electromagnetic
field? Comparing the definition (2.96) for annihilation and creation operators with
the classical field quantities (2.93) leads us immediately to operators for the electric



114 2 Coherence and Photons

field (we resume now showing the indices kq):11

Ê−
kq

=
√

2�ωk

L3ε0
âkq and Ê+

kq
=

√
2�ωk

L3ε0
â+
kq

. (2.111)

Again, in the SCHRÖDINGER picture these operators are independent of time. They
have to be inserted into (2.87) in place of their classical counterparts. Thus, the
electric field operator may be written as

Ê(r, t) = i

2

∑

kq

√
2�ωk

ε0

{
âkukq(r) − â+

k u∗
kq(r)

}
(2.112)

with ukq(r) = L−3/2eq exp(ikr). (2.113)

Since creation and annihilation operators are defined dimensionless, one easily ver-
ifies that the unit of the electric field operator is indeed [Ê] = V m−1. We point
out that Ê(r, t) is a Hermitian operator (while its constituents âk and â+

k are not).
We also mention here, that (2.112) is sufficiently flexible to adapt the quantization
formalism for any specific experimental situation by an appropriate change of the
modes (2.113) – e.g. for application to quantum optics in a cavity.

To obtain the field energy one has to insert (2.112) into (2.89) and evaluate it
in full analogy to the classical considerations. However, now the commutation rule
(2.97) must be observed. This finally leads to a sum of Hamiltonians (2.101) for all
modes:

ĤF = 1

2

∑

kq

�ωk

[
âkq â+

kq
+ â+

kq
âkq

] =
∑

kq

�ωk

[
â+
kq

âkq + 1

2

]
. (2.114)

2.3.3 GLAUBER States

It is important to realize that the photon number states introduced above do not
represent coherent light. Rather, coherent light must be described by a linear super-
position of many number states as shown for the first time by GLAUBER (1963). For
a single mode, these so called GLAUBER states (also coherent photon states) are
given by

|α〉 = exp

(
−1

2
|α|2

)∑

N

αN

(N !)1/2
|N 〉 (2.115)

11We mention that GLAUBER (1963) uses time dependent field operators (HEISENBERG picture)
and a slightly different notation. He writes (in esu) “the positive frequency part of the electric field
operator”

E(+)(r, t) = i
∑

k

√
�ω/2akuk(r)e−iωkt .
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and 〈α| = exp

(
−1

2
|α|2

)∑

N

α∗N

(N !)1/2
〈N |.

Let us have a brief look at the properties of GLAUBER states.
We first note that they are normalized,

〈α|α〉 = exp
(−|α|2)

∑

N

α∗NαN

N ! = 1, (2.116)

as the sum corresponds to the exponential function exp(|α|2). They are, however,
not orthonormal, rather we have

〈α|β〉 = exp

(
−1

2
|α|2 − 1

2
|β|2

)∑

N

α∗N βN

N ! exp

(
−1

2
|α|2 − 1

2
|β|2 − α∗β

)
,

and for the absolute squared of this scalar product one obtains

∣∣〈α|β〉∣∣2 = exp
(−|α − β|2). (2.117)

This set of coherent states is thus overcomplete, i.e. there are more coherent states
than number states |N 〉. From (2.117) we see, however, that two GLAUBER states
get nearly orthogonal, if |α − β| � 1. Applying the photon annihilation operator
onto (2.115), we obtain with (2.107)

â|α〉 = exp

(
−1

2
|α|2

)∑

N

αN

(N !)1/2
N 1/2|N − 1〉 (2.118)

= α exp

(
−1

2
|α|2

)∑

N

αN−1

((N − 1)!)1/2
|N − 1〉 = α|α〉.

GLAUBER states are thus eigenstates of the photon annihilation operator â. One
may extract photons of a GLAUBER state without changing that state. Conversely,
|α〉 is not an eigenstate of the photon creation operator. It is important to note, that
with (2.111) single mode GLAUBER states are also eigenstates of the field operator
Ê− (but not of its conjugate counter part). Measuring electromagnetic fields usually
implies that photons are registered, i.e. a photon is extracted from the radiation field.
If the field can be described by a GLAUBER state |α〉, the detectable probability
amplitude will thus be proportional to 〈αÊ−|α〉 ∝ α. This is in essence what makes
GLAUBER states coherent. Since the characteristic parameter α can also be complex,
α may be seen to represent phase and amplitude of the electromagnetic field.

The expectation values of the annihilation and creation operators in a GLAUBER

state follow from (2.118) and by applying (2.106) onto (2.115), respectively:

〈α|â|α〉 = α and 〈α|â+|α〉 = α∗. (2.119)
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Finally we have to obtain a relation between a GLAUBER state and the intensity
of the radiation. Let us first note that the population of photon number states |N 〉 in
a GLAUBER state is given by a POISSON distribution

pN = ∣∣〈N |α〉∣∣2 = exp
(−|α|2) |α|2N

N ! . (2.120)

The expectation value of the photon number operator (2.99) in a state |α〉, i.e. the
mean photon number N in a GLAUBER state, is

N = 〈α|N̂ |α〉 = exp
(−|α|2)

∑

N

α∗NαN

N ! N = |α|2. (2.121)

In this context we recall a well known property of the POISSON distribution: its
standard deviation is given by

�N =
√

〈α|N̂ 2|α〉 − 〈α|N̂ |α〉2

〈α|N̂ |α〉 = |α| =
√
N . (2.122)

This is actually very good news for all of our following discussion. A look at Ta-
ble 2.2 shows that for lasers – the light source typically used today in spectroscopy –

the number of photons per mode is extremely large. And since
√
N /N = 1/

√
N ,

the relative width of the distribution of photon numbers is very small (e.g. for the
dye laser mentioned in Table 2.2 on the order of 10−6). Thus, for all intents and
purposes in spectroscopy, we may represent the ideal, coherent GLAUBER state by
a pure number state |N 〉, where N represents the average number of photons N per
mode according to (2.84). With this – extremely good – approximation the derivation
and application of optical transition probabilities given below can be accomplished
without any mathematical difficulties.

