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27. Artificial Neural Network Models

Peter Tino, Lubica Benuskova, Alessandro Sperduti

We outline the main models and developments
in the broad field of artificial neural networks
(ANN). A brief introduction to biological neurons
motivates the initial formal neuron model – the
perceptron. We then study how such formal neu-
rons can be generalized and connected in network
structures. Starting with the biologically motivated
layered structure of ANN (feed-forward ANN), the
networks are then generalized to include feedback
loops (recurrent ANN) and even more abstract gen-
eralized forms of feedback connections (recursive
neuronal networks) enabling processing of struc-
tured data, such as sequences, trees, and graphs.
We also introduce ANN models capable of form-
ing topographic lower-dimensional maps of data
(self-organizing maps). For each ANN type we out-
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line the basic principles of training the corre-
sponding ANN models on an appropriate data
collection.

The human brain is arguably one of the most excit-
ing products of evolution on Earth. It is also the most
powerful information processing tool so far. Learning
based on examples and parallel signal processing lead
to emergent macro-scale behavior of neural networks
in the brain, which cannot be easily linked to the be-
havior of individual micro-scale components (neurons).
In this chapter, we will introduce artificial neural net-
work (ANN) models motivated by the brain that can
learn in the presence of a teacher. During the course of
learning the teacher specifies what the right responses
to input examples should be. In addition, we will also
mention ANNs that can learn without a teacher, based
on principles of self-organization.

To set the context, we will begin by introducing ba-
sic neurobiology. We will then describe the perceptron
model, which, even though rather old and simple, is an

important building block of more complex feed-forward
ANN models. Such models can be used to approximate
complex non-linear functions or to learn a variety of as-
sociation tasks. The feed-forward models are capable of
processing patterns without temporal association. In the
presence of temporal dependencies, e.g., when learning
to predict future elements of a time series (with certain
prediction horizon), the feed-forward ANN needs to
be extended with a memory mechanism to account for
temporal structure in the data. This will naturally lead
us to recurrent neural network models (RNN), which
besides feed-forward connections also contain feedback
loops to preserve, in the form of the information pro-
cessing state, information about the past. RNN can be
further extended to recursive ANNs (RecNN), which
can process structured data such as trees and acyclic
graphs.

27.1 Biological Neurons

It is estimated that there are about 1012 neural cells
(neurons) in the human brain. Two-thirds of the neurons

form a 4�6 mm thick cortex that is assumed to be the
center of cognitive processes. Within each neuron com-



Part
D
|27.2

456 Part D Neural Networks

Dendrites

Axon

Terminal

Soma

Fig. 27.1 Schematic illustration of the
basic information processing struc-
ture of the biological neuron

plex biological processes take place, ensuring that it can
process signals from other neurons, as well as send its
own signals to them. The signals are of electro-chemical
nature. In a simplified way, signals between the neurons
can be represented by real numbers quantifying the in-
tensity of the incoming or outgoing signals. The point
of signal transmission from one neuron to the other is
called the synapse. Within synapse the incoming sig-
nal can be reinforced or damped. This is represented by
the weight of the synapse. A single neuron can have up
to 103�105 such points of entry (synapses). The input
to the neuron is organized along dendrites and the soma
(Fig. 27.1). Thousands of dendrites form a rich tree-like
structure on which most synapses reside.

Signals from other neurons can be either excitatory
(positive) or inhibitory (negative), relayed via exci-
tatory or inhibitory synapses. When the sum of the
positive and negative contributions (signals) from other
neurons, weighted by the synaptic weights, becomes
greater than a certain excitation threshold, the neuron
will generate an electric spike that will be transmitted
over the output channel called the axon. At the end of

axon, there are thousands of output branches whose ter-
minals form synapses on other neurons in the network.
Typically, as a result of input excitation, the neuron can
generate a series of spikes of some average frequency –
about 1� 102 Hz. The frequency is proportional to the
overall stimulation of the neuron.

The first principle of information coding and rep-
resentation in the brain is redundancy. It means that
each piece of information is processed by a redun-
dant set of neurons, so that in the case of partial
brain damage the information is not lost completely. As
a result, and crucially – in contrast to conventional com-
puter architectures, gradually increasing damage to the
computing substrate (neurons plus their interconnec-
tion structure) will only result in gradually decreasing
processing capabilities (graceful degradation). Further-
more, it is important what set of neurons participate
in coding a particular piece of information (distributed
representation). Each neuron can participate in cod-
ing of many pieces of information, in conjunction with
other neurons. The information is thus associated with
patterns of distributed activity on sets of neurons.

27.2 Perceptron

The perceptron is a simple neuron model that takes in-
put signals (patterns) coded as (real) input vectors NxD
.x1; x2; : : : ; xnC1/ through the associated (real) vector
of synaptic weights NwD .w1;w2; : : : ;wnC1/. The out-
put o is determined by

oD f .net/D f . Nw 	 Nx/D

f

0
@nC1X

jD1

wjxj

1
AD f

0
@ nX

jD1

wjxj � �
1
A ; (27.1)

where net denotes the weighted sum of inputs, (i. e., dot
product of weight and input vectors), and f is the acti-
vation function. By convention, if there are n inputs to

the perceptron, the input .nC1/ will be fixed to �1 and
the associated weight to wnC1 D � , which is the value
of the excitation threshold.

w·x o

wn+1 = θ

w1

w2

xn+1 = –1

x1
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·
·
·

Fig. 27.2 Schematic illustration of the perceptron model
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In 1958 Rosenblatt [27.1] introduced a discrete
perceptron model with a bipolar activation function
(Fig. 27.2)

f .net/D sign.net/

D

8̂̂̂
<̂
ˆ̂̂̂:
C1 if net � 0,

nX
jD1

wjxj � �

�1 if net < 0,
nX

jD1

wjxj < � :

(27.2)

The boundary equation

nX
jD1

wjxj� � D 0 ; (27.3)

parameterizes a hyperplane in n-dimensional space with
normal vector Nw.

