2 Background

In this chapter we review related work and briefly present approaches
and technologies used in the development of the presented approach for
multilevel business process modeling and data analysis. Multilevel business
process modeling builds on existing research on multilevel domain modeling,
especially multilevel objects [76]. The proposed modeling approach qualifies
as data- or artifact-centric business process modeling [82] and relies on
the notion of behavior-consistent specialization of life cycle models [108].
Multilevel business process models are executable in an automated way, the
resulting traces being subject to business process intelligence. The multilevel
business process modeling approach relies on UML (with OCL) as modeling
language and for the definition of the formal metamodel; XML serves as the
format for logical representation.

2.1 Multilevel Modeling

A plethora of multilevel modeling approaches exists in the literature [10]. A
common feature of these approaches is the support for arbitrary-depth in-
stantiation/classification hierarchies. For a multitude of use cases, multilevel
modeling approaches lead to a more accurate representation of reality than
“traditional” modeling approaches with two-level instantiation/classification
hierarchies [59].

The multilevel object [77] (m-object) is a versatile approach to multilevel
modeling. The m-object combines elements of other multilevel modeling
approaches, most notably powertypes, materialization, and deep instantiation
(see [81] for a detailed comparison). A mapping of m-objects to OWL [79]
renders multilevel modeling accessible to ontology engineers. The design
of data warehouses using m-objects leads to an improved representation of
heterogeneities in OLAP cubes [80]. In this spirit we extend the m-object
modeling approach to the realm of business process management.

The notion of powertype derives from powersets in set theory [20] and has
since been included in the UML standard [88, p. 54]. The instances of a pow-
ertype are subtypes of another object type, thereby providing metamodeling

C. G. Schuetz, Multilevel Business Processes,
DOI 10.1007/978-3-658-11084-0 2, © Springer Fachmedien Wiesbaden 2015



12 2 Background

capabilities [85, p. 28]. Gonzalez-Perez and Henderson-Sellers [33] propose a
powertype-based approach without strict separation of traditional two-level
instantiation with classes and objects, using instead the notion of “clabject”.
In this approach, the powertype pattern consists of “a pair of classes in
which one of them (the powertype) partitions the other (the partitioned
type) by having the instances of the former be subtypes of the latter” [33,
p. 83]. The relation of the m-object modeling approach to powertype-based
approaches [29] is as follows. A level of an m-object may act as partitioned
type and powertype at the same time. In an MBA'’s level hierarchy, a parent
level is the powertype of the child level.

Other concepts related to m-objects are materialization and deep instan-
tiation. Materialization [95, 25] blurs the boundaries between aggregation
and instantiation. Deep instantiation [11] introduces potencies to multilevel
instantiation hierarchies. Attributes of a class may have potencies assigned.
An attribute’s potency specifies the number of instantiation steps to be taken
until the assignment of a value to this attribute happens. Dual deep instan-
tiation abandons the strict metamodeling confinements of deep instantiation
and distinguishes between source and target potencies [78].

2.2 Business Process Modeling

In large parts of this book we deal with business process modeling. More
specifically, we propose an artifact-centric modeling approach for multilevel
business processes. In this context, variability and flexibility are important
aspects, with the notion of behavior consistency being closely related. Or-
thogonal to multilevel business processes is the traditional notion of business
process model abstraction.

2.2.1 Data- and Artifact-Centric Modeling

A business artifact [82] encapsulates, in a single object, a data model
along with the corresponding business process model for working with
the data, referred to as the object life cycle model. Object life cycles are
commonly modeled using variants of finite state machines [47]. Object
behavior diagrams [55], for example, employ Petri nets for the representation
of object life cycles. Other work [66, 72] leverages the expressive power of
the BPMN standard for artifact-centric business process modeling. The



2.2 Business Process Modeling 13

guard-stage-milestone approach [48, 49], on the other hand, produces a more
declarative representation of object life cycles.

Various existing approaches towards business process management put
their emphasis on the data objects involved in a process. The object-process
methodology [26] defines the notions of objects, processes, and states as
the main modeling primitives. States describe objects and processes change
the states of objects. The PHILharmonicFlows framework [57, 56] supports
object-aware business process management and distinguishes between micro
and macro process modeling, the former capturing the behavior of individual
objects, the latter representing interactions between objects. Proclets [5, 6]
are an object-oriented representation of business processes, where a proclet
corresponds to an object that is attached with an explicit life cycle model.
The proclet modeling approach especially emphasizes the interaction between
objects, rather than considering objects only in isolation.