Although the GLAUBER states considered here refer to a single occupied
mode only, they provide a good description for a sufficiently intense, quasi-
monochromatic and well collimated radiation field, such as a laser beam (one may
even adapt the modes (2.113) suitably).

Quantitatively, we derive the expectation value of the electric field operator
(2.112) with the help of (2.119)

〈α|Ê|α〉 = iCk

(
αe · eikr − α∗e∗ · e−ikr

)
with Ck =

√
�ωk

2L3ε0
. (2.123)

At very high (classical) intensities when representing a GLAUBER states by a single
photon number state with N =N , with (2.121) we can set with sufficient accuracy

|α| =
√
N � √

N � √
N + 1. (2.124)

Comparing this to the spatial part of the classical field according to (1.35)

E(r) = i

2
E0

(
eeikr − e∗e−ikr

)
(2.125)
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we can relate the amplitude E0 = 2Ckα of the classical, single mode field to the
number of photons in the mode:

√
N � √

N + 1 � |α| = |E0|
2Ck

=
√

I0

c�ω
L3. (2.126)

In the last step we have used the standard relation I0 = ε0c|E0|2/2 between intensity
and field amplitude. We mention that this relation is equivalent to (2.86), with N
being the number of photons in the (presently thus defined) coherence volume L3.
In the general case of radiation with a finite bandwidth and divergence angle, N has
to be identified with (2.84).

2.3.4 Addendum for Multi-Mode States

As discussed above the average number of photon per mode in a typical laser
beam may be very high and a classical, coherent radiation field will be de-
scribed by GLAUBER states. However, in principle the photon number states
|0〉, |1〉, . . . , |N 〉 . . . can be found also with quite different populations – and thus
represent different coherence properties of the radiation field. This is a key theme of
modern quantum optics.

Here we just add a few remarks relevant to multi-mode states as needed to de-
scribe any realistic radiation field in some detail. These states are typically written
as products of single particle states.12 As the most simple case we discuss here only
products of pure number states which by the arguments given in the preceding sub-
section can be a valid description of a quasi-monochromatic laser beam:

∣∣{Nkq}〉 = |N1〉|N2〉 . . . |Ni〉| . . .〉 = |N1N2 . . .Ni . . .〉. (2.127)

Such a state describes an electromagnetic field with N1,N2, . . . ,Ni , . . . photons in
modes characterized by k1,k2, . . . ,ki , . . . and polarization vectors e1, e2, . . . , ei , . . .

The respective creation and annihilation operators generate or annihilate one photon
in a specific mode according to the scheme

â+
ki qi

∣∣{Nkq}〉 = â+
ki qi

|N1 . . .Ni . . .〉 = √
Ni + 1|N1 . . .Ni + 1 . . .〉

âki qi

∣∣{Nkq}〉 = âki qi
|N1 . . .Ni . . .〉 = √

Ni |N1 . . .Ni − 1 . . .〉
âki qi

|N1 . . .0 . . .〉 ≡ 0. (2.128)

Since each of these operators acts only onto one of the modes, the commutation rule
(2.97) is now generalized by

[
âkq, â+

k′q ′
] = δkk′δqq ′ while [âkq, âk′q ′ ] = [

â+
kq

, â+
k′q ′

] ≡ 0. (2.129)

12A different situation is encountered with so called entangled states – an interesting subject but
beyond our present scope. See also Appendix E.3 in Vol. 1.



118 2 Coherence and Photons

The multi-mode number states are orthonormalized:

〈N1N2 . . .Ni . . . |N ′
1N ′

2 . . .N ′
i . . .〉 = δN1N ′

1
δN2N ′

2
. . . δNiN ′

i
. . . . (2.130)

Their total Hamiltonian is given by (2.114).
We now have all necessary tools to describe a more or less quasi-monochromatic

light beam with small or even larger divergence in quantum mechanical terms. We
must, however, keep in mind – as described in detail in Sects. 2.1.1–2.1.7 – that an
arbitrary classical radiation field is not a simple linear superposition of plane waves.
Neither can we describe the quantized radiation field by a linear superposition of
|{Nkq}〉 states – except in the special case of a fully coherent state. As in the classical
case (Sect. 2.1.4), the field is defined by a distribution 〈E−(k)E+(k′)〉 of amplitudes
and frequencies (or wave vectors). In the classical case this distribution was found
to be diagonal in k. This also holds for the quantum description.

It will be sufficient to specify the probability amplitudes for the states

|N100 . . .0〉, |0N20 . . .0〉, |00N3 . . .0〉, . . . , |00 . . .Ni . . .0〉, . . . (2.131)

in a range of relevant modes kiqi where Ni refers to the average number of pho-
tons in that particular mode. The proper quantum mechanical tool for the necessary
book keeping is the density matrix. Chapter 9 will give an introduction into the den-
sity matrix formalism. Quantitative treatments can become rather involved (see e.g.
MUKAMEL 1999).

2.3.5 Interaction Hamiltonian for Dipole Transitions

As in the semiclassical treatment the interaction energy is dominated by the dipole
energy. As an excellent approximation one neglects again the wavelength depen-
dence of the electric field on the position r within the atom, since at least for the IR,
VIS and UV spectral range the wavelength is large compared to atomic dimensions,
k · r � 1. Thus, exp(ik · r) � 1 and we shall limit the discussion here exclusively to
electric dipole (E1) transitions (a generalization, if needed, can be obtained follow-
ing the corresponding considerations in Sect. 5.4, Vol. 1).