The perceptron can classify input patterns into two
classes, if the classes can indeed be separated by an
.n� 1/-dimensional hyperplane (27.3). In other words,
the perceptron can deal with linearly-separable prob-
lems only, such as logical functions AND or OR. XOR,
on the other hand, is not linearly separable (Fig. 27.3).
Rosenblatt showed that there is a simple training rule
that will find the separating hyperplane, provided that
the patterns are linearly separable.

As we shall see, a general rule for training many
ANN models (not only the perceptron) can be for-
mulated as follows: the weight vector Nw is changed
proportionally to the product of the input vector and
a learning signal s. The learning signal s is a function
of Nw, Nx, and possibly a teacher feedback d

sD s. Nw; Nx; d/ or sD s. Nw; Nx/ : (27.4)

In the former case, we talk about supervised learning
(with direct guidance from a teacher); the latter case is
known as unsupervised learning. The update of the j-th
weight can be written as

wj.tC 1/D wj.t/C�wj.t/D wj.t/C ˛s.t/xj.t/ :

(27.5)

xx

x

x x

x

Fig. 27.3 Linearly separable and non-separable problems

The positive constant 0< ˛ � 1 is called the learning
rate.

In the case of the perceptron, the learning signal is
the disproportion (difference) between the desired (tar-
get) and the actual (produced by the model) response,
sD d�oD ı. The update rule is known as the ı (delta)
rule

�wj D ˛.d� o/xj : (27.6)

The same rule can, of course, be used to update the ac-
tivation threshold wnC1 D � .

Consider a training set

Atrain D f.Nx1; d1/.Nx2; d2/ : : : .Nxp; dp/ : : : .NxP; dP/g

consisting of P (input,target) couples. The perceptron
training algorithm can be formally written as:

� Step 1: Set ˛ 2 .0;1i. Initialize the weights ran-
domly from .�1;1/. Set the counters to kD 1, pD
1 (k indexes sweep through Atrain, p indexes individ-
ual training patterns).� Step 2: Consider input Nxp, calculate the output oD
sign.

PnC1
jD1 wjx

p
j /.� Step 3: Weight update: wj wjC˛.dp � op/xp

j , for
jD 1; : : : ; nC 1.� Step 4: If p < P, set p pC 1, go to step 2. Other-
wise go to step 5.� Step 5: Fix the weights and calculate the cumulative
error E on Atrain.� Step 6: If ED 0, finish training. Otherwise, set pD
1, kD kC 1 and go to step 2. A new training epoch
starts.
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27.3 Multilayered Feed-Forward ANN Models

A breakthrough in our ability to construct and train
more complex multilayered ANNs came in 1986, when
Rumelhart et al. [27.2] introduced the error back-
propagation method. It is based on making the transfer
functions differentiable (hence the error functional to be
minimized is differentiable as well) and finding a local
minimum of the error functional by the gradient-based
steepest descent method.

We will show derivation of the back-propagation
algorithm for two-layer feed-forward ANN as demon-
strated, e.g., in [27.3]. Of course, the same principles
can be applied to a feed-forward ANN architecture with
any (finite) number of layers. In feed-forward ANNs
neurons are organized in layers. There are no connec-
tions among neurons within the same layer; connections
only exist between successive layers. Each neuron from
layer l has connections to each neuron in layer lC 1.

As has already been mentioned, the activation func-
tions need to differentiable and are usually of the
sigmoid shape. The most common activation functions
are

� Unipolar sigmoid:

f .net/D 1

1C exp.��net/
(27.7)

� Bipolar sigmoid (hyperbolic tangent):

f .net/D 2

1C exp.��net/
� 1 : (27.8)

The constant � > 0 determines steepness of the sig-
moid curve and it is commonly set to 1. In the limit
�!1 the bipolar sigmoid tends to the sign function
(used in the perceptron) and the unipolar sigmoid tends
to the step function.

Consider the single-layer ANN in Fig. 27.4. The
output and input vectors are NyD .y1; : : : ; yj; : : : ; yJ/
and NoD .o1; : : : ; ok; : : : ; oK/, respectively, where ok D
f .netk/ and

netk D
JX

jD1

wkjyj : (27.9)

Set yJ D�1 and wkJ D �k, a threshold for kD 1; : : : ;K
output neurons. The desired output is Nd D .d1; : : : ; dk;
: : : ; dK/.

After training, we would like, for all training pat-
terns pD 1; : : : ;P from Atrain, the model output to

closely resemble the desired values (target). The train-
ing problem is transformed to an optimization one by
defining the error function

Ep D 1

2

KX
kD1

.dpk � opk/
2 ; (27.10)

where p is the training point index. Ep is the sum of
squares of errors on the output neurons. During learn-
ing we seek to find the weight setting that minimizes
Ep. This will be done using the gradient-based steepest
descent on Ep,

�wkj D�˛ @Ep

@wkj
D�˛ @Ep

@.netk/

@.netk/

@wkj
D ˛ıokyj ;

(27.11)

where ˛ is a positive learning rate. Note that
�@Ep=@.netk/D ıok, which is the generalized training
signal on the k-th output neuron. The partial derivative
@.netk/=@wkj is equal to yj (27.9). Furthermore,

ıok D� @Ep

@.netk/
D�@Ep

@ok

@ok

@.netk/
D .dpk � opk/f

0

k ;

(27.12)

where f 0

k denotes the derivative of the activation func-
tion with respect to netk. For the unipolar sigmoid
(27.7), we have f 0

k D ok.1�ok/. For the bipolar sigmoid
(27.8), f 0

k D .1=2/.1�o2
k/. The rule for updating the j-th

weight of the k-th output neuron reads as


wkj D ˛.dpk � opk/f
0

k yj ; (27.13)

where (dpk � opk) f 0

k D ıok is generalized error signal
flowing back through all connections ending in the k-
the output neuron. Note that if we put f 0

k D 1, we would
obtain the perceptron learning rule (27.6).

yJ

wKJ
oK

·

·

·

·

·

·

·

·

·

·

·

·

wKj

K

yj

wkj

w1j

ok

k

y1

w11
o1

1

Fig. 27.4 A single-layer ANN
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We will now extend the network with another layer,
called the hidden layer (Fig. 27.5).

