
Chapter 2

Critical Mass and Efficiency

Every gram of enriched uranium or synthesized plutonium produced in the Man-

hattan Project was obtained at great cost and with great difficulty, so estimating the

amount of fissile material needed to make a workable nuclear weapon—the

so-called critical mass—was a crucial issue for the developers of Little Boy and

Fat Man. Equally important was to estimate what efficiency one might expect for a

fission bomb. For various reasons, not all of the fissile material in a bomb core

undergoes fission during a nuclear explosion; if the expected efficiency were to

prove so low that one might just as well use a few conventional bombs to achieve

the same energy release, there would be no point in taking on the massive engi-

neering challenges involved in making nuclear weapons. In this chapter we inves-

tigate these issues.

The concept of critical mass involves two competing effects. As nuclei fission,

they emit secondary neutrons. A fundamental empirical law of nuclear physics,

derived in Sect. 2.1, shows that while some neutrons will cause other fissions, the

remainder will reach the surface of the mass and escape. If on average more than one

neutron is emitted per fission, however, we can afford to let some escape since only

one is required to initiate a subsequent fission. For a small sample of material the

escape probability is high; as the size of the sample increases, the escape probability

declines and at some point will reach a value such that the number of neutrons that

fail to escape will number enough to fission every nucleus in the mass—in theory, at

least. Thus, there is a minimum size (hence mass) of material for which every nucleus

will in principle be fissioned even while some neutrons escape.

The above description of critical mass should be regarded as a purely qualitative

one. Technically, the important issue is known as criticality. Criticality is said to

obtain when the number of free neutrons inside a bomb core is increasing with time.

A full understanding of criticality demands familiarity with time-dependent diffu-

sion theory. Application of diffusion theory to this problem requires understanding

a concept known as the mean free path (MFP) for neutron travel, so this is

developed in Sect. 2.1. Section 2.2 takes up a time-dependent diffusion theory

treatment of criticality. Section 2.3 addresses the effect of surrounding the fissile

core with a tamper. A tamper is a heavy metal casing which enhances weapon
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efficiency in two ways: By reflecting escaped neutrons back into the core and hence

giving them another chance at causing fissions, and by briefly retarding the violent

expansion of the core in order to give the chain reaction more time over which to

operate. Sections 2.4 and 2.5 respectively take up the issue of bomb efficiency

through analytic approximations and a numerical simulation. Section 2.6 presents

an alternate treatment of untamped criticality that has an interesting historical

connection, and Sect. 2.7 presents an approximate treatment of criticality for

cylindrical bomb cores.

For readers interested in further sources, an excellent account of the concept of

critical mass appears in Logan (1996); see also Bernstein (2002).

2.1 Neutron Mean Free Path

See Fig. 2.1. A thin slab of material of thickness s (ideally, one atomic layer) and

cross-sectional area Σ is bombarded by incoming neutrons at a rate Ro neutrons/

(m2s).

Let the bulk density of the material be ρ gr/cm3. In nuclear reaction calculations,

however, density is usually expressed as a number density of nuclei in the material,

that is, as the number of nuclei per cubic meter. In terms of ρ this is given by

n ¼ 106
ρNA

A

� �
, ð2:1Þ

where NA is Avogadro’s number and A is the atomic weight of the material in grams

per mole; the factor of 106 arises from converting cm3 to m3.

Assume that each nucleus presents a total reaction cross-section of σ square

meters to the incoming neutrons. Cross-sections are usually measured in barns (bn),

where 1 bn¼ 10�28 m2, a value characteristic of the physical sizes of nuclei. The

first question we address is: “How many reactions will occur per second as a

consequence of the bombardment rate Ro?” The volume of the slab is Σs, hence
the number of nuclei contained in it will be Σsn. If each nucleus presents an

effective cross-sectional area σ to the incoming neutrons, then the total area

presented by all nuclei would be Σsnσ. The fraction of the surface area of the

slab that is available for reactions to occur is then (Σsnσ/Σ)¼ snσ. The rate of

reactions R (reactions/s) can then sensibly be assumed to be the rate at which

incoming particles bombard the surface area of the slab times the fraction of the

surface area available for reactions:

reactions per
second

� �
¼ incident neutron

flux per second

� �
fraction of surface area
occupied by cross� section

� �
,

or
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R ¼ RoΣð Þ snσð Þ: ð2:2Þ

The probability P that an individual incident neutron precipitates a reaction is

then

Preact ¼
reactions
per second

� �
incident neutron flux
per second

� � ¼ snσ, ð2:3Þ

the same value as the fraction of the surface area available for reactions.

For the present purposes, it is more useful to work with the probability that a

neutron will pass through the slab to escape out the back side:

Pescape ¼ 1