As already emphasized, we use the SCHRÖDINGER picture with a time indepen-
dent perturbation,13 and translate the semiclassical treatment of radiation induced
transitions (Chap. 4 in Vol. 1) into the fully quantized description. With the field
operator (2.112) the interaction Hamiltonian between atom and field is given in

13One could also use the HEISENBERG picture with a time dependent field operator and time
independent states. The final result would be the same.
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Fig. 2.18 Schematic of a
level system ħΔω

ħωba ħω

|b>

|a>

analogy to (4.55), Vol. 1 by14

Û(r) = er · Ê = −D · Ê = i
∑

k

√
�ωk

2L3ε0
er · [eâk − e∗â+

k

]

= i
∑

k

eCk

[
D̂âk − D̂†â+

k

]
, with Ck =

√
�ωk

2L3ε0
(2.132)

and the dipole transition operators D̂ = r · e and D̂† = r · e∗,

for absorption and emission of a photon with polarization e, respectively. For con-
venience of writing we have here again pulled the elementary charge e out from the
electron dipole moment D = −er .15

As expected, in contrast to (4.55), Vol. 1 the interaction Hamiltonian (2.132) is
now time independent and documents energy conservation: in this fully quantized
picture energy is simply exchanged between atomic and photonic states.

Before we derive the matrix elements of the interaction Hamiltonian Û , we point
out that each relevant mode k, e in the sum (2.132) contains two parts: the first part
(with âk) destroys a photon (in a mode with the wave vector k and the polarization
vector e) and corresponds to absorption, while the second part (with â+

k ) generates
a photon (in a corresponding mode) and describes emission. We recall that in the
semiclassical description of the electromagnetic field (2.87) these two terms corre-
spond to the positive and negative frequency part, respectively.

Without interaction between field and atomic system the eigenstates of the total
system may be written as product states |ψ; {Ni}〉 of atomic states |ψ〉 and photon
states |N 〉 according to (2.127).

If the spectral intensity distribution of the radiation is close to a resonance of
the atomic system – as sketched in Fig. 2.18 – a two level system is a usually a
good approximation. The eigenfunction of |ψ〉 then corresponds to either upper or

14As in the semiclassical description we apply the dipole length approximation. In dipole velocity
approximation the quantized perturbation reads

Ûv(r) = i
∑

ke

√
�

2L3ε0ωk

e

me
p̂ · [eâk + e∗â+

k

]
.

With exact eigenfunctions both approximations lead to the same transition probabilities.
15If more than one active electrons are involved, one has to replace the position vector r by a sum
over all r i for the active electrons.
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lower state, |b〉 and |a〉, respectively, while N1,N2 . . .Ni . . . defines the number of
photons in the modes k1, k2 . . .ki . . . The matrix elements of the interaction Hamil-
tonian (2.132) are given by:

〈
b;{N ′

i

}∣∣Û
∣∣a; {Ni}

〉 = 〈b;N ′
1N ′

2 . . .N ′
i . . . |er · Ê|a;N1N2 . . .Ni . . .〉

= i
∑

k

eCk

[
D̂ba〈N ′

1 . . .N ′
i . . . |âk|N1 . . .Ni . . .〉

− D̂†
ba〈N ′

1 . . .N ′
i . . . |â+

k |N1 . . .Ni . . .〉
]
.

(2.133)

The latter rearrangement is possible since r acts only onto the atomic part, while
âk and â+

k (and thus Ê) act only onto the photon part of the system. The matrix
elements of the dipole transition operators for absorption and emission are the same
as (4.57), Vol. 1, elaborated for the semiclassical treatment in Sect. 4.3.4, Vol. 1:

D̂ba = rba · e and D̂†
ab = rab · e∗ = r∗

ba · e∗ = D̂∗
ba (2.134)

with rba = 〈b|r|a〉 =
∫

ψ∗
b (r)rψa(r)d3r = r∗

ab.

Since r has odd parity, |b〉 and |a〉 must have different parity. According to (2.128),
the operators â+

k and âk create or annihilate a photon of one specific mode and
polarization. And the photon states are orthogonal according to (2.130). The matrix
element of the Û is thus zero unless N ′

i = Ni ± 1 holds for one of the photon states,
while all others are the same before and after the transition. For one single occupied
mode, i.e. for Nke photons with momentum �k and polarization e, the nonvanishing
matrix elements (2.133) may be written in compact form:

〈bNke − 1|Û |aNke〉 = 〈b|̂D|a〉〈Nke − 1|iâk|Nke〉
= îDbaeCk

√
Nke (2.135a)

〈aNke − 1|Û |bNke〉 = 〈a |̂D|b〉〈Nke − 1|iâk|Nke〉
= îDabeCk

√
Nke (2.135b)

〈aNke + 1|Û |bNke〉 = 〈a |̂D†|b〉〈Nke + 1| − iâ+
k |Nke〉

= −îD†
abeCk

√
Nke + 1 (2.135c)

〈bNke + 1|Û |aNke〉 = 〈b|̂D†|a〉〈Nke + 1| − iâ+
k |Nke〉

= −îD†
baeCk

√
Nke + 1. (2.135d)

Here Ck is the field normalization constant used in (2.132), originating from proper
calibration of the total field energy (2.114). When deriving (2.135a)–(2.135d) from
(2.133) we have used (2.106) and (2.107). The somewhat abstract number Nke of
photons per mode can be related by (2.84) to the (measurable) spectral intensity
distribution Ĩ (ωk).
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emission
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Fig. 2.19 Interaction matrix elements between atom and field, schematically; (a)–(d) refer to
equations (2.135a)–(2.135d), respectively

The physical interpretation of the matrix elements is schematically explained in
Fig. 2.19. As summarized for the semiclassical treatment in (4.53), Vol. 1, only two
of these matrix elements are relevant within the framework of 1st order perturbation
theory:

• Figure 2.19(a) symbolizes absorption (annihilation) of a photon, accompa-
nied by excitation of the system from a lower state |a〉 into an upper state
|b〉 according to (2.135a),

• Figure 2.19(c) symbolizes emission (creation) of a photon, accompanied
by de-excitation of the system from an upper state |b〉 into a lower state |a〉
according to (2.135c).

The other two nonvanishing matrix elements correspond to so called “virtual de-
excitation” (Fig. 2.19(b)) and “virtual excitation” (Fig. 2.19(d)) processes by ab-
sorption and emission of a photon, respectively. These processes are not energy
conserving and do not play a role in 1st order perturbation theory, as we shall see
in a moment. However, they are of crucial importance in the description of higher
order processes, such as multi-photon excitation or ionization in strong fields, as
well as for RAMAN scattering and other nonlinear processes.