Input to the network is identical with the in-
put vector NxD .x1; : : : ; xi; : : : ; xI/ for the hidden layer.
The output neurons process as inputs the outputs NyD
.y1; : : : ; yj; : : : ; yJ/, yj D f .netj/ from the hidden layer.
Hence,

netj D
IX

iD1

vjixi : (27.14)

As before, the last (in this case the I-th) input is fixed to
�1. Recall that the same holds for the output of the J-th
hidden neuron. Activation thresholds for hidden neu-
rons are vjI D �j, for jD 1; : : : ; J.

Equations (27.11)–(27.13) describe modification of
weights from the hidden to the output layer. We will
now show how to modify weights from the input to the
hidden layer. We would still like to minimize Ep (27.10)
through the steepest descent.

The hidden weight vji will be modified as follows


vji D�˛ @Ep

@vji
D�˛ @Ep

@.netj/

@.netj/

@vji
D ˛ıyjxi :

(27.15)

Again, �@Ep=@.netj/D ıyj is the generalized training
signal on the j-th hidden neuron that should flow on the
input weights. As before, @.netj/=@vji D xi (27.14). Fur-
thermore,

ıyj D� @Ep

@.netj/
D�@Ep

@yj

@yj

@.netj/
D�@Ep

@yj
f 0

j ;

(27.16)

xI

vJi

vJI

·
·
·

·
·
·

·
·
·
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w11v1i
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yJ

1

·
·
· oK
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Fig. 27.5 A two-layer feed-forward ANN

where f 0

j is the derivative of the activation function in
the hidden layer with respect to netj,

@Ep

@yj
D�

KX
kD1

.dpk � opk/
@f .netk/

@yj

D�
KX

kD1

.dpk � opk/
@f .netk/

@.netk/

@.netk/

@yj
: (27.17)

Since f 0

k is the derivative of the output neuron sigmoid
with respect to netk and @.netk/=@yj D wkj (27.9), we
have

@Ep

@yj
D�

KX
kD1

.dpk � opk/f
0

k wkj D�
KX

kD1

ıokwkj :

(27.18)

Plugging this to (27.16) we obtain

ıyj D
 

KX
kD1

ıokwkj

!
f 0

j : (27.19)

Finally, the weights from the input to the hidden layer
are modified as follows

�vji D ˛
 

KX
kD1

ıokwkj

!
f 0

j xi : (27.20)

Consider now the general case of m hidden layers. For
the n-th hidden layer we have

�vn
ji D ˛ın

yjx
n�1
i ; (27.21)

where

ın
yj D

 
KX

kD1

ınC1
ok wnC1

kj

!
.f n

j /
0 ; (27.22)

and .f n
j /

0 is the derivative of the activation function of
the n-layer with respect to netnj .

Often, the learning speed can be improved by using
the so-called momentum term

�wkj.t/ �wkj.t/C��wkj.t� 1/ ;

�vji.t/ �vji.t/C��vji.t� 1/ ; (27.23)

where � 2 .0; 1i is the momentum rate.
Consider a training set

Atrain D f.Nx1; Nd1/.Nx2; Nd2/ : : : .Nxp; Ndp/ : : : .NxP; NdP/g :
The back-propagation algorithm for training feed-
forward ANNs can be summarized as follows:
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� Step 1: Set ˛ 2 .0; 1i. Randomly initialize weights
to small values, e.g., in the interval (�0:5; 0:5).
Counters and the error are initialized as follows:
kD 1, pD 1, ED 0. E denotes the accumulated er-
ror across training patterns

ED
PX

pD1

Ep ; (27.24)

where Ep is given in (27.10). Set a tolerance thresh-
old " for the error. The threshold will be used to stop
the training process.� Step 2: Apply input Nxp and compute the correspond-
ing Nyp and Nop.� Step 3: For every output neuron, calculate ıok

(27.12), for hidden neuron determine ıyj (27.19).� Step 4: Modify the weights wkj wkjC ˛ıokyj and
vji vjiC ˛ıyjxi.� Step 5: If p< P, set pD pC1 and go to step 2. Oth-
erwise go to step 6.� Step 6: Fixing the weights, calculate E. If E < ",
stop training, otherwise permute elements of Atrain,
set ED 0, pD 1, kD kC 1, and go to step 2.

Consider a feed-forward ANN with fixed weights
and single output unit. It can be considered a real-
valued function G on I-dimensional vectorial inputs,

G.Nx/D f

0
@ JX

jD1

wjf

 
IX

iD1

vjixi

!1A :
There has been a series of results showing that such
a parameterized function class is sufficiently rich in the
space of reasonable functions (see, e.g., [27.4]). For
example, for any smooth function F over a compact do-
main and a precision threshold ", for sufficiently large
number J of hidden units there is a weight setting so
that G is not further away from F than " (in L-2 norm).

