Chapter 2
Wire Ropes Under Tensile Load

2.1 Stresses in Straight Wire Ropes
2.1.1 Global Tensile Stresses

The wires in straight wire ropes under tensile load are mainly strained by tensile
stresses. The real tensile stress in the wires will not be considered in most cases.
Instead of this the stress condition will be normally characterised globally by the
rope tensile stress (nominal tensile stress). This global rope tensile stress is

In this, S is the rope tensile force and A is the wire rope cross-section, that
means the sum of the cross sections of all wires in the rope with the diameters ; is

A= 0

A very practical form for the tensile rope stress is the diameter related tensile
rope force

S/d?.

S is again the tensile rope force and d is the nominal rope diameter. This
diameter related tensile rope force S/d* has the advantage that both factors S and d
are well defined and well known for the rope maker and rope user. A further
advantage is that in most cases the calculation result encludes in its deviation the
deviation of the rope diameter.
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2.1.2 Real Stresses

The real stress in wires of the layer & is named oy in opposition to the (global) rope
tensile stress .. The real wire tensile stress oy is bigger than the rope tensile stress
o,. In addition to the tensile stresses, the wires in ropes under tensile force are
strained by bending and torsion stresses and normally slightly by pressure. The
stresses in all the individual wires are different:

e Systematically according to the different lay angles of the wire and the strand
layers and

e Unsystematically because wires or strands very often are lying loosely on their
base and therefore do not start to take up the load from the beginning by
increasing the tensile force of the rope.

The unsystematic working stresses may be bigger in some cases than the sys-
tematic ones. Of course, they cannot be calculated but their influence can always
be observed especially in the rope endurance under fluctuating tensile forces.

Conditions for calculating wire stresses
The working stresses will be determined in the following chapter. Thereby, an
ideal wire rope will be presupposed:

e The wire rope is of perfect geometry.
The wires are without self-contained stresses.
No wires or strands are loose, so that all wires start to bear when the wire rope
will be under a slight tensile force.

e All stresses remain in the elastic region.

The self-contained stresses of the wires resulting from their manufacture have
no importance in the case of static loads. In case of fluctuating loading, they
influence the endurance like an increasing or a decreasing of the middle stress.

2.1.3 Basic Relation for the Wire Tensile Force in a Strand

A tensile force loading a strand induces a torque because of the helix form of the
wires. Therefore the strand will be turning if the strand ends are not secured
against this. In practical usage, the turning of strands and ropes must be prevented
because otherwise the strand loosens its structure and because of this very unequal
stresses would be induced in the wires. For normal ropes, the turning can be only
prevented securing the rope ends. In so-called non-rotating ropes, the turning is
more or less prevented because the torque of different right or left wound wire
layers or strand layers compensate each other. In the following it will be pre-
supposed that the turning of the strands and ropes are prevented.

For one wire, the portion of the tensile strand force S; in strand axis direction
and the corresponding portion of the circumference force U; out of torque act as
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Fig. 2.1 Forces on the wire U; Q
of a strand i .
Q; sin o;
Fi ;
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outer forces on the single wire in the wire layer i of a strand. The division of the
strand tensile force and torque in the wire forces S; and U; will be described later
on. For the present, S; and U; will be presupposed as known.

Both outer forces S; and U; on a wire must be in balance with the inner forces,
the wire tensile force F; and the wire shear force Q;. The forces on a wire of a wire
layer i are shown in Fig. 2.1. From these, using o; for the lay angle, both of the
following equations can be derived

Si — Qi -sing;
F = Q; -sina 2.1)
COS o;
and
Ui = Fi - sin o — Q,‘ - COS ;. (22)

The shear force Q; of a wire of layer i is caused by the bending and torsion of
this wire, of course geometrically limited by the rope extension. As was first
presented by Berg (1907), the shear force of a wire in layer i is

sin o;

Qi (My; - coso; — My - sin ;) (2.3)

ri

with the wire winding radius ry,; = r;, the bending moment M,,; around the bi-
normal and the torque M,,,; around the wire axis. With this the tensile force in a
wire of the wire layer i is

S,‘ Sil’l2 ol

F;, = - (Mb.i o8 0 — My - sin oc,-). (2.4)
cosa; I+ COSQ ' '

According to Berg (1907), the portion of the strand torsion moment caused by a
wire of the wire layer i is
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M; =F;-r;-sino; — Q; - r; - cos o; + My - Sin o + Miorj - COS 0. (2.5)

The most recent equations for bending and torsion moment for a wire of the
wire layer i were developed by Czitary (1952) as follows

.2 2
sin“ o sin” o
My; =E;-J;- ( i (2.6)
ri roi
and
sino; - Cos o Sin op; - COS Ol;
Mlor‘i = Gi ' in ' ( - . (27)
ri roi

In addition to the known symbols, there is E; the elasticity module, G; the shear
module, J; the equatorial and J,; the polar moments of inertia of a wire in the wire
layer i. The index 0 means the state before loading by a tensile force. As before,
the parameters without the index O show the loaded state.

The portion of the strand torque for one wire of the wire layer i can be cal-
culated from (2.3), (2.5)—(2.7)

M;=F;-r;-sinoa; — My - sina; - (1 + cos? oc,-) + Mg - cos® 0. (2.8)

Both of the moments M,,; and M,; are very small, because the lay angle and the
winding radius alter only slightly under the tensile load. Therefore, the shear force
Q; is also very slight. As demonstrated by Czitary (1952), both moments and the
shear force can be neglected for the calculation of the wire tensile force F;. This
neglect only results in a very minimal deviation. With this, out of (2.1) the simple
relation for the tensile force in a wire in the layer i depicted in Fig. 2.2 is

S;
F, = (2.9)
coS o;

and the circumference force out of (2.2) is
U;=F; sing;
or
U; =S; - tan o;. (2.10)

According to (2.4), the portion of the strand torque for a wire in the layer i is
now
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Fig. 2.2 Tensile force of a
strand wire neglecting the
small shear force

Mi :Fi-ri-sinac,-
or
M,' = S,’ -1 - tan o (211)

These equations from Berg (1907) have since been used by nearly all
researchers, as for example Heinrich (1937), Costello (1997), Costello and Sinha
(1977b). Only Dreher (1933), who first did extensive investigations into wire rope
torsion has introduced a basic equation deviating from (2.9). But Dreher’s equation
is of no value for use with real wire ropes as Heinrich (1942) has already shown.
Dreher’s equation is only true for a simple wire helix not supported by a strand
centre.

A length-related radial force exists between the wire helix and the centre wire
or a wire layer (or between a helix strand and the core) in a wire rope under a
tensile force. The length-related radial force (when neglecting the bending moment
and torque) is

F,‘ Fi'SiIIZOC,'

- . (2.12)

qi

2.1.4 Wire Tensile Stress in the Strand or Wire Rope

2.1.4.1 Wire Tensile Stress in Strand or Spiral Rope

The first to work out a partition of the wire rope tensile force in wire tensile forces
was Benndorf (1904). The following determination of the tensile stress follows his
work. Out of the last chapter with (2.9), the wire tensile force component in strand
axe direction (neglecting the small shear force) is
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S; = F; - cos .

The strand tensile force is the sum of all wire tensile force components

S:zn:z,--Si:zn:zi~F,~-cosoc,~ (2.13)
i=0 i=0

In addition to the known symbols, n is the number of wire layers counted from
the inside with n = O for the centre wire and z; is the number of wires in the wire
layer i.

For the following, it will be presupposed that the strand cross-section rests
plane if the strand with the length I is elongated with Al by a tensile force. The
elongation can now be calculated and, from this, the tensile force of all the wires.
The tensile force of a wire in a wire layer i is

Fi="".E A, (2.14)

[; is the wire length, Al; the wire elongation, E; the elasticity module and A; the
cross-section of a wire in the wire layer i. The extension of that wire is

Al;
b= (2.15)

With [ for the length of the strand, the length of the wire is

ls
I, = . 2.16
oS o; (2.16)

In Fig. 2.3, the unwound wire about the strand axis is shown before and after
the strand elongation. Therefore, when the failures of higher classification are
neglected, then the wire elongation is

Al; = (Alg — Au; - tan ;) - cos a;
or
Al; = Alg - cos o; — Au; - sin ;. (2.17)
The contraction of the winding radius respectively the circumference in relation

to the wire extension—that transverse contraction ratio can also be designated as
“Poisson’s ratio” of the wire helix—is
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Fig. 2.3 Elongation of a U, - U__._,

strand wire
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Here u; is the winding circumference and Au; its contraction. Using this and

(2.15), the contraction of the winding circumference is
Au; =g - v -y
and with u; = [; - sino; is
Au; = ¢ -v; -1 - sino.
Using (2.17) and (2.18), the wire elongation is then
Al; = Alg - coso; — & - v; - 1; - sin o
or
Al + Al - v; - sin® o; = Al - cos ;.
Following this, the elongation of a wire in the wire layer i is

aly = Alsrcos_
1+ v sin”

(2.18)

(2.19)

This equation together with (2.14) and (2.16) supplies the tensile force of a wire

in the wire layer i as a function of the strand elongation

~ Als-cos? g
Y ls e (14 sin® o)

E; - A;

or its component in the direction of the strand

(2.20)
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B Alg - cos? o;
N Is - (1 +v; - sin® ocl-)

Using (2.13) the strand tensile force is

Alg & Zi - COS>
S=CS NY(EIEOV A g, 221
ls Z ( 2o ) (2:21)

S\l +v;-sin

The tensile force in a wire of a specific wire layer k is found by combining
(2.20) and (2.21) with the elimination of Aly/lg

2
Cos~ o,
v sis M
Fr = Vi ST 8. (2.22)
n Zj - COS™ o
(2 T2 M ELA
2i-0 <1 + v -sinfo; l)
The tensile stress in this wire is
cos? oy
Fi 1 + v - sin’ e
oy = X = Vi * 510 D . (2.23)

A oSS o
¢ Z?o<—Zl oA 'Ei'Ai>

14+ v;- sin® o

2.1.4.2 Wire Tensile Stress in Stranded Ropes

As before, the same derivation can be used for the stranded rope by now observing

a strand as a wire. The wire layers keep the counting index i and a certain wire

layer the index k, whereas the strand has the respective indices j and /. The total

number of wire layers in a strand is ny, and the total number of strand layers is n.
The wire rope tensile force is according to (2.13)

ns
S:ZFj-zj-cosﬂj
=0

and with the strand tensile force
Nyyj
F; = ZF,-,- * Zj + COS 0
i=0

the wire rope tensile force is



2.1 Stresses in Straight Wire Ropes 67

ns Ry

S:ZZJ“COSB]'ZFU'Z{]“COSOCU‘. (2.24)
j=0 i=0
According to (2.20), the wire tensile force in the wire layer i of the strand j is
Al; cos? o

lj 1+ Vij * Sil’l2 jj
and according to (2.19) and the wire rope length L = [; - cos f;

Al AL cos’f;

— = 2.26
lj L 1+v- sin? B; ( )
Then, using (2.25) and (2.26), the tensile force of a wire ij is
AL cos? f; cos? aj;
Fj=—- / . J “Ejj- Ay (2.27)

L 1+v-sin®B; 1+ v;-sin®oy

Using (2.27) and (2.24), the wire rope tensile force is

AL & cos® f; i cos> o
S=—". . . ie——— Y Ei- Ay . 2.28
L Z<Zf [, s f 2% ey FA) (228)

=0 im0 14y -sintoy

Combining (2.27) and (2.28) by eliminating AL/L, the tensile force in the
certain wire k in the strand [ is

2 2
cos COS~ o,
1+v frllz[i 1+ ~siizoc A8
Fkl _ 1 ﬁ i kl kl ; (229)
cos’ cos3 o
ng R y
Z g ————————— FE. A
ZJO(’ 1+ v; - sin® B; ZU 14 -sinoy U)
and the tensile stress in that wire is
Fy
O = — . 2.30
= (230)

2.1.4.3 Influence of the Poisson Ratio

The Poisson ratio (transverse contraction ratio) for steel v; = 0.3 can also be used
for the steel wire helix in the strands. Because the length-related radial force
between the wires is very small, the reduction of the wire diameter and winding
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radius or circumferences in the strands, in the spiral ropes and in the strands of the
stranded ropes are practically only caused by the elongation of the wires. This is
especially true for the most frequently used parallel lay ropes.

The transverse contraction ratio of the strand helix v; in stranded ropes is
difficult to estimate. Especially in wire ropes with a fibre core, this “Poisson ratio”
is very large. In any case of fluctuating force, there is a great part of the rope
contraction and the rope elongation remaining.

The influence of the Poisson ratio of the wires and the “Poisson ratio” of the
winding radius or circumferences of wires on the calculated distribution of the
wire tensile forces is normally not very large. For strands, the influence reduces
with the increasing number of wires. For a parallel wire strand with 19 wires, the
calculated stress of the outer wires is at the most 2 % more and that of the centre
wire 3 % less if the Poisson ratios are neglected.

The influence of the Poisson ratios of wires and of winding circumferences of
wires and strands on the wire tensile stress is also small for the stranded ropes.
This is true for ropes with steel cores because the “Poisson ratio” v; is also small.
For ropes with fibre cores, the contraction can be quite large. However, the
influence on the distribution of tensile forces of the strands is small.

However, unlike with the calculation of the wire tensile stresses, the “Poisson
ratio” v; must used as precisely as possible if the equations given here are to be
used 1ater on to calculate the additional stresses, the rope elongation or the rope
elasticity module. The Poisson ratio v = 0.3 can continue to be used for the strands
and spiral wire ropes. But that is not valid for the strand helix (strand axis) in
stranded ropes.

The cross-section of fibre cores and their effective diameter are very greatly
reduced under the effect of the length-related radial force of the bearing strands.
This is also true to a lesser extent for wire ropes with steel cores especially for wire
ropes with several strand layers especially if the strand layers lie parallel. The
“Poisson ratio” of the strand winding radius of these wire ropes is not constant as
it depends on the wire rope stress. The “Poisson ratio” of the stranded wire ropes
can generally only evaluated by measurement and not by calculation.

2.1.4.4 Wire Tensile Stress Neglecting the Poisson Ratios

If the tensile force of the wires in strands or wire ropes is calculated by neglecting
the “Poisson ratios”, the equations are much simpler. The tensile force in a strand
is in this case

Als -
ZZ, cos® o; - E; - A; (2.21a)

and the tensile force in the wire k is



2.1 Stresses in Straight Wire Ropes 69

cos? oy, - Ej - Ag
= n .
Zi!() Zi . COS3 o - E,‘ . Ai

Fi S. (2.22a)

By neglecting the contraction, the tensile force of the stranded rope is
AL & o 3
S= T Z zj - cos’ B; - Zzij -cos” oy - Ejj - Ay (2.28a)
j=0 i=0
and the tensile force in the wire k of the strand / is

COS2 Bl . COS2 Okl - Ek[ 'Ak[

S0(g - cos? B - Do zij - cos? o - Eyj - Ay)

Fk/ = -S. (2293)

The wire tensile stresses in the spiral rope and in the stranded rope are

Fy Fu

ox =— and oy =—.

Ak A
All wires have nearly the same tensile stress if a wire rope has a fibre core and
the same lay angle for all wire layers (except, of course, the centre wires in the
strands which have a higher stress than the other wires). This common tensile

stress is
S

= 2.31
A -coso-cosf ( )

Ot

This equation was previously given by Wiek (1980). In the outer wires, the
tensile stress is a little smaller than as calculated in (2.31).

Example 2.1: Wire tensile stress in spiral wire ropes

Calculation of the tensile stress in the wires of the open spiral wire rope 1 x 37
according to Fig. 2.4 with the global wire rope tensile stress ¢, = 300 N/mm?.
The tensile force of the spiral rope, is

S=A, -0,=(1431 + (6 + 12+ 18) - 1.227) - 0, = 45.61 - 300 = 13,680 N.
Using (2.23), the tensile stress in the centre wire is

45.61 - o, _45.61
0.97033 T 41.09

oo = 1.110 - 6, = 333 N/mm>.

gy — 0;

With the same Eq. (2.23), the tensile stress in the wires of the layers 1, 2 and 3
with the same lay angle o = 14° is
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Fig. 2.4 Cross-section of a
spiral rope 1 x 37, wire
diameters dp = 1.35 mm,
(31 = 52 = (53 =1.25 mm;
wire cross sections

Ap = 1.431 mm?,

Al = A2 =
Az = 1.227 mm?; lay
angles oy = 0°, oy = 14°,

Oy = —140, o3 = 14°

0.97032

1+0.3-0.24192
41.09

0123 = 1.027 - 6, = 308 N/mm”.

4561 - o,

01,123 =

2.1.5 Additional Wire Stresses in the Straight Spiral Rope

A straight spiral rope respectively a straight strand becomes longer and thinner
under a tensile force. The wire helix will be deformed and—beside the tensile
stress—there exist bending stresses, torsion stresses and radial pressures from the
small length-related radial force of the wires. The bending and torsion stresses
have to be calculated from the alteration in the space curve of the wire.

The space curve of a wire in a straight strand is in parameter form

X=—r-sing

y=r-Ccoso (232)
r

e @

¢ is the angle of rotation (running angle), « the lay angle and ryw = r the wire
winding radius, Fig. 2.5. The lay length is

2-m-r
W:

tan o



2.1 Stresses in Straight Wire Ropes 71

Fig. 2.5 Wire space curve in
a straight spiral rope

Although the moments M, and M, out of (2.6) and (2.7) can be neglected in
calculating the wire tensile force, the bending and torsion stresses resulting from
these moments can be considerable. The stresses come from the change of the
curvature K and the winding 7.

The curvature K of a space curve is in parameter form according to (2.32) with
the curvature radius p

K =

7 ” 2\ . (12 12 12\ _ (. N} 1 o)2 (2'33>
(K 4+y?24+72) - (P y2+72) - (XY Y 477

K =
(x’2 +y2 +Z’2)3

&bl»—

The winding T shows how strongly the space curve differs from the osculating
plane in the neighbourhood of a point. The winding is

/ / /

Xy zZ
x// y// Z//
x/// /" Z///
T—pp. 1 Y L1 (2.34)

(x/z +y2 +Z'2)3 ’

For the simple case of a wire in a straight strand or spiral rope with the wire
winding radius r, the curvature radius p is

;
P="7 (235)
sin” o
and the winding
T:sinmcosoc. (2.36)

r
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The stresses in the wires induced by the alteration of the wire curvature are of
special interest. Together with the tensile stresses, they determine the endurance of
the strand or spiral rope in the case of fluctuating tensile force.

The bending stress is

I 1)\
Op = (; — p_0> §E (2.37)
or with (2.35)
o = (Sin: o Sm:()“") °F (237a)
The torsion stress is
7= (T —Tp) gG (2.38)

and with (2.36)

G. (2.38a)

sinoccoso  sinog cosog\ O
T = —
2

r ro

In addition to the symbols already known, ¢ is the wire diameter. The index O is
again of value for the initial state and the symbols without indices designate the state
under the effect of tensile force. E is again the elasticity module and G is the shear
module. The bending and torsion stresses were first calculated by Schiffner (1986).

Example 2.2: Additional stresses in a spiral rope

Calculation of the bending and torsion stresses in the wires of an open spiral rope
according Fig. 2.4 with the global wire rope stress . = 300 N/mm? (neglecting
the influence of the point pressure between the crossing wires).

The winding radius under the effect of the tensile force is (neglecting the small
higher tensile stress in the centre wire) with 6, = 0y 123

o 308
= (1= _): ([ 1-03———) =0.99953ry
" ’0( "E ’°< 196,000) 999530

and the lay angle

0, 308
sin o = sin o l_v._t—sinoc —1_0.3 196, 000
- 0" [T 0" 308 ’
TE 1+ 196,000

o = 14°;  sinapy = 0.24192;  cos g = 0.97030
sina = 0.9980 - sinog = 0.9980 - 0.24192 = 0.24144
cos o = 0.97042.
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According to (2.37a), the bending stress in the wires of the different wire layers
is

0.99802 - sin% oy sin®ap\ O 0.2419% 1.25
.= — —-E=0.00354-—" . =2 .196,000
o < 0.99953 - ro; Yo ) 2 ri 2

254
Obi = .

roi

According to (2.38a), the torsion stress is

r-—( 0.23430 0.23473) 1.25 15.2

- —=2.76,000 = —=
0.99953 - Troi Toi 2 roi

Then with rg; = 1.3 mm, rp, = 2.55 mm, ro3 = 3.8 mm, the bending stresses
are

op; = 19.4 N/mm?; oy = 9.9 N/mm?; op3 = 6.7 N/mm®

and the torsion stresses are
7; = 11.7 N/mm?; 1, = 6.0 N/mm?; 73 = 4.0 N/mm?.