We finally note that – if necessary – D̂ba may be modified appropriately as in the
semiclassical description to describe other types of transitions, such as E2 and M1.

2.3.6 Perturbation Theory and Spontaneous Emission

We shall use again 1st order perturbation theory to describe E1 transitions. Even
though this approach has its limitations, to be discussed at the end of this section,
we shall be able now to derive a rate for spontaneous emission, which was not
possible with the semiclassical approach. In any case, the following, fully quantized
treatment of radiation induced transitions will form the basis for later, more rigorous
treatments, e.g. in Chap. 10.

We consider an effective two level system with the atomic states |a〉 and |b〉
being nearly in resonance with the radiation as indicated in Fig. 2.18. Let ĤA be
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the Hamiltonian for the free atom, ĤF that of the free field (2.114). The stationary
SCHRÖDINGER equation for the unperturbed atom is

ĤA|b〉 = �ωb|b〉 and ĤA|a〉 = �ωa|a〉, (2.136)

with a transition frequency ωba = ωb − ωa > 0, while

ĤF |Nke〉 = Nke�ωk|Nke〉 (2.137)

describes a state of Nke photons in a mode k with polarization e. We start our
derivation again with a single occupied field mode and sum later on over all field
modes. That is possible without problems due to the orthogonality relation (2.130).
The corresponding time dependent SCHRÖDINGER equation

i�
∂|ψ(t)〉

∂t
= (Ĥ0 + Û )

∣∣ψ(t)
〉 = (ĤA + ĤF + Û )

∣∣ψ(t)
〉

(2.138)

has to be solved with the interaction Û according to (2.132).
Note that the full Hamiltonian ĤA + ĤF + Û for atom, field and interaction

is still time independent. Hence, energy conservation holds in this fully quantized
SCHRÖDINGER picture – in contrast to the semiclassical radiation theory (4.40),
Vol. 1, where the interaction was time dependent. Thus, we have to find stationary
solutions of (2.138). We shall do this indeed in Chap. 10. For the moment we are
simply interested in all possible transitions which are induced by switching the in-
teraction on. Quite generally, one may expand |ψ(t)〉 into a series of unperturbed
eigenfunctions of the system:

∣∣ψ(t)
〉 =

∑

N j

cjN (t)|jN 〉e−i(ωj +Nω)t . (2.139)

Here cjN is the probability amplitude for finding N photons in the field while
the atom is found in state |j〉. For simplicity of writing we have dropped again the
indices k and e for the photon states N and for the angular frequency ω of the
field. We insert (2.139) into (2.138), multiply from the left with 〈bN ′| or 〈aN ′|,
and obtain two sets of differential equations for cbN and caN , respectively:

dcbN (t)

dt
= − i

�

∑

N ′
caN ′ 〈bN ′|Û |aN 〉ei[(N ′−N )ω+ωba]t

dcaN (t)

dt
= − i

�

∑

N ′
cbN ′ 〈aN ′|Û |bN 〉ei[(N ′−N )ω−ωba]t .

(2.140)

We have exploited the fact that only matrix elements between different atomic states
are non-zero. We insert now the matrix elements (2.135a)–(2.135d). Since only the
terms with N ′ = N ± 1 are non-zero, two types of exponential factors appear in
(2.140):
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• energy conserving terms exp[±i(ω − ωba)t] and
• non-energy conserving terms with exp[±i(ω + ωba)t].

As we have seen already in Sect. 4.3.2, Vol. 1, in a perturbation treatment these
terms are weighted with resonance denominators of the type 1/(ω − ωba) and
1/(ω + ωba). We now focus on the nearly resonant situation

|�ω| = |ω − ωba| � ωba, (2.141)

but allow nevertheless for small detuning �ω, as indicated in Fig. 2.18. In typi-
cal spectroscopic applications we shall have to account for detuning on the order
of 108 s−1, which are to be compared with transition frequencies on the order of
1015 s−1. Thus, to a very good approximation the non-resonant terms 1/(ω + ωba)

can be neglected. This approximation is called rotating wave approximation (RWA),
since the terms exp[±i(ω −ωba)t] imply, so to say, that the system follows the field
in phase, while the others rotate in the opposite sense and thus average out with
time.16

Consequently, this simplifies (2.140) substantially. Inserting (2.135a)–(2.135d)
for the matrix elements this leads for the two level system to a simple set of two
coupled equations

ċbN = eCk

�

√
N + 1 D̂bacaN+1ei(ωba−ω)t (2.142)

ċaN+1 = −eCk

�

√
N + 1 D̂∗

bacbN e−i(ωba−ω)t , (2.143)

with Ck ∝ √
ω being the field normalizing constant in (2.132). To derive the absorp-

tion probability we now assume, as in the semiclassical case, that at time t = 0 all
atoms are in the lower state |a〉. We also assume that the photons in the mode k with
polarization e are represented sufficiently well by a photon number state |N 〉. Thus,
our initial conditions are

caN (0) = 1 and cjN ′(0) ≡ 0 for all j,N ′ �= a,N . (2.144)

In 1st order perturbation theory one assumes in addition that caN � 1 remains con-
stant. Thus, (2.142) may be integrated directly to obtain the probability amplitude
cbN−1(t) for finding |b N − 1〉, i.e. for a transition of the system into the excited
state |b〉 by annihilation of a photon. During this process one of the originally N
photons in mode k is absorbed, so that in complete analogy to the classical case
(4.58), Vol. 1 we have

cbN−1(t) = eCk

√
N

�
D̂ba

ei(ωba−ω)t − 1

i(ωba − ω)
. (2.145)

16Originally this terminology was coined by microwave and radio frequency spectroscopy (EPR
and NMR), where this phase reflects indeed a real physical rotation of the spin, induced by the
exciting field.
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The transition probability per unit of time is again |cbN−1(t)|2/t . This leads to a
transition rate

dR
(Nk)
ba = 2π

�2
e2C2

k |̂Dba|2Nkeg(ωk) = πωke
2

L3ε0�
|̂Dba|2Nkeg(ωk) (2.146)

induced by the Nke photons in the mode. We have now reintroduced the indices for
polarization e and wave vector k of the radiation. With g(ωk) we identify again the
line profile as introduced in Sect. 4.3.5, Vol. 1. Integrated over all frequencies it is
normalized to unity.