When training a feed-forward ANN a key decision
must be made about how complex the model should be.
In other words, how many hidden units J one should
use. If J is too small, the model will be too rigid (high

bias) and it will not be able to sufficiently adapt to the
data. However, under different samples from the same
data generating process, the resulting trained models
will vary relatively little (low variance). On the other
hand, if J is too high, the model will be too complex,
modeling even such irrelevant features of the data such
as output noise. The particular data will be interpolated
exactly (low bias), but the variability of fitted models
under different training samples from the same process
will be immense. It is, therefore, important to set J to an
optimal value, reflecting the complexity of the data gen-
erating process. This is usually achieved by splitting the
data into three disjoint sets – training, validation, and
test sets. Models with different numbers of hidden units
are trained on the training set, their performance is then
checked on a held-out validation set. The optimal num-
ber of hidden units is selected based on the (smallest)
validation error. Finally, the test set is used for inde-
pendent comparison of selected models from different
model classes.

If the data set is not large enough, one can perform
such a model selection using k-fold cross-validation.
The data for model construction (this data would be
considered training and validation sets in the scenario
above) is split into k disjoint folds. One fold is selected
as the validation fold, the other k� 1 will be used for
training. This is repeated k times, yielding k estimates
of the validation error. The validation error is then cal-
culated as the mean of those k estimates.

We have described data-based methods for model
selection. Other alternatives are available. For exam-
ple, by turning an ANN into a probabilistic model (e.g.,
by including an appropriate output noise model), un-
der some prior assumptions on weights (e.g., a-priori
small weights are preferred), one can perform Bayesian
model selection (through model evidence) [27.5].

There are several seminal books on feed-forward
ANNs with well-documented theoretical foundations
and practical applications, e.g., [27.3, 6, 7]. We refer
the interested reader to those books as good starting
points as the breadth of theory and applications of feed-
forward ANNs is truly immense.

27.4 Recurrent ANN Models

Consider a situation where the associations in the train-
ing set we would like to learn are of the following
(abstract) form: a! ˛, b! ˇ, b! ˛, b! � , c! ˛,
c! � , d! ˛, etc., where the Latin and Greek letters
stand for input and output vectors, respectively. It is

clear that now for one input item there can be different
output associations, depending on the temporal con-
text in which the training items are presented. In other
words, the model output is determined not only by the
input, but also by the history of presented items so far.
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Obviously, the feed-forward ANN model described in
the previous section cannot be used in such cases and
the model must be further extended so that the temporal
context is properly represented.

The architecturally simplest solution is provided
by the so-called time delay neural network (TDNN)
(Fig. 27.6). The input window into the past has a finite
length D. If the output is an estimate of the next item
of the input time series, such a network realizes a non-
linear autoregressive model of order D.

If we are lucky, even such a simple solution can be
sufficient to capture the temporal structure hidden in the
data. An advantage of the TDNN architecture is that
some training methods developed for feed-forward net-
works can be readily used. A disadvantage of TDNN
networks is that fixing a finite order D may not be ade-
quate for modeling the temporal structure of the data
generating source. TDNN enables the feed-forward
ANN to see, besides the current input at time t, the other
inputs from the past up to time t�D. Of course, during
the training, it is now imperative to preserve the order of
training items in the training set. TDNN has been suc-
cessfully applied in many fields where spatial-temporal
structures are naturally present, such as robotics, speech
recognition, etc. [27.8, 9].

In order to extend the ANN architecture so that the
variable (even unbounded) length of input window can
be flexibly considered, we need a different way of cap-
turing the temporal context. This is achieved through
the so-called state space formulation. In this case, we
will need to change our outlook on training. The new
architectures of this type are known as recurrent neural
networks (RNN).

As in feed-forward ANNs, there are connections be-
tween the successive layers. In addition, and in contrast
to feed-forward ANNs, connections between neurons of
the same layer are allowed, but subject to a time de-

·    ·    · x(t–D–1) x(t–D)x(t–1)x(t)

Hidden layer

Output layer

Fig. 27.6 TDNN of order D

lay. It also may be possible to have connections from
a higher-level layer to a lower layer, again subject to
a time delay. In many cases it is, however, more conve-
nient to introduce an additional fictional context layer
that contains delayed activations of neurons from the
selected layer(s) and represent the resulting RNN archi-
tecture as a feed-forward architecture with some fixed
one-to-one delayed connections. As an example, con-
sider the so-called simple recurrent network (SRN) of
Elman [27.10] shown in Fig. 27.7. The output of SRN
at time t is given by

o.t/k D f

0
@ JX

jD1

mkjy
.t/
j

1
A ;

y.t/j D f

 
JX

iD1

wjiy
.t�1/
i C

IX
iD1

vjix
.t/
i

!
: (27.25)

The hidden layer constitutes the state of the input-
driven dynamical system whose role it is to represent
the relevant (with respect to the output) information

y(t–1)x(t)

V

M

W

Unit delayo(t)

y(t)

Fig. 27.7 Schematic depiction of the SRN architecture

ContextInput

Hidden

Unit delay

Output

Fig. 27.8 Schematic depiction of the Jordan’s RNN archi-
tecture
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about the input history seen so far. The state (as in
generic state space model) is updated recursively.

Many variations on such architectures with time-
delayed feedback loops exist. For example, Jor-
dan [27.11] suggested to feed back the outputs as
the relevant temporal context, or Bengio et al. [27.12]
mixed the temporal context representations of SRN and
the Jordan network into a single architecture. Schematic
representations of these architectures are shown in
Figs. 27.8 and 27.9.

Training in such architectures is more complex
than training of feed-forward ANNs. The principal
problem is that changes in weights propagate in time
and this needs to be explicitly represented in the up-
date rules. We will briefly mention two approaches
to training RNNs, namely back-propagation through
time (BPTT) [27.13] and real-time recurrent learning
(RTRL) [27.14]. We will demonstrate BPTT on a clas-

ContextContext Input

Unit delay

Unit delay

Hidden

Output

Fig. 27.9 Schematic depiction of the Bengio’s RNN archi-
tecture

o2(t)o1(t)

m11

v11

v12

m12

w12

w21

m21

v21

w11 w22

y1(t)

m22

v22

y2(t)

x1(t)

1

x2(t)

2

Fig. 27.10 A two-neuron SRN

sification task, where the label of the input sequence
is known only after T time steps (i. e., after T input
items have been processed). The RNN is unfolded in
time to form a feed-forward network with T hidden lay-
ers. Figure 27.10 shows a simple two-neuron RNN and
Fig. 27.11 represents its unfolded form for T D 2 time
steps.

