2 Theory

2.1 A Classical Description of the EPR
Experiment

2.1.1 The Bulk Magnetization

To describe the EPR experiment in a classical way, the interaction of the
macroscopic bulk magnetization with the applied microwave frequency has
to be regarded. If one considers a large ensemble of non-interacting classical
magnetic moments in a high magnetic field (~ 1 T) at low temperatures (~
1 K), the resulting macroscopic magnetization M would be approximately
equal to N,pu. N, is the number of dipoles per unit volume. [2, 12]

If the classical equation of motion is applied for a magnetic moment with an
angular momentum in a magnetic field to the bulk magnetization, one gets

dM _ _gﬁe
o = Mx =B, (2.1)

Equation 2.1 describes a precession of the magnetization vector about the
axis of the static external magnetic field vector (in the following set as the
z-axis of the coordinate system). The precessional frequency is called the
Lamor frequency, wg. [12]

_ geﬂeBO
Wwo = 7

(2.2)

2.1.2 The Rotating Frame

At equilibrium the magnetization vector is aligned parallel to the axis of the
static external magnetic field vector. To move it away from its equilibrium
position one can apply an alternating magnetic field, By, oscillating with
the Larmor frequency of the observed spins perpendicular to the external
magnetic field vector. Usually linearly polarized fields are used for this
purpose. For convenience, the direction of B is defined as the z-axis of the
laboratory coordinate system. In this case the linear polarized alternating
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magnetic field can be described as a superposition of two circularly polarized
alternating magnetic fields: A right-handed polarized fields,

B (t) = By cos(wat), B (t) = Bisin(wmyt), B{J(t)=0, (2.3)
and a left-handed polarized field,

B (1) = By cos(wnwt), B(t) = —Bisin(wmwt), B (1) =0, (2.4)

whereat wp, is the frequency of the microwave radiation. The right-handed
polarized fields follows the precession of the magnetization vector, whereas
the left-handed polarized field precesses in the opposite direction. Therefore,
only the right-handed polarized field influences the magnetization vector
distinctly. [12]

However, with a time-dependent field like this, equation 2.1 cannot be solved
analytically. The solution to this problem is to define our coordinate system
such that it rotates with wy,, anti-clockwise about the z-axes. Then the
time dependency of BY) is removed. Such a coordinate system is called a
rotating frame. [12]

laboratory frame

rotating frame

Gy & B 1R 4B

Figure 2.1: Sketch of the movement of a right-handed polarized magnetic field, BY),

in a laboratory and a rotating frame. [13]

In the rotating frame the magnetization vector precesses with the difference
between its Larmor frequency, wp, and the frequency of the applied microwave
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radiation, wpy. The frequency difference is called the resonance offset, Qg.
[12]

Os = Wy — Wmw (2.5)

2.1.3 The Bloch Equations

In a rotating frame equation 2.1 can be written as a set of linear equations:

dM.
T — _Q¢M,
dt 5%y
dM,
=0Q M, sz
dt S w1
dM,
dr = —wlMy (26)
xT eB
with wy = 2 55 ! (2.7)

However, those equations cannot be a complete description of the motion
of the magnetization vector in a magnetic field, as they do not predict that
after some time the magnetization vector will reach its equilibrium position
and align with the external magnetic field. To explain this observation
relaxation processes have to be taken into account. The z-component of
the magnetization vector relaxes with the so-called longitudinal relaxation
time, 77, while the z- and y-component relax with the so-called transversal
relaxation time, Th. [12]

These considerations lead us to the Bloch equations:

dM, M,
T — _QoM, — —%
dt STy
dM, M,
= =1 Mw - Mz - 71}’
dt s 1 T,
sz Mz B MO
= —w M, — 2.
dt Wiy Tl ( 8)
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2.1.4 Pulses

As mentioned above in the rotating frame the magnetization vector precesses
about the z-axis with the resonance offset frequency, Q0g. If one applies
microwave (m.w.) irradiation, there is an additional precession about the
m.w. field direction with the frequency w;. Both fields (the m.w. and static
one) add up to an effective field Bege. The precession of the magnetization
vector about the effective field is called nutation. Its frequency given by

Weff = 1/ Q?g + w%. (2.9)

The angle between the effective field and the z-axis is

0= arctan(g—;). (2.10)

Figure 2.2: Nutation of the magnetization vector M during microwave irradiation with
amplitude wi, shown in the laboratory frame. The vector moves with the
frequency weg on a cone inclined by the angle 6. [3]

If the frequency of the microwave radiation, wy,y,, equals the Larmor fre-
quency, wp, of the observed spin, the resonance offset, {)g, will become zero.
Thus, 6 will be 90° and the nutation frequency weg will be equal to wy. Such
a pulse is called an on-resonance pulse. For an on-resonance pulse the motion
of the equilibrium magnetization is very simple. It is just rotated from the
z-axis towards the -y-axis. The angle through which the magnetization is
rotated is given by:

B = wy *tp, (2.11)

where t, is the time for which the m.w. pulse is applied. However, if the
difference between the applied m.w. radiation and the Larmor frequency is
too big, then Qg > wy and therefore 6 ~ 0 (off-resonance pulse) . [3, 12, 13]
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Consequently, the difference between the radiation frequency and the Larmor
frequency may not be too big to accomplish a good population inversion.
Therefore, the inversion bandwidth of a single m.w. pulse is quite limited
and we have to think of another way of inverting spins to be able to do
broadband EPR. A technique for gaining high inversion efficiency over a
broad bandwidth is the fast adiabatic passage. [14]

2.1.5 Fast Adiabatic Passage

In the fast adiabatic passage the frequency of the applied m.w. radiation
varies with time. It is swept at a rate that is small compared to the m.w.
amplitude (adiabatic condition). Moreover, adiabatic rotations must be
much shorter than the relaxation times T} and T%. If those conditions are
fulfilled the magnetization vector M will remain parallel to the effective
field Bege during the sweep. With such an experiment, one can achieve
a high excitation bandwidth with a constant flip angle even if B; is very
inhomogeneous. [14-16]

(me< () Omw= D9 Oy > Q)
z z z

Y Wer= Wy y y
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Figure 2.3: Illustration of the effective field vector, weg, and its components, wi and
Qg during the fast adiabatic passage in a FM frame. If the adiabatic
condition is fulfilled, the magnetization vector M will remain parallel to
the effective field during the sweep. [15]

To visualize the motion of the magnetic field vector, a frequency-modulated
(FM) frame is used. The FM frame rotates with the variable frequency
of the applied m.w. radiation. Thus, the orientation of w; remains time
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independent during an adiabatic passage. Figure 2.3 shows the motion of the
effective field during an adiabatic pulse. When the pulse starts, wpy < wq
therefore the effective field weg is tilted only a bit away from the z-axis.
Then the frequency increases until it is at resonance (W = wp) so that we
lies on the z-axes. After that wy, is further increased so that it becomes
off resonant again (wmw > wo). [15]

2.2 A Quantum-Mechanical Description of EPR

2.2.1 Spin-Hamiltonians
2.2.1.1 The Static Spin Hamiltonian

The static spin Hamiltonian Ho describes the energies of states within the
ground state of a paramagnetic species. It doesn’t contain space coordinates
but only spin coordinates. [3]

Ho = Hrz + Hzrs + Hur + Hnz + Hng + Han (2.12)

The operator Hgyz represents the Hamiltonian of the electron Zeeman in-
teraction (see chapter 1.1.2), whereas Hnyz specifies the nuclear Zeeman
interaction. The hyperfine coupling (see chapter 1.1.3.2) is delineated by
Hur. The mathematical expression of the nuclear quadrupole interaction is
Hngq- This interaction is characteristic for nuclei with spin I > 1, as those
have a non-spherical charge distribution. The zero-field splitting is described
by Hyzrs. This field-independent splitting of the ground states is either
caused by the dipole-dipole coupling of the electrons in a spin system with
S > 1/2 or by spin-orbit coupling. The dipole-dipole interaction between
two nuclei is covered with Hyn. [3] For the investigated systems only the
electron and nuclear Zeeman effect as well as the hyperfine coupling and the
zero-field splitting have to be considered. Therefore, only those Hamiltonians
will be explained in detail in the following.

Electron Zeeman Interaction As mentioned above an electron has an
intrinsic angular momentum that is quantized in two states (ms = i%)
The splitting of these energy levels in a magnetic field is called the Zeeman
interaction. It can be described with the electron Zeeman Hamiltonian:

Hrpz = %Bngs, (2.13)
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where Bl is the transpose of the static magnetic field vector and g is the
g-tensor. [3, 17]

In anisotropic systems the Zeeman interaction can depend on the orientation
of the system with respect to the external magnetic field (see chapter 1.1.3.1).
Therefore, the g-factor has to be a tensor:

g 0 O
g = 0 g, O (2.14)
0 0 g

If By is parallel to the x(y,z)-axis of the molecule internal coordinate system,
the Zeeman splitting is %Bogz (%Bogy7 %Bogz). If the external field isn’t
aligned with any primary axis of the molecule internal coordinate system,
then all three diagonal elements contribute to the effective g-value: [3]

Joff = \/g% sin? 6 cos? o + gz sin? fsin? ¢ + g2 cos? ¢ (2.15)

0 and ¢ are the polar angles that define the orientation of the external
magnetic field vector By with respect to the molecule internal coordinate
system (see figure 2.4). [3]

9z

¢

9x
X

Figure 2.4: Orthorhombic model of the g-tensor shown in the laboratory frame. The
coordinate systems represent the orientation of the spin with respect to
the external field By. [17]