Completely equivalent one assumes for the de-excitation process |b〉 → |a〉 ini-
tial conditions

cbN (0) = 1 and cjN ′(0) ≡ 0 for all j,N ′ �= a,N . (2.147)

By integration of (2.143) one derives the probability amplitude for finding the sys-
tem in a state |aN + 1〉. From this the transition rate for a ← b by emission of a
photon into the mode k, e is obtained:

dR
(Nk)
ab = πωke

2

L3ε0�
|̂Dab|2(Nke + 1)g(ωk). (2.148)

So far the derivation was completely analogous to the semiclassical approxima-
tion. Now we have to recall, however, that there are dmωe modes per frequency
interval dωk and solid angle element dΩ , with dmωe given by (2.73). We thus find
the absorption or emission probability into given solid angle dΩ element by integra-
tion over all available angular frequencies of the electromagnetic radiation inducing
the transition. This leads to a rate

dRba =
∫

dR
(Nk)
ba dmωke = πe2L3

L3ε0�2
dΩ

∫ +∞

−∞
dωk

ω2

(2πc)3
|̂Dba|2Nke�ωkg(ωk)

= dΩ
πe2

ε0�2

ω2
ba

(2πc)3
|̂Dba|2Nke�ωba. (2.149)

In the last step we have assumed that the line profile of the transitions is very narrow,
g(ωk) = δ(ωk − ωba), compared to the spectral bandwidth of the radiation which
induces the transition. We shall present in Chap. 10 a simple recipe to modify the
result for narrow band radiation.

We see now, that in the final step the normalization volume L3 has happily
dropped out, since normalization of the field operator cancels versus mode den-
sity. We have written (2.149) in a manner to show the essential ingredients: apart
from the numerical prefactor we recognize the mode density per angle and volume
(2.75), the dipole transition moment projected on the polarization (2.134), D̂ba , and
the total photon energy Nke�ωba , with Nke being the number of photons in the
mode k, e prior to absorption or emission with an angular frequency corresponding
to the transition frequency ωba .
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For emission we obtain correspondingly

dRab = dΩ
πe2

ε0�2

ω2
ba

(2πc)3
|̂Dab|2(Nke + 1)�ωba. (2.150)

We point out that this differs from (2.149), valid for absorption, by the replacement
Nke → (Nke + 1). As we shall see in a moment, this is crucial for spontaneous
emission.

According to (2.149) it is evident that the atom can only be excited from the lower
state |a〉 into the upper state |b〉 if Nke > 0 – that is, if at least one photon of the
frequency ωba is present in the field mode k, e. The absorption process reduces this
number of photons by exactly one. Let us assume now that the number of photons
Nke in the mode k, e is very high – so high that the relative uncertainty 1/

√
Nke

about that number is negligible. Then Nke may be set equal to its average value
according to (2.84) for all relevant modes. We insert this value – as indicated by
[ ] – into (2.149):

Rba =
∫

beam
dΩ

πe2

ε0�2

ω2
ba

(2πc)3
|̂Dba|2

[
Ĩ (ωba)

�ωbacδΩ

(2πc)3

ω2
ba

]
�ωba

= πe2

ε0c�2

∫

beam
dΩ |̂Dba|2 Ĩ (ωba)

δΩ
.

We point out that the mode density and the single photon energy cancel out. The
spectral intensity Ĩ (ωba) is a measurable source parameter. E.g., its value is given
by (2.21) for a laser tuned into resonance ωba – if its overall bandwidth is much
larger than the linewidth of the transition.

We now recall that |̂Dba |2 = |rba · e|2 depends on the propagation direction of
the light. For any reasonable laser beam, well collimated to δΩ � 1, we may con-
sider |rba · e|2 to be constant for all populated wave vectors k in the beam. Under
such conditions the angular dependence of Ĩ (ωba)/δΩ may be considered a delta
function (beam) and the integration of (2.149) over all solid angles yields the total
absorption probability

Rba = πe2

ε0�2
|̂Dba |2 Ĩ (ωba)

c
= 4π2α

�
|̂Dba|2Ĩ (ωba) = Bba

Ĩ (ωba)

c
(2.151)

with the fine structure constant α = e2/4πε0c� and Bba = 4π2αc|̂Dba |2/�, the
EINSTEIN coefficient for the specific sub-transition b ← a induced with polarization
e. We note that this expression is completely identical to (4.63), Vol. 1, derived in
our previous semiclassical treatment. The rate Rba (dimension T−1) is – as already
mentioned earlier – by a factor of 3 larger than usually given in textbooks, since we
have derived the expression for a laser beam, rather than for isotropic radiation.

Of particular interest is now the emission of a photon in the transition |b〉 → |a〉.
The factor (Nke + 1) in (2.150) suggests to distinguish between induced and spon-
taneous emission: the induced emission probability is taken proportional to Nke,



126 2 Coherence and Photons

that is to the number of photons in the relevant modes prior to the emission process.
A comparison of (2.149) and (2.150) shows, that this probability is identical to the
absorption probability. Thus, for one well defined upper and one well defined lower
state |b〉 and |a〉

Rab = Rba. (2.152)

We note in passing, that the photons generated by induced emission appear by def-
inition exactly in the mode by which they are created – as we have partitioned the
whole radiation field (in k space) into well defined, discrete modes and treated them
independently prior to integration. This confirms what in the semiclassical treatment
has simply be assumed: radiation due to induced emission agrees in frequency and
direction exactly with the inducing field.

The factor (Nke + 1) in (2.150) implies that emission may occur even if there
is initially no field present, or more precisely, if initially the field is describe by
the vacuum state with Nke = 0 (the initial state being |b 0〉). There is an additional
finite, albeit small probability for the de-excitation process |b〉 → |a〉, involving the
emission of a photon. This transition may be seen as induced by the vacuum field.
This notion may appear somewhat difficult to accept and we shall come back to it
in the next subsection.