As shown in the example, the additional wire stresses in spiral ropes are not
very large.

2.1.6 Additional Wire Stresses in Straight Stranded Ropes

The wires of straight stranded wire ropes under tensile force are loaded like the
wires in spiral ropes by bending and torsion stresses. Besides that, they are loaded
with a second tensile stress caused by friction between the wires in the bent
strands, Schmidt (1965). The additional stresses will be evaluated using the space
curves of the strands and the wires.

According to (2.32), the equations for the space curve of the strand axis in a
straight stranded rope are

Xs = —rs - sin Qg

Ys = rs - COS g (2.39)
Ts

s

- tanﬁ(pS
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Fig. 2.6 Winding angle of a
wire in the wire rope cross
section, normative phase
angle @

with rg for the strand winding radius,  for the strand lay angle and ¢g for the
angle of rotation of the strand helix. The strand lay length is

hS:2-n-rs
tan f§

Andorfer (1983) derived analytically the equations for the space curve of the
double helix of the wire in the straight stranded rope as done before by Bock
(1909) using a kinematic method and later on by Wolf (1984) using a vectoral
method. The wire winding radius r stands perpendicular on the strand axe helix
and the ratio between the wire winding angle ¢ and the strand winding angle ¢g
is constant, @w/@s = const. Schiffner (1986) pointed out that this constant ratio
practically always occurs if the clearance between the wires is—as usual—very
small.

The constant ratio between both winding angles ¢w and ¢g is only valid if they
both start from ¢w = ¢s = 0. The constant ratio of the winding angles is there-
fore better described by

"~ hw-cosf’

*

m

That means in any one strand lay length hg there are m* wire lay lengths h.
With m = m* + 1 is

Ppw Eos=m-pg=].

Bock (1909) nominated ¢ as normative phase angle. After ¢ = 2n, a wire
element has the same position as for @ = 0, Fig. 2.6. The positive sign has to be
set for ordinary lay ropes and the negative for lang lay ropes.

To include the case of any phase of ¢ and @g a constant winding angle of the
wire helix ¢@wq or shorter ¢, will be added. Then it is

Ow £ s+ @g =m - @s + .
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Fig. 2.7 Moving trihedral main normal
(tangent, main normal and
binormal) of a space curve osculating plane

normal plane

tangent

tangent plane binormal

With this, for the space curve for a wire in a straight stranded wire rope, the
equations of Andorfer (1983) are in parameter form

X = —rg - sin @g

— rw - [cos(@g 4 m - @g) - sin g + sin(@y +m - @g) - cos B - cos @g]

Y = rs - cos g (2.40)
+ 1w - [cos(@g +m - @) - cos pg — sin(@y + m - @g) - cos - sin @]
h . .
z:ﬁwps — rw - sin(@y + m - @g) - sin f5.

The Eq. (2.37) for the bending stress can only used for the strand center wires
of stranded ropes. For the lay wires in the strands this simple equation is not valid,
because the curvature plane turns around the wire axis against the wire. Deter-
minant for the change of bending stress is therefore not only the change of the
curvature radius p but also the turning angle 7, so that the maximum bending stress
occurs in another fibre of the wire. Leider (1977) presented firstly this fact in case
of bending a strand. Schiffner (1986)—respecting this—calculated the wire
bending and torsion stresses by changing the space curve in a stranded rope under
the action of the wire rope tensile force. Depending on the small rope elongation
and diameter reduction under rope tensile forces these stresses are also small
(Fig. 2.7).

The effect of the turning angle 7, on the wire bending stress can be demon-
strated for the case when a strand is bent over a sheave. For the straight strand the
curvature radius of a lay wire is pg = rw/sin’o.. For the bent strand Wiek (1981)
and with a small correction Leider (1977) have derived the curvature radius p of
lay wires for the different position of the wire element in relation to the sheave
axis. As turning angle Leider (1977) has used the angle between the main normals
but Schiffner (1986) found, that the angle between the osculating plane before
changing and the main normal after changing is correct for the turning angle
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A-a+B-b+C-c

Y = arcsin
\/(AZ +B2 + CZ) . (Cl2 +b2 +02)

(2.41)

with
/ " ! n
A=Yy2—2 Yo
o " / "
B=2zy-xy—xy-2
o " / "
C=Xxy-Y)— Yo %
and

The equation for the osculating plane is
A- (X—X())—FB‘ (Y—y())+C~ (Z—Z()) =0
and for the main normal

X—x Y-y Z-z2
a b ¢

X, Y and Z are the coordinates of the centre of the moving trihedral for the space
curve for which the bending stress is considered. The parameter equations xo, g
and zo present the space curve before changing, and x, y and z afterwards.

The maximum change of bending stress resulting from the space curve change
is

0 (1 1
opb==E-|—-cos(Ypu — 7 —-cosn//max>. 242
R R A (242)

The turning angle . for the virtual fibre with the maximum stress change is
determined by

Wmax = arctan STk 5 (2.43)
cos Yy — —

Po

Following Schiffner (1986), the calculation of the torsion stress has to be
adjusted on the space curve with the winding
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do,, -cosa  hs-cosa

T - :
ds hW - COS ﬂ x/2 + y12 + Z/2

Then according to (2.38), the torsion stress from the winding change is

1= (T"— Tg).éG.
2

When loaded by a tensile force, the wires elongate and contract. The strands
will be bent up like the wires in the straight strand under a tensile force. The wires
displace each other under the strand bending in core direction. The friction
between the wires induces a secondary tensile stress in the wires. Andorfer (1983)
calculates this secondary tensile stress to be as Schmidt (1965) first indicated.

When the rope tensile force increases, the secondary tensile force increases in
the strand wire of the wire rope from the outside to the inside in the opposite
direction to the displacement. The displacement is restricted to the half lay length
of the strand wires. The resulting wire tensile force is bigger than the mean tensile
force in the wire sections lying directly on the core and smaller than that of the
outer wire sections. Contrary to the statement of Andorfer (1983), this is also valid
for ordinary lay ropes as well. The force induced by friction will be called sec-
ondary tensile force although the force can be either tensile or compression.

On the other hand, the secondary tensile force reverses its direction when the
rope tensile force decreases so that the resulting tensile force in the inner wire
sections is smaller and in the outer wire sections bigger than the mean wire tensile
force. The rope force reversal increases the wire stress amplitude in the case of
wire ropes loaded with fluctuating tensile forces.

The secondary tensile stress in a straight stranded rope can reach a considerable
size. This stress is especially responsible for the fact that well-lubricated stranded
wire ropes have a longer endurance under fluctuating tensile force than unlubri-
cated ones. The lubrication reduces the friction and because of that the secondary
tensile stress.

Supplementary to the fluctuating tests, Wang (1989) calculated the stresses in a
simple stranded rope ordinary lay FC-6 x 7-sZ with the diameter 12.2 mm. At
about the half endurance for the lower wire rope stress g, y, = 100 N/mm? (with
the indices of Wang) the rope extension is &g, = 1.5 % and the lateral contraction
&q unt = 3.2 % and for the upper wire rope stress ¢, open = 675 N/mm? the rope
extension is & open = 5.8 % and the lateral contraction &g gpen = 9.8 %. For this
rope with fibre core between the lower and the upper rope tensile force the
transverse contraction ratio is v = 1.69 for the rope diameter and v = 1.88 for the
winding radius of the strand axis.

Wang (1989) presented the results of his calculation, done with the relatively
high friction coefficient ¢ = 0.25, in Fig. 2.8. The (global) rope tensile stress
range is 20,, = 575 N/mm® between 100 and 675 N/mm’. After Fig. 2.8
the maximum range of longitudinal stresses in the fibres of the lay wires is
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261 1a max = 674 N/mm?. That is 17.2 % more than the range of the rope tensile
stress 20,,.

In addition to the longitudinal stresses the wires will be stressed by torsion,
pressure and to a small extent by wear and corrosion. Supplementary to this,
secondary bending stresses occur in wire ropes with crossing wire layers or
crossing strand layers. All these stresses are systematically unavoidable.

In any case, higher stresses occur unsystematically in some wires because of the
unevenly distributed wire tensile forces. This uneven distribution coming from the
fabrication and the handling of the wire ropes cannot be totally avoided. The
calculated stresses compared with the strength show “what is possible in the ideal
case and gives the limit that a rope construction can reach but never exceed,”
Donandt (1950).

Jiang et al. (1997) and Wehking and Ziegler (2004) recently calculated the
stresses in a tensile loaded strand 1 + 6 by the finite element method. In contrast
to the analytic method presented here, this method includes the pressure between
the centre wire and the lay wires. The maximum stress in the lay wires has nearly
the same size as in the analytical calculation but is a little further away from the
analytical maximum, the inner wire edge. In his dissertation Ziegler (2007)
extended the finite element calculations on strands 1 x 19 and 1 x 37.
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2.2 Wire Rope Elasticity Module
2.2.1 Definition

The elongation behaviour of materials under the effect of mechanical stresses is
described by elasticity modules. The elongation of a wire rope depends, of course,
on elasticity module for wire materials, but the wire rope elasticity module
describing wire rope elongation differs from the wire elasticity module. The rope
stress-extension curve is not linear. Therefore, for a certain wire rope, the wire
rope elasticity module is not constant but depends on the tensile stresses.

As far as strands and spiral ropes are concerned, there is only minimal non-
linearity and this can be neglected in most cases. The wire rope elasticity module
for these ropes can be calculated approximately using analytical methods (see
Sect. 2.2.2), but this is not true for stranded ropes as their rope elasticity modules
can only be evaluated by measurements, and—because of the non-linear stress-
extension curve—the wire rope elasticity module resulting from these measure-
ments can only be given with a correct definition of the loading.

The main rope elasticity modules which are of importance for practical usage
are:

® Eg(Glower Tupper) as secant between both of the wire rope stresses with a load
reverse at the beginning stress (this is especially the case for fluctuating tensile
stresses) and, as a special case of this,

e E5(0, oypper) With the lower stress 0.

Here, and in the following, the stresses refer to the wire rope stresses o, = S/A
with the rope tensile force S and the metallic cross-section A of all rope wires. The
index z normally used for the global wire rope stress is left out here for simpli-
fication (O-z,lower = Ojlower and Ozupper — 0upper)~

The rope elasticity modules defined in this way are always meant if they have
not been described expressly in a different way. Here it is important that a stress
reverse takes place at the starting stress. The rope elasticity module as secant
between two points on a stress—elongation curve (without stress reverse at the
beginning) is of no practical importance.

The tangent elasticity module defined by a tangent on the stress-extension curve
will be only used in special cases. But later on this tangent elasticity module E;
will be used as an assisting parameter for evaluating the stress-extension curve to
find out the rope elasticity module Eg(GiowerTupper), S€€ Sect. 2.2.3. The mea-
surements of the stress-extension curves for this have always been taken between
the lower stress ojower = 0 and the upper rope stress oypper = 800 N/mm?>.
Because of this, it is not necessary to show either of these end stresses in the
symbol of the tangent elasticity module. The tangent elasticity module (as assisting
parameter) on the stress-extension curves between the rope tensile stresses 0 and
800 N/mm? in the up-and-down direction are therefore given by the symbols
where only the rope tensile stress in the tangent point is nominated:
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Fig. 2.9 Definitions of the 800 B
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e [E.p (0;) rope elasticity module as tangent on the stress-extension curve in the
up direction at the rope tensile stress o,

e FE\ 4own (0;) rope elasticity module as tangent on the stress-extension curve in
the down direction at the rope tensile stress o,

The rope elasticity modules in the different definitions used here are shown in
Fig. 2.9.

2.2.2 Rope Elasticity Module of Strands and Spiral Ropes,
Calculation

As already mentioned, the non-linearity of the stress-extension curve is relatively
small for strands and spiral ropes. There is also only a small increase of the rope
elasticity module with the number of loadings. The smaller the number of wires in
the rope, the more likely this is to be true. Buchholz and Eichmiiller (1988) found
that there was only the very small difference of AE = 600 N/mm? between the
first, second and third measurements with an almost constant rope elasticity
module E5 = 198,000 N/mm?. Taking all these observations into consideration, it
is possible to make reliable calculations for the rope elasticity module for strands
and spiral ropes with a small number of wires. A method of calculation was first
devised for this by Hudler (1937).

The calculation can be done with the help of the equations from Sect. 2.1. The
rope elasticity module is by definition

o

~

Es =
&

With (2.21) for the tensile stress and the definition of the strand extension
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A
2,

the rope elasticity module for strands and spiral ropes is

1 Z" 7; - cos> o
’ =1 +v; - sin® o Y (2.44)

Poisson’s ratio can be set v = v; = 0.3 for all wire diameters and winding radii
in steel spiral ropes because the length-related force between the wire layers is
small and the lateral contraction is almost only caused by the tensile stress in the
wires.

Example 2.3: Elasticity module of an open spiral rope according to Fig. 2.4
According to (2.44) the rope elasticity module is

ST 4561 1+0.3-0.24192
Es = 177,000 N/mm?.

1 12+ 18) - 0. 3.1.22
B 96,OOO.<1.431 (6 412+ 18) - 0.9703 7)

The rope elasticity module for strands and spiral ropes calculated by (2.44) is
independent from the rope tensile stress. But in reality this rope elasticity module
always depends slightly on the stress level and it is always a little smaller than the
one calculated. This means, the smaller the stress level and the higher the number
of wires in the rope, the bigger the difference. The calculated rope elasticity
module can only be reached approximately with a strong pre-stressing.

A reference value for the elasticity modules of closed spiral ropes for bridges
which have not been pre-stressed is given in Fig. 2.10 by DIN 18809. This shows
elasticity modules with different definitions:

E, rope elasticity module for the first loading up to the permanent load
E,, rope elasticity module for the traffic load

E A rope elasticity module for defining the rope length

Eg rope elasticity module during bridge erection

2.2.3 Rope Elasticity Module of Stranded Wire Ropes

Because of its lateral contraction, the rope elasticity module of stranded ropes
cannot be calculated in the same way as that of strands or spiral ropes. The lateral
contraction of the stranded ropes depends on a large unknown quantity at the
tensile stress level. Therefore, the elasticity module of stranded ropes can only be
evaluated by taking measurements.
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Wyss (1957) and Jehmlich (1985) have made series of measurements. They
distinguished between a total rope elasticity module starting from the stress O (first
loading) and the rope elasticity module between two stresses after a longer rope
working time. An important contribution to what is known about the rope elasticity
module was made by Hankus (1976, 1978, 1989). He measured the elongation of
many ropes of different constructions with fibre and steel cores with the first
loading as well as after loading repeatedly in an up-and-down direction. He used
these measurements to evaluate the rope elasticity module as secant starting from
the stress ¢, = 0 with multi-dimensional linear regression calculations. He also
evaluated the rope elongation after it had been loaded for a long time.

The following remarks about the rope elasticity module relate mostly to the
Stuttgart tests conducted by Feyrer and Jahne (1990). These tests were done with
nearly all types of construction for round stranded wire ropes. A lot of the tests
were carried out by the students listed in the previous article.

2.2.3.1 Stress-Extension Curves

The measurements of stress-extension curves—which form the basis of the eval-
uation for rope elasticity modules—have always been taken in the same manner.
The rope elongation AL is measured for a rope length of L = 2,000 mm with two
inductive elongation meters on the right and left of the rope as seen in Fig. 2.11.
The results of these measurements are recorded for the first loading cycle up to
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clamp inductive elongation meter wire rope clamp

1 7 =
T measuring length L = 2000 mm

| 1

Fig. 2.11 Arrangement for measuring the wire rope elongation, Feyrer and Jahne (1990)
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Fig. 2.12 Stress-extension curves for a stranded wire rope with fibre core, Feyrer and Jahne
(1990)

rope tensile stress o, = 800 N/mm? and after nine loadings between o, = 0 and
o, = 800 N/mm? for the tenth loading and unloading.

The nine loading cycles should give nearly the same compression of the rope
structure as is found in practice after some time under working conditions (of
course with smaller tensile stresses and a greater number of loading cycles). It will
be anticipated here that after ten loading cycles the mean residual extension is 4 %
with a large deviation. A residual extension of approximately the same size was
found for wire ropes running over sheaves after 2 % of their life time as Woernle
(1929) already noticed. However a residual extension of 3 % was measured again
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Fig. 2.13 Stress-extension curves for a stranded wire rope with steel core, Feyrer and Jahne
(1990)

for elevator ropes FC-8 x 19 after a long period of operation under these ten
loading cycles.

In Fig. 2.12, the stress-extension curves are presented for a wire rope with a
fibre core under the first and the tenth loading and unloading. This figure shows the
typical progressive increase of tensile stress arising as the rope extends. Especially
for wire ropes with a fibre core, a large progressive increase and hysteresis for
loading and unloading occurs. The progressive form of the rope stress-extension
curve has its origin in the lateral contraction of the stranded ropes. In ropes with
fibre cores, this is especially large and nonlinear.

The stress-extension curves of wire ropes with steel cores are given as an
example in Fig. 2.13. This also shows the progressive increase of the stress when a
rope with a steel core becomes extended. Normally, this is not as large as in the
case of wire ropes with fibre cores. However, in this special case, the residual
extension is greater. The stress-extension curve is always different for loading and
unloading. The enclosed area in the hysteresis loop is a mark of the inner frictional
work of the wire rope.
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Fig. 2.14 Stress-extension curves with loading between different stresses, Feyrer and Jahne
(1990)

Figure 2.14 shows the stress-extension curves for the loading and unloading of
the wire rope from Fig. 2.12 after the tenth loading cycle. Between the rope tensile
stresses 0 and 800 N/mm?, the tensile stress changes in small steps. In loop A, the
tensile stress increases starting from o, = 0 in steps of Ao, = 100 N/mm?* and
reduces the stress at every level reached in a small stress 100p Gyupper —
Olower = Ao, = 100 N/mm?®. The two lowest partial loops still show a clear
hysteresis, but the others do not.

Loop B is again loaded in stress steps of Ag, = 100 N/mm” but now starting
from o, = 800 N/mm? in a “down” direction. The two lowest partial loops show a
clear hysteresis as in loop A. The partial loops for the same stresses Giower and
Gupper i the loops A and B are practically parallel. They represent the rope
elasticity modules Es (Giower, Cupper)-

In loop C some partial loops of stress-extension curves are shown, starting from
o, =0 to the upper stresses Gypper = 200, 400 and 600 N/mm?. The loading
curves are the same for all upper stresses. The unloading curves from these upper
stresses can be taken approximately as a part of the entire unloading curve from
the upper stress 800-0 N/mm?, turned around the point for . = 0.
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Fig. 2.15 Assistant parameter: tangent elasticity module E, Feyrer and Jahne (1990)

2.2.3.2 Assistant Parameter: Tangent Elasticity Module

The stress-extension curves of the different wire ropes measured between the rope
tensile stresses 0 and 800 N/mm°—as seen in Figs. 2.12 and 2.13—will be used to
evaluate the rope elasticity module Eg (Giower» Oupper)- The calculation based on the
rope tangent module has the advantage of being very precise. The tangent module
has been taken point-for-point from the stress-extension curves. Figure 2.15 gives
an example of the tangent module based on the diagram in Fig. 2.12 after the tenth
loading and unloading. It should be realised here that the tangent module depends
strongly on the rope tensile stress and the direction of the loading or unloading.

Common linear regression calculation was used to work out the rope tangent
module from numerous wire ropes. After a number of trials, the best regression
equation was found to be

C n
E(0:) = Co+— +1A+ZC,~-X,~. (2.45)
Z =2

The constant A in the equation has to be worked out by iteration, but this does
not cause a problem when using computers. The wire rope construction is char-
acterised by the variables x;. For example x, = 0 is set for 6-strand ropes and
x, = 1 is set for 8-strand ropes. Separate regression calculations have been done
for ropes with fibre cores, ropes with steel cores and for spiral round strand ropes,
and also, of course, both for loading and unloading.

With a common constant
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n

B:C0+ZCi-x,~ and with C = Cy,
=2

the tangent elasticity module for the rope tensile stress ¢, on the stress-extension
curve between the tensile stresses o, = 0 and 800 N/mm? in an “up-and-down”
direction is

C
o, +A

E(c) =B+ (2.46)

The constants A, B and C are listed in Tables 2.1 and 2.2. The constant B for
wire ropes with fibre-covered steel cores in Table 2.1 has been changed unlike
constant B in Feyrer and Jahne (1990).

