2 Foundations and Related Work

This dissertation is related to multiple research and practice areas of
software engineering. In this chapter, the necessary foundations of
these related areas are introduced. We give an overview of the related
work, as well.

The main goal of this chapter is to provide readers with the essential
background knowledge needed to follow the upcoming chapters. The
basics introduced here sketch the background of the author of this
thesis which shall help to follow some of the decisions made in the
remainder of this work. Experts in the field may skip parts, of course.

The topic introduced in this thesis is related to a broad area of
research. Accordingly, we introduce (i) adaptive software, (ii) software
product lines, (iii) modeling, (iv) software language engineering and
(v) software components in the remainder of this chapter. We define
special terminology the first time it is used. A glossary of terms
(starting on page 293) and a list of acronyms (starting on page 305)
are attached to this thesis. This chapter ends with a short summary.

2.1 Adaptive Software

The main concept and driving idea especially behind Self-Adaptive
Software (SAS) [96, 111] and likewise behind Autonomic Computing
(AC) [71, 86] is to achieve the automation of tedious administration
and maintenance tasks. Specifically, software shall take active re-
sponsibility for its own robustness [97] by adapting its own state and
behavior at runtime in response to observed changes (i) in its context
as well as (ii) in its self. While the context covers especially the
operative environment, the self denotes the whole body of software as
it is implemented (e.g., logically organized into a stack of layers) [120].

M. Derakhshanmanesh, Model-Integrating Software Components,
DOI 10.1007/978-3-658-09646-5 2, © Springer Fachmedien Wiesbaden 2015



20 2 Foundations and Related Work

Many researchers use the terms self-adaptive, autonomic computing
and self-managing interchangeably [76], while some see SAS as the
more general area [120]. There is also a community that works on
Organic Computing (OC) [112, 144]. In the scope of this dissertation,
we handle SAS and Autonomic Computing (AC) as two strongly
related research areas that target similar goals. Thus, we refer to
them collectively as adaptive software or “software with adaptivity”
(see Definition 2.1) in this thesis.

Definition 2.1: adaptivity

Adaptivity is the ability of a system to make controlled, i.e., mean-
ingful, changes to its own states and behavior to suit changing
conditions at runtime.

Adaptivity management (see Definition 2.2) is a very wide and
complex topic. The subtopics include technical (How to develop
adaptive software and its critical parts such as the feedback loop?
How to plan and foresee the set of actions that will be most successful
in new environments?) and non-technical challenges and issues (How
to ensure that the adaptive software acts in compliance with the law?).

Definition 2.2: adaptivity management

Adaptivity management is the process of engineering software with
adaptivity and controlling its evolution.

The motivation for adaptive software stems from various issues
related to engineering complexity, flexibility, robustness, continuous
on-time evolution and the overall desire for short turn-around times
required to deal with ever changing customer needs. For example,
software is commonly built to operate within (strongly) restricted
bounds. Components and their interfaces are being developed for
anticipated use cases and scenarios. Once placed outside of the context



2.1 Adaptive Software 21

it was engineered for, software tends to fail miserably and intervention
of humans is required for such unanticipated situations.

In practice, it is common to perform necessary maintenance tasks
on software offline and to deploy a new version, eventually. This time-
consuming process results in high costs and also in delays during which
the system cannot operate and Service Level Agreements (SLAs) [91]
are violated. The promise of adaptive software is to provide proven
methods, tools and techniques that support the automation of large
portions of maintenance tasks online, i.e., during operation time (run-
time). Furthermore, the vision is that software shall be fault-tolerant
and stable, with minimal human intervention.

Relying on a mix of sensing and effecting mechanisms that may
be implemented by a combination of hardware and software, an
adaptation manager (see Definition 2.3) is capable of controlling the
coupled managed software.!

Definition 2.3: adaptation manager
An adaptation manager is a subject, e.g., a software component,

that performs the process of adapting.

Often, controlling is also referred to as adapting (see Definition 2.4).

Definition 2.4: adapting

Adapting is a process that operates on a software system to adjust
it to varying requirements at runtime by executing adaptations.

Definition 2.5: adaptation

An adaptation is a planned sequence of actions that makes a
system suitable for a new condition.

! Autonomic computing names them autonomic manager and managed element.
In control theory, the related terms are controller and controlled plant.



22 2 Foundations and Related Work

Autonomic Manager

Analyze

Monitor Knowledge Execute

X 4

Figure 2.1: IBM’s MAPE-K Loop

A common sequence of steps involved is described by the popular
MAPE-K loop [86]. An illustration is given in Figure 2.1. It consists
of (i) monitoring changes in the environment, (ii) analyzing them for
their relevance, (iii) planning possible adaptation steps and, finally,
(iv) executing an adaptation strategy. Additionally, this process is
supported by (v) knowledge, which is often available in the form of
a self-representation that can be achieved by following the reflective
architecture pattern [20].