In any case, according to (2.150) the resulting spontaneous transition probability
for emission of a photon into a mode k with a frequency ωba and polarization e into
a solid angle dΩ is:

dR
(spont)
ab = πe2

ε0�2

ω2
ba

(2πc)3
|̂Dab|2�ωbadΩ = αω3

ba

2πc2
|̂Dab|2dΩ. (2.153)

We recall that we had “gleaned” this expression as (4.67), Vol. 1 for spontaneous
emission earlier on. Above derivation supplements the proof.

However, we cannot confine the derivation to just one mode: all empty modes
of frequency ωba do indeed contribute to the process. The angular distribution of
this radiation and its polarization is described by |̂Dba|2 = |rba · e|2 (for details we
refer to Sect. 4.5 in Vol. 1). While our earlier treatment of spontaneous emission was
essentially guesswork, it is now firmly based on the quantized radiation field. The
integration over all solid angles gives again the characteristic factor 8π/3|rba |2, so
that the total spontaneous emission rate becomes

R
(spont)
ab =

∑

e

∫

4π

dR
(spont)
ab = 4α

3c2
|rba |2ω3

ba = Aab = 1

τab

. (2.154)

Aab refers here to spontaneous decay of a specific excited sub-state |b〉 into the
specific lower sub-state |a〉 and fully confirms (4.109), Vol. 1, onto which we have
based up to now all discussions and applications of the A coefficients. To obtain the
overall natural lifetime τnat of a level, one has to sum this expression also over all
final states. Detailed evaluation of the A and B coefficients for specific transitions
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and the generalization to degenerate levels has already been presented in Sect. 4.4,
Vol. 1.

We thus have achieved not less than an ab initio derivation of spontaneous emis-
sion and of the relation between the EINSTEIN coefficients. We can now trace the
origin of the well known ω3 dependence of spontaneous emission: It arises from
the mode density (2.75), which is ω2/(2πc3) per unit volume and per angular fre-
quency – and from the photon energy �ω. In the treatment of induced probabilities
both terms cancel against the number of photons per mode and the spectral intensity
per frequency interval. Thus, the induced rate (2.151) does not depend directly on
ω – except through the resonance condition g(ωk) = δ(ωk − ωba) in (2.149).

Finally, we also have to realize the limitations of the present treatment for emis-
sion and absorption of electromagnetic radiation: we only have used 1st order per-
turbation theory. For induced processes we shall correct this to some extend in
Chap. 10. We shall show there that the set of coupled equations (2.142) and (2.143)
may be solved exactly, as long as the RWA holds, and spontaneous emission can be
neglected. For intense (but not too intense) laser fields and times short compared to
the natural lifetime this is indeed an excellent approximation. For very high inten-
sities – as available today with state-of-the-art ultra fast, high power laser systems,
the rotating wave approximation breaks down, and similarly perturbative approaches
are of limited value only. Hence, special strong field approximations or brute force
numerical methods must be applied.

As for spontaneous emission, it is of fundamental importance for any more rig-
orous treatment of radiative problems, and warrants further efforts beyond 1st order
perturbation theory. The problem is, that the initial conditions (2.147) are, at a closer
look, not strictly valid if spontaneous emission is to be included: All empty modes
are present at time zero. It is important to realize that these empty modes are not
nothing, but represent the vacuum field which is (almost) always present. Indeed,
the vacuum field associated with these many unoccupied modes close to resonance
leads to a broadening of the excited states which we know as natural linewidth.
A quantitative treatment can be achieved in 2nd order perturbation theory – but is
somewhat involved, and we refrain from presenting it here.

The result is, as already assumed in Chap. 5, Vol. 1, that g(ω) in (2.146) and
(2.148) can no longer be treated as a δ-function. Rather, it has to be described by
a LORENTZ profile with a linewidth (FWHM) �ωnat = Aab = 1/τnat. With today’s
techniques the bandwidth of lasers used in spectroscopy may easily be kept much
below that value. This implies that also our assumptions for deriving the relevant
expression (2.151) for induced processes do no longer hold. However, as we shall
show in Chap. 10 this particular problem may be cured by a small modification.

2.3.7 Spontaneous Emission in a Cavity

In order to obtain a quantized form of the radiation field we have introduced a very
large but finite normalization volume. This has led us to discrete radiation modes –
still infinitely many, but countable. And all these modes ‘own’ a characteristic vac-
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uum field. It is this very vacuum field that we hold responsible for spontaneous
emission.

Many other physical phenomena are also caused or influenced by the vacuum
field (one speaks of radiative corrections). We recall the LAMB shift or the g − 2
anomaly of the electron magnetic moment treated in Chap. 6, Vol. 1, for which
radiative corrections are held responsible. Nevertheless, the vacuum state is not a
really trivial concept. It is by no means empty space, its eigenenergy being hωk/2
according to (2.114) – for each mode k. Quantum electrodynamics deals with the
problem of this infinite energy by its specific recipe for “re-normalization”. But of
course, one might pose the question: How real is this vacuum field? Is it perhaps
just a mathematical construct made to give the right answers for spontaneous emis-
sion?

What may happen, if one forcefully chooses experimental conditions so that the
normalization volume cannot be made infinitively large? What if we confine any
potential radiation to a small volume and let it interact there with an excited atom?
What does “vacuum state” mean in such a case? The idea of such an experiment has
been around for some time (see e.g. PURCELL 1946; KLEPPNER 1981). However, it
became feasible only by modern lasers and sophisticated experimental techniques.

The first experiment of this type was performed by GOY et al. (1983) – and finally
led, loosely speaking, to the NOBEL prize for HAROCHE and WINELAND (2012).
They studied Na RYDBERG atoms, prepared by two photon resonant excitation in
the 23s state, and investigated its spontaneous decay to the 22p state in a microwave
cavity. The dipole transition moment between such high n levels is very high, while
at the same time the spontaneous transition probability in free space is very small,
being proportional to ∝ ν3. In the case discussed here the transition frequency is
ν = 341 GHz (as one easily verifies with the quantum defects of Na given in Ta-
ble 3.4, Vol. 1). The spontaneous decay rate between the 23s and 22p levels is only
τ22p23s = 150 s−1. At this transition wavelengths (λ = 0.88 mm) super-conducting
microwave resonators with extremely high finesse can be built, through which an
atomic beam can pass without problems.