2.2.3.3 Rope Elasticity Module with the Lower Tensile Stress ¢, = 0

The extension ¢ of a wire rope is

1
e= | ——-do,.
/Et(az) :

Using (2.46), the extension of a wire rope between the two stresses gjower and
Oupper—in the stress-extension curve coming from ¢, = 0—in the *“up” direc-
tion—is

Tupper Tupper

1 o, + Ay
&= ———dg,; = -do,
B _;'_& Bup‘az +Aup'Bup+Cup
Olower up o, —+ Aup Olower
and after integration
6= Gupper — Olower _ Cup .In Gupper + Aup + Cup/Bup (247)

Bup B%]p Olower + Aup + Cup/Bup )

According to (2.47), the important rope elasticity module with the lower stress
Glower = 0 and the upper stress oypper 1S

o
Es(o.) = Es(0,0.) = f

or
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Table 2.2 Constants A, B and C for calculating the elasticity module of spiral round strand
ropes, Feyrer and Jahne (1990)

Rope condition New Ten times loaded
Load direction Up Up Down
Constant A 35 149 229
Constant B

Two strand layers 90,000 123,000 151,500

Three strand layers 89,000 121,000 149,500
Constant C -1,700,000 -11,200,000 —-26,700,000
Coefficient of determination 62 % 75 % 86 %
Standard deviation s 12,000 11,000 11,000

g,
Es(o,) = : . (2.48)

[ Cup

In{14-—-%
Bup Bip ( Aup + Cup/Bup )

This rope elasticity module is especially important for the first loading when it
is installed. The constants A, B, and C are listed in Tables 2.1 and 2.2.

2.2.3.4 Rope Elasticity Module Es Between Two Stresses

The rope elasticity module Es(01ower; Tupper) between the two stresses o4, and
Oupper 18 defined by the secant between these two stresses of the stress-extension
curve with a load reverse at the beginning stress, Figs. 2.9 and 2.14. The loading
direction changes in most practical applications at the beginning of the considered
loading. This is especially true in cases with a fluctuating load. Es(0jower»Tupper) 15
therefore the rope elasticity module normally used.

A very good approximation of this rope elasticity module can be obtained by
quasi-turning the stress-extension curve (between o, = 0 and ¢, = 800 N/mm?) in
the “down” direction around the origin of coordinate (¢, = 0) so far until its
extension at the upper stress is the same as that of the “up” direction (between
o, = 0 and o, = 800 N/mm?)

€up (Tupper) = &down (Tupper)- (2.49)

The rope elasticity module E(Giower, Oupper) Can be taken from the “down”
direction stress-extension curve turned as described. The turning will be brought
about by exchanging the constant Bgown t0 Bown,upper fOI €down (Cupper). Equation
(2.48) set in (2.49) gives (with this new constant for the “down” direction curve)
the equation for calculating the new constant Byown,upper
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Oupper C121p ‘n (1 + Oupper
By, By Aup + Cup/Bup (2.50)
Oupper Cdown 1 (1 + Oupper ) ’

B Bdown,upper B(Ziown,upper Adown + Cdown/Bdown,upper

The constant Bgownup has to be calculated by iteration using (2.50). The rope
€XLension Ejwer,upper €an be calculated with (2.47), the constant Bggwn,upper» and the
constants Agown and Cyown using Tables 2.1 and 2.2. Then the rope elasticity module is

0, — 0]
ES(O'lowen O'upper) = o (251)

Elower,upper

or
Oupper — Olower
ES (aloweh Oy, ) =
pper .
Oupper — Olower _ Cdown In Gupper + Adnwn + Cdown /Bdown,upper
Bdown,upper Bﬁownﬁupper Olower + Adown + Cdown /Bdown,upper
(2.52)

Calculating the rope elasticity module without the aid of a computer involves a
certain amount of effort. For some chosen rope stresses gjgwer and Gypper, the rope
elasticity module Eg(Giower» Cupper) 18 listed in tables. Table 2.3 shows the rope
elasticity module for 6-strand ropes with two wire layers and for spiral round
strand ropes. In case of rope oscillations with the middle stress ¢, and small
amplitude stress o,, the elasticity module required is Es(c,, £ 0). This rope
elasticity module is listed for some middle stresses in Table 2.3 as

ES(alower; Gupper) - ES(am; am)-
For example, for a rope 6 x 19—IWRC with ¢,, = 200 N/mm?>
Es(200 + 0) = Es(200;200) = 117 kN/mm?,

Table 2.4 gives correction constants AE for 8-strand ropes and for one and three
wire layers. With this, the rope elasticity module Es(Giowers Cupper) 18

Es(G1ower, Oupper) = Es(Table 2.3) + AE. (2.53)

The standard deviation can be taken from the Tables 2.1 and 2.2.
The elasticity module between two stress levels and the rope elongation can be
calculated with the help of the Excel-program SEILELA2.XLS.

Example 2.4: Wire rope elasticity module

Data:
wire rope IWRC + 8 x 19
rope tensile stresses between ¢. = 100 and . = 220 N/mm>.
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2 Wire Ropes Under Tensile Load

Table 2.4 Correction constants AE for round strand ropes with 6- and 8-strands of one, two and

three wire layers

Rope condition Rope core Correction constant
6-strands 8-strands
Wire layers Wire layers
1 2 3 1 2 3
New Fibre core 16 0 —1 14 -2 -3
Steel core 15 0 -1 -2 -17 —18
Ten times loaded Fibre core 11 0 -3 8 -3 —6
Steel core 11 0 -2 0 —11 —13

Fibre core = NFC, SFC; steel core = IWRC, PWRC, ESWRC, EFWRC

Results:
From (2.50) and (2.52)
ES(Glowerv Gupper) - ES (100, 220) == 98 kN/IIlIIl2

Alternative from tables:

From Table 2.3 the rope elasticity module for a rope IWRC + 6 x 19 is
Es(100; 200) = 107 kN/mm? and Es(100; 300) = 113 kN/mm® and as a middle
value Eg(100; 220) = 108 kN/mm?.

From Table 2.4 the correction constant for 8-strand ropes is AE = —11 kN/mm?.

This means that with (2.53), the rope elasticity module for the wire rope
IWRC + 8 x 19is Eg (100; 250) = 110 — 11 = 97 kN/mm?>. Nearly the same as
98 kN/mm”.

According to Table 2.1, the standard deviation is s = 10 KN/mm?.

2.2.4 Waves and Vibrations

2.2.4.1 Longitudinal Waves

If a long wire rope receives a shock load, a tensile force wave (strain wave) moves
along the wire rope starting from the initial point of impact. The velocity of the
wave is

c=4/— (2.54)

with E for the elasticity module and p for the mass density. For a single wire with,
for example, E = 196,000 N/mm? = 196,000 x 10° N/m? and p = 7,800 kg/
m> = 7,800 N s*m* the velocity of the wave is
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/196,000 - 10°
c 7.800 5,010 m/s

The wave velocity is of some importance for the understanding of accidents
related to wire rope installations. The tensile stress of a wave will be practically
doubled when it is reflected from the termination of the rope and it is possible that
the wire rope will break if the velocity v of the impact is big enough. For example,
the shock load can be effected on the hanging rope by a falling weight with the
striking velocity v. According to Irvine’s fundamental theory (1981), the tensile
rope force F produced by the shock load is

F=mp-c-v-emrei/M (2.55)

In this equation, m is the length-related rope mass, ¢ the wave velocity, v the
striking velocity, M the falling mass and ¢ the time. For r = 0, the wire rope shock
force is Fy = mycv and this fades away in time if the tensile shock force is not
great enough to break the rope. The size of the mass hitting the wire rope has no
influence on the tensile shock force but only on its fading. (If the falling mass M is
very large, the wire rope can of course break even if the velocity v is small. This
can be the case if the weight force Mg is greater than the rope breaking force or if
the falling energy is greater than the stress-extension energy of the rope.)

Irvine’s theory can be used to explain the terrible accident with an aerial rope
way at Cavalese on 3rd February, 1998, when an aircraft with a relatively fragile
structure severed a solid track rope and the haulage rope and was still able to fly
afterwards. The velocity of the aircraft was 241 m/s, the length of the tears in the
aircraft wings caused by the track rope were about 1 m and those caused by the
haulage rope, 0.5 m, Oplatka and Volmer (1998). They pointed out that the aircraft
wings would have been totally torn off if the aircraft velocity had been lower than
the limit velocity. Spontaneous wire rope breakages caused by aircraft impacts
also occurred prior to Cavalese, Lombard (1998a).

The wire rope breakage caused by the impact of an aircraft hitting the wire
occurs if its velocity v is big enough. According to Irvine, the minimum velocity is

v=c-\/e2+ 2 e (2.56)

In this equation, ¢ is the breaking extension and c¢ is once more the wave
velocity. With the breaking extension of rope wires ¢ = 0.007 with a safety
margin, Irvine (1981) calculated a minimum velocity v = 150 m/s for the aircraft.
Lombard (1998a, b) calculated a minimum velocity v = 156 m/s with one-third of
the wire elasticity module and a more realistic breaking extension ¢ = 0.018. He
used his own extended theory for this calculation.
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2.2.4.2 Longitudinal Oscillation of a Hanging Mass

A mass hanging on a wire rope can be made to oscillate along the axis of the rope.
Without taking the damping into consideration, the angular frequency is

and the frequency

= =— /= 2.57
2-m 2-m M (2.57)

Here it is presupposed that the rope mass is much smaller than the hanging mass
M and can be neglected. The wire rope as a spring has the spring constant

csg = ES (O_lower’llo-upper) A (258)

with the rope elasticity module ES (G1ower» Gupper)> the metallic rope cross-section A
and the rope length L. When the stress amplitude changes, the rope elasticity
module will be nearly constant if the middle stress remains the same. The rope
elasticity module

Es (O-lowera aupper) =Es (O'm + aa) (2583)
with the amplitude o, and with the middle rope tensile stress

_M-g
A

Om (2.58b)
can be evaluated using (2.50) and (2.52) or Tables 2.3 and 2.4.

The frequency of the hanging mass—neglecting the rope damping and other
dampings—can be calculated with the help of the Excel-program SEILELA2.XLS.

In addition to the frequency, the damping of the longitudinal vibrations is of
interest. Wehking et al. (1999) have made some decay tests. Figure 2.16 shows the
test situation. A main mass M and a dropping mass M4 hang on a wire rope with
the diameter d = 10 mm and the length / = 12 m. After cutting the thin rope
between the main mass M and the dropping mass M, the main mass swings with
decreasing amplitude.

Figure 2.17 shows the typical behaviour of a decay test. Only the tests with
wire ropes which were ten times loaded before will be considered here. With the
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Fig. 2.16 Test situation for

crane
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=

metallic cross section of the wire rope A = 45.1 mm?, the middle rope tensile
stresses for both of the main masses M = 400 and 2,000 kg are

_400-9.81

2,000-9.81
Om = _ 87 Nmm? and oy = 22000981

=4 2.
451 451 35 N/mm
Using (2.50) and (2.52), the rope elasticity module of the Warrington rope is

Es(87 £ ,) = 83,000 N/mm*> and Es(435 + o,) = 125,000 N/mm>.

Or alternative, by interpolation for the 6-strand rope from Table 2.3 and AE
from Table 2.4, the rope elasticity module Eg is approximately

—4
Es(87 + 6,) = E5(40;40) + (Es(100; 100) — Es(40;40)) .H L AE

47
Es(87 £a,) =77 + (98 —77) o~ 1=82 kN/mm?

and
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6,75
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Fig. 2.17 Decay behaviour of a mass hanging on a wire rope, Wehking et al. (1999)

435 — 400

500 _400 T °F

Es(435 + 0,) = Es(400;400) + (Es(600; 600) — Es(400; 400))

35
Es(435 £ 0,) = 134 4 (141 — 134) - o — 11 = 124 kN/mm’.

For the rope elasticity modules—evaluated using (2.50) and (2.52)—the spring
constants according to (2.58) are

83,000 - 45.1
Ccsg7 = W = 312 N/mm — 312,000 N/m and
125,000 - 45.1
CS435 = W =470 N/mm — 470,000 N/m.

Without taking the damping into consideration, according to (2.57) the fre-
quency is then

Jogr =445 Hz and fo435 = 2.44 Hz.

Under the influence of the damping, the amplitude (stress or extension) is
continuously reduced and the frequency is somewhat less. With the small damping
of the inner rope friction, the amplitude is
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Table 2.5 Results from decay tests, Wehking et al. (1999)

Main Middle stress, Dropping Measured  Calculated  Logarithm  Decay
mass, [ (N/mm2) mass, frequency, frequency, decrement, coefficient,
M (kg) M, (Kg)  fumes (1/8)  fear (1/s) A (—) d (1/s)
400 87 134 5.03 4.45 0.125 0.629
2,000 435 134 2.48 2.44 0.046 0.115
2,000 435 500 241 2.44 0.089 0.215

x = x; cos ot. (2.59)

In this, J is the decay coefficient, @ the angular frequency of the damped
vibration and ¢ the time. The decay coefficient is

The logarithmic decrement A is the natural logarithm of the ratio of two
consecutive maximum amplitudes
%
A =In—
Xit1

The frequency of the poorly damped vibration is

o=\ w} — & (2.60)

The results of the decay tests conducted by Wehking et al. (1999) are presented
in Table 2.5. Because there is only a very small decay coefficient, the frequency is
hardly reduced by the damping. The frequencies which were measured and cal-
culated are compared in Table 2.5. For the small middle rope tensile stress 87 N/
mm?, the difference between the measured and the calculated frequency is 13 %.
That is probably caused by the big deviation occurring in the measured elasticity
module for small stress levels. For the big middle rope tensile stress 435 N/mm?>
there is practically no difference between the measured and the calculated
frequencies.

As expected, the damping of wire ropes with longitudinal vibrations is much
greater for the small mean stress than for the big one. This behaviour is caused by
the inner rope friction, Andorfer (1983). The hysteresis area, enclosed by the
loading and unloading loop, shows the damping energy. In Fig. 2.14, it can be
clearly seen that the higher the stress level is, the smaller the enclosed area.
Certainly, as far as the wire rope with fibre core in Fig. 2.14 is concerned, the
damping is greater than that found for a rope with a steel core. No explanation was
found for the smaller logarithm decrement 4 which was measured for the smaller
dropping mass.
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Example 2.5: Frequency of a mass hanging on a wire rope

Data:

Filler 6 x 19-IWRC-sZ (ten times loaded)
Mass M = 1,000 kg

Rope diameter d = 10 mm

Rope length L = 50 m

Results:
With the wire rope-cross section A = C2d2 = 457 mm® with C, = 0.457
accordingly Table 1.9, the rope tensile stress is

M-g M-g  1,000-9.81

_ _ 2
A G & 0457102 218 N/mm®.

Om

According to (2.50) and (2.52), the wire rope elasticity module is
Es = 119,300 N/mm?.
From that, according to (2.58), the spring constant is

119,300 - 44.9

= 107,130 N
50 07,130 N/m

cs

and the frequency according to (2.57) is

1 [107.130
fo=5—1/ o0 = 6311/

2.2.4.3 Transverse Waves

A short-time local (lateral) deflection moves as a wave along the wire rope. Czitary
(1931) investigated these waves theoretically and he pointed out that the tensile
force of a wire rope can be calculated by measuring the wave running time.
According to Zweifel (1961) the velocity of a transverse wave is

g-S El 2 -7,
L= \/7[1 +?(T) ] (2.61)

In this S is the rope tensile force in N;
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the acceleration due to gravity in m/s%;

the length-related rope weight force in N/m;
the rope elasticity module in N/m?;

the equatorial moment of inertia in m4;
is the wave length in m.

N -]

If a wire rope is knocked with a lead hammer, transverse waves of different
wave lengths will be initiated and run along the rope. As (2.61) shows, the velocity
of the wave increases with the decreasing length of the wave. The velocity of a
wave package with different wave lengths is therefore inhomogeneous with a
scatter which increases with time. The lead hammer method is therefore unsuitable
for evaluating the tensile force of a rope. Instead of this, Zweifel (1961) recom-
mended using the kind of impulse which produces a wave length which is as large
and homogeneous as possible so that the bending stiffness of the wire rope can be
neglected and (2.61) can be simplified to

With the length-related rope mass m, = ¢/g, the wave velocity is

s

my

(2.62)

L=

The failure for the rope tensile force calculated is smaller than 1 % if the wave
length is at least A > 250; 300 and 4504 for the tensile rope stress g, = 600; 400
and 200 N/mm?, Zweifel (1961). The desired wave length A will be obtained if the
impulse brought on the rope is not too sharp and 4/4 away from the end of the rope.
Zweifel recommended winding a fibre rope around the wire rope and pulling on
that shock-wise by hand. He supposed that the force of one hand was sufficient for
a wire rope of 20 mm diameter. For thicker wire ropes, it would be necessary to
have several persons pulling (increasing in number with the rope diameter
squared). After pulling, the fibre rope should be slightly stressed by hand, so that
the waves coming back can be sensed. For n cycles in the measured time ¢ and for
the rope length L, the length of the rope from one end to the other, the wave
velocity is

(2.63)

According to that and (2.62), the rope tensile force in the middle of the rope
field is
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S =m,- (2'”'L>2. (2.64)

t

For very large rope fields, Zweifel presented equations to calculate the rope
tensile force considering the chain line.

Example 2.6: Rope tensile force from the running time of the transverse wave

Data:

Seale rope 6 x 19-NFC-zZ

rope diameter d = 20 mm

distance between rope terminations L = 250 m
number of cycles n = 12

running time ¢ for n cycles t = 40 s

Results:
According to Eq. (1.5b) and Table 1.9, the length-related mass m, of the rope is

1

1
=100 V14

- 359.20% = 1.436 k
00 0.359 - 20 36 kg/m

ny

Then according to (2.64), the rope tensile force in the middle of the rope field is

2-n-L 2-12-250

40

S=m-( )* =1.436 - ( )* =32,300 N.

2.2.4.4 Transverse Vibrations

Transverse vibrations are to be understood as standing waves. The equations for
the velocity of the waves can be used to calculate the frequency. Because the wave
length is large, the influence of the bending stiffness is very small and can be
neglected. So (2.62) can be used and the running time of the wave, there and back,

is
2-L my
h=—7=2-Ly/—. 2.65
e (2.65)

In this, L is once again the rope length (or the distance between the ends of the
rope for a small curvature). The period T of a standing wave is
L

T:—.
l
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and with (2.65)

2-L [my
T=—-/— 2.66
i S ( )
In this i is the number of the antinodes of vibration on the rope length. The
frequency is
1 i S
—— = | = 2.67
F=7=71\m (2.67)
In rope fields which are not too long i.e. about 100 m, it is possible to make the
rope vibrate, Zweifel (1961). Using the frequency f observed here, the rope tensile
force S can be calculated according to the converted (2.67)

s:mr(z'f'L>2. (2.68)

l

There are strong variations of the rope tensile force in rope-ways due to
braking. The movements of the ropes and their connected masses in such systems
can only be calculated with large-scale methods. Such methods are presented by
Czitary (1975), Engel (1977), Schlauderer (1990) and Beha (1994). For transverse
vibrations, the damping depends on the rope construction, the rope tensile force
and the amplitude. Raoof and Huang (1993) reported investigating into the
damping of spiral ropes.

The basic frequency of transversal vibration (string) of a wire rope can be
calculated with the help of the Excel-program SEILELA2.XLS.

Example 2.7: Frequency of transverse vibration (string)

Data from Example 2.5.
According to Table 1.9, the length-related rope mass is

1
W, -d* = oo 04 10> = 0.40 kg/m

The frequency of the transverse vibration with one antinode of vibration i = 1

is
i /S 1 [1.000-9.81
F=31\Vm =230V 040 S6611/s
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Fig. 2.18 Relative rope diameter d/dy of 8-strand ropes with fibre core

2.3 Reduction of the Rope Diameter Due to Rope
Tensile Force

The reduction of the rope diameter due to the rope tensile force is caused by the
lateral contraction of the wires, the strands and, in particular, the cores. The lateral
contraction of the wires caused by its tensile stress is small. Even for a tensile
stress of 670 N/mm? the wire contraction is only one per mil of the diameter of the
wire. In comparison, the effect of the relatively low length-related compressive
force of the wires and in particular of the strands on the core is much greater.