When designing an adaptation manager, it is common to distinguish
between internal and external approaches [120]. While internal solu-
tions merge the individual steps with the software’s (application) logic,
external solutions avoid this tight coupling and propose to develop
the adaptation manager separately and to connect them with the
(existing) application software. This connection is usually established
via traditional interfaces, event systems or by injecting code with
Aspect-Oriented Programming (AOP) techniques, for instance. Most
research seems to focus and rely on the external approach [120, 147].

Most proposed approaches to engineering SAS have in common
that they achieve dynamic change by managed, incremental change
at the structural level of software, i.e., SAS is also an architectural
challenge [93]. In Section 2.5, we describe the essentials of software
architecture in terms of components and connectors.



2.1 Adaptive Software 23

2.1.1 Self-* Properties

Software adaptivity is based on a set of properties that facilitate (i) the
observation of operating state transitions and (ii) the modification of
the managed application’s behavior at runtime [128].2

Depending on the domain of the managed software and depending on
its requirements, adaptive software needs to possess certain properties
to fulfill its requirements, i.e., there are different kinds of adaptivity.
This class of properties is widely known as self-* properties® [6] and
can be categorized. Each self-* property focuses on a specific set of
system capabilities.

Horn describes eight of such self-* properties that may characterize
an autonomic system [71]. In [120], the authors propose a hierarchical
view of these properties as illustrated in Figure 2.2. According to this
hierarchy, self-adaptiveness and self-organizing are general properties
of adaptive software. These are further decomposed into major and
primitive properties. This categorization can serve as a starting point
for understanding the required and desired properties of adaptive
software to be built. In the following, we give an introduction to this
hierarchy.

General Level

The general level contains global properties of adaptive software such
as self-managing, self-governing, self-maintenance [86], self-control
[90] and self-evaluating [98]. These terms support the discussion of
adaptivity at an abstract level, i.e., without explicitly mentioning
concrete capabilities.

Major Level

The major level contains all of the four self-* properties introduced
in [71]. These were motivated by analogies from biology, where, for

2The section on self-* properties is partially based on text from the author’s
master’s thesis [37].
3The “*” symbol in “self-*” is a placeholder for different properties.



24 2 Foundations and Related Work

Self-Organizing

General Level Self-Adaptiveness

Self-Configuring Self-Healing
Major Level

Self-Optimizing Self-Protecting
Primitive Level Self-Awareness Context-Awareness

Figure 2.2: Hierarchy of Self-* Properties (Derived from [120])

instance, the autonomous nervous system monitors and controls the
heart rate and body temperature [86]. Self-* properties at this level of
abstraction can be used to identify and specify the needed adaptivity
properties for a concrete software system.

e Self-configuring is the ability of adaptive software to adjust its
own configuration. Such an adjustment may include installing,
updating, integrating, composing and decomposing existing or
new software elements.

e Self-healing is the ability of adaptive software to discover, di-
agnose and react to disruptions. Adaptive software with such
capabilities is able to detect potential problems and can take
proper actions accordingly to prevent failure.

e Self-optimizing is the ability of adaptive software to manage
performance (e.g., end-to-end response time and throughput)
and resource allocation (e.g., CPU and memory consumption).

e Self-protecting is the ability of adaptive software to protect itself
against threats by detecting security breaches and by recovering
from their effects.



2.1 Adaptive Software 25

Primitive Level

The primitive level contains the fundamental properties needed for
adaptive software to enable any kind of reasonable adaptation.

e Self-awareness refers to the ability of adaptive software to
be aware of its self (i.e., states and behaviors) based on self-
monitoring [68].

e (Context-awareness refers to the ability of adaptive software to
be aware of its context (i.e., the operating environment) based
on context-monitoring [113].

2.1.2 Selected Publications

The foundations of adaptive software — as needed for this thesis —
were described. For a comprehensive list of publications on adaptive
software, please check some of the existing surveys [25, 33, 46, 76, 115,
120, 149] and the programs of:
e the International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS),
e the International Conference on Cloud and Autonomic Comput-
ing (CAC)® and
e the Self-Adaptive and Self-Organizing Systems (SASO)® com-
munity.

Subsequently, we give a summary of selected publications” from
different subareas of the field. The idea is to give the interested reader
some more details and background by introducing interesting recently
published work.

‘http://www.self-adaptive.org/ (accessed July 6th, 2014)

"http://www.autonomic-conference.org/ (accessed July 6th, 2014)

Shttp://wuw.saso-conference.org/ (accessed July 6th, 2014)

"Please note that the author of this thesis is “influenced” by the SEAMS commu-
nity.



26 2 Foundations and Related Work

Subtopics Related to Applications

Pasquale et al. [114] describe the application of SAS to solve the
challenge of protecting valuable assets (physical or virtual) within
an organization. This area of research is called adaptive security.
The assumption is that a protecting system based on hardware and
software exists. Because assets change over time, the appropriate
countermeasures against attacks need to be decided on at runtime,
too. The contributions are a modeling notation for representing assets,
the use of models of security requirements and monitoring functions
as well as the description of a set of scenarios in the domain of smart
grids.