The first input comes at time tD 1 and the last at
tD T . Activities of context units are initialized at the
beginning of each sequence to some fixed numbers.
The unfolded network is then trained as a feed-forward
network with T hidden layers. At the end of the se-
quence, the model output is determined as

o.T/k D f

0
@ JX

jD1

m.T/kj y.T/j

1
A ;

y.t/j D f

 
JX

iD1

w.t/ji y.t�1/
i C

IX
iD1

v.t/ji x.t/i

!
: (27.26)

Having the model output enables us to compute the er-
ror

E.T/D 1

2

KX
kD1

�
d.T/k � o.T/k

�2
: (27.27)

The hidden-to-output weights are modified according to

�m.T/kj D�˛
@E.T/

@mkj
D ˛ı.T/k y.T/j ; (27.28)
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Fig. 27.11 Two-neuron SRN unfolded in time for T D 2
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where

ı
.T/
k D

�
d.T/k � o.T/k

�
f 0

�
net.T/k

�
: (27.29)

The other weight updates are calculated as follows
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(27.33)

etc. The final weight updates are the averages of the
T partial weight update suggestions calculated on the
unfolded network

�whj D
PT

tD1�w.t/hj

T
and �vji D

PT
tD1
v.t/ji

T
:

(27.34)

For every new training sequence (of possibly different
length T) the network is unfolded to the desired length
and the weight update process is repeated. In some
cases (e.g., continual prediction on time series), it is
necessary to set the maximum unfolding length L that
will be used in every update step. Of course, in such
cases we can lose vital information from the past. This
problem is eliminated in the RTRL methodology.

Consider again the SRN architecture in Fig. 27.6.
In RTRL the weights are updated on-line, i. e., at every

time step t

�w.t/kj D�˛
@E.t/

@w.t/kj

;

�v.t/ji D�˛
@E.t/

@v.t/ji

;

�m.t/jl D�˛
@E.t/

@m.t/jl

: (27.35)

The updates of hidden-to-output weights are straight-
forward

�m.t/kj D ˛ı.t/k y.t/j D ˛
�

d.t/k � o.t/k

�
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k

�
net.t/k

�
y.t/j :

(27.36)

For the other weights we have
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where
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(27.39)

and ıKron.
jh is the Kronecker delta (ıKron.

jh D 1, if jD h;
ıKron.

jh D 0 otherwise). The partial derivatives required
for the weight updates can be recursively updated us-
ing (27.37)–(27.39). To initialize training, the partial
derivatives at tD 0 are usually set to 0.

There is a well-known problem associated with
gradient-based parameter fitting in recurrent networks
(and, in fact, in any parameterized state space models
of similar form) [27.15]. In order to latch an important
piece of past information for future use, the state-
transition dynamics (27.25) should have an attractive
set.

However, in the neighborhood of such an attractive
set, the derivatives of the dynamic state-transition map
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vanish. Vanishingly small derivatives cannot be reliably
propagated back through time in order to form a useful
latching set. This is known as the information latching
problem. Several suggestions for dealing with informa-
tion latching problem have been made, e.g., [27.16].
The most prominent include long short term memory
(LSTM) RNN [27.17] and reservoir computation mod-
els [27.18].

LSTM models operate with a specially designed
formal neuron model that contains so-called gate units.
The gates determine when the input is significant (in
terms of the task given) to be remembered, whether
the neuron should continue to remember the value, and
when the value should be output. The LSTM architec-
ture is especially suitable for situations where there are
long time intervals of unknown size between impor-
tant events. LSTM models have been shown to provide
superior results over traditional RNNs in a variety of
applications (e.g., [27.19, 20]).

Reservoir computation models try to avoid the
information latching problem by fixing the state-
transition part of the RNN. Only linear readout from
the state activations (hidden recurrent layer) producing
the output is fit to the data. The state space with the as-

sociated dynamic state transition structure is called the
reservoir. The main idea is that the reservoir should be
sufficiently complex so as to capture a large number of
potentially useful features of the input stream that can
be then exploited by the simple readout.

The reservoir computing models differ in how the
fixed reservoir is constructed and what form the readout
takes. For example, echo state networks (ESN) [27.21]
have fixed RNN dynamics (27.25), but with a lin-
ear hidden-to-output layer map. Liquid state machines
(LSM) [27.22] also have (mostly) linear readout, but
the reservoirs are realized through the dynamics of a set
of coupled spiking neuron models. Fractal prediction
machines (FPM) [27.23] are reservoir RNN models for
processing discrete sequences. The reservoir dynamics
is driven by an affine iterative function system and the
readout is constructed as a collection of multinomial
distributions. Reservoir models have been successfully
applied in many practical applications with competitive
results, e.g., [27.21, 24, 25].

Several books that are solely dedicated to RNNs
have appeared, e.g., [27.26–28] and they contain
a much deeper elaboration on theory and practice of
RNNs than we were able to provide here.

