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In this chapter we translate the Nijenhuis integrability conditions
for a Killing tensor on a constant curvature manifold into algebraic
conditions on the corresponding algebraic curvature tensors. To this
end, we substitute (0.7) into (0.2) and both into (0.3) and then use
the representation theory for general linear groups to get rid of the
dependence on the base point in the manifold.

Note that the algebraic curvature tensor in (0.7) is implicitly sym-
metrised in the first and third entry. The result of this operation is a
tensor having the symmetries of an algebraic curvature tensor, but
with antisymmetry replaced by symmetry.

Definition 1.1. A symmetrised algebraic curvature tensor on a vector
space V is an element R ∈ V ∗⊗V ∗⊗V ∗⊗V ∗ satisfying the following
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symmetries:

S(x,w, y, z) = +S(w, x, y, z) = S(w, x, z, y) (symmetry)

S(y, z, w, x) = S(w, x, y, z) (pair symmetry)

S(w, x, y, z) + S(w, y, z, x) + S(w, z, x, y) = 0 (Bianchi identity)1

In subsequent computations it will be more convenient to work
with the symmetrised version of algebraic curvature tensors. Actually,
both representations are isomorphic.

Remark 1.2. The space of algebraic curvature tensors on V and the
space of symmetrised algebraic curvature tensors on V are isomorphic
representations of GL(V ). Explicitly, this isomorphism is given by

S(w, x, y, z) = 1√
3

(
R(w, y, x, z) +R(w, z, x, y)

)
(1.2a)

R(w, x, y, z) = 1√
3

(
S(w, y, x, z)− S(w, z, x, y)

)
. (1.2b)

Since the Nijenhuis torsion of K depends on K and its covariant
derivative, ∇K, we need to express both in terms of the corresponding
symmetrised algebraic curvature tensor S.

Lemma 1.3. Up to a constant factor that can be neglected, we have

Kx(v, w) = S(x, x, v, w) (1.3a)

(∇uK)x(v, w) = 2S(x, u, v, w). (1.3b)

Proof. Up to said factor, the expression (1.3a) for K follows from
substituting (1.2b) into (0.7). For a flat space M ⊂ V as in (0.5b),
Formula (1.3b) follows trivially. So let us assume that M ⊂ V is as

1Owing to the other two symmetries, the cyclic sum may be taken over any
three of the four entries.
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in (0.5a). Denoting the covariant derivative on V by ∇̂, the covariant
derivative of K is then given by

(∇uK)(v, w)

= ∇u

(
K(v, w)

)−K
(∇uv, w

)−K
(
v,∇uw

)
= ∇̂u

(
S(x, x, v, w)

)− S(x, x,∇uv, w)− S(x, x, v,∇uw)

= 2S(x, ∇̂ux, v, w) + S(x, x, ∇̂uv, w) + S(x, x, v, ∇̂uw)

− S(x, x, ∇̂uv − g(u, v)x,w)− S(x, x, v, ∇̂uw − g(u,w)x)

= 2S(x, u, v, w).

For the last equality we used the fact that the Bianchi identity for S
implies that S(x, x, x, w) = 0 and S(x, x, v, x) = 0.

The proof of Proposition 0.9 is now a simple consequence of the
above lemma, so we will give it here for the sake of completeness.

Proof (of Proposition 0.9). We have to show that the map defined
by (1.3a) is an isomorphism between Killing tensors on M ⊂ V and
symmetrised algebraic curvature tensors on V . This map is well
defined, since by (1.3b) the Killing equation for (1.3a) is equivalent
to the Bianchi identity for S. For simplicity let us assume that
M ⊂ V is not flat, i.e. of the form (0.5a). To show the injectivity
of the above map, suppose S(x, x, v, w) = 0 for all x, v, w ∈ V with
g(x, x) = 1 and g(v, x) = g(w, x) = 0. We can omit the restriction
g(v, x) = g(w, x) = 0 due to the Bianchi identity for S. We can also
omit the restriction g(x, x) = 1, because S(x, x, v, w) is a homogeneous
polynomial in x for fixed v, w ∈ V and RM is open in V . From a
polarisation in x we then conclude that S = 0. The surjectivity of
the above map now follows from dimension considerations. Indeed,
the dimension of the space of Killing tensors on a constant curvature
manifold of dimension n is known to be

(n+ 1)n2(n− 1)

12
,
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which happens to be the dimension of the space of algebraic curvature
tensors in dimension n+ 1.2 For a flat space M ⊂ V as in (0.5b) the
proof is analogous and will be left to the reader.