Pasquale et al. combine a domain-specific model of assets (con-
taining rooms, energy, CCTV camera, etc.) with an extended goal
model [119] that also includes vulnerabilities. Each asset has a value
and these are recomputed on change based on defined monitoring
functions. Countermeasures are injected into the source code using
AOP techniques; in this specific work, the AspectJ ® is used. Different
kinds of countermeasures and their implementation are presented, in-
cluding one solution that waits for the input of a human administrator
(“human-in-the-loop”).

Ingolfo and Souza [79] propose to use mechanisms from require-
ments-based approaches to building SAS in order to achieve regulatory
compliance for software systems. The challenge is to cope especially
with changes and variability in the law. For instance, the allowed
age of drivers varies across the US from state to state and assisting
solutions must adapt accordingly. Google’s driver-less car is taken as
an example of an autonomous system that shall comply to applicable
law. For example, it shall respect stop signs.

The Zanshin approach [124] is used to illustrate how to implement
an adaptive system using a requirements model consisting of awareness
requirements (definition of what should be monitored) and evolution
requirements (definition of actions to face detected failure).

*nttp://eclipse.org/aspectj/ (accessed July 6th, 2014)



2.1 Adaptive Software 27

Ingolfo and Souza conclude that, based on their preliminary ap-
proach, a piece of law (text) can be systematically converted into
a model that can be used by a SAS for decision making. Changes
in the law are faced in terms of automated reconfiguration of the
software. The SAS is able to identify breaches of the law and to
search for variations in the law(s) it can fulfill, essentially resulting in
a reconfigured system.

Huang and Knottenbelt [74] propose a framework for the realization
of self-adaptive containers to support software developers building
resource-efficient applications. Assuming that an execution environ-
ment exists, these low-level containers (e.g., List, Set, Stack, Queue)
adapt their use of algorithms to provide an implementation that
satisfies a set of Service Level Objective (SLO) [127] best.

These containers consist of two parts: an API and a Self-Adaptive
Unit. While the first one is subdivided into configuration interfaces and
operation interfaces, the latter consists of an SLO store, observer ana-
lyzer, adaptor and an execution unit. They perform a feedback loop.
SLOs are defined by using Web Service Level Agreement (WSLA) [85]
in XML format and containers are implemented in C+-. Internally,
a combination of (probabilistic) data structures is used.

Based on a case study where the author’s implementation is com-
pared against C++’s standard implementation of the respective con-
tainers, Huang and Knottenbelt demonstrate that adaptivity can also
support the needs of software developers as the burden of manual
optimization of the used algorithms is removed from their shoulders
(in this specific example).

Subtopics Related to Architecture

Weyns et al. [147] investigate if the choice of building SAS with an
external control loop (in contrast to an internal control loop) really
improves software design or not. The claim that an external control
mechanism (i.e., an adaptation manager) is the better solution from



28 2 Foundations and Related Work

an engineering perspective was especially propagated by Garlan et
al. [61] and the proposed Rainbow? framework [26].

Weyns et al. present their results from a controlled experiment
carried out with 24 final-year Students of a Master in Software En-
gineering program at Linnaeus University in Sweden. Even though
external and internal solutions seem to be roughly the same size,
external mechanisms simplify the software’s design in terms of its con-
trol flow complexity. The outcome of the experiment is that, indeed,
external feedback loops are the better choice for engineering SAS.

Cdamara et al. [21] report on their findings when integrating the
Rainbow framework [61] with an existing industrial-scale software
solution for monitoring and managing networks of devices. The
primary goal is to investigate if and how new frameworks for adaptivity
can be integrated with existing industrial solutions (here called legacy
system). The associated effort is measured, as well. The overall
assumption is that a solution like Rainbow can enhance existing
software.

The authors describe the changes necessary for a certain part of
the Acquisition and Control Service (DCAS) under inspection and
illustrate the newly introduced adaptation mechanisms and their real-
ization using the framework’s capabilities of placing probes, effectors
and expressing adaptation strategies.

Camara et al. conclude that the Rainbow-based solution performs
adaptation better than the existing solution. Moreover, it was not too
complicated to integrate both software systems with the exception
of an initial learning effort added. Once the integration has been
completed, evolution of the system takes minutes, not hours. This
facilitates maintenance which is the primary effort associated with
software over its full life-cycle [19].

Subtopics Related to Evaluation

Weyns et al. [146] discuss that no systematic study has been performed
to check if the claims associated with SAS are actually valid or not.

“http://wuw.cs.cmu.edu/ able/research/rainbow/ (accessed July 6th, 2014)



2 Springer
http://www.springer.com/978-3-658-09645-8

Model-Integrating Software Components
Engineering Flexible Software Systems
Manesh, M.

2015, XX, 333 p. 43 illus., Softcover
ISBEN: 278-3-658-009645-8



	Part I Introduction and Foundations
	2 Foundations and Related Work
	2.1 Adaptive Software
	2.1.1 Self-* Properties
	2.1.2 Selected Publications