The length-related compressive force first results in resetting any loose wires
and strands and then in deforming the rope in a different way. There is also some
minor deformation due to the pressure between wires crossing. As far as fibre-core
wire ropes are concerned, a large diameter reduction occurs and this is mainly due
to the compression of the core. The diameter reduction of steel-core wire ropes, on
the other hand, is normally less than that found with fibre-core wire ropes and this
is mainly caused by the wires of the strands and the core becoming adjusted to one
another.

Measurements were taken of the diameters of a great number of wire ropes
affected by different tensile forces. Figures 2.18 and 2.19 show the diameter
reduction measured as the relative rope diameter ds/d, for the first loading. The
diameter for the loaded wire rope is dg and the actual diameter for the not loaded
wire rope is d,. Figure 2.18 presents the relative rope diameter of 8-strand fibre-
core wire ropes and Fig. 2.19 those with steel cores. The nominal rope diameter—
which is normally smaller than the actual diameter—of all these ropes is 16 mm.
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Fig. 2.19 Relative rope diameter d/d, of 8-strand ropes with steel core

Relative rope diameters d/d, deviate to a great extent. The most important
influences are due to wires and strands loosening and to variations in core density.
An unexpectedly small diameter reduction can result from the strands arching.
Such arched strands reduce the working life of running ropes and should therefore
be avoided. For the fibre-core wire ropes normally used for rope ways, the regu-
lations therefore recommend that up to half of the wire rope breaking force the
rope diameter should be at least 3.1 times the strand diameter for 6-strand ropes
and 3.8 times the strand diameter for 8-strand ropes.

2.4 Torque and Torsional Stiffness
2.4.1 Rope Torque from Geometric Data

If a wire rope is loaded by a tensile force, a rope torque will occur due to the helix
structure of the rope. The torque can be calculated if the geometric data of the wire
rope and the rope tensile force are known. Heinrich (1942) was the first to
investigate the torque of a strand by consistently taking any changes in the strand
diameter and the lay length into account. Costello and Sinha (1977a, b), Costello
and Miller (1979) have also arrived at this derivation. In contrast, most authors
such as Dreher (1933), Hruska (1953), Unterberg (1972) and Haid (1983) made
use of a practical calculation which neglected minor influences. Engel (1957,
1958) calculated the torque and the torsional stiffness as well.
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By neglecting the same minor influences, it is possible to come up with a
calculation method for the torque using the equations from Sect. 2.1. According to
(2.11) the torque of a not twisted strand or spiral rope is (with the wire winding
radius ry = r)

M = ZS, -1 -z - tan o (269)

i=1

The symbols are the same as in Sect. 2.1. The lay angle o for a different lay
direction is used with a different sign. In neglecting the contraction (Poisson ratio
v = 0) and with the same elasticity module E for all wires, according to (2.20a) the
torque is

n
M= -E- Zz, ri - A; - cos® o - sin ;. (2.70)
By neglecting the same influences, according to (2.21) the rope tensile force is

Al
=S E. Zz,- -cos® ;. (2.71)

By eliminating E - Al;/I; from (2.70) and (2.71), the torque of a not twisted
strand or spiral rope is

S-S ziori-A;-cos? o - sinoy

M =
S0z A cosd

(2.72)

It is advisable to introduce a torque constant c¢;s. With that constant, the torque
for a strand or a spiral rope is

M = C1s - ds -S. (273)

The torque constant c¢{g depends only on the rope geometry. Out of (2.72) and
(2.73), the torque constant for strands or spiral ropes is

Sz riAp - cos® o - sinoy
n
ds - Y7 ozi - Ai-cos® o

Cc1s = (274)

Analogous to (2.72), the torque for a stranded rope can be expressed with a
torque constant ¢,

M=c -d-S. (2.72a)
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Fig. 2.20 Wire rope with
one strand layer

The torque constant ¢, for a stranded rope with some round strand layers (strand
lay angle f8;) with fibre or steel core is

. Sz Ajrsi-cos® fisin i+ Y1 7+ Aj - ds; - cisj - cos’ 2.75)
= o2
d-3 oz Aj-cos B

For a one-layer round strand rope with fibre core the equation for the torque
constant can be simplified enormously to

_rs-tanfB+4ds - cis
= y .

C1

The symbols here are the same as in Fig. 2.20. For spiral round strand ropes
with the same strands in all strand layers the torque constant is a simplification of
(2.75)

DG TSt cos? f; - sin B; + cys - ds - D0t cos® f;
d-y oz~ cos® f;

Cc] =

(2.76)

It is possible to calculate the torque of round strands and round strand ropes to a
satisfactory degree of accuracy with the equations presented here provided that
there is sufficient known geometric data for the rope. These methods of calculation
are of particular use to rope manufacturers when designing new ropes, especially
for so-called non-rotating ropes. Such ropes have to be designed in such a way that
the resulting rope torque is as close to zero as possible.

Calculating the rope torque with the equations presented here is only possible
for ropes which are not twisted. For twisted ropes, the torque is strongly influenced
by the torsional rope stiffness.
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Example 2.8: Torque constant c¢ of the open spiral rope in Fig. 2.4

According to (2.74), the torque constant is

(613 —12-2.55+18-3.8)-1.227-0.970% - 0.242

1S = 885 [1- 1431 + (6+ 12+ 18) - 1.227 - 0.9707]
12.74
C1s = M = 0.0345.

2.4.2 Torque of Twisted Round Strand Ropes

2.4.2.1 Measurements

The torque of twisted and not twisted round strand ropes has been investigated by
measurements. With the results of these measurements a simple calculation
method will be derived with that the customer can calculate the torque for a given
wire rope. This method will have the advantage that it can be used without
knowing the precise geometrical data of the rope.

Torque measurements with different tensile forces and different twist angles are
carried out with a series of ropes. The equipment of Feyrer and Schiffner (1986)
comprises a torque meter and a rope twisting device, mounted in a tensile testing
machine for carrying out the measurements. The torque meter, which measures the
torque by means of strain gauges, is because of the installed membranes nearly not
influenced by the tensile force. The entire equipment is shown in Fig. 2.21. Rebel
and Chandler (1996) presented a measuring equipment with the opportunity to
measure in addition the rope elongation and the rope diameter reduction.

In all cases the wire rope is at both ends fixed in a rope socket so that a relative
motion of the wires and the strands are prevented strictly. The torques measured with
different twisted wire ropes (positive sign for turn off) are shown in Figs. 2.22 and 2.23
for ordinary lay ropes 6 x 7-FC and Warrington 8 x 19-FC. As for all wire ropes
with fibre core the torque increases nearly linear with the tensile force. The distance of
the lines for the different twist angles is for the wire rope 6 x 7-FC bigger than for the
Warrington rope 8 x 19-FC. That means the wire rope 6 x 7-FC with 42 wires is
more torsion rigid than the Warrington rope with 152 wires. The Warrington rope has
been measured lubricated and not lubricated with practically no different torque.

The torque for the increasing and decreasing tensile force shows nearly no hyster-
esis. In the following diagrams only the lines for the increasing tensile force are shown.

For wire ropes with independent made steel wire rope core IWRC the torque
also increases nearly linear with the tensile force. To demonstrate this, in addition
to the measured torque lines, straight lines are sketched in Fig. 2.24 for a Filler
rope 8 x (19 4 6F)-IWRC-sZ.

Double parallel wire ropes (PWRC) have only a nearly linear relation between
torque and tensile force for small twist angles. Figure 2.25 shows the torque of a
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torque meter rotary device

strain gauge torque resistant locking device

\ _~ membrane
Mrﬁ’? i
J_E [H_Jfri rope socket

Fig. 2.21 Equipment for measuring the torque and the rotary angle, Feyrer and Schiffner (1986)

Fig. 2.22 Torque of a wire ' ]
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. ordinary lay
and Schiffner (1986) Nm o 16.9 mm /
/
=100 yd // <
: / d
g
®©
3 ‘é
2 50 4
360°/100d
/ 27 & 180°/100 d
0
—-180°/100d
/ [ 360"/ 1004
I !
e 7 20 40 60 kN 80
rope tensile force S
0 200 400 600 n/mm?2 800
rope tensile stress o,
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sZ, Feyrer and Schiffner d=13.7mm
(1986) 60

&
.Qseowmw
180°/100 d

o

rope torque M
B
o

\

~180°/100 d
-360°/100d |
|
|
0 |
10 20 30 40 kN 50
0 .
rope tensile force S
0 200 400 600 N/mm® 800

rope tensile stress c,



110

Fig. 2.24 Torque of a Filler
rope 8 x (19 + 6F)-IWRC-
sZ, Feyrer and Schiffner
(1986)

Fig. 2.25 Torque of a Seale
rope 8 x 19-PWRC-zZ,
Feyrer and Schiffner (1986)
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Seale rope 8 x 19-PWRC-zZ. In the twisted state the strands and the core are
loaded very differently. Therefore in the 360° untwisted wire rope on the rope
length L = 100d, the core breaks very soon at the relative small rope tensile stress
oz = 640 N/mmz, as to be seen in Fig. 2.25.
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Fig. 2.26 Torque of a spiral
round strand rope with two
strand layers, Feyrer (1997)

Fig. 2.27 Torque of a spiral
round strand rope with three
strand layers, Feyrer (1997)
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In addition to the described investigation (1986) a lot of torque measurements
with spiral strand ropes have been done from the Institut fiir Fordertechnik der
Universitdt Stuttgart in a great part by students. This work was sponsored from
AVIF and the Drahtseilvereinigung, The results of this investigation are presented
by Feyrer (1997), in which the work of the students are listed.

The torque of a spiral strand rope with two strand layers is shown in Fig. 2.26
and that with three strand layers in Fig. 2.27. The torque-tensile-force lines are all
buckled even for the not twisted rope. The reason for this buckling of the not
twisted rope is that the different strands are not loaded from the load beginning.
The relative big distance between the torque lines shows that the spiral strand

ropes are twist rigid.
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2.4.2.2 Calculation of the Torque for Wire Ropes

The results of the torque measurements with the round strand wire ropes with one
strand layer can be very good evaluated by a regression calculation. Kollros (1974,
1976) evaluated first his torque measurements with such a regression. Based
on theoretical considerations he creates an equation with two constants for
the regression. Forerunner of these constants are the torque constant u =
M/S = cd and the torsional stiffness D = M/w from Engel (1957, 1958, 1966).
The torque measurements with many wire ropes by Feyrer and Schiffner (1986)
show that two constants are not enough to describe the results with good precision.
Therefore the regression for the results of these measurements has been made
practically with the equation of Kollros but with three constants. The torque is then

M=c -d-S+c-d®-S-w+c-G-d*-o. (2.77)
Therein M is the torque;

the rotary angle in rad;
the rope diameter;

the twist angle;

the tensile force;

the rope length;

the shear module;

Qbwe s
[
2
h

and, ¢; ¢, c3, are constants.

The twist angle w has to set positive for turning off the rope and negative for
turning on the rope. The constants ¢ and their standard deviation are listed in
Table 2.6. These constants have been found by regression of Feyrer and Schiffner
(1986) with their own test results, with many test results of students and with the
test results of Kollros (1974) and Unterberg (1972). As limit for the use of (2.77)
with the constants ¢, the maximum allowed twist angle ®,x = @Pmax/100d (angle
for a rope length of 100 times rope diameter) is also given in Table 2.6.

By measurements with wire ropes of diameters 55.6 and 76 mm Kraincanic and
Hobbs (1997) evaluated torque constants c; that corresponds respecting the stan-
dard deviation with those in Table 2.6. Cantin et al. (1993) found in measurements
with a 6-strand rope constants ¢; and ¢, comparable with that of Table 2.6 but the
constant c3 deviates more than 30 %. For lang’s lay triangular strand ropes Rebel
(1997) found that (2.77) cannot describe satisfactory the measured torques.
Therefore Rebel established an equation with nine constants what he evaluated out
of his measurements.
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Table 2.6 Constants ¢y, ¢;, c3 to the torque (2.77), Feyrer and Schiffner (1986)

Rope construction 6-strand 8-strand

Core Layer Strands ¢ c c3-10° tPma  c1 c 3+ 10° £
number of for 100d for 100d
wires

FC sZ 7 0.100 0.157 0.765  360° 0.106 0.166 0.658  360°
19 Seale 0.109 0.207 0.400 360° 0.115 0.216 0.293 360°
19 Filler*, 0.102 0.212 0.376  360° 0.108 0.222 0.268  360°
19 Warr.  0.102 0.212 0.376 360° 0.108 0.222 0.268 360°
36 Warr.-  0.105 0.212 0.376  360° 0.111 0.222 0.268  360°
Seale

FC Z 7 0.123 0.127 0.732  360° 0.129 0.137 0.624  360°
19 Seale 0.132 0.177 0.367 360° 0.138 0.186 0.259 360°
19 Filler®, 0.126 0.183 0.342 360° 0.131 0.194 0.234 360°
19 Warr.  0.126 0.183 0.342  360° 0.131 0.194 0.234  360°
36 Warr.- 0.128 0.183 0.342 360° 0.134 0.194 0.234 360°
Seale

IWRC sZ 7 0.080 0.131 0.921 180° 0.086 0.141 0.813 180°
19 Seale  0.089 0.181 0.556  180° 0.095 0.190 0.448  180°
19 Filler®, 0.082 0.187 0.531 180° 0.088 0.196 0.424 180°
19 Warr.  0.082 0.187 0.531 180° 0.088 0.196 0.424 180°
36 Warr.-  0.085 0.187 0.531  180° 0.091 0.196 0.424  180°
Seale

IWRC Z 7 0.103 0.101 0.888  180° 0.109 0.112 0.779  180°
19 Seale 0.112 0.151 0.523 180° 0.118 0.160 0.414 180°
19 Filler*, 0.105 0.158 0.497  180° 0.111 0.168 0.390  180°
19 Warr.  0.105 0.158 0.497 180° 0.111 0.168 0.390 180°
36 Warr.-  0.108 0.158 0.497  180° 0.114 0.168 0.390  180°
Seale

Standard deviation 0.012 0.028 0.080 0.012 0.028 0.080

“ Filler 19 = Filler 19 + 6F

Example 2.9: Wire rope torque

Data:
Filler rope 6 x (19 + 6F)—NFC-sZ
rope diameter d = 16 mm
rope length L = 5,000 mm
shear module G = 76,000 N/mm?
tensile force S = 40,000 N
angle of turn on ¢ = —600°
¢ = -2 -m-600/360 = —10.47 rad
twist angle w = —10.47/5,000 = —0.002094 rad/mm = —192°/100d

The constants out of Table 2.6 are
¢y = 0.102; ¢, = 0.212; ¢3 = 0.376 x 1073
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Results:

According (2.77) the rope torque is

M =0.102 - 16 - 40,000 — 0.212 - 16> - 40,000 - 0.002094 —0.376 - 10> - 16* -
0.002094 - 76,000

M = 65,800 — 4,540 — 3,920

M = 56,800 N mm = 56.8 Nm.

2.4.2.3 Definition of Non-rotating Rope

The spiral strand ropes are designated for supporting loads without turning pro-
tection. Therefore they should be rotation-resistant to a great extent. This will be
succeeded only approximately. Really non-rotating spiral strand ropes do not exist.
But it is useful to define the limit up to this a wire rope can be declared as a non-
rotating one.

A proposal for the definition of a non-rotating wire rope is:

A wire rope counts as non-rotating if the twist angle rests smaller than

10 360°
R S,
L~ 1,000-d
during the tensile loading between
S S 2

2.4.2.4 Spiral Round Strand Ropes

From 48 spiral round strand ropes with three strand layers (with between 14 and 20
outer strands) seven ropes are not non-rotating for the given definition. On the
other hand from the 25 tested spiral round strand ropes with two strand layers (with
between 10 and 12 outer strands) six ropes are still non-rotating.

The non-rotating spiral strand ropes show—if not twisted—torque-tensile-force
lines with a small buckling and a mean constant ¢; = 0.026 with the standard
deviation s = 0.012. For all these ropes the torque constant c,, calculated with
(2.76) on the base of geometrical data, has been very well confirmed by the torque
zero is to lead back on the rope geometry not optimal chosen. Under the specific
tensile force S/d* = 0-150 N/mm? the “non-rotating ropes” show the mean twist
@/1,000d = —40°/1,000d in turning on direction with the standard deviation
s = 140°/1,0004.

The low-rotating spiral round strand ropes with two strand layers show—if not
twisted—a nearly straight torque-tensile-force line with ¢; = 0.058. For a small
twisting up to 90°/100d a nearly straight torque-tensile-force line is only to expect
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for specific tensile forces above S/d? > 70 N/mmz, as can be seen in Fig. 2.26. For
that the constants are

c; = 0.058
¢y = 0.269
c3 = 0.00853.

2.4.2.5 Conditions for Calculations with Rope Twist

The results of the calculations are valid on the condition that

e the wire rope is at both ends fixed in a termination so that the relative motion of
wires and the strands are prevented strictly
e the twist angle ® < 360°/100d for ropes with fibre core FC
< 180°/100d for ropes with steel core IWRC

according to the measurement limits in Feyrer and Schiffner (1986/1987)

e and in case that the angle between the chord of the rope bow and the horizontal
Br < 90°, the result of the calculation is nearly valid on the condition that the
sag of the rope bow is small.

2.4.3 Rotary Angle of a Load Hanging on Two or More Wire
Rope Traces

A load hanging on wire ropes will be rotated by the rope torque. The rotary angle
¢ of the load will be derived for two or more traces from the same wire rope.
Following Unterberg (1972), who has made the first derivation, the bottom sheave
of a crane will be taken as example, Fig. 2.28. Out of the energy W for lifting the
bottom sheave and the load when the bottom sheave turns, he found for the reverse
moment

dW_ ry-rp - sin @
do /B2 —2-r1 -1y (1 —cos )

Mrev - Qtot- (278)

Q is the force from the mass of the load and the bottom sheave. The meaning of
the other symbols can be taken out of Fig. 2.28.

With the presupposition that the height hy is much bigger than the distances r;
and r, between the wire rope traces and the load rotary axis, the reverse moment is
(with the rope weight force Giope)
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Fig. 2.28 Rotation of a ry - ry —=
bottom sheave r t
i
| Wd~ /
] ¥ rope /
N \ diameter ;/
he A\ i / !
..I- E
bottom *r' )
sheave 3
]
\ yf,f,’
N
Iy -1y -sin¢g ry -1y - sin g
Mrey = ———— Qo =—"—"(Qo + Q + Grope/2) (2.79)
hg ho
with
Qo + Q weight force of the bottom sheave and the load
Grope weight force of all wire rope traces

These weight forces will be reduced by the buoyancy, if the installation is
situated under water.

The torque of all the wire rope traces can be calculated with Eq. (2.77) and the
constants of Table 2.6. Then for untwisted ropes (o = 0) the mean torque of the
bearing wire rope traces is

Miope,50 = €1 - d - (Qo + Q + Grope/2)- (2.80)
The torque, that is not exceeded in 90 % of the cases, is
Mropeo = (c1 +1,282s1) - d - (Qp + Q + Grope/2) (2.80a)
with

c; from Table 2.6
s; from Table 2.6.

The bottom sheave rotated with the angle ¢ is in equilibriom for
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Mrope = M,,.
With that and the Egs. (2.79) and (2.80) the mean rotary angle is

hy-d-
P59 = arcsin — = €1 (2.81)
-1

and the rotary angle that will not be exceeded in 90 % of the ropes (for untwisted
ropes, ®y = 0) is

hy-d- 1,282 -
(oo = arcsin — (Cr] +r : Sl). (2.81a)
112

In addition a pre-twisting with a twist angle oy # 0 can occur by wrong rope
mounting or rope running over sheaves with side deflection. Under the influence of
those pre-twisted ropes the total rotary angle is

ho-d~(C1+l,282‘S1)) (281b)

(o = aresin <ftwi : -
The twisting factor fi,,; is the ratio between the torque M out of the Eq. (2.77)
for the pre-twisted ropes (0 = ®g) and that without pre-twisting (o = 0)

; A:(cl—I—1,282~s1)-d~S+cz-d2-S~w+03-G-d4-w (2.82)
o (c;+1,282-5;)-d-S '

with the rope tensile force

_ QO+Q+Gr0pe/2
VA

S

(2.83)

A pre-twisting angle should be estimated according the existing circumstances.
For example with two or four bearing rope traces (z = 2 or 4), a pre-twisting angle
®p = 20°/100d may be exist.

The presented calculation method is not only valid for two rope traces. For all
number of bearing rope traces is

e 1 is the mean distance between the upper end of all the rope traces to the load
rotation axis

® 1, is the mean distance between the lower end of all the rope traces to the load
rotation axis.