For actual computations the use of index notation is indispensable.
We will write Greek indices α, β, γ, . . . for local coordinates on M
(ranging from 1 to n) and Latin indices a, b, c, . . . for components in
V (ranging from 0 to n). We can then denote both, the inner product
on V as well as the induced metric on M , by the same letter g and
distinguish them only via the type of indices. Consequently, Latin
indices are raised and lowered using gab and greek ones using gαβ .

This said, we can rewrite the expressions (1.3) using ∇vx
a = va as

Kαβ = Sa1a2b1b2x
a1xa2∇αx

b1∇βx
b2 (1.4a)

∇γKαβ = 2Sc1c2d1d2x
c1∇γx

c2∇αx
d1∇βx

d2 , (1.4b)

where we regard the components xa of x ∈ V as functions on M ⊂ V
by restriction. We are now ready to substitute (1.4) into (0.2) and
then further into (0.3).
First note that in the integrability conditions (0.3) the Nijenhuis

torsion (0.2) appears only antisymmetrised in its two lower indices β
and γ. To simplify computations we will thus replace the Nijenhuis
torsion Nα

βγ in the integrability conditions by the tensor

N̄α
βγ := 1

2

(
Kα

δ∇γK
δ
β +Kδ

β∇δK
α
γ

)
, N̄α

[βγ] = Nα
βγ .

Together with (1.4) this can be written as

N̄α
βγ = Sa1a2b1b2Sc1c2d1d2x

a1xa2xc1∇αxb1∇δx
b2∇γx

c2∇δxd1∇βx
d2

+ Sa1a2b1b2Sc1c2d1d2x
a1xa2xc1∇δxb1∇βx

b2∇δx
c2∇αxd1∇γx

d2 .

Lemma 1.4. For a constant curvature manifold we have

∇δx
a∇δxb =

{
gab − xaxb if M is of the form (0.5a)

gab − uaub if M is of the form (0.5b).

2This can be computed from the so called hook formula.



29

Proof. Let e1, . . . , en be a basis of TxM and complete it with a unit
normal vector u =: e0 to a basis of V . Then on one hand

n∑
i,j=0

g(ei, ej)∇eix
a∇ejx

b =

n∑
i,j=1

g(ei, ej)∇eix
a∇ejx

b +∇ux
a∇ux

b

= gαβ∇αx
a∇βx

b + uaub.

On the other hand, choosing the standard basis of V instead, the left
hand side is just gab. This proves the lemma, remarking that u = x if
M is not flat.

For flat M the lemma yields

N̄α
βγ = ḡb2d1Sa1a2b1b2Sc1c2d1d2x

a1xa2xc1∇αxb1∇βx
d2∇γx

c2

+ ḡb1c2Sa1a2b1b2Sc1c2d1d2x
a1xa2xc1∇αxd1∇βx

b2∇γx
d2 ,

(1.5)

where ḡ := gab − uaub. In all other cases we have

N̄α
βγ

=
(
gb2d1 − xb2xd1

)
Sa1a2b1b2Sc1c2d1d2x

a1xa2xc1∇αxb1∇βx
d2∇γx

c2

+
(
gb1c2 − xb1xc2

)
Sa1a2b1b2Sc1c2d1d2x

a1xa2xc1∇αxd1∇βx
b2∇γx

d2 .

But here the two subtracted terms vanish by the Bianchi identity,
because they contain the terms

Sa1a2b1b2x
a1xa2xb2 = 0, Sa1a2b1b2x

a1xa2xb1 = 0.