Figure 2.20(a) shows a very schematic summary of the experimental setup. A low
density sodium beam passes through the microwave cavity where the atoms are ex-
cited in a two photon process by 2 collinear, pulsed (5 ns) dye laser beams, entering
the resonator perpendicular to the Na-beam and to the resonator mode. The RYD-
BERG atoms are detected by field ionization in a parallel plate capacitor to which
(after the laser pulse) a ramp voltage is applied as indicated in Fig. 2.20(b). The
ionization process is monitored very efficiently by detecting the ejected electrons
with an electron multiplier. Atoms with the lower ionization potential WI(23s) are
ionized at a lower field strength (i.e. earlier) than those with higher ionization po-
tential WI(22p). In the detected ionization signal, Fig. 2.20(c), atoms in the 23s

state are recorded first, 22p atoms appear later. The black signal trace is taken with
the cavity out of resonance for the 22p ← 23s transition. The cavity may be tuned
into resonance mechanically, but fine adjustment is done by a small electric field in
the cavity which can STARK shift the 22p levels slightly. The actual experiment is
carried out with only a few (1–3) excited atoms in the cavity, so that they do not
influence each other. The red line shows the signal with the cavity tuned into reso-
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Fig. 2.20 Experiment of GOY et al. (1983) documenting spontaneous transitions between Na
23s → 22p levels in a microwave cavity. (a) Setup very schematically, (b) ramp voltage tuning to
detect 23s or 22p levels, (c) experimental signal taken from Fig. 3a in GOY et al. (1983), showing
the signal measured when the cavity is off resonance (black line) and on resonance (red line)

nance: a surprisingly intense signal originates from atoms in the 22p state – which
is attributed to spontaneous emission in the cavity.

This is fascinating result! To fully understand it we first have a closer look at the
cavity. It is made of very precisely machined and highly polished, niobium spheres
with 20 mm diameter and 26 mm radius of curvature, arranged in nearly confocal
configuration at L = 25 mm distance. The Gaussian mode sustained by the cavity
at λ = 0.88 mm has a waist w = 1.9 mm and a total volume of Vcav = Lπw2/4 =
70 mm3. Nb becomes super-conducting at 9.2 K and the cavity is liquid He cooled
to ca. 5.7 K. This ensures that the surface of the cavity is highly conducting and
together with very good polishing this leads to a very high quality factor Q of the
cavity (see Eq. (1.11)) on the order of 106. In addition, the cooling ensures that
black body background radiation cannot lead to induced transitions: according to
(1.63), Vol. 1, BOSE-EINSTEIN statistics gives a population of the N = 1 mode of
[exp(�ω/kBT ) − 1]−1 � 0.06 relative to the vacuum state N = 0 so that radiation
induced processes can be neglected compared to spontaneous transitions which are
caused by the vacuum field. We emphasize the fact that no external or background
microwave field is involved in this experiment.

The atoms spent only about 2 µs in the resonant cavity mode. In the free field case
this would lead to a maximum of 150 s−1 ×2 µs � 3 × 10−4 transitions. How then
can we understand the observed enhancement of spontaneous emission by about at
least 5 orders of magnitude?

From our derivation of spontaneous emission in the free field case we recall now,
that one crucial parameter was the mode density per unit volume, according to (2.75)
ρfree(ω) = ω2

ba/(2πc)3. This has entered directly into the spontaneous emission rate
(2.153). In the final step, integration over all angles leads to multiplication by a
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factor of 8π/3, and another factor of 2 for the two possible polarization modes.
We now compare this to the situation in the cavity. The mode density per angular
frequency, polarization and volume is ρcav(ω) = 1 mode/(Vcav�ωr), where Vcav is
the cavity volume and �ωr = ωr/Q with the Q factor of he cavity according to
(1.11). Integration over solid angles is obsolete in this case, since the cavity sustains
only two modes (of different polarization) which are resonant with the transition. In
summary, one has to replace 2 × (8π/3)ρfree(ω) in free space by 2 × ρcav(ω) in the
resonant cavity case. Thus, an enhancement of the spontaneous radiation probability

ρcav(ω)

(8π/3)ρfree(ω)
= Q

Vcavωba

(2πc)3

(8π/3)ω2
ba

= 1

Vcav

3Q

4π
λ3

is expected. In the present case this enhancement factor is on the order of 103, so that
the transition probability is changed from 150 s−1 to � 3 × 105 s−1 so that during
the passage time of 2 µs a substantial fraction of the Na atoms in the initial 23s state
decays by spontaneous transitions into any of the 22p substates – as shown by the
experimental result Fig. 2.20(c).

In conclusion, this experiment documents that the vacuum field is not just a the-
oretical construct, it is real and can be manipulated in a finite cavity – leading to an
observable modification of the spontaneous transition probability – also reflected in
the respective “natural” lifetime.

A number of additional question arise from these findings: e.g. what happens
to the emitted photon? Can spontaneous emission also be suppressed? What about
other effects caused by the vacuum field in a cavity? As it turns out, in the experi-
ment described here the Q factor of the cavity is not high enough to store the emitted
photon long enough for subsequent reabsorption.

In the mean time, experiments have been reported in which oscillatory energy
between the cavity and a single atom in it has been observed. And, yes, spontaneous
emission can also be quenched in a cavity of the right dimensions if the vacuum
field is not in resonance. Also changes of atomic energy levels and modifications
of the LAMB shift have been observed. Cavity quantum electrodynamics has be-
come a very active and productive topic of modern research as e.g. summarized in
a nice review by WALTHER et al. (2006). We also mention that such effects play an
important role in nano-optics, another area of cutting edge research.