An overlapping of the bearing rope traces will be prevented, if the rotary angle
is smaller than 90°. The critical case is that for the load force out of the bottom
sheave mass only and for the biggest possible height hy .
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For the practical calculation of the rotary angle the Excel-program FLAD-

REH2.xlIs can be used.

Example 2.10: Rotary angle of a bottom sheave

The distances corresponding with Fig. 2.28 are

r; = 200 mm
r, = 150 mm

hy = 8,000 mm
rope WS—IWRC—6 x 36—sZ—1,770 N/mm*
d =16 mm

¢; = 0.085 from Table 2.6

s; = 0.012 from Table 2.6

W = 0.409 length mass factor, EN 12 385
g = 9.81 fall acceleration g in m/s*

z = 2 number of bearing rope traces

o = 20°/100d

Results:
The weight force of the bearing wire rope traces in N is

Grope =W d2 -hyg - g Z/IO0,000
Grope = 0.409 - 167 - 8,000 - 9.81 - 2/100,000 = 164.3 N

The wire rope tensile force is

600 + 0 + 164/2

S
2

=341 N.

The twisting factor is

1,128
foi = —— = 2.06.
‘ 548 06

The mean rotary angle of the bottom sheave without pre-twisting is according
Eq. (2.81)

8,000 - 16 - 0.085

200160 = arcsin 03627

(P5p = arcsin

(pSO == 21.30

and according Eq. (2.81a) in 90 % smaller
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8,000 - 16 - (0.085 + 1.282-0.012)

200150 = arcsin 0.4283

P9y = arcsin

¢90 = 25 .40

According Eq. (2.81b) the total rotary angle that the bottom sheave not exceed
is

Pror = arcsin2.06 - 0.4283 = arcsin 0.8823
Qo = 61.9°.

An overlapping of the bearing rope traces is not to fear.

2.4.4 Rope Twist Caused by the Height-Stress

2.4.4.1 Wire Rope Supported Non-rotated at Both Ends

Because of the rope weight the tensile force in a suspending rope has on the upper
end a bigger tensile force than on the lower end. The rope stress increasing with
the height of the suspending rope is called height-stress. Because the rope torque
along the rope length must be constant, the wire rope supported non-rotated on the
upper and the lower end will twist between the both ends. The rotary angle of a
vertical hanging wire rope is demonstrated in Fig. 2.29. The rope turns on in the
upper field and off in the lower field.

Engel (1957) and little later Hermes and Bruuens (1957) derived at first the rotary
angle caused by the height-stress, see also Gibson (1980). Engel (1959) calculated
the twist angle for haul and traction ropes of rope ways. Rebel (1997) calculated
with his own equation the rotation of triangular strand ropes in deep shafts.
Malinovsky and Tarnavskaya (2006) derived their calculation method reminding

Fig. 2.29 Rotary angle ¢ i xb

and twist angle o of a vertical T4~ X '

hanging wire rope supported

on both ends non-rotated 1 d
L
. I .

} 0 ¢ 0 w

So
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the monograph of M. F. Glushko 1966. They reported from measurements of rope
lay length showing the twist and the stresses of hoist ropes in deep mine shafts.

In the following the rotary angle will be derived on the base of (2.77). That has
the advantage that the constants for the different wire ropes from Table 2.6 can be
used. Transforming (2.77) the twist angle is

de M—c -d-S
0w=—=

= . 2.84
dx ¢ d?>-S+c3-G-ad* ( )

The rope tensile force increases from the lower end with the rope length x and
the angle fr between the horizontal and the secant of the small rope bow
(S>m-g-L-cos fir as normal in practice) approximately

S~So+m-g-x-sinfg

with the tensile force Sy on the lower end and the length-related rope mass
m (exactly for fr = 90°). Equation (2.84) is with that

M—ci-d-(So+m-g-x-sinf)

do= - dx. 2.85
? cy-d* (So+m-g-x-sinfg)+c3-G-d* (2.85)
By integrating the rotatry angle ¢ is
X M ci-c3-d-G
qD_cz-d c-d> - m-g-sinfp ¢5-m-g-sinfg
Infcy -d* - (So +m-g-x-sinfg) +c3-G-d*]+B. (2.86)

As preproposed the rotary angle ¢ is ¢ = 0 for x = 0 and ¢ = 0 for x = L.
From this and (2.86) the torque M and the constant B can be derived. The torque
is

M:7c1-03-G-d37 cl-d-m-g-L-Sinﬁ§ (287)
) 1 Sy +¢3-G-d
n
¢ So+ cp-m-g-Lsinfg+ ¢3-G-d?
Then with (2.86) the rotary angle is
ln(cz-m-g-x-sin[)’F )
_c-x ¢ L ¢ So+ ¢3-G-d? (2.88)

(p_Cz'd_Cz'd.ln cy-m-g-L-sinfg ! '
cy S+ C3'G'd2

The maximum rotary angle occurs for the rope length
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¢Sy +c3-G-d> L
L . . (2.89
x((pmdx) Cz'm'g'SinﬁF +1n C2'm'g'L'SlnﬁF 1 ( )
c - So + C3'G'd2

The maximum rotary angle is given with x = x(@ax) in (2.88). The maximum
twist angle m,,x occurs on the lower rope end, y = 0. It will be calculated with
(2.85) for y = 0 and the torque out of (2.87).

For the practical calculation of the rotary angle ¢ and the twist angle o, the
Excel-program SEILDRE2.XLS can be used.

2.4.4.2 Wire Rope Supported Non-rotated at Both Ends, Simplified
Calculation

The torque M in the wire rope supported non-rotated at both ends can be set
simplified with only a small failure

M=c -d-(So+m-g-L/2-sinfg). (2.90)
Then with (2.85) the twist angle is

cy-m-g-(L/2—x)-sinfg

= . 291
@ cr-d-(So+m-g-x-sinflg)+c3-G-d> (291)
With that on the upper rope end the twist angle is
ci-m-g-L/2-sin
Wypper = — l g / 'BF (2912{)

cy-d-(So+m-g-L-sinfg)+c;-G-d?
and on the lower rope end

c1-m-g-L/2-sinfig
ower — . 2.91b
o c-d Sotcs G- (291b)

For the integration to evaluate the rotary angle ¢, the denominator of (2.91) can be
further simplified with x = L/2. The failure for that is very small if the rope weight
force mgL sinfr is smaller than the rope tensile force Sy. Then the twist angle is

o — cr-m-g-(L/2)-sinfg
cp-d-(So+m-g-Lj2-sinfg)+c3-G-d3

(2.92)

and after integration the rotary angle ¢ is
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—cy-m-g-sinfp-(L—x)-x/2

— ) 2.93
¢ cr-d-(So+m-g-sinfg-L/2)+c;3-G-d3 ( )
The maximum rotary angle (for x = L/2) is
1 —ci-m-g-sinPg - L?
—_. . 2.94
Pmax =g c2-d-(So+m-g-sinfp-L/2)+c3-G-d? (2.94)

Example 2.11 Wire rope supported non-rotated at both ends
Data:

Warr. 8 x 19-NFC-sZ,

rope diameter d = 16 mm or d = 0.016 m

rope length related mass m = 0.89 kg/m

shear module G = 76,000 N/mm? or G = 76 x 10° N/m?
rope length L = 500 m

lower tensile load Sy = 10,000 N

angle fir = 90°

constants (Table 2.6) ¢; = 0.108; ¢, = 0.222; ¢3 = 0.000268
Results:

According to (2.87) the torque is

M = —40.58 +61.56 = 20.98 Nm.
According (2.89) the maximum angle occurs at the rope length
X(Pmax) = 4080.8—3835.8 =245 m

The maximum rotary angle—(2.88)—is

Prax = —232.8 rad.

The maximum number of rope turns is then

My = 2% — 37,

2.7

According to (2.85) and (2.87), the maximum twist angle is on the lower rope
end (x = 0)

Olower = O(x = 0) = 1.94 rad/m = 111°/m = 178°/100d.

The twist angle on the upper rope end is
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Fig. 2.30 Rotary angle ¢ [ )
and twist angle o of a vertical 9
hanging wire rope without
rotation protection at the Jd
lower end
L

I S

S

Oupper = 0y =L) = —1.79 rad/m = —103°/m = —164°/100d.

The calculated twist angles are smaller than the allowed limit 360°/
100d (Table 2.6).

Results simplified calculation:
With the simplificated calculation the maximum rotary angle is

Pmax = —232.6rad
and the twist angles are

Opower = 0( = 0) = 1.98 rad/m and w,pper = w(y = L) = —1.75 rad/m.

2.4.4.3 Suspended Wire Rope Without Rotation Protection
at the Lower End

At the lower end the wire rope has no rotation protection. However this rope end is
like the upper rope end fixed in a termination so that the relative motion of wires
and the strands are prevented [this is the condition for the validity of the constants
c of the Table 2.6 and all the equations based on Eq. (2.77)]. The rotary angle ¢
and twist angle ® of a vertical hanging wire rope without rotation protection at
lower end is demonstrated in Fig. 2.30.

With the torque M = 0 the twist angle is (again for Sy >m-g-L-cos )
according to (2.85)

»— —c1-d-(So+m-g-x-sinfg)
Ccy-d-(So+m-g-x-sinfg)+cy-G-dt

(2.85a)
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c1-(L—x) cr-c3-d-G
cy-d c3-m-g-sinfg
cy-d*(m-g-x-sinfp+Sy) +c3-G-d*

c2-d*(m-g-L-sinBe+Sy)+c3-G-d*

O

X In

(2.86a)

The maximum rotary angle @, occurs at the lower end of the rope, that means
for x = 0. The most interesting maximum twist angle w,,,x occurs at the upper
rope end, for x = L.

According to (2.85), the maximum twist angle is

—c1-d-(So+m-g-L-sinfg)
= : . 2.85b
Pma cr-d* (So+m-g-L-sinflg)+c3-G-d* ( )

For the practical calculation of the rotary angle ¢ and the twist angle ®, the
Excel-program FREEDRE2.XLS can be used.

Example 2.12: Suspended wire rope without rotation protection at the lower end
Data:

The same data will be used as in Example 2.11, but the tensile force at the lower
rope end is Sy = 0.

Results:
According to (2.93), the maximum rotary angle at the lower rope end is

Pmax = — 15,202 — 81,795 - 1n 0.8433 = —15,292 + 13,943
Pmax = —1,259 rad.

With that, the number of rope turns at the lower end is

D max -1 7259
= = = —200.4.
Plmax 2n 2n

According to (2.94), the maximum twist angle (rotary angle per length unit at
the upper rope end) is

Mmax — _4766 I‘ad/m — Wmax = —2730 /\/m — Omax = _4370/100d

The numbers are given with four or more digits to make it easier to follow the
calculation. But, of course, the results are only valid in a scattering following the
standard deviation of the constants ¢ from Table 2.6. Above that, the maximum
twist angle 437°/100d exceeds the limit 360°/100d for the validity of the constants.
But for the rope considered here according to Fig. 2.23, there is practically no
change of the constants ¢ to be expected.



24 Torque and Torsional Stiffness 125

Fig. 2.31 Change of rope
length by twisting the rope

2.4.5 Change of the Rope Length by Twisting the Rope

By twisting a wire rope, the rope length and the lay length will be increased in the
“on” rotary direction and decreased in the “off” rotary direction. For this problem,
Hankus (1997) remembered the equations of Glushko (1996). He measured and
calculated the rotary angles of wire ropes in mining shafts, Hankus (1993, 1997).

In the following, the change of rope lengths will be calculated using geometric
data for wire ropes with one strand layer and a fibre core. It can be presupposed
that the strand length / and the strand winding radius r will remain constant. On the
base of Fig. 2.31 the change of the rope length is given by the equation

L+ ALy = \/2 — (u— Au)*. (2.95)

In this L is the rope length and ALp is the rope elongation when the rope is
twisting.

Au is the change of the circle bow length for the strand helix. With the strand
winding radius rs = r = const. and the rotary angle ¢, the circle bow and the
change of the circle bow length are

u=r-¢o and Au=r-Aep.

Then, from (2.95), the rope elongation by twisting the rope is

ALy =B =1 (p - Ap) — L. (2.96)
With the strand lay angle f it is
I=L/cosfl, r-o=L-tanff and A¢@/L=—-ow.

Using that, the rope elongation (+) or shortening (—) is



126 2 Wire Ropes Under Tensile Load

12
ALD:\/ so— L tan?f—2.r-[? - w-tanff—r* 0?7~ L.
cos? f§

Divided by L, the rope extension by twisting the rope is

ALp

= =V1-2-r-o-tanf—r2 o —1. (2.97)

For a constant rope twisting over the rope length L, the change of the rope
length is
ALD =¢&p - L

and if the twisting over the rope length is not constant, the change of the rope
length is

. L
ALp = [ ep-dx= /(\/1—2-r-w-tanﬂ—r2-w2—l)-dx (2.97a)
x=0

x=0

and with o from (3.85) the change of the rope length is

L
(M—ci-d(So+m-g-x))-2-r-tanf§ M—ci-d-(So+m-g-x) 2
ALp = - 5 —r2. —1]dx
c-d* (So+m-g-x)+c3-G-d* c-d* (So+m-g-x)+c3-G-d*
0

(2.98)

The equation has to be calculated numerically.
The lay angle ' of the twisted wire rope is

u—Au L-tanffi—L-r-o

t /= =
anf = AL L+ ALp

With L+ ALp = L- (1 + ¢p), the lay angle of the twisted wire rope is then

tanff—r-w

' — arct 2.99
p’ = arctan I fen (2.99)
and with the elastic rope extension ¢g the lay angle is
t — .
B" = arctan anfi—r-o (2.99a)

1+eép+ep

The lay length of the twisted wire rope is


http://dx.doi.org/10.1007/978-3-642-54996-0_3
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tan

Example 2.13: Change of length of a twisted wire rope
To demonstrate the rope length calculations, Examples 2.9, 2.11 and 2.12 will be
continued. The lay angle is § = 20°.

Example 2.13a: Constant twist angle over the entire rope length, continuation of
Example 2.9
According to (2.97), the rope elongation by twisting the rope is

ALp = (\/1 1 2-5.4-0.002094 - 0.364 — 5.42 - 0.0020942 — 1) 5,000
ALp = (\/1.008103 _ 1) .5,000 = 20.2 mm

With the metallic rope cross-section A = 100.5 mm? and the rope elasticity

module Eg = 93,000 N/mm? from Table 2.3 for the pre-loaded rope between
. = 0 and 400 N/mm?, the elastic rope elongation is

§-L 40,000 - 5,000

frng = = 21.4 .
A-Es 1005 -93,000 i

ALg

The overall elongation is
AL = ALp + ALg = 20.2 +21.4 = 41.6 mm.

The small neglected part of the elongation ALt from twisting the strands, see
Example 2.14a.

Example 2.13b: Wire rope supported non-rotated at both ends, continuation of
Example 2.11

Integrating (2.98) leads to a small reduction of the rope length for the twisted wire
rope

ALp = —0.01138 = —0.011 m

From the length x = 245 m, the lower rope section turns off and the upper rope
section turns on with the rotary angle ¢.,,x. The rope elongation from twisting on
the larger upper rope section L, = 255 m is 0.494 m shorter than the shortening
by 0.505 m of the relatively small lower rope section L; = 245. The difference is
therefore AL, = —0.011 m.
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The elastic rope elongation is

ALEZSE-LZE-L:M-L.
Es A-Es
10,000 + 2,180
ALg = 2% 500 = 0.979 m.
E = 87,5 x 71,000 979 m

The shortening by twisting of the rope supported non-rotated at both ends is
much less than the elastic rope elongation. In comparable cases, this rope short-
ening can always be neglected.

According to (2.99) and with extension ep(x = 500) = 0.00378 according to
(2.97a), the lay angle of the twisted rope is on the upper end

tanf—r-o 0.364 — 0.0059 - 1.789
"(x = 500) = arctan ————— — arct =19.40°
Flx ) = aretan == = artan 0 00378

and with the elastic rope extension ¢g(x = 500) = 0.00231 the lay angle is

1 — .
B"(x = 500) = arctan anfi-r-o 19.35°.

1+6D+6E

Example 2.13c: Suspended wire rope without rotation protection at the lower end,
continuation of Example 2.12
For the twisted wire rope, the integration of (2.98) leads to the rope elongation

ALp = 2.62 m.

The elastic rope elongation is

i -g-L/2
ALEZSE-L:O—“—m-L:M-L.
Eg A-Eg
2180
Al =————- = 0.000422 - =0.211 m.
E 875 x 59,000 500 = 0.000 500 =0 m

According to (2.99), the lay angle of the twisted rope on the upper end is

@anf—r-o 0.364 — 0.0059 - 4.765 )
1oy T 000079 1840

B'(x = 500) = arctan

and, together with the elastic rope extension on the upper rope end
¢g(500) = 0.000844, the lay angle is

, @nf—r- o 0.354 — 0.0059 - 4.765 .
Bl = 500) = arctan G = = arctan = oha70 0 .0008ad o3

On the upper end, the lay length of the twisted and elastic elongated rope is
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tan f§ 0.364

chs = £0.1019 = 1.095 - 0.1019 = 0.1116 m.
an S =033 01019 = 109501019 = 0.1116 m

HY (x = 500) =

The big increase of the lay length on the upper rope end can lead to a lasting
change of the rope structure. When a wire rope is let down, the lower rope end
should always be protected against turning. This rule has to be followed for wire
ropes with steel cores even if there are only small differences in height.

2.4.6 Wire Stresses Caused by Twisting the Rope

When twisting the wire rope, the wires will be stressed by torsion. Furthermore the
wires of the different wire layers and the strands of the different strand layers will
be elongated or shortened differently. However, these different elongations will be
prevented because the cross-sections of the strands and of the rope must remain
plane. Therefore a common elongation or shortening of the twisted strands or
ropes is forced by inducing longitudinal stresses in the wires and the strands.

The influence of the rope twisting on the rope stresses is so great that parts of
the rope can be broken far below the normal wire rope breaking force. For
example, in Fig. 2.25 the effect of the breakage of the rope core can be seen. For
an untwist angle @ = —3607/100d of the rope, the rope core has been broken at
about 40 % of the normal rope breaking force. In the diagram the core breakage is
shown by an abrupt increase of the rope torque.

The derivation of the stress calculation is done again on the condition that the
wire ropes are of perfect geometry, that all wires are without self-contained
stresses and that each wire of the rope will be unstressed before and stressed from
the very beginning of the rope loading.

The sign definition:
rotary and twist angle is  positive for turn off
negative for turn on (loosen)
longitudinal stress is positive for tensile stress
negative for compressive stress

2.4.6.1 Torsional Stress

When a round strand wire rope is twisted by rope twist angle w (+ for turn off), the
strand twist angle of the strand layer j is
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wj £ - cosf;

(+ for lang lay rope) and the twist angle w;; of the wire i in the strand j of the round
strand rope is

W = - cos a; - Cos fi;.
The torsional stress for a wire with the diameter ¢, and the shear module G is

3
Tij = Wjj * G- 71 (2381))

2.4.6.2 Unimpeded Change of Lengths

The unimpeded change of lengths of the different wire and strand helixes means
that the wires and strands can move against each other and a cross-section of the
strands and the rope will not remain plane. For a spiral rope twisted with the rope
twist angle o, the unimpeded change in the length of a wire helix from the wire
layer i in the direction of the spiral rope axis (or a strand axis) is according to
(2.97) for the winding radius r; (presupposed as constant) and the lay angle a; of a
wire i

Al;
T:\/172~ri~w~tanoci7ri2-w271. (2.97b)

In a twisted stranded wire rope with fibre core and one strand layer j = 1, the
unimpeded change of a wire helix of the wire layer 7,1 in the direction of the strand
axis of the strand layer 1 is

Allll"l = \/1 —2-r1 - tanogy — 3w — 1. (2.97¢)
In this equation the strand twist angle is
for lang lay ropes w; = w - cos ff; and
for ordinary lay ropes w; = —w - cos f.
r;1 is the winding radius of a wire i in the strand 1 and
a; is the lay angle of a wire i in the strand 1.

In a wire rope with steel core or in a multi-strand layer rope, the unimpeded
length change of a strand helix of the strand layer j in the direction of the rope axis
is
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AL;
Tj:\/1—2-rj-w-tan[3j—;f]-2-w2—1. (2.97d)
r;  is winding radius of a strand j and

B; is lay angle of a strand j.