This allows us to use (1.5) for all constant curvature manifolds of the
form (0.5) if we define

ḡab :=

{
gab if M is of the form (0.5a)

gab − uaub if M is of the form (0.5b).
(1.6)

In the case of a hyperplane M ⊂ V , the tensor ḡab is the pullback
of the metric on M via the orthogonal projection V → M and thus

1 The foundation: the algebraic integrability conditions
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degenerated. Note that we still lower and rise indices with the metric
gab and not with ḡab.
In (1.5) the lower indices b2, d1 respectively b1, c2 are contracted

with ḡ. We can make use of the symmetries of Sa1a2b1b2 to bring these
indices to the first position:

N̄α
βγ = ḡb2d1Sb2b1a1a2Sd1d2c1c2x

a1xa2xc1∇αxb1∇βx
d2∇γx

c2

+ ḡb1c2Sb1b2a1a2Sc2c1d1d2x
a1xa2xc1∇αxd1∇βx

b2∇γx
d2 .

Renaming, lowering and rising indices appropriately finally results in

N̄αβγ = ḡij
(
Si

a2b1b2S
j
c2d1d2

+ Si
c2b1b2S

j
d1a2d2

)
xb1xb2xd1∇αx

a2∇βx
c2∇γx

d2 . (1.7)

In what follows we will substitute this expression together with (1.4a)
into each of the three integrability conditions (0.3) and transform
them into purely algebraic integrability conditions.

1.1 Young tableaux

Throughout this chapter we will use Young tableaux as a compact
means for index manipulations on tensors with many indices. The
reader not familiar with this formalism may as well simply consider
them as an alternative notation for symmetrisation and antisymmetri-
sation operators. However, we prefer Young tableaux over the more
common notation using round respectively square brackets around
the indices to be symmetrised, as the latter becomes confusing when
several index sets are involved and even ambiguous if these sets are
not disjoint. Moreover, using Young tableaux has the additional
advantage that one can directly read off the symmetry class of the
tensors involved. As we will basically deal with only a single type
of Young tableaux, namely those of a “hook shape”, we introduce
them by means of examples. More details can be found in [Sch12].
For the background we refer the reader to the standard literature on
representation theory of symmetric and linear groups.
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Young tableaux define elements in the group algebra of the permu-
tation group Sd. That is, a Young tableau stands for a (formal) linear
combination of permutations of d objects. In our case, these objects
will be certain tensor indices. For the sake of simplicity of notation
we will identify a Young tableau with the group algebra element it
defines. A Young tableau consisting of a single row denotes the sum
of all permutations of the indices in this row. For example, using
cycle notation,

a2 c1 c2 = e+ (a2c1) + (c1c2) + (c2a2) + (a2c1c2) + (c2c1a2).

This is an element in the group algebra of the group of permutations
of the indices a2, c1 and c2 (or any superset). In the same way a
Young tableau consisting of a single column denotes the signed sum
of all permutations of the indices in this column, the sign being the
sign of the permutation. For example,

a1

b1

d2

= e− (a1b1)− (b1d2)− (d2a1) + (a1b1d2) + (d2b1a1).

We call these row symmetrisers respectively column antisymmetrisers.
The reason we define them without the usual normalisation factors is
that then all numerical constants appear explicitly in our computations
(although irrelevant for our concerns).

The group multiplication extends linearly to a natural product
in the group algebra. A general Young tableau is then simply the
product of all row symmetrisers and all column antisymmetrisers of
the tableau. We will only deal with Young tableaux having a “hook
shape”, such as the following:

a1 a2 c1 c2

b1

d2

= a1 a2 c1 c2

a1

b1

d2

. (1.8a)

The inversion of group elements extends linearly to an involution of the
group algebra. If we consider elements in the group algebra as linear
operators on the group algebra itself, this involution is the adjoint
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with respect to the natural inner product on the group algebra, given
by defining the group elements to be an orthonormal basis. Since
this operation leaves symmetrisers and antisymmetrisers invariant, it
simply exchanges the order of symmetrisers and antisymmetrisers in
a Young tableau. The adjoint of (1.8a) for example is

a1 a2 c1 c2

b1

d2

�

=
a1

b1

d2

a1 a2 c1 c2 . (1.8b)

Properly scaled, Young tableaux with d boxes define projectors onto
irreducible Sd-representations. A hook shaped Young tableau with p
rows and q columns for example satisfies

a b · · · c

d
...

e

2

= (p+ q − 1)(p− 1)!(q − 1)!

a b · · · c

d
...

e

(1.9)

and the same formula holds for its adjoint.
The isomorphism class of the irreducible representation defined

by a Young tableau is labelled by the corresponding Young frame,
which is the Young tableau with the labels of its boxes erased. On
the level of isomorphism classes, the decomposition of tensor products
of irreducible representations is given by the Littlewood-Richardson
rule. For example, according to this rule, the tensor product of a
symmetric and an antisymmetric representation decomposes into two
irreducible components, each of hook symmetry:

q

{
... ⊗

p︷ ︸︸ ︷
· · · ∼=

p︷ ︸︸ ︷
· · ·

...
⊕ · · ·

...