The UML standard describes model types that may be employed
for artifact-centric business process modeling. In such a UML-based
approach [30], a UML class diagram represents the data model of business
artifacts and UML state machines typically represent the life cycle model of
artifacts. UML-based artifact-centric business process models are accessible
to methods for the formal verification of correctness [19]. In this book, we
employ UML state machines for representing object life cycles.

2.2.2 Variability and Flexibility

Central to the notion of variability is the concept of process variant. Differ-
ent process variants may exist for achieving the same goal. These process
variants have the same underlying core process but may differ from the
core process with respect to the exact type and sequence of conducted
activities [98, p. 45]. Configurable process models make explicit the vari-
ation points between different process variants [105]. Questionnaire-based
approaches may reduce the complexity of handling multiple configurable
process variants and facilitate the tailoring of a configurable process model to
the specific needs of individual users [58, p. 105]. The operational approach
towards the management of process variants performs change operations on
a base process model, allowing for the insertion/deletion and modification
of process fragments at specified variation points [40, 41]. Business process
families [37] adapt the principle of software product lines for the representa-
tion of business processes. A business process family comprises a reference
business process model and a set of features. The features relate to elements



14 2 Background

in the process model and serve as the basis for customization. Process owners
may customize the reference business process by using different selections of
features. A business process family may also be characterized as a “collection
of processes meeting a common goal but in different ways” [102].
Real-world business situations often necessitate dynamic adaptations of
business process models [99]. Change patterns may guide modelers through
the adaptation of process models and instances, thereby ensuring correctness
of the resulting adaptation [138]. Flexible approaches towards business
process management allow for the quick implementation of new processes
and on-the-fly adaptation of process instances [97]. Business processes may
also be flexible by design, providing process owners with different choices [98,
p. 59 et seq.]. Meta-processes may allow for the dynamic construction of
business process models, resulting in a business process model that optimally
fits the needs of the current situation [104]. For artifact-centric business
process modeling, the representation of a process design entity along with
the actual business process model supports the handling of flexibility [65].

2.2.3 Behavior-Consistent Specialization

The notion of behavior consistency realizes variability in data- and artifact-
centric business process models. A life cycle model that is a behavior-
consistent specialization of another, more general life cycle model is a variant
of this more general life cycle model. Different frameworks for behavior-
consistent specialization rely on various different modeling languages, for
example, Petri nets [3], UML state machines [125], or object/behavior
diagrams [108]. More recent work [141] has investigated the observation-
consistent specialization of synchronization dependencies. In the context of
process views, behavior-consistent specialization assists with the propagation
of local changes to a central process model [67].

Two flavors of observation consistency may be distinguished, namely obser-
vation consistency and invocation consistency [108]. Observation consistency
applies to situations where the specialized life cycle model is observable in the
same way as the more general life cycle model. In this case, any execution of
a specialized life cycle model must be a valid execution of the more general
life cycle model, when disregarding the refinements and extensions of the
specialized life cycle model. The notion of invocation consistency is stronger
than observation consistency, additionally demanding that any sequence of
activities that is valid in the more general life cycle model must also be a
valid in the specialized life cycle model.



2.3 Business Process Automation 15

2.2.4 Business Process Model Abstraction

In business process modeling, abstraction commonly refers to the description
of the same process at different levels of granularity. A process may thus
be composed by several sub-processes. For example, the negotiation and
signing phase sub-processes constitute the conclusion of a contract. Most
business process modeling languages allow for the representation of such
abstraction hierarchies. UML state machines allow for the nesting of states
under composite states [88, p. 560]. BPMN allows for the representation
of sub-processes, the notation allowing for both a collapsed and expanded
presentation in order to hide unnecessary details from the user [16, p. 118].

Business process model abstraction is essential to handling complexity
of large-scale models [119]. Typically, business process model abstraction
refers to the reduction of complexity in business process models by grouping
individual activities into sub-processes [118], thereby providing a more
general view on the underlying business process. Business process model
abstraction is part of the broader research field on well-structuredness of
business process models [96]. This whole field is orthogonal to multilevel
business process modeling: Rules for well-structuredness may be applied
individually to each of the business process models at the different levels in
a multilevel business process model.

2.3 Business Process Automation

Business process management systems support modeling and execution
of business processes [27, p. 298 et seq.]. In particular, business process
management systems ensure the valid execution order of the activities of
a business process and provision the appropriate resources needed for the
completion of these activities. Some of these activities may even be com-
pleted autonomously by the software system, without human intervention.
An automated business process may be referred to as workflow [27, p. 298].
The automation of business processes requires a suitable representation
language [94]. For example, BPEL is a widely-supported modeling language
for business process automation [84, 62]. The modeling language YAWL
also comes with an execution environment, its formal foundation in Petri
nets making it accessible to formal verification [44]. The Genesys Orchestra-
tion Server [32] employs State Chart XML, an XML-based representation
language for state machines. For artifact-centric business processes, the
Siena system [23] was among the first prototypes (cf. [24]) for the execution



16 2 Background

of artifact-centric business processes. The Siena system employs XML for
the representation of business artifacts, similar to the approach for business
process automation as presented in this book, which also adopts an XML
representation in order to allow for the execution of multilevel business
processes. The Barcelona system [43] supports the design and execution of
business processes using guard-stage-milestone models.