The length changes of the wire helix and the strand helix can be calculated
independently from each other.

2.4.6.3 Longitudinal Stress

With practically all rope terminations the relative motion of the wires and strands
in straight ropes are prevented and the cross-sections remain plane when the rope
is twisted. By preventing the relative motions, longitudinal forces are induced by
extensions ¢ of the wires and strands. The sum of the components in the rope axis
direction of all these forces is

> S =0. (2.97¢)

The stress in a wire i of a wire rope with fibre core and only one strand layer
will be looked at a great detail as an example. The unimpeded wire elongation Al;
is transformed to the common strand elongation A/, as a real elongation. Then the
component in the strand axis direction from the necessary longitudinal force of the
wire i is with the same elasticity module E for all wires

_An

Al
Si1 = :
)1 2

A

A -E—=RL A K (2.97f)

With the abbreviation
2
Ai1 =271 -cosi1 6;, /4

and

A = ZAi,l

is according to (2.97¢)

From that the common extension of the strand is
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Al 1 &LAL
_2h_ 2 LA 2.97
=T 2, § (2.97g)

Introduced in (2.97f) the component of the longitudinal force of the wire i in the
strand axis direction—induced by the rope twisting—is

A,’] Ty All‘l Alil
Sit ==Y = -AjE—=" A -E.
b1 A1 e 11 o1 11 )1

and the enforced extension of the wire i in strand axis direction is

ZA[,[ _Al,‘}]
A A L

i=0

With this equation and the relation for the parallel lay strands

ri ri
tano; = —-tano, = —-tana
'n I'n

the enforced extension of the wire i in the strand axis direction is

a Ai ¥i1
si:;(A’ll~<\/l 2.1 wra tanoc—r21 w1—1>>

—\/I—Z-r,;pcopr tanoc—rz1 w? + 1. (2.97h)
' T'n,1

The longitudinal stress of a wire i according to (2.20)—neglecting the strand
contraction and left out the index 1 as there is only one strand layer—is

Olongi = & * E.

In addition to that the tensile stress from an outer rope tensile force is according
to (2.31)

S

o, =———————,
YA cosa; - cos

The both stresses can be added to a resulting tensile stress

Ores,i = Olong,i + Ot

The calculation is only valid and the rope structure remains intact, if the
resulting longitudinal stresses of all wires are tensile (positive).
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For the practical calculation of the stresses the Excel-program STRESS2.XLS
can be used.

Example 2.14a Wire stresses caused by twisting the rope
Constant twist angle over the entire rope length, continuation of Example 2.9

Data:
rope construction  Filler FC
number of strands 6

lay direction sZ

rope diameter d =16 mm
tensile force S =40 kN

twist angle o = —192°/100d

The lay angle the outer wires and the strands are

O = 15° and B, =20°

Results:

Wire layer 0 1 2(F) 3
Torsional stress T 78 76 31 69
Longitudinal stress from rope twist G —148 —89 22 65
Longitudinal stress from the rope force cg 492 485 473 468
Resulting longitudinal wire stress Gy 344 396 495 533

Because all resulting longitudinal wire stresses are positive—that means ten-
sile—the rope structure remains intact.

By untwisting the ordinary lay rope, the strands are twisted off. The longitu-
dinal stresses of the wires from the rope tensile force will be reduced for the centre
wire and the wires of the first wire layer by &, respectively o; ; and increased for
the filler wires and the outer wires by o, ; respectively o3 ;.

The change of the rope length from twisting off the strands is according to
Eq. (2.971)

ALy = ¢r - L= —-0.00077 - 5,000 = —3.85 mm.

2.4.6.4 Stresses in Wire Ropes Supported Non-rotated at Both Ends

For the wire rope supported non-rotated at both ends, (2.38b) is again valid for
the torsional stress and (2.97f) or similar equations for the longitudinal stresses.
The twist angles w to be set in these equations have been derived in Sect. 2.4.4.
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In the present case, the twist angle from the simplified (2.91) is precise enough.
The maximum stresses on both of the rope ends can then be calculated with the
twist angles from (2.91a) and (2.91b).

By analysing the equations, it will be found that the stresses are independent
from the rope diameter and depend only on:

e The constants involved (Tables 1.8, 1.9 and 2.6) the rope construction being
considered

e The wire rope length L and

e The specific tensile force Sy/d” on the lower rope end.

Example 2.14b Wire stresses caused by twisting the rope

Wire ropes supported non-rotated at both ends, continuation of Example 2.11.
The data of Example 2.11 is again valid. Further data of the Warrington rope being

considered has been taken from Tables 1.8, 1.9 and 2.6. The rope lay angles are

a=a3; =15° and f =, =20°

Data:

rope construction Warrington FC
number of strands 8

lay direction sZ

rope diameter d =16 mm
rope length L =500 m
tensile force, lower rope end = 10 kN
twist angle, lower rope end ~ ® = 178°/100d
tensile force, upper rope end S = 14,35 kN

twist angle, upper rope end

Results: for the lower rope end

o = —164°/100d

Wire layer 0 1 2 3
Torsional stress T —51 —60 —61 —46
Longitudinal stress from rope twist G 101 55 —38 —60
Longitudinal stress from the rope force cg 137 135 132 131
Resulting longitudinal wire stress Gy 238 191 94 71
Results: for the upper rope end

Wire layer 0 1 2 3
Torsional stress T 57 55 56 42
Longitudinal stress from rope twist G —94 —52 35 56
Longitudinal stress from the rope force cg 197 194 189 188
Resulting longitudinal wire stress Oy 103 143 224 244



http://dx.doi.org/10.1007/978-3-642-54996-0_1
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For all wires and especially for the outer wires, the resulting tensile stresses
from the rope rotation and from the rope tensile force are positive. Therefore the
outside wires will not be loose and inner wires do not break out. The rope structure
remains intact.

2.4.6.5 Steel Core

If instead of a rope with fibre core a rope with steel core were to be used, then the
longitudinal and the torsional stresses in the wires would be a little smaller than
those in the wire rope with fibre core. However, a tensile strand stress has to be
added to these tensile stresses and a large tensile stress range will occur in the steel
core and the strands.

At the upper rope end the steel core can—depending on the core construction—
even be loaded by the whole rope tensile force with totally unloaded strands.
And at the lower rope end a large compressive stress of the core exists because
normally the core cannot escape laterally.

2.4.7 Rope Endurance Under Twist

2.4.7.1 Twist Angle Constant: Tensile Force Fluctuating

With small changed termination devices very normal tension—tension machines
can be used for these wire rope testings, Ernst (2012).

Ernst and Wehking (2012), Ernst (2012) evaluated the endurance of two wire
ropes under constant twist and pulsating tensile force. The constant twist during
the tests differs between —360°/100d and 360°/100d. The two ropes from that the
test pieces have been taken are

e Spiral round wire rope 1 x 19, 12 mm
e Seale 8 x 19-IWRC-sZ, 12 mm.

The rope pieces have been fixed at both ends in resin sockets. The tension—
tension tests end with the rope break or with 2 million load cycles if no rope break
occurs.

Figure 2.32 shows the result of the tension—tension tests with pieces of the
spiral wire rope 1 x 19. In that Figure the diameter related force range is
2S,/d* = 250 N/mm?. Under the influence of the rope twisting the rope endurance
is strongly reduced in all the tests. For a twist angle —180°/100d as an example,
the remaining endurance has a percentage between 22 and 62 % of the untwisted
rope piece. The endurance loss is greater the greater the twist angle is.
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With twisted samples from the Seale rope 8 x 19 Ernst (2012) have made
several tension—tension tests. The endurance of the twisted samples is mostly
bigger than the untwisted samples in opposite to those from the spiral rope 1 x 19.
However the endurance does not simply increase with the twist angle. The
endurance relation between the twisted and untwisted samples differs from 0.61 to
3.03. The mean endurance relation is for the twisted Seale rope 1.23. In Fig. 2.33
the endurance is shown for the tests with the load range 2S,/d* = 200 N/mm? and
different lower tensile loads S,/d*. In analising the test results Ernst and Wehking
(2012), Ernst (2012) have made different regression calculations. From such a
regression the constants for the endurance of the tested Seale rope not twisted is
listed in Table 2.9.

2.4.7.2 Fluctuating Tensile Force: Fluctuating Twist

The first people to test how the endurance of wire ropes is affected by fluctuating
twist and tension were Oplatka and Roth (1996). In their test machine which they
designed themselves, the wire rope is stressed by a fluctuating tensile force and a
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Fig. 2.34 Tension-torsion fatigue endurance of stranded wire ropes as a function of cyclic
rotation, Ridge (2010)

fluctuating twist. The twist angle range is—for a constant middle tensile force
Sm—approximately proportional to the tensile force range 25,. They have carried
out fatigue tests with a stress level where a high rope endurance has to be expected
if there would be no fluctuating twist. Together with the fluctuating twist the
numbers of load cycles are only about N = 50,000 for ropes with cast sockets as
terminations. With Oplatka’s clamp-sockets which allow slight movements of the
wires and thus reduce the longitudinal stresses from the rope twist, they get more
than ten times the number of load cycles for relatively short ropes.

Chaplin (2002) started his investigations in this field by defining the demand for
a special testing machine which would enable rope endurance to be evaluated
when the rope is stressed by constant or fluctuating twist in combination with
constant or fluctuating tensile stress. Now Chaplin (2005) has reported that the new
testing machine functions. He has presented first results in a diagram with the axis
not scaled, because the results—belonging to a sponsor—are still confidential.

Ridge (2010) reported from extensive wire rope tension-torsion tests—that
means tests with wire ropes under fluctuating tensile force and fluctuating twist
angle. In that tests the tensile force and the twist angle varies in phase. The three
tested wire ropes are

Seale 6 x 19—IWRC—1,770—bright—d = 19 mm
Warr.Seale 6 x 36—IWRC—1,770—zinc—d = 19 mm
Warr.Seale 6 x 41—IWRC—1,770—zinc—d = 77 mm.

The result of the tension-torsion tests is shown in Fig. 2.34. The tests have been
done with fluctuating twist angles between 0 and 1,400°/100d. In the legend, M is
mean load, LR is load range (both expressed as a % of the rope’s measured UBL),
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RO is run out. Then M20 LR22 means as example a mean load of 20 % and a load
range of 22 % of the measured rope breaking force.

Figure 2.34 shows a trend line that represents the numbers of load cycles that
have been get under

e load range 18-36 % UBL (2S,d*> = 125-250 N/mm?)
e twist angle (amplitude of the cyclic rotation) @ = 140°/100d to 1,400°/100d.

In this field the number of load cycles of the wire rope—stressed by different
fluctuating tensile forces—depends to the main part on the fluctuating twist angle.
As example the number of load cycles is N = 10,000 for @ = 1,000°/100d and
N = 100,000 for » = 300°/100d.

For smaller cyclic rotation, the rope endurance is dominated by the fluctuating
tensile force. In case of no or very small twist, the number of load cycles to
breakage can be calculated with the equations of Sect. 2.8 for 6-strand Warr.-
Seale—IWRC—sZ. For the untwisted 77 mm wire rope, the calculated mean
number of load cycles is N = 220,000 with the given 2Sa/d> = 180 N/mm” and
Su/d* = 48.5 N/mm? as can be seen in Fig. 2.34 for the same endurance region.

2.4.7.3 Stationary Wire Ropes

A wire rope supported non-rotated at the upper and the lower ends rotates with a
rotary angle ¢ as can be seen in Fig. 2.29. The twist angle on the upper and the
lower rope ends are expressed accurately enough by the simplified Eqs. (2.91a)
and (2.91b). The fluctuating twist angle depends on the sum of the constant force
from the rope mass and the fluctuating force Sy. In most cases these fluctuating
twist angles and the fluctuating stresses from that are relative small.

2.4.7.4 Running Ropes

Fluctuating twist angles occur in running ropes of elevators, mine hoistings and
rope ways. Between the guided car and the drum or traction sheave, the wire rope
is twisted as a hanging stationary rope. When the car mounts, the twist angles—
caused by the rope weight—in the remaining rope length will be continually
reduced. In addition to the variable twist angle, there is also a constant twist angle
wcon—constant over the rope length—which usually arises from the installation
itself and its loading history. A third twist angle ;4. can be produced, when the
wire rope is wound in the groove of the sheave or drum. This occurs especially if
the wire rope moves under side deflection sliding and rolling over the groove flank
in the groove, Neumann (1987) and Schonherr (2005).

The maximum fluctuating twist angle and therefore the maximum fluctuating
stress occurs in the rope piece above the car or the counter weight. The twist angles in
that rope piece can be calculated under the supposition that no twist angle exists from
installing the rope and its loading history and that no further twist angle is introduced
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by winding the wire rope in the sheave or drum groove with side deflection or other
influences. For the lowest car position, the twist angle is given by (2.91b) and for the
highest car position the twist angle is about zero. After passing a traction sheave, that
piece of rope is twisted in the opposite direction according (2.91a) and this causes a
great range of stresses, as in the Oplatka and Roth (1996) tests described.

The real twist angles should be investigated under different influences by
computer simulation and measuring in installations. Furthermore a method should
be found by which the influence of fluctuating torsion and longitudinal stresses
from rope twisting can be introduced in the endurance calculation of wire ropes.

For installations not covering too great a height difference, wire ropes with fibre
core can be used as they have been up to now. Because of the great fluctuating
stresses especially in the steel core which even result in the total loosening of the
strands at the upper end of the rope, wire ropes with steel core in normal con-
struction with relative large torque should only be used to cover relatively small
differences in height. For installations with a very height difference rotation-
resistant ropes should be used.

However wire ropes with special steel core can be used for longer differences of
height, for that they are qualified by good experience or by calculated relative
small stresses.

2.5 Wire Rope Breaking Force
2.5.1 Measured Breaking Force

The breaking force F,,, of the wire ropes has of course to be evaluated by measuring
it. In the pieces of rope to be tested, it should be ensured that there are no visible
loose strands or wires. To compensate for any unavoidable minor loosening, the
rope length between the terminations should be at least longer than 30 times the
diameter of the rope. For the standard tension test, metal sockets are used as
terminations. If the wire rope breaks in or near a termination, the measured breaking
force of the wire rope may not be really obtained and the test should be repeated.

The tension test can of course be done with every kind of rope termination. But
the breaking force so determined is not the breaking force of the wire rope. It is
normally smaller. However, the tension test with resin sockets is an exception. In
most cases the breaking force with these resin sockets is a little higher than with
metal sockets and can therefore be taken too as the measured breaking force. But
normally the measured breaking force will be evaluated by the standard tension
test with metal sockets.
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2.5.2 Minimum Breaking Force

For standardised wire ropes, the measured breaking force F\;, is mostly greater than
the minimum breaking force F,;, given in the norm. From tests with 49 round strand
ropes, about half with fibre and half with steel cores, the mean ratio of the measured
breaking force (metal sockets) to the standardised minimum breaking force is

(Fm> =1.156
Fmin m

with the standard deviation s = 0.054.

In accordance with that, Chaplin and Potts (1991) found that the measured
breaking force is 5-20 % bigger than the minimum breaking force. The reason for
this difference is that the measured strength is normally greater than the nominal
strength and that the minimum breaking force in the norm is carefully chosen.

2.5.3 Wire Rope Breaking Force with Different
Terminations

The wire rope breaking force is valid for wire ropes terminated with either resin or
metal sockets. For wire ropes with other terminations, the wire rope breaking force
(more or less reduced) can be estimated with the breaking force factor fr. The
breaking force factor is the ratio of the rope breaking force with a certain termi-
nation F,7 and the measured rope breaking force terminated with metal sockets
Fo.

The required minimum breaking force of the wire rope with the terminations
T is then

FminT :fFFmin 2 v-S.

The breaking force factor is listed in Table 2.7.

Table 2.7 Breaking force

R Rope termination Breaking force factor fr
factor fr for rope terminations -
related to metal sockets Splice eye 0.50-0.80
Cylindric aluminum ferrule eye 0.85-1.00
Flemic eye with steel clamp 0.90-1.00
Press bolt 0.90-1.00
Wedge socket (rope lock) 0.80-0.95

U-bolt clamp DIN 1142 0.85-0.95
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2.6 Wire Ropes Under Fluctuating Tension
2.6.1 Conditions of Tension—Tension Tests

A wire rope can only be loaded in connection with rope terminations. The wire
rope and the terminations form one unit and the results from tension—tension tests
refer only to this unit. In order to determine the actual characteristics of the wire
ropes themselves fairly accurately, it is therefore necessary to use terminations
which exert only minimal influence. In any case, it is difficult to avoid the effect of
the terminations completely. Even a wire rope breakage occurring in the free
length of the rope is no certain indication that there is no influence from the
termination.

Of all known terminations, resin sockets exert the least influence on the
endurance of wire ropes. Just how small this influence is can be seen by the small
deviation in the numbers of load cycles reached in repeated tension—tension tests
with specimens of the same rope, see the following Figs. 2.39 and 2.40. Results
gained using metal sockets have much greater deviation with smaller numbers of
load cycles.

The tension—tension tests for determining rope characteristics as described here,
in particular those used to determine rope endurance, are conducted using resin
sockets. Normally the ropes are lubricated. The rope ends, which were degreased
before fitting the resin sockets, were lubricated again on the outside of the sockets
after fitting.

The temperature needs to be kept low during tension—tension fatigue tests to
ensure that the lubrication remains fairly effective. A top limit can be set at about
50 °C or for a lubricant with very high viscosity at the most 60 °C. The temper-
ature increases greatly with the diameter of the rope. A certain limit for the
frequency of testing in relation to the rope diameter cannot be given because the
maximal possible frequency also depends on the extension hysteresis occurring
during the load cycles. As Fig. 2.14 (Sect. 2.2.3) shows, the hysteresis effect
increases the greater the stress range is and the smaller the lower stress. Ventilation
can help to reduce the temperature.

The tension—tension fatigue tests normally end with rope breakage. Strand
breakage or rope deformations count as rope breakage too if they result in the tests
being discontinued. The results of rare tests where rope breakage occurs near the
terminations (about two times rope diameter) are to be disregarded as untrue for
the rope itself. Of 49 tests, three resulted in breakage occurring at a distance up to
two rope diameters and two others at a distance up to 2.5 rope diameters. Four of
these five reached a number of load cycles higher than the mean number.

Tension—tension fatigue tests with wire ropes are much rarer than bending tests.
Where the results of tension—tension fatigue tests have been published, it is often
not possible to evaluate them in common with other tests. As Chaplin and Potts
(1991) pointed out, one problem is that there are no precise specifications laid
down for the wire ropes to be tested or for the test conditions. One other problem at
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Fig. 2.35 Fluctuating tensile S
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that time was that there was no convincing regression formula. To overcome the
first problem OIPEEC (1991) passed OIPEEC-Recommendation No. 7 laying
down that the specifications for wire ropes and test conditions should at least be
described. The solution for the other problem will be described in the next chapter.

2.6.2 Evaluating Methods

2.6.2.1 Goodman Line

Wire rope endurance under fluctuating tension depends on the amplitude force S,
and the middle force S,, or the lower force S)ywer. These forces are defined for a
sinus course in Fig. 2.35. For the evaluation of a group of wire ropes with varying
rope diameters, all these forces have to be replaced by the wire rope stresses or by
the specific forces S/d”.

The first proposals to evaluate the results of tension—tension fatigue tests with
wire ropes came from Yeung and Walton (1985) and at the same time from
Matsukawa and others (1985). For spiral ropes, they proposed to combine the force
range 28, and the middle force Sy, to produce an equivalent force S, on the basis of
the Goodman line. According to their proposal, the equivalent force is

quﬁai‘gm'Z'Sa or Sq:%w-z.sa (2101)
F is the wire rope breaking force, for this Yeung and Walton, and Matsukawa and
others differ in their definitions. The lower force is Siower = Sm — Sa

The use of the equivalent force seems very attractive, because this means that the
number of variables is reduced. The endurance of a wire rope can be described with
the single variable S by the very simple equation for the number of the load cycles

_ .
N=a Sq.
This equation has been used to evaluate the results of different tension—tension

fatigue tests and it discloses a profound difficulty. For the same equivalent force,
the number of load cycles is much smaller with a small lower force than with large
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Fig. 2.36 Haigh diagram for 500 ' T | | !
wire rope C, resin socket, Lz | ‘
mm .
number of load cycles 400 {
N = 100,000 % '
& 300 [ |
S Fopin/d® = 884 N/mm?
£ 200 | 14
(] k |
= 100 N | |
ol - L1 N
0 400 600 N/mm? 800

mean specific load Sm/d2

lower force. Therefore, an evaluation using this equation can only be done sepa-
rately for different lower force segments. This means that this method is
unsatisfactory.