}
q. (1.10)

The following lemma gives an explicit realisation of this decomposition
in terms of orthogonal projectors.



1.1 Young tableaux 33

Lemma 1.5.

1

q!

a1
...

aq

· 1
p!

s1 · · · sp =

p
q+1

(p+ q)p!2q!2

s1 · · · sp

a1
...

aq

s1 · · · sp

a1
...

aq

�

+

q
p+1

(p+ q)p!2q!2

a1 s1 · · · sp
...

aq

�
a1 s1 · · · sp
...

aq

(1.11)

In particular, for p = q = 3:

1

3!

c2

d2

a2

· 1
3!

b2 b1 d1 =
1

2734

b2 b1 d1

c2

d2

a2

b2 b1 d1

c2

d2

a2

�

+
1

2734

c2 b2 b1 d1

d2

a2

�
c2 b2 b1 d1

d2

a2

.

(1.12)

Proof. Write (1.11) as P = P1 + P2. Decomposing temporarily the
hook symmetrisers on the right hand side as in (1.8) into a product of a
symmetriser and an antisymmetriser and using (1.9), one easily checks
that P , P1 and P2 are orthogonal projectors verifying P1P2 = 0 =
P2P1, PP1 = P1 and PP2 = P2. Therefore P1 + P2 is an orthogonal
projector with image imP1 ⊕ imP2 ⊆ imP . The decomposition of
the isomorphism class of imP into irreducible components is given by
(1.10). The Young frames on the right hand side are those appearing
in the expression for P1 respectively P2. Hence they describe the
isomorphism classes of imP1 and imP2. This shows that imP and
im(P1 + P2) = imP1 ⊕ imP2 have the same dimension and are thus
equal. This implies P = P1 + P2.

Remark 1.6. The lemma can be interpreted as an explicit splitting
of the terms in the long exact sequence

0 → ΛdV → . . . → SpV ⊗ΛqV → Sp+1V ⊗Λq−1V → . . . → SdV → 0,

known as the Koszul complex.

The permutation group Sd acts on d-fold covariant or contravariant
tensors by permuting indices. This action extends linearly to an action
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of the entire group algebra. In particular, any Young tableau acts on
tensors with corresponding indices. For example,

b1

a2

c2

Tb1a2c2 = Tb1a2c2 − Ta2b1c2 − Tb1c2a2 − Tc1a2b2 + Ta1c2b2 + Tc1b2a2 .

To give another example, the operator (1.8a) acts on a tensor

Tb1b2d1d2a2c2

by an antisymmetrisation in the indices b1, a2, c2 and a subsequent
symmetrisation in the indices b1, b2, d1, d2. In the same way its
adjoint (1.8b) acts by first symmetrising and then antisymmetrising.

1.2 The 1st integrability condition

The first integrability condition (0.3a) can be written as N̄[αβγ] = 0.
For the expression (1.7) this is equivalent to the vanishing of the
antisymmetrisation in the upper indices a2, c2, d2:

ḡij
(
Si

a2b1b2S
j
c2d1d2

+ Si
c2b1b2S

j
d1a2d2

)
xb1xb2xd1∇αx

[a2∇βx
c2∇γx

d2] = 0.

Due to the symmetry of Sj
d1a2d2 in a2, d2 the second term vanishes.

If we write u, v and w for the tangent vectors ∂α, ∂β respectively
∂γ and use ∇ux

a = ua in order to get rid of the ∇’s, we obtain the
condition

ḡijS
i
a2b1b2S

j
c2d1d2

xb1xb2xd1u[a2vc2wd2] = 0

∀x ∈ M, ∀u, v, w ∈ TxM
(1.13)

on the symmetrised algebraic curvature tensor S.
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