2.4 Business Process Intelligence

Following a review of BPI literature, Felden et al. [31, p. 200] define BPI as
“the analytical process of identifying, defining, modelling and improving value
creating business processes”. In the chapter on business process intelligence
of their comprehensive book about the fundamentals of business process
management, Dumas et al. present tools and techniques for “intelligently
using the data generated from the execution of the process” [27, p. 353].
Business process intelligence (BPI) comprises a multitude of tools and
techniques related to the analysis, monitoring, control, and optimization of
business process execution [36]. An important aspect of business process
intelligence is the discovery of processes through the mining of event data [21].
Other authors [74] use the term “business process analytics” as an umbrella
term for various techniques for the analysis of event log data generated
during the execution of business processes.

A data warehouse may organize the base data for business process analysis.
In that case, the data warehouse is then often referred to as process data
warehouse [36] or simply process warehouse [64, 63], Process models may
serve as the starting point for the definition of the schema for such a data
warehouse [126, 70, 69]. Other work [122] investigates how knowledge about
the life cycle models of the analyzed business objects may enrich a data
warehouse schema. Furthermore, business processes may also require access
to the data in a data warehouse and adjust further processing accordingly,
based on the contents of the data warehouse [121, 123].

In business process analysis, measures may either refer to the models of
business processes or the execution thereof [106]. Business process models
may be analyzed with respect to their complexity and understandability, for
example. A popular measure of interest for process execution is the cycle
time, that is, the amount of time needed to complete a process instance [27,
p- 219 et seq.]. In this book, we focus on the analysis of measures related to
business process execution, in particular cycle time.



2.5 Modeling Languages 17

2.5 Modeling Languages

Conceptual models describe the domain of an information system [86]. The
Unified Modeling Language (UML) defines model elements for both static
and behavioral modeling [88], state machine diagrams and activity diagrams
being the most notable for the modeling of behavior. Protocol state machines
define the legal execution order of the methods of a class [88, p. 535 et seq.].
In this book, we rely on UML state machine diagrams in order to model
artifact-centric business process modeling, in conjunction with UML class
diagrams for representing the data elements.

Conceptual data models translate into database schemas [28]. The Extensi-
ble Markup Language (XML), although introduced as a web technology, has
gained prominence for the specification of semi-structured logical database
schemas. Examples for available XML database management systems are
BaseX! and eXist-db2. In this book, we employ an XML database for the
storage of business artifacts.

For business process automation, modelers must translate business process
models into executable models, or workflow models [94]. State Chart XML
(SCXML) is a W3C proposed recommendation for the representation of
state machines using XML [136]. We use SCXML in the logical represen-
tation of business artifacts since its model elements and their semantics
are very similar to UML state machines, allowing for an easy translation of
conceptual multilevel business process models that use UML state machines
into a corresponding logical representation. We differ from the SCXML
specification in employing the XPath data model as described by the candi-
date recommendation [129] and last call working draft [130] since it neatly
integrates into XML and XQuery; the feature was dropped due to lack of
implementation [129].

XQuery is the standard query, manipulation, and programming language
for XML data [134, 128]. The XQuery Update Facility (XQUF) [128]
introduces data manipulation operations for XML documents. The concept
of node identity from the XQuery and XPath data model [135] allows for (a
sort of) object-oriented programming style. In this case, XML elements may
be regarded as objects and passed to functions under preservation of their
identity. Manipulation operations on these elements then propagate directly
to the database.

Thttp:/ /basex.org/
2http:/ /exist-db.org/



2 Springer
http://www.springer.com/978-3-658-11083-3

Multilevel Business Processes
Modeling and Data Analysis

Schutz, C.

2015, XXV, 232 p. 42 illus., Softcover
ISBN: @78-3-658-11083-3



	2 Background
	2.1 Multilevel Modeling
	2.2 Business Process Modeling
	2.2.1 Data- and Artifact-Centric Modeling
	2.2.2 Variability and Flexibility
	2.2.3 Behavior-Consistent Specialization
	2.2.4 Business Process Model Abstraction

	2.3 Business Process Automation
	2.4 Business Process Intelligence
	2.5 Modeling Languages