Haigh diagrams have been designed for a bigger number of test results. As an
example, the best one—that is, the diagram where the test results follow the
Goodman line at least in part—is shown in Fig. 2.36. In this figure, the force range
2S,/d* has been drawn for the number of load cycles N = 100,000 of the wire rope
C, in Table 2.10. Because the number of load cycles cannot be gained using direct
testing, the drawn force ranges 2S, in Fig. 2.36 are evaluated by interpolation. For
smaller middle forces, the force range is drawn using points. For larger middle
forces, the force range follows the Goodman line which is also drawn in Fig. 2.36.
A limit line starting from the origin of coordinates has been introduced for the
lower force Siower = 0, because the wire rope cannot transfer a compressive force.

The force range 25, is small for small middle forces S,,. It increases at first and
then reduces with the growing middle force S,, along the Goodman line. Where
this reduction begins, the upper force Sypper = Sm + Sa (of the oscillating force)
reaches 75 % of the calculated breaking force of the rope.

Therefore the force range 25, resulting from the tests with a stranded wire rope
is not represented at all by a Goodman line in the region of practical usage.

The reduced force range 25, for small middle forces is caused by the additional
stresses arising from the bigger fluctuating contraction of the wire rope in this
force region, see Sect. 2.1. The wire rope is not a piece of material for which the
Goodman line is valid. The additional stresses distinguish the wire rope as a
machine element rather than as a piece of material.

2.6.2.2 Endurance Formula

Numerous tension—tension fatigue tests have been carried out on three resin-
socketed round strand wire ropes A, B and C (as listed in Table 2.10) by sys-
tematically varying the forces in order to determine a better method for evaluating
the test results. After a number of trials, the best regression equation for the
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number of load cycles N up to the wire rope breakage has been found to be, Feyrer
(1995)

2'Sa‘d2 Sowt:r'd2 Sower‘d2 : d
e =dotar-lg=gTg~ +ar le-SeeHS'(laPSee) aleg;

(2.102)

To make them dimensionless, S. = 1 N and d. = 1 mm are introduced into the
equation. The other symbols are known already. For using this equation for
practical purposes, the forces are divided by the rope diameter square as so-called
specific forces. The rope diameter d is the nominal rope diameter as used for the
regression calculation. This has the advantage that the deviation of the rope
diameter is included in the standard deviation for the calculated number of load
cycles.

In Table 2.9, the coefficient of determination B and the standard deviation 1g
s for the three stranded ropes A, B and C—calculated with this regression—are
listed as well as the constants @; The great coefficients of determination
B = 0.916-0.941 show that the test results are well expressed with this equation.
Wehking and Klopfer (1999) found that (2.102) was equally valid both for spiral
wire ropes and for Warrington—Seale ropes. For the regression calculation, the
numbers of load cycles N > 106, or in other cases N > 1.75 x 106, are not taken
into account as they are considered to be outside the sphere of finite life strength.

In Fig. 2.37, the lines for the calculated number of load cycles N with (2.102) as
well as the test results for the wire rope C are drawn as an example. It is to be seen
that the lines and the test results up to N = 10° are close together. The number of
load cycles N increases at first with increasing lower tensile force Siower AS
additional information, Fig. 2.37 also includes lines of the upper force with 50 %
(surely the maximum allowed upper force in all cases) and 70 % of the calculated
rope breaking force.
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The mean number of load cycles N is calculated with (2.102) and the constants.
The number of load cycles where with a certainty of 95 % the highest quantile y
% (for example, 10 or 1 %) of the wire ropes are broken can be calculated with

IgN, = 1gN — kr, - 1gs. (2.103)

The standard deviation Ig s is determined with the regression calculation. The
constant kz, has to be calculated as a mean value for the region of the wire rope
forces being considered, Stange (1971).

In contrast to the rope bending fatigue tests, all the known tension fatigue tests
have been carried out up to wire rope breakage mostly without detecting any
outside wire breaks or other discard criteria. Magnetic inspection to detect inner
wire breaks during the fatigue tests has not been used up to now, Feyrer and
Wehking (2006). For practical purposes in connection with safety requirements,
for the time being it seems reasonable to evaluate the number of load cycles N; as
that which—with a certainty of 95 %—not more than 1 % of the wire ropes under
consideration are broken. It can be expected that up to this limit possible rope
defects will be detected and show that the rope has to be discarded. For wire ropes
without safety requirements, the number of load cycles Ny may be used as hav-
ing—with a certainty of 95 %—not more than 10 % of the ropes broken.

2.6.2.3 Woehler Diagram

With the help of (2.102) a Woehler diagram can be drawn for the sphere of finite
life strength. The test results let us see that the sphere of finite life fatigue strength
ends for not much more than N = 1,000,000. There are only a small number of test
results available above this number of load cycles and from these results it is not
possible to derive the relation between the acting forces and the number of load
cycles. Supposing a more or less constant fatigue strength does not exist, a ficti-
tious continuation of the fatigue strength line according to Haibach (1989) can be
drawn as a conservative form, Sonsino (2005). To be on the safe side the fictitious
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continuation may start at the limiting load cycles Np = 2,000,000. The number of
load cycles for this fictitious continuation is
) Sa / d2 2-a;+1
N =Np - (2 - SaD/dz) (2.104)
In this equation, 2 - S,n/d” is the force range at the number of load cycles
Np = 2,000,000. The Woehler diagram in Fig. 2.38 is still drawn for wire rope C
in two lines for Np = 1,000,000 (as found from Fig. 2.37) with the help of (2.102)
and (2.104). The first line has the value Slowe/dz = 0 for the lower specific force
and at the same time for Sjoye/d” = 352 N/mm?>. The second line with the max-
imum possible mean number of load cycles has the value Siower/d” = 176 N/mm?>
for the lower specific force. A Woehler line can be calculated and drawn between
these lines for other lower specific forces.

2.6.2.4 Distribution of the Number of Load Cycles

As can be seen from the form of (2.102), the described regression is based on the
logarithm normal distribution. This is justified because it was found, for example,
that the logarithm normal distribution provided a very good degree of conformity
for the number of load cycles of the specimens from wire ropes A and C which
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were each tested under nominally identical conditions as shown in Figs. 2.39 and
2.40, Feyrer (1995).

Raoof and Hobbs (1994) found on the contrary that it was preferable to use the
Gumbel distribution for the number of load cycles in the tension fatigue tests on
stranded ropes tested repeatedly under the same conditions.

Unfortunately, the numbers of load cycles they counted are in the region of
N = 355,000-1,636,000 which is where finite life fatigue strength ends. Also, with
its difficult relation to the regression, the Gumbel distribution does not describe
their test results better than the logarithm normal distribution would have done.

Castillo et al. (1990) proposed using the Weibull distribution with three
parameters to describe the number of load cycles for repeated tension tests with the
same conditions. This distribution has the disadvantage that many more tests
would be needed to evaluate the three parameters and, above all, these parameters
cannot be combined simply with a regression calculation.

2.6.3 Results of Tension Fatigue Test-Series

2.6.3.1 Spiral Wire Ropes with Resin Sockets

Wehking and Klopfer (2000) in Stuttgart, and Casey (1993) and Paton et al. (2001)
in East Kilbride, Glasgow have completed extensive tension fatigue investigations
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Fig. 2.41 Number of load cycles of an open spiral rope 1 x 37, Wehking and Klopfer (2000)

with open spiral ropes. In all cases the wire ropes were fastened in resin sockets.
The results of these tests have been evaluated by regression with (2.102). The
constants and the rope and test data are listed in Table 2.8.

Wehking and Klopfer (2000) and Klopfer (2002) tested open spiral ropes with
round wires 1 + 6 + 12 4+ 18 (short 1 x 37) with different diameters. The free
length between the sockets was uniformly L = 40d. The wire ropes had zinc
coated wires and were lubricated. The numbers of load cycles up to
N = 1.75 x 10° are included in the regression calculation. For every wire rope,
the coefficient of determination is high but the standard deviation varies between
lg s = 0.094 and 0.236. The constants a; in Table 2.8 determined by Wehking and
Klopfer (2000) was corrected slightly by Klopfer (2002) by neglecting the results
with rope breakages near the terminations. This then reduces the standard devia-
tion to lg s = 0. 227.

The maximum number of load cycles has been reached for the mean lower
specific force Slower/a'2 = 140 N/mm> with a relatively large deviation. The
numbers of load cycles for a spiral rope with the diameter d = 16 mm are pre-
sented in Fig. 2.41 as an example. The line for the upper force as a half rope
breaking force has been included in the figure to show the maximum usable region.
It can be seen in Fig. 2.41 that the endurance curves are relatively flat. In
accordance to that Alani and Raoof (1997) found that under fluctuating tensile
forces the endurance of spiral ropes has been nearly independent from the lower
respectively the middle stress.

Two of the seven wire ropes tested had the unusual wire lay direction SSZ. In
comparison with the normal lay direction ZSZ, the wire lay direction SSZ has
lower endurance.

Casey (1993), and Paton et al. (2001), National Engineering Laboratory (NEL)
East Kilbride, Glasgow, have done numerous tension—tension fatigue tests with
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open spiral ropes having larger diameters. The wire ropes have different numbers
of wires. The wire ropes with the diameters d = 40 mm and 127 mm have the
biggest number of wires with the construction 1 4+ 7 4+ 7/7 + 14 + 19 4 25 +
31 + 42 4 48 + 49 = 292, Casey (1993).

The constants a; and other results of the regression calculation for these spiral
ropes are listed in Table 2.8. The results of Casey, and Paton and others are used
for the regression again up to the number of load cycles N < 1.75 x 10°. The
lower specific force is at maximum Slower/d2 = 84 N/mm”. Therefore, with the
constants a; of these wire ropes, (2.102) is only valid up to this lower specific
force.

A common regression calculation has been carried out using the results of
Wehking and Klopfer, Casey, and Paton and others. Because of the very different
numbers of wires z, the regression equation has been—compared with Feyrer
(2003)—complemented here by the number of wires z.

2.8, -d? Siower - d* Siower - d°
lgN:ao+a1 a e+a . lower e+a3'(10 er e

2
-Ig 2 2 2 2 >
d* - Se d* - S d* - Se (2.102a)

d
+a4~lgd—+a5 gz

The constants @; from the common regression are also listed in Table 2.8.
According to the ropes used, the mean number of load cycles is given with these
constants and (2.102a) for open spiral ropes with the diameter d = 4-127 mm and
with the number of wires z = 37-292. The standard deviation is 1g s = 0.214.
Using the constants k7o = 1.69 respectively ky; = 2.93, with a certainty of 95 %
at the most 10 % respectively 1 % of the wire ropes are broken at the number of
load cycles

Nijg = 0.435-N respectively N; =0.236-N.

For open spiral ropes, the relation between the wire rope stress and the specific
force is about

o, =1.70- %

With an increasing rope diameter, the endurance decreases. On the other hand
the endurance increases with the number of wires. Thereby the influence of the
rope diameter predominates. In the range tested, the number of load cycles
decreases with the rope diameter exponent a, = —0.793 and increases with the
number of wires exponent as = 0.399. All the spiral ropes tested were zinc coated
and lubricated. It is not possible to evaluate the influence of the nominal strength
on the rope endurance from the existing database. The constants in Table 2.8 are
therefore valid for wire ropes with a nominal strength between 1,370 and 1,770 N/

mmz.
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In the last column in Table 2.8, the mean numbers of load cycles are registered,
calculated with (2.102a) for a rope diameter d = 30 mm. The difference between
the numbers of load cycles from regressions of both diameter ranges tested with
the mean numbers of wires z = 37 respectively 199 and those of the common
regression is very small. Therefore, the common regression is legitimated.

2.6.3.2 Spiral Wire Ropes with Metal Sockets

Hugo Miiller has carried out tension—tension fatigue tests (unpublished) with a
locked coil spiral rope with metal sockets. The rope with a diameter d = 28 mm
has round wires 1+ 6 4 12 + 18 and 19Z-wires outside. His results
(ap = 12.528; a; = —2.960) showed about 55 % of the endurance found for a
comparable open spiral rope terminated with resin sockets. Yeung and Walton
(1985) have done numerous tension—tension fatigue tests with spiral ropes. They
did not use constant forces but a light force collective. This means that the results
cannot be compared with those using constant forces.

2.6.3.3 Round Strand Wire Ropes with Resin Sockets

Tension—tension fatigue tests have been carried out with various round strand wire
ropes using resin sockets as terminations. The wire ropes tested are listed in
Table 2.9. The results of the tests have been used in regression calculations based
on (2.102). The constants thus determined are also included in Table 2.9.

A very large number of tension—tension fatigue tests have been carried out
using Warrington—Seale 6-strand ropes in ordinary lay with steel core. Wehking
and Klopfer (2000) tested ropes with diameters d = 8-36 mm and Casey (1993)
ropes with diameters d = 38—127 mm. For the ropes with smaller diameters of up
to 40 mm, the strands had 36 wires, the wire rope with a diameter of 70 mm had
41 wires and the 127 mm wire rope had 49 wires.

Of the Warrington-Seale ropes tested by Wehking and Klopfer, seven ropes
were zinc coated and five bright. The wire ropes Casey tested were all zinc coated.
All the wire ropes were lubricated. From the existing database, it is not possible to
evaluate whether either the zinc coating or the nominal strength influence the
endurance of the rope. Therefore the constants for the Warrington-Seale ropes in
Table 2.9 are valid for ropes, whether zinc coated or bright, with a nominal
strength between 1,570 and 1,960 N/mm?.

The results of the regression calculations based on the data from the tests on the
Warrington-Seale ropes are also listed in Table 2.9. The common regression
calculation done on the basis of the data from Wehking and Klopfer and Casey is
very well-founded as the numbers of load cycles for both test series calculated with
their constants come very close to that for a rope diameter 38 mm. As the ropes
tested varied greatly in quality, the coefficient of determination is only B = 0.68
and the standard deviation is 1g s = 0.266. Then, using the constants k7o = 1.575
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respectively kr; = 2.76, with a certainty of 95 % at the most 10 % respectively
1 % of the wire ropes are broken at the number of load cycles

Nig = 0.38-N respectively N; =0.184-N.

For the Warrington—Seale ropes with 6-strands and steel core IWRC, the
relation between the wire rope stress and the specific force is

o, =2.195 - d%

Of the wire ropes with steel core, the 6-strand Warrington—Seale ropes reach a
much higher number of load cycles than both of the 8-strand Warrington ropes
compared in the last column of Table 2.9. Even for the same specific forces, the 8-
strand Warrington rope with fibre core has shown a higher endurance than both of
those with steel cores. For the same wire rope stress, Reemsnyder (1972) also
found that wire ropes with fibre cores had an advantage as far as endurance is
concerned.

2.6.3.4 Round Strand Wire Ropes with Metal Sockets

The results of tension—tension fatigue tests on wire ropes with metal sockets are
listed in the Table 2.10. These results are presented because wire ropes with metal
sockets are frequently used and because it is very informative to see the endurance
results with metal sockets under different conditions. Most of the results come
from Miiller (1962, 1963, 1966 as well as other unpublished results). For all his
tests, the lower specific force was about Slowe,/d2 = 20 N/mm”. He found that the
parallel lay wire ropes always have much higher endurance than cross lay ropes
although the cross lay ropes with the same wire lay angle in all wire layers have
the advantage of having theoretically the same tension in the different wire layers.
The reason for the smaller endurance of the cross lay ropes may just be due to the
pressure between the crossing wires.

There is not much variation in the number of load cycles of the cross lay ropes
FNC 4 6 x 19,6 x 37 and 6 x 61 whereby the higher number of wires tends to
show an advantage. The simple wire rope FNC 4 6 x 7 has a slightly higher
endurance. Here again, the reason may be that there are no crossing wires. This
may overcome the disadvantage of the thicker wires. In all cases, he found that the
lubrication gave higher endurance. This result comes from the smaller second
tensile stress, see Sect. 2.1.4.
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2.6.4 Further Results of Tension Fatigue Tests

2.6.4.1 Number of Load Cycles for Wire and Wire Rope

Setzer (1976) did tension fatigue tests with a Warrington—Seale rope and compared
them to the strands and wires of this rope before being manufactured into a rope.
He presented the result of these tests as a Smith diagram shown here in Fig. 2.42.
The diagram is based on a number of load cycles N = 2 x 10°. For the middle
stress g, = 500 N/mm? Setzer found a stress range 20, = 550-600 N/mm? for
the wires and only 2¢, = 140 N/mm? for the wire rope.

A further comparison of the stress range for the wires and the wire rope is
shown on the basis of the data of Table 2.9 for the Warrington-Seale ropes. Fig-
ure 2.43 shows the stress range in the outside wires for a rope with the diameter
d = 16 mm where the wire rope breaks at the number of load cycles N = 10°,
with a probability of 1, 10 or 50 %. In order to take the additional stresses into
consideration, the stress range for the wire rope (better for the outside wires of the
rope) has been drawn 20 % above the global wire rope stress o, = S/A;, calculated
using (2.102). In comparison, the strength range for straight wires with the same
diameter as the outside rope wires is drawn in Fig. 2.43. This strength range has
been calculated with (1.3) and (1.3b) for a breakage probability of 50 %.

Even for a high quality wire rope (failure probability 1 %), the stress range for
the breakage at the number of load cycles N = 10° is clearly smaller than the mean
stress range of the straight wires. The remaining difference can be declared by the
unsystematic increased stresses of individual wires or strands due to the loosening
of the others, Evans and others (2001). Furthermore, the pressure between the
wires has not been included in the stress calculation.
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2.6.4.2 Size Effect Wire Rope Diameter

Miiller (1966) was the first to investigate the effect of the size of the rope diameter
on cross lay wire ropes 6 x 19—FNC—sZ. Figure 2.44 shows his results. The
mean ratio of the number of load cycles Ni/N, of two wire ropes with the diam-
eters d; and d, is

N] dl as
— == . 2.105
N ( dz) (2.105)

For the lubricated cross lay ropes, Miiller found exponents a, = —1.021 and
0.535. For different test series the constants a, are listed in the Tables 2.8, 2.9 and
2.10. For the whole diameter sphere of the open spiral ropes 4-127 mm, the
constant is a4 = —0.793. For the diameter sphere 8-127 mm of the Warrington-
Seale ropes, the constant is a, = —1.180. The influence of the rope diameter is
higher in the case of tension—tension fatigue than in the case of bending fatigue
with the exponent —0.63.

There is no explanation for this difference between the exponents for tension
and bending. It could have been expected that the size of the diameter had a greater
influence on bending due to the stress gradient effect. In any case, the results
emphasize Unterberg’s statement (1967) that a stress gradient effect does not exist
for rope wires.
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Fig. 2.45 Number of load cycles for a strand 1 x 7 for different lengths L, Esslinger (1992)
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2.6.4.3 Size Effect Wire Rope Length

Suh and Chang (2000) carried out tension—tension fatigue tests on a Warrington
rope with rope lengths of 10, 20 and 30 lay lengths. To their surprise, they found
that the number of load cycles increased slightly with the length of the rope. They
want to do further tests to help to understand this unexpected result. It is to be
supposed that the reason for the greater endurance of the longer rope pieces lies in
the fact that the loosening of the rope structure, especially in the neighbourhood of
the sockets, could be compensated better in longer pieces of rope.

Esslinger (1992) carried out tension—tension fatigue tests with a simple strand
1 x 7 with 0.6 in. and rope lengths L = 1,040, 2,030 and 19,430 mm. Figure 2.45
shows his results. Contrary to the findings of Suh and Chang, he discovered that, as
expected, the mean number of cycles decreases with the rope length. For the
simple strand Esslinger tested there can only be minimal possible loosening of the
rope structure.

Therefore, the loosening of the structure and the sockets can be considered as
not affecting the influence of the length on the strand endurance.
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The number of load cycles can be calculated with the methods of the reliability
theory. Without any explanation, Gabriel (1979) first presented this method in a
diagram for wire ropes of different lengths. The survival probability of the rope
with the length L as a serial grouping of the pieces with the length L, is (while
neglecting the influence of the sockets)

p=PpPih. (2.106)

Figure 2.46 shows the rope with sockets and defines the rope lengths. Once
more, the logarithm normal distribution has been used to evaluate Esslinger’s
results. In Fig. 2.47 the numbers of load cycles found by Esslinger are introduced
from Fig. 2.45 and in addition the lines calculated are drawn for the mean number
of load cycles N and for the number of load cycles N,q and Ny, at which point, at
the most 10 % respectively 90 % of the ropes will be broken. The numbers of load
cycles N for the rope length Ly = 2,030 mm have been taken as the basis for the
calculation because there is only one extreme number of load cycles. For that
distribution, the mean number of load cycles is Ny = 318,000 and the standard
deviation is Ig s = 0.148. The test results and the calculated lines harmonise quite
well.