This leads to the fact that at a constant frequency for different field strengths,
molecules with different orientations are excited. Figure 2.5 shows the
simulated EPR spectrum of an anisotropic system with S = % and the
probability that the spin with a specific orientation with respect to By
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is excited at a given value of By. The figure makes clear, that different
orientations are excited at different m.w. energies or field strengths.

z
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X y X y
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I
Bo(9,) Bo(g,)  By(g,)

Figure 2.5: Simulation of the EPR spectrum of an anisotropic system with S = %
The coordinate systems represents the orientation of the spin. The z-axis
of the graph shows the norm of the Bg vector. The spheres show the
probability that the spin is excited, if the B-vector points from the point
of origin to a point on the sphere. The brighter the color, the lower is
the possibility that the spin is excited for this norm and orientation of Bg.
This simulation was done by Dr. Udo Kielmann, ETH Zurich, Switzerland
[17].

Nuclear Zeeman Interaction The nuclear Zeeman interaction can be ex-
pressed analogously to the electron Zeeman interaction:

oy =2 *;19“ BTL (2.16)

Instead of the Bohr magneton, S, the nuclear magneton f,, instead of the
electron Zeeman tensor g, the nuclear Zeeman factor g, and instead of the
electron spin angular momentum operator S, the nuclear spin vector operator
I are used. In most EPR-experiments the nuclear Zeeman interaction can
be considered to be isotropic. [3]
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Hyperfine Coupling The Hamiltonian of the hyperfine coupling, Hyp,
consists of the Fermi contact interaction, Hp, and the electron-nuclear
dipole-dipole coupling, Hpp. It can be expressed as:

Hur = STAIL (2.17)
where A is the hyperfine tensor and I the nuclear spin vector operator. [3]

The Fermi contact interaction accounts for the possibility that the positions
of the electron and nuclear spin overlap. It is given by:

Hr = ai50ST1, (2.18)

whereat ais, is the isotropic hyperfine coupling constant. While the Fermi
contact interaction is isotropic, the electron-nuclear dipole-dipole coupling
depends on the relative orientation of the nuclear and the electron spin. [3]
It is described by

Hpp = STTI, (2.19)

with T being the anisotropic dipolar coupling tensor. For an anisotropic g
factor the hyperfine tensor A can now be written as: [3]
T
A=agl+ 80 (2.20)

e

Zero-Field Splitting Strongly interacting electrons (group spin S > %)7
like for example in transition metal or lanthanide ions, are described by

Hzrs:

Hzrs = STDS (2.21)

whereat D is the symmetric and traceless zero-field interaction tensor. In
the principal axes system of D, Hzprs becomes:

Hyrs =D, S2 + DyS2 + D.S?
1 (2.22)
=DIS? ~ 25(5 + 1)) + B(S? - 52).

3 1
with D = §Dz and F = i(Dm —D,)
For cubic symmetry, D = E = 0; for axial symmetry, D # 0, E = 0; and for
even lower symmetries, D # 0, E # 0. For spins with S > 2 even further
distortions have to be considered.[3]
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2.2.1.2 Weak Coupling between Electron Spins

While strongly interacting electrons are only of minor importances for this
thesis, the interaction between weakly coupled electron spins is the fun-
damental effect on which this work is based. The complete Hamiltonian
for a system consisting of two weakly coupled electron spins is given by
the Hamiltonians for each individual spin system H(S1) and Ho(S2) (see
equation 2.12) and two coupling terms, Hexen and Haq. [3]

7‘[0(5’1, Sg) = H0(51) + HO(SQ) 4+ Hexen + Had (2.23)

Hexen - The Exchange Coupling The exchange coupling is caused by
significant overlapping between the orbitals of the two spins. In this case
the unpaired electrons can be exchanged. The Hamiltonian of the exchange
coupling is given by

Hexch — S{JSQ; (224)
where J is the exchange coupling tensor. [3]
Haa - The Dipole-Dipole Coupling The operator of the dipole-dipole

coupling is constructed in an analogous manner to the exchange coupling
term. Instead of J, the dipole-dipole coupling tensor D is used.

Haa = STDS,, (2.25)

If the anisotropy of the g-tensor can be neglected and the two electrons can
be described as point dipoles, the D is given by:

52 -1 0 0 —Wdd 0 0

Ho 9192P¢

D= m 7“:1))2 0 —1 0 == 0 —wdd 0 5 (2-26)
0 2 0 0 2wdd

where 715 is the distance between the two electron spins, pg is the vacuum
permeability and wqq is the dipole-dipole coupling. [3]
2.2.1.3 The Oscillatory Hamiltonian

Transitions between different electron spin states can be induced by an
electromagnetic field with a frequency close to the corresponding Larmor
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