27.5 Radial Basis Function ANN Models

In this section we will introduce another implemen-
tation of the idea of feed-forward ANN. The activa-
tions of hidden neurons are again determined by the
closeness of inputs NxD .x1; x2; : : : ; xn/ to weights NcD
.c1; c2; : : : ; cn/. Whereas in the feed-forward ANN in
Sect. 27.3, the closeness is determined by the dot-
product of Nx and Nc, followed by the sigmoid activation
function, in radial basis function (RBF) networks the
closeness is determined by the squared Euclidean dis-
tance of Nx and Nc, transferred through the inverse expo-
nential. The output of the j-th hidden unit with input
weight vector Ncj is given by

'j.Nx/D exp

 
�
��Nx� Ncj

��2

�2
j

!
; (27.40)

where �j is the activation strength parameter of the j-th
hidden unit and determines the width of the spherical
(un-normalized) Gaussian. The output neurons are usu-
ally linear (for regression tasks)

ok.Nx/D
JX

jD1

wkj'j.Nx/ : (27.41)

The RBF network in this form can be simply viewed
as a form of kernel regression. The J functions 'j

form a set of J linearly independent basis functions
(e.g., if all the centers Ncj are different) whose span
(the set of all their linear combinations) forms a lin-
ear subspace of functions that are realizable by the
given RBF architecture (with given centers Ncj and kernel
widths �j).

For the training of RBF networks, it important that
the basis functions 'j.Nx/ cover the structure of the in-
puts space faithfully. Given a set of training inputs Nxp

from Atrain D f.Nx1; Nd1/.Nx2; Nd2/ : : : .Nxp; Ndp/ : : : :.NxP; NdP/g,
many RBF-ANN training algorithms determine the cen-
ters Ncj and widths �j based on the inputs fNx1; Nx2; : : : ; NxPg
only. One can employ different clustering algo-
rithms, e.g., k-means [27.29], which attempts to
position the centers among the training inputs so
that the overall sum of (Euclidean) distances be-
tween the centers and the inputs they represent (i. e.,
the inputs falling in their respective Voronoi com-
partments – the set of inputs for which the cur-
rent center is the closest among all the centers) is
minimized:
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� Step 1: Set J, the number of hidden units. The op-
timum value of Jcan be obtained through a model
selection method, e.g., cross-validation.� Step 2: Randomly select J training inputs that will
form the initial positions of the J centers Ncj.� Step 3: At time step t:
a) Pick a training input Nx.t/ and find the center Nc.t/

closest to it.
b) Shift the center Nc.t/ towards Nx.t/
Nc.t/ Nc.t/C �.t/.Nx.t/� Nc.t// ;

where 0 � �.t/� 1 : (27.42)

The learning rate �.t/ usually decreases in time
towards zero. The training is stopped once the cen-
ters settle in their positions and move only slightly
(some norm of weight updates is below a certain
threshold). Since k-means is guaranteed to find only lo-
cally optimal solutions, it is worth re-initializing the
centers and re-running the algorithm several times,
keeping the solution with the lowest quantization
error.

Once the centers are in their positions, it is easy to
determine the RBF widths, and once this is done, the

output weights can be solved using methods of linear
regression.

Of course, it is more optimal to position the centers
with respect to both the inputs and target outputs in the
training set. This can be formulated, e.g., as a gradient
descent optimization. Furthermore, covering of the in-
put space with spherical Gaussian kernels may not be
optimal, and algorithms have been developed for learn-
ing of general covariance structures. A comprehensive
review of RBF networks can be found, e.g., in [27.30].

Recently, it was shown that if enough hidden
units are used, their centers can be set randomly
at very little cost, and determination of the only
remaining free parameters – output weights – can
be done cheaply and in a closed form through lin-
ear regression. Such architectures, known as extreme
learning machines [27.31] have shown surprisingly
high performance levels. The idea of extreme learn-
ing machines can be considered as being analo-
gous to the idea of reservoir computation, but in
the static setting. Of course, extreme learning ma-
chines can be built using other implementations of
feed-forward ANNs, such as the sigmoid networks of
Sect. 27.3.

27.6 Self-Organizing Maps

In this section we will introduce ANN models that
learn without any signal from a teacher, i. e., learning
is based solely on training inputs – there are no out-
put targets. The ANN architecture designed to operate
in this setting was introduced by Kohonen under the
name self-organizing map (SOM) [27.32]. This model
is motivated by organization of neuron sensitivities in
the brain cortex.

In Fig. 27.12a we show schematic illustration of
one of the principal organizations of biological neural
networks. In the bottom layer (grid) there are recep-
tors representing the inputs. Every element of the inputs
(each receptor) has forward connections to all neurons
in the upper layer representing the cortex. The neurons
are organized spatially on a grid. Outputs of the neurons
represent activation of the SOM network. The neurons,
besides receiving connections from the input recep-
tors, have a lateral interconnection structure among
themselves, with connections that can be excitatory, or
inhibitory. In Fig. 27.12b we show a formal SOM archi-
tecture – neurons spatially organized on a grid receive
inputs (elements of input vectors) through connections
with synaptic weights.

A particular feature of the SOM is that it can map
the training set on the neuron grid in a manner that
preserves the training set’s topology – two input pat-
terns close in the input space will activate neurons most
that are close on the SOM grid. Such topological map-
ping of inputs (feature mapping) has been observed in
biological neural networks [27.32] (e.g., visual maps,
orientation maps of visual contrasts, or auditory maps,
frequency maps of acoustic stimuli).

Teuvo Kohonen presented one possible realization
of the Hebb rule that is used to train SOM. Input

a) b)

Fig. 27.12a,b Schematic representation of the SOM ANN architec-
tures
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weights of the neurons are initialized as small ran-
dom numbers. Consider a training set of inputs, Atrain D
fNxpgPpD1 and linear neurons

oi D
mX

jD1

wijxj D Nwi Nx ; (27.43)

where m is the input dimension and iD 1; : : : ; n. Train-
ing inputs are presented in random order. At each train-
ing step, we find the (winner) neuron with the weight
vector most similar to the current input Nx. The mea-
sure of similarity can be based on the dot product, i. e.,
the index of the winner neuron is i� D arg max.wT

i x/,
or the (Euclidean) distance i� D arg mini kx�wik. Af-
ter identifying the winner the learning continues by
adapting the winner’s weights along with the weights
all its neighbors on the neuron grid. This will ensure
that nearby neurons on the grid will eventually repre-
sent similar inputs in the input space. This is moderated
by a neighborhood function h.i�; i/ that, given a winner
neuron index i�, quantifies how many other neurons on
the grid should be adapted

wi .tC 1/D wi .t/C ˛ .t/ 	 h
�
i�; i

� 	 .x .t/�wi .t// :

(27.44)

The learning rate ˛.t/ 2 .0; 1/ decays in time as 1=t, or
exp.�kt/, where k is a positive time scale constant. This
ensures convergence of the training process. The sim-
plest form of the neighborhood function operates with
rectangular neighborhoods,

h.i�; i/D
(

1; if dM.i�; i/� � .t/
0; otherwise ;

(27.45)

where dM.i�; i/ represents the 2�.t/ (Manhattan) dis-
tance between neurons i� and i on the map grid. The
neighborhood size 2� .t/ should decrease in time, e.g.,
through an exponential decay as or exp.�qt/, with time
scale q> 0. Another often used neighborhood function
is the Gaussian kernel

h.i�; i/D exp

�
�d2

E .i
�; i/

�2 .t/

�
; (27.46)

where dE.i�; i/ is the Euclidean distance between i� and
i on the grid, i. e., dE.i�; i/D kri� � rik, where ri is the
co-ordinate vector of the i-th neuron on the grid SOM.

Training of SOM networks can be summarized as fol-
lows:

� Step 1: Set ˛0, �0 and tmax (maximum number
of iterations). Randomly (e.g., with uniform distri-
bution) generate the synaptic weights (e.g., from
(�0:5; 0:5)). Initialize the counters: tD 0, pD 1; t
indexes time steps (iterations) and p is the input pat-
tern index.� Step 2: Take input Nxp and find the corresponding
winner neuron.� Step 3: Update the weights of the winner and its
topological neighbors on the grid (as determined by
the neighborhood function). Increment t.� Step 4: Update ˛ and �.� Step 5: If p< P, set p pC 1, go to step 2 (we
can also use randomized selection), otherwise go to
step 6.� Step 6: If tD tmax, finish the training process. Oth-
erwise set pD 1 and go to step 2. A new training
epoch begins.

The SOM network can be used as a tool for non-
linear data visualization (grid dimensions 1, 2, or 3).
In general, SOM implements constrained vector quanti-
zation, where the codebook vectors (vector quantization
centers) cannot move freely in the data space dur-
ing adaptation, but are constrained to lie on a lower
dimensional manifold � in the data space. The dimen-
sionality of � is equal to the dimensionality of the
neural grid. The neural grid can be viewed as a dis-
cretized version of the local co-ordinate system # (e.g.,
computer screen) and the weight vectors in the data
space (connected by the neighborhood structure on the
neuron grid) as its image in the data space. In this in-
terpretation, the neuron positions on the grid represent
co-ordinate functions (in the sense of differential ge-
ometry) mapping elements of the manifold � to the
coordinate system # . Hence, the SOM algorithm can
also be viewed as one particular implementation of
manifold learning.

There have been numerous successful applications
of SOM in a wide variety of applications, e.g., in image
processing, computer vision, robotics, bioinformatics,
process analysis, and telecommunications. A good sur-
vey of SOM applications can be found, e.g., in [27.33].
SOMs have also been extended to temporal domains,
mostly by the introduction of additional feedback con-
nections, e.g., [27.34–37]. Such models can be used for
topographic mapping or constrained clustering of time
series data.
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27.7 Recursive Neural Networks

In many application domains, data are naturally or-
ganized in structured form, where each data item is
composed of several components related to each other
in a non-trivial way, and the specific nature of the task to
be performed is strictly related not only to the informa-
tion stored at each component, but also to the structure
connecting the components. Examples of structured
data are parse trees obtained by parsing sentences in
natural language, and the molecular graph describing
a chemical compound.

Recursive neural networks (RecNN) [27.38, 39] are
neural network models that are able to directly pro-
cess structured data, such as trees and graphs. For the
sake of presentation, here we focus on positional trees.
Positional trees are trees for which each child has an as-
sociated index, its position, with respect to the siblings.
Let us understand how RecNN is able to process a tree
by analogy with what happens when unfolding a RNN
when processing a sequence, which can be understood
as a special case of tree where each node v possesses
a single child.

In Fig. 27.13 (top) we show the unfolding in time
of a sequence when considering a graphical model (re-

Data structure (binary tree) Recursive network

Encoding network

Frontier states
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b
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Fig. 27.13a,b Generation of the encoding network (a) for a sequence and (b) a tree. Initial states are represented by
squared nodes

cursive network) representing, for a generic node v, the
functional dependencies among the input information
xv, the state variable (hidden node) yv, and the output
variable ov. The operator q�1 represents the shift oper-
ator in time (unit time delay), i. e., q�1yt D yt�1, which
applied to node v in our framework returns the child of
node v. At the bottom of Fig. 27.13 we have reported
the unfolding of a binary tree, where the recursive net-
work uses a generalization of the shift operator, which
given an index i and a variable associated to a vertex
v returns the variable associated to the i-th child of v,
i. e., q�1

i yv D ychiŒv�. So, while in RNN the network is
unfolded in time, in RecNN the network is unfolded on
the structure. The result of unfolding, in both cases, is
the encoding network. The encoding network for the se-
quence specifies how the components implementing the
different parts of the recurrent network (e.g., each node
of the recurrent network could be instantiated by a layer
of neurons or by a full feed-forward neural network
with hidden units) need to be interconnected. In the case
of the tree, the encoding network has the same seman-
tics: this time, however, a set of parameters (weights)
for each child should be considered, leading to a net-
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Fig. 27.15a,b Schematic illustration of a principal organization of
biological self-organizing neural network (a) and its formal coun-
terpart SOM ANN architecture (b)

Fig. 27.14 The causality style of computation induced by
the use of recursive networks is made explicit by using
nested boxes to represent the recursive dependencies of the
hidden variable associated to the root of the tree J

work that, given a node v, can be described by the
equations

o.v/k D f

0
@ JX

jD1

mkjy
.v/
j

1
A ;

y.v/j D f

 
dX

sD1

JX
iD1

ws
jiy
.chsŒv�/
i C

IX
iD1

vjix
.v/
i

!
;

where d is the maximum number of children an input
node can have, and weights ws

ji are indexed on the s-th
child. Note that it is not difficult to generalize all the
learning algorithms devised for RNN to these extended
equations.

It should be remarked that recursive networks
clearly introduce a causal style of computation, i. e.,
the computation of the hidden and output variables for
a vertex v only depends on the information attached to v
and the hidden variables of the children of v. This de-
pendence is satisfied recursively by all v’s descendants
and is clearly shown in Fig. 27.14. In the figure, nested
boxes are used to make explicit the recursive depen-
dencies among hidden variables that contribute to the
determination of the hidden variable yv associated to the
root of the tree.

Although an encoding network can be generated
for a directed acyclic graph (DAG), this style of com-
putation limits the discriminative ability of RecNN
to the class of trees. In fact, the hidden state is not
able to encode information about the parents of nodes.
The introduction of contextual processing, however, al-
lows us to discriminate, with some specific exceptions,
among DAGs [27.40]. Recently, Micheli [27.41] also
showed how contextual processing can be used to ex-
tend RecNN to the treatment of cyclic graphs.

The same idea described above for supervised neu-
ral networks can be adapted to unsupervised mod-
els, where the output value of a neuron typically
represents the similarity of the weight vector associ-
ated to the neuron with the input vector. Specifically,
in [27.37] SOMs were extended to the processing of
structured data (SOM-SD). Moreover, a general frame-
work for self-organized processing of structured data
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was proposed in [27.42]. The key concepts introduced
are:

i) The explicit definition of a representation space R
equipped with a similarity measure dR.	; 	/ to evalu-
ate the similarity between two hidden states.

ii) The introduction of a general representation func-
tion, denoted rep(	/, which transforms the activation
of the map for a given input into an hidden state rep-
resentation.

In these models, each node v of the input struc-
ture is represented by a tuple ŒNxv; Nrv1 ; : : : ; Nrvd �, where
Nxv is a real-valued vectorial encoding of the infor-
mation attached to vertex v, and Nrvi are real-valued

vectorial representations of hidden states returned by
the rep(	/ function when processing the activation
of the map for the i-th neighbor of v. Each neu-
ron nj in the map is associated to a weight vector
Œ Nwj; Nc1

j ; : : : ; Ncd
j �. The computation of the winner neu-

ron is based on the joint contribution of the similarity
measures dx.	; 	/ for the input information, and dR.	; 	/
for the hidden states, i. e., the internal representa-
tions. Some parts of a SOM-SD map trained on DAGs
representing visual patterns are shown in Fig. 27.15.
Even in this case the style of computation is causal,
ruling out the treatment of undirected and/or cyclic
graphs. In order to cope with general graphs, recently
a new model, named GraphSOM [27.43], was pro-
posed.

27.8 Conclusion

The field of artificial neural networks (ANN) has
grown enormously in the past 60 years. There are
many journals and international conferences specifi-
cally devoted to neural computation and neural net-
work related models and learning machines. The field
has gone a long way from its beginning in the form
of simple threshold units existing in isolation (e.g.,
the perceptron, Sect. 27.2) or connected in circuits.
Since then we have learnt how to generalize such
networks as parameterized differentiable models of var-
ious sorts that can be fit to data (trained), usually
by transforming the learning task into an optimization
one.

ANN models have found numerous successful
practical applications in many diverse areas of sci-
ence and engineering, such as astronomy, biology,
finance, geology, etc. In fact, even though basic feed-
forward ANN architectures were introduced long time
ago, they continue to surprise us with successful ap-
plications, most recently in the form of deep net-
works [27.44]. For example, a form of deep ANN
recently achieved the best performance on a well-
known benchmark problem – the recognition of hand-
written digits [27.45]. This is quite remarkable, since
such a simple ANN architecture trained in a purely
data driven fashion was able to outperform the current
state-of-art techniques, formulated in more sophisti-

cated frameworks and possibly incorporating domain
knowledge.

ANN models have been formulated to operate in
supervised (e.g., feed-forward ANN, Sect. 27.3; RBF
networks, Sect. 27.5), unsupervised (e.g., SOM models,
Sect. 27.6), semi-supervised, and reinforcement learn-
ing scenarios and have been generalized to process
inputs that are much more general than simple vector
data of fixed dimensionality (e.g., the recurrent and re-
cursive networks discussed in Sects. 27.4 and 27.7). Of
course, we were not able to cover all important de-
velopments in the field of ANNs. We can only hope
that we have sufficiently motivated the interested reader
with the variety of modeling possibilities based on the
idea of interconnected networks of formal neurons,
so that he/she will further consult some of the many
(much more comprehensive) monographs on the topic,
e.g., [27.3, 6, 7].

We believe that ANN models will continue to
play an important role in modern computational in-
telligence. Especially the inclusion of ANN-like mod-
els in the field of probabilistic modeling can provide
techniques that incorporate both explanatory model-
based and data-driven approaches, while preserving
a much fuller modeling capability through operat-
ing with full distributions, instead of simple point
estimates.
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