Section summary

• We have quantized the electromagnetic field, based on the preceding intro-
duction of discrete, countable modes of the electromagnetic radiation field in
a large, but finite normalization volume L3.

• To this end we have introduced in (2.92) new variables P and Q as linear
combinations of the components E− and E+ of the electric field. The mode
energy was then recognized as formally equivalent to the harmonic oscillator,
with P and Q being canonic conjugate coordinates.
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• We have applied the standard quantization scheme, replacing these variables
by operators with the commutation rule [Q̂, P̂ ] = i�. Back transformation led
us to operators â+ and â, the so called creation and annihilation operators,
for which the commutation rule [â, â+] = 1 holds.

• The Hamiltonian for a single mode of the free electromagnetic field is

ĤF = �ωk

(
â+â + 1/2

)
.

It has eigenstates |N 〉, with N representing the number of photons in that
particular mode of energy �ωk . The mode energies correspond to those of the
harmonic oscillator WN = (N + 1

2 )�ωk .
• The operator N̂=â+â counts the number N of photons in a mode and the

creation and annihilation operators â+ and â, respectively, were found to raise
or decrease N by one.

• The total Hamiltonian of the free field is the sum of the Hamiltonians for all
modes. This scheme of writing the Hamiltonian is called second quantization.

• The components Ê+ and Ê− of the electric field operator (2.112) are pro-
portional to â+ and â, respectively. In the SCHRÖDINGER picture all oper-
ators are independent of time. All time dependence of the problem, being
∝ exp[−iWN t/�], has been cast onto the states.

• We have briefly introduced GLAUBER states (2.115), representing a coherent
electromagnetic field. They are eigenstates of the negative component of the
electric field operator Ê−. Some of their properties have been described in
Sect. 2.3.3.

• The interaction between the atom and field has been written in full analogy
to the semiclassical treatment as Û (r) = er · Ê, independent of time. Thus,
the problem is now formulated energy conserving: energy is just exchanged
between the atom and the electromagnetic field.

• Transition probabilities were treated again in 1st order perturbation theory.
The number of photons per mode, Nke, appears in the transition rates. We
have identified it with the mean number of photons per mode as derived in the
previous section.

• Specifically, for de-excitation processes the rate was found to be proportional
to Nke + 1. This implies that de-excitation is possible even if there is no ex-
ternal field. This has allowed us to derive a quantitative expression (2.154) for
spontaneous emission.

• We thus have concluded that spontaneous transitions are induced by the vac-
uum field. The vacuum state is not simply nothing! Its energy is �ωk/2 in each
mode, and the vacuum field is a physically present field.

• Experimentally this may be verified in a high Q cavity, where the vacuum
field can be manipulated. Spontaneous emission is found to be enhanced or
suppressed in such a cavity, depending on whether the mode is on or off reso-
nance with the transition.
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Acronyms and Terminology

chemical-potential: ‘In statistical thermodynamics defined as the amount of energy
or work that is necessary to change the number of particles of a system (by 1)
without disturbing the equilibrium of the system’, see μ in Sect. 1.3.4, Vol. 1.

CW: ‘Continuous wave’, (as opposed to pulsed) light beam, laser radiation etc.
E1: ‘Electric dipole’, transitions induced by the interaction of an electric dipole

with the electric field component of electromagnetic radiation.
E2: ‘Electric quadrupole’, transitions induced by the interaction of a quadrupolar

charge distribution with the electromagnetic radiation field.
EPR: ‘Electron paramagnetic resonance’, spectroscopy, also called electron spin

resonance ESR (see Sect. 9.5.2 in Vol. 1).
ESO: ‘European southern observatory’, in Chile, hosting four of today’s largest

telescopes of the world, with 8.5 m diameter each.
esu: ‘electrostatic units’, old system of unities, equivalent to the GAUSS system for

electric quantities (see Appendix A.3 in Vol. 1).
FPI: ‘FABRY-PÉROT interferometer’, for high precision spectroscopy and laser res-

onators (see Sect. 6.1.2 in Vol. 1).
FWHM: ‘Full width at half maximum’.
HBT: ‘Hanbury BROWN and TWISS’, experiment, to determine the lateral correla-

tion of light by a second-order interferometric measurement (see Sect. 2.1.6).
IR: ‘Infrared’, spectral range of electromagnetic radiation. Wavelengths between

760 nm and 1 mm according to ISO 21348 (2007).
M1: ‘Magnetic dipole’, transitions induced by the interaction of a magnetic dipole

with the magnetic field component of electromagnetic radiation.
NIR: ‘Near infrared’, spectral range of electromagnetic radiation. Wavelengths be-

tween 760 nm and 1.4 µm according to ISO 21348 (2007).
NMR: ‘Nuclear magnetic resonance’, spectroscopy, a rather universal spectro-

scopic method for identifying molecules (see Sect. 9.5.3 in Vol. 1).
QED: ‘Quantum electrodynamics’, combines quantum theory with classical elec-

trodynamics and special relativity. It gives a complete description of light-matter
interaction.

RF: ‘Radio frequency’, range of the electromagnetic spectrum. Technically, one
includes frequencies from 3 kHz up to 300 GHz or wavelengths from 100 km to
1 mm; ISO 21348 (2007) defines the RF wavelengths from 100 m to 0.1 mm; in
spectroscopy RF usually refers to 100 kHz up to some GHz.

RWA: ‘Rotating wave approximation’, allows to solve the coupled equations for a
two level system in a strong electromagnetic field in closed analytical form (see
Sect. 10.2.3).

SHG: ‘Second harmonic generation’, doubling of a fundamental frequency, for in-
frared or visible light typically by methods of nonlinear optics.

UV: ‘Ultraviolet’, spectral range of electromagnetic radiation. Wavelengths be-
tween 100 nm and 400 nm according to ISO 21348 (2007).

VIS: ‘Visible’, spectral range of electromagnetic radiation. Wavelengths between
380 nm and 760 nm according to ISO 21348 (2007).
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VLBI: ‘Very long baseline interferometry’, worldwide network of radio telescopes
for interferometry.
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