From the results of (2.106), an equation can be derived for the load cycles ratio
of the rope lengths L and L, [(2.107)]. With this, the endurance (2.102) can be
corrected for different rope lengths. Equation (2.102) and their constants in
Tables 2.8, 2.9 and 2.10 are related on a mean rope length of about Ly = 60d of
the test rope lengths 40d, 55d and 100d. Based on this rope length, the numbers of
load cycles—respectively—the rope length factor, Feyrer (2011), is

N 1.54
fi = - = > 7 - (2.107)
Nio 554 <l/d—2.5> ‘
o\ 575

The results of (2.106) and (2.107) depend on the standard deviation of
the number of load cycles. The standard deviation, known until now for two
Warrington ropes with a the length 87d is 1g s = 0.038 (Fig. 2.40, N = 82700) and
lg s = 0.092 (Fig. 2.39, N = 406,000) and for the strand 1 x 7 with a length
133d, is 1g s = 0.148 (Fig. 2.45, N = 318,000). The standard deviation is non-
uniform and probably increases as for materials normally found with the number
of load cycles.

As for the rope bending, a mean standard deviation is set at 1g s = 0.047 for
the rope length L/d = 60. The standard deviation for fluctuating tension is
probably greater. On the other hand, the rope endurance will possibly at first not
decrease with the rope length as shown in the findings of Suh and Chang (2000).
With this standard deviation, the decrease of the number of load cycles with the
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rope length has been at least partly taken into consideration. In (2.107), the
constant o, for this together with the constants from Tables 2.8 and 2.9 are
listed in Table 2.11.

2.6.4.4 Palmgren-Miner Rule (Damage Accumulation Hypothesis)

For roller bearings loaded by a series of load cycles with different loads, Palmgren
(1924) stated the hypothesis that the sum of ratios n; /N; (called damage sum) will
be 1. That means

T (2.108)

i=1""!

In this, n; is the number of load cycles under the load i (load defined by i) and N;
is the endurance under the load i. Miner (1945) found that this rule is also valid for
other elements and special kinds of loads.

According to (2.108a) the endurance Z of an element under a series of different
loads i will be

1
2w

Here w; = n/Z is the portion of the number of load cycles n; under the load i.

However, this rule is only a hypothesis and it must be checked to see whether it
can be used for wire ropes under fluctuating tension. From the results of tension—
tension tests in four series of block loads, Chaplin (1988) found damage sums
between 0.897 and 1.109, and Rossetti and Maradei (1992) found damage sums
between 1.24 and 1.28. From similar tests with Warrington—Seale ropes, Casey
(1993) got damage sums between 0.6022 and 1.2584.

All these results show that the Palmgren-Miner rule can be used for wire ropes
under fluctuating tension.

2.6.4.5 Discard Criteria

The amplitude stresses for the inner wires are normally greater than in the outer
wires, Sects. 2.12-2.14. Therefore, outside wire breaks cannot be detected in most
cases during tension—tension tests, Wehking and Klopfer (2000). That means, the
point at which the wire rope requires replacement is not defined by the number of
outer wire breaks. Wehking and Klopfer therefore recommend inspecting wire
ropes under fluctuating tension by means of a magnet inductive test. Because a



162 2 Wire Ropes Under Tensile Load

50

R=0.9819 *  MHMJ Series
R'=0.8841 & MKzJ Series
R'=0.9949 ® MFYA Series
% MFYA 14

@ MFYA 40

Linear (MHMJ Series)

— = Linear (MKZJ Series)

- Linear (MFYA Series)
== = Linear (MFYA 14)
(

loss of strength in %

s Linear (MFYA 40)

1 3 5 7 9 11 13 15 17 19 21 23 25
loss of stiffness in %

Fig. 2.48 Relation between loss of strength and loss of stiffness, Paton et al. (2001)

relation between rope endurance and the number of (inner) wire breaks is still
unknown, the wire rope should be designed for the number of load cycles where at
most 1 % of the rope wires on a rope length 30 d are broken.

Paton et al. (2001) tested the residual rope breaking force after having different
numbers of load cycles. They found a relation between the loss of rope breaking
force and the loss of length stiffness S/AL. In Fig. 2.48 this relation is shown for
6-strand Warrington-Seale ropes with steel cores of 40 and 70 mm diameters.
They recommend using a discarding criterion of a loss of 10 % of the wire rope
breaking force measured.

2.6.5 Calculation of the Number of Load Cycles

2.6.5.1 Resin Sockets

With the test results and the related equations, the number of load cycles prior to
rope breakage can be calculated for open spiral ropes of nominal strength 1, 3701,
770 N/mm?, zinc coated and for Warrington-Seale ropes 6 x 36 to 6 x 49-
IWRC-sZ of the nominal strength 1, 570-1, 960 N/mmz, bright or zinc coated,
lubricated. For these, the regression (2.102) respectively (2.102a), (2.103) for the
varying quantile y and (2.107) for the influence of the rope length will be com-
bined. To give a better overview, the unit factors S, = 1 N and d, = 1 mm (to
make the ratios dimensionless) will be removed. Then, for a rope with the length ,
the number of load cycles—where with a certainty of 95 % at most a quantile y of
the wire ropes has been broken—is
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28 S S 2
e, = o+ e S (35 g st

+1gfL — kTy -lgs.

This equation is also valid for the Warrington—Seale ropes if here the constant
as is set as = 0. For the failure quantiles of 50, 10 and 1 %, the constant parts can
be summarised to

agy = ap — kr, - 1gs. (2.109)

With this constant a,, the number of load cycles N,—where with a certainty of
95 % at most a quantile y of wire ropes has been broken—is

2Sa Slower Slower :
lgNy:aon,—Faplg?—Fay 7 +as - 7 +ay4 -1gd

+as-lgz+1gfy. (2.110)

In Table 2.11, the constants a; for (2.110) are listed Casey (1993), Paton et al.
(2001), Klopfer (2002) Feyrer and Wehking (2006). The constants a;—as have
been taken from Table 2.8 for the open spiral ropes and from Table 2.9 for the
Warrington—Seale ropes. The constant ay,—listed in Table 2.11—has been cal-
culated with (2.109) for the different quantiles fi is given in Eq. (2.107).

Equation (2.110) and the constants of Table 2.11 are valid up to the limiting
number of load cycles Np. With the reduced gradient of Haibach (1989), the number
of load cycles above Np = 2 x 10° is (as explained under Woehler Diagram)

28, /d> \ !
o/ ) (2.104)

Ny =N,
k D(zsaD /d?

S.p is the amplitude of the tensile force for which the limiting number of load
cycles Np = 2 x 10° has to be expected. This limiting amplitude of tensile force
can be calculated with the following equation (inverted from Eq. (2.110)).

Table 2.11 Constants for calculating the number of load cycles, (2.110)

Wire ropes Y agy a, a, as ay as
(%)
Open spiral ropes 50 15.401
10 15.039 —3.910 0.00118 —0.0000037 —0.793  0.399
1 14.774
Warr-Seale ropes 50 16.302
IWRC—sZ 10 15.883 —3.939  0.00326 —0.000012 —-1.180 O

1 15.568
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25a7 lg N-, 1 Stower Stower ?
Ig 7 = a al~<a0y+a2~ P +03'(d2)+a4'lgd

+a5-lgz+lgfL>. (2.111)

with N; = Np = 2 - 10°.

With (2.110), the number of load cycles will be calculated, directly valid up to
2 x 10° for all quantiles y. Numbers of load cycles above that should be corrected
with (2.104). By using the limiting number of load cycles 2 x 10° for all quan-
tiles, the standard deviation will be—as in reality—strongly extended in the region
above the limiting number of load cycles.

For the practical calculation of the numbers of load cycles the Excel-program
SWINGSP2.XLS can be used.

Example 2.15: Number of load cycles

Data:

Warrington-Seale rope 6 x 36—IWRC—sZ

Wire rope diameter d = 20 mm, nominal strength Ry = 1, 770 N/mm?,
lubricated

Rope length L = 120 m, terminated with resin sockets

The fluctuating tensile forces are

Lower tensile force Siower = 30 kN, Siower/d” = 75 N/mm?

Upper tensile force Sypper = 80 kN

The range of the specific force is

S T Sl T
28,/d* = % = 125 N/mm?.

Results:
Using (2.110) and the constants from Table 2.11, the numbers of load cycles are

Nsp = 3,690,000 Nip = 1,410,000 N; = 680,000
From these numbers only
Ny = 680,000 and N;o = 1,410,000

are directly valid. The mean number of loading cycles—greater than 2 x 10°—has
to be corrected. For that, using (2.111), the limit range of the specific tensile force is

2S.ps0/d* = 146 N/mm?.
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Then, with (2.104) the mean number of load cycles is

N5 = 5,820,000.

Example 2.16: Number of load cycles Z, load collective

Data:

The data from Example 2.15 are valid again. The lower force remains constant
Siower = 30 kN. The load collective for the force range is given by

Part of the number of cycles w; 0.2 0.3 0.5
Relative force range g 1 0.8 0.6

Results:
The three specific force ranges g; * 2Sa/d* = q; 125 are

125 100 75
and according to Eq. (2.110) the numbers of load cycles N, are
680,000 1,640,000 5,090,000

The last number of load cycles—greater than 2 x 10°—has to be corrected. For
that, using the Eq. (2.111), the limit range of the specific tensile force is

28.p1/d* = 97.5N/mm?>.
Then, according to Eq. (2.104) the corrected number of load cycles is
N;x = 10,200,000.

The common number of load cycles Z;, at which with a certainty of 95 % at
most 1 % of the wire ropes are broken, is according to Eq. (2.106)

1
02 ~03 05
630,000 ' 1,640,000 ' 10,200,000

Z =

= 1,900,000.
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Fig. 2.49 Application of the
termination factor fr or the
rope length factor fi

rope length L

2.6.5.2 Rope Terminations

The number of load cycles will be reduced if rope terminations other than resin
sockets are used. For ropes with these terminations, the number of load cycles is
normally

N,term = 1N, g0  for frlefy (2.109a)

with the endurance factor f1 for the termination taken from Table 2.12 (still from a
very small database) and with the number of load cycles N, ¢, for ropes with resin
sockets and the rope length L = 60d.

However for very long ropes it may be that the wire rope does not fail in the
termination region but on the free rope length. In that case—when the endurance
factor fr is bigger than the endurance factor f; for the rope length—the number of
load cycles is

N;}Term =fr- Ny,60 for fr >f. (2109b)

From the both endurance factors ft and i the smaller one has to be used, Fig. 2.49.

2.7 Dimensioning Stay Wire Ropes

Stay wire ropes have to be dimensioned in such a way that they can stand up to
extreme forces which only occur rarely, be sufficiently durable in case of fluctu-
ating forces and have safe discard criteria. These safety limits are characterised by:

e Extreme forces
e Fluctuating forces
e Discard criteria
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Stationary wire ropes have to meet all these requirements independent of each
other.

2.7.1 Extreme Forces

To prevent a wire rope breaking due to an extreme force which occurs only rarely,
technical regulations normally require that the minimum breaking force F,;, is
several times higher than the nominal rope tensile force S

Fuin>v-S. (2.112)

The so-called safety factor v takes the increase of the tensile force due to
possible overloading into consideration as well as the weakening of the wire rope
breaking force due to fatigue occurring over time in the case of fluctuating forces
or by corrosion. Paton et al. (2001) found a reasonable weakening of the wire rope
breaking force occurs long before the rope breaks under the fluctuating tensile
force. One of their results shows that the breaking force for the spiral ropes tested
is reduced by 15 % at between about 20 and 70 % of their endurance. The 15 %
loss of breaking force occurs late if the endurance is low (N ~ 50,000) and earlier
if it is high (W ~ 5 x 10°).

In technical regulations, experts have defined the reference values for the safety
factors based on their own experience combined with theoretical considerations.
Of course, for each individual technical field, the safety factor varies according to
whatever extreme forces may occur there. For example the safety factor for stay
ropes for cranes is about v = 3.2. For steel constructions and bridges, the safety
factor is smaller being about v = 2.2 as the greater part of the forces comes from
their own constant weight.

The wire rope breaking force is valid for wire ropes terminated with either resin
or metal sockets. For wire ropes with other terminations, the wire rope breaking
force (more or less reduced) can be calculated with the breaking force factor fg
from Table 2.7.

The required minimum breaking force of the wire rope with the terminations
T is then

FminT :fF'Fminzv'S- (2113)
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300 : | |
N/mm? : :
| Warr.-Seale 6xX36-IWRC
o 250 5 nominal strength R = 1770 N/d® =
ke number of load cycles N = 2 000 000
©
& 200 | |
© . I
5 | |
© | |
5 150 + : d=30mm :
S |/ .
5 |
" 100 e ——— :
9] — / [ 1
2 d =40 mm .
a /\ = |  permissible
50 e | _ according to ]
| DIN 15018
| | load group B6
| |
0 T 7 1
0 100 200 300 N/mm? 400

lower spec. force Sgye/d?

Fig. 2.50 Allowed range of specific force of Warrington-Seale ropes after DIN 15018 and from
tests, Wehking and Klopfer (2000)

2.7.2 Fluctuating Forces

2.7.2.1 Technical Rules-Test Results

In the existing technical regulations, the larger the lower stress is, the smaller the
stress range that is allowed. This restriction of the stress range for large lower
stresses cannot be explained at all by the test results. On the contrary, the test
results show that for a certain number of load cycles the stress range tends to
increase with the lower stress up to the allowed maximum stress. As an example,
Fig. 2.50 from Wehking and Klopfer (2000) shows the range of the specific rope
force allowed after DIN 15018 compared with the test results. The comparison was
made for Warrington—Seale ropes 6 x 36-IWRC-sZ with rope diameters 30 and
40 mm. The specific force range allowed in the DIN loading group B6 for a strong
load collective is compared with test results where the ropes are loaded with the
full force range for all load cycles (full load cycles) and where only 10 % of the
ropes break before 2 x 10° load cycles have been reached.

In future technical regulations, the range of the specific force found for the
lower force O can simply be allowed for all lower forces, or, taking the influence of
the lower forces into consideration, the allowed range of specific forces (stress)
can be calculated for a given lower specific force and for a given number of load
cycles. That is possible at this time for open spiral ropes zinc coated and lubricated
and for ordinary lay Warrington—Seale ropes, bright or zinc coated and lubricated.
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Table 2.13 Range of diameter related force 2 S,/d> of open spiral ropes for certain numbers of
load cycles N;, at which with a certainty of 95 % at most 1 % of the ropes are broken

Rope Number Range of diameter related force 2S, / d? in N/mm? for load cycles N;

diameter of wires
rameter - oL WireS N, = 20,000 50,000 125,000 320,000 800,000 2,000,000 10,000,000

d (mm) z

10 37 402 318 251 198 156 124 98
12.5 37 385 304 241 189 150 118 94
16 61 386 305 241 190 150 119 94
20 61 369 292 231 182 144 114 90
25 85 366 290 229 180 142 113 89
32 85 349 276 218 172 136 107 85
40 100 340 269 213 167 132 105 83
50 125 333 264 209 164 130 103 81
63 160 327 259 205 161 127 101 80
80 200 320 253 200 157 124 98 78
100 250 313 248 196 154 122 97 76
125 292 305 241 191 150 119 94 74

Lower tensile force Sjower = 0; rope length L = 100 m; terminations: resin socket
Rope tensiele stress o, = 1.70 S/d>

2.7.2.2 Force Range

As has been repeatedly pointed out, the range of specific force should be calculated
in such a way that with a certainty of 95 % at most 1 % of the ropes is broken for a
required endurance. If the required number of load cycles (full load cycles) is
smaller than 2 x 10°, the allowed specific force range can be calculated directly
with (2.111) and the constants in Table 2.11.

If the required number of load cycles is bigger than 2 x 10°, first the specific
force range ZSaDY/d2 has to be calculated with (2.111) for N, = 2 x 10°. Then for
the required number of load cycles bigger than 2 x 10°, according to the inverted
(2.104) the range of the specific force is

) , (N, 1/(ay+1)
280 /d* = 2Suy /d* - . (2.114)
D

For both (2.111) and (2.114) the constants have to be taken from Table 2.11.

A survey of the range of specific forces 25,,/d” is presented in Table 2.13, with
which open spiral ropes with resin sockets can reach a given number of load cycles
N;. These numbers N; mean the number of full load cycles at which with a
certainty of 95 % at most 1 % of the wire ropes are broken. The lower specific
force is Siower’d” = 0. With increasing rope diameters d, an increased number of
wires z in the wire rope have been inserted as is usual in practice. The rope length
is L = 100 m.

As Table 2.13 shows, the allowed range of specific force is strongly reduced
with an increasing rope diameter. For the smallest rope diameter d = 10 mm and
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the smallest required number of load cycles N; = 20,000, the force range is
restricted by the maximum allowed specific force. This maximum allowed specific
force for spiral ropes in steel constructions is about Smax/d2 = 400 N/mm?. For
open spiral ropes (in contrast to Warrington—Seale ropes) the influence of the
lower force is relatively low.

Example 2.17: Allowed specific force range

Data:

Required number of load cycles Ny = 5,000,000 at which with a certainty of 95 %
at most 1 % of the wire ropes are broken.

Spiral rope 1 x 61, lubricated

d = 20 mm, strength Ry = 1,770 N/mm?

Rope length L = 120 m, L/d = 6,000

Lower rope force Sjower = 30kN, Sk,wer/d2 = 75 N/mm?>

Resin sockets

Results:
According to (2.111), the specific force range for the limiting number of load
cycles Np; = 2 x 10° is
| 281 _ 1g2,000,000 1 (
8742 T 723910 —3910
—0.793 x 1220 + 0.399 x Ig61 +1g0.763)

14.774 + 0.00118 x 75 — 0.0000037 x 75>

28.p1/d* = 118 N/mm?.

For the required number of load cycles N; = 5,000,000, the specific force range
according to (2.114) is

2,000,000
28,1 /d* = 103.2 N/mm?

5.000.000\ !/(72x3.910+1)
2sal/d2118< ,000, )

and the force range and the stress range are

28, =413kN and 20, = 175 N/mm?.
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2.7.2.3 Rope Termination

The calculation of the allowed range of specific force for wire ropes under fluc-
tuating forces described here is based on test results relating to wire ropes ter-
minating in resin sockets. For ropes with other terminations, the allowed range of
specific forces can be calculated in the same way. In this case the constant ag has
to be estimated with (2.109a) or (2.109b).

2.7.3 Discard Criteria

Wire ropes always have a limited working life. Prior to rope breakage, the rope has
to be discarded and replaced. It is necessary to have safety inspections to ascertain
the state of the wire rope, i.e. the state at which the wire rope should be discarded.

The discarding state of stay wire ropes will be indicated by damage near the
terminations as well as wire breaks or corrosion on the free rope length. The inner
wires of ropes with tensile loads are always stressed to a greater degree than the
outer wires. This means that in wire ropes suffering under fluctuating tension, it is
the wires in the inner rope in particular which break. Therefore the wire rope has to
be inspected by magnetic methods Feyrer and Wehking (2006).

In any case, wire breaks in or close to the sockets are promoted by transverse
vibrations of the ropes, Hobbs and Smith (1983), Oplatka and Roth (1991, 1993),
Brevet and Siegert (1996), Siegert et al. (1997), Gourmelon (2002) and Siegert and
Brevet (2005). Gabriel and Niirnberger (1992) pointed out that in the most cases,
the stay wires rope has to be discarded because of damage near the terminations or
corrosion but not because of wire breaks on the free length.

The transversal vibration of stay ropes should be minimised by dampers,
Gourmelon (2002). However these vibrations that induce wire breaks in the
sockets cannot totally avoided. As Oplatka and Roth (2000) stated, there is no
method found that can show in field-test the condition of the rope even in resin
sockets with sufficient accuracy. Therefore the transversal vibration should be kept
away from the sockets. The wire rope should be hold by a fastening in front of the
socket on that the transversal vibration ends. This fastening should be removable
so that the wire rope can be inspected in this region with magnetic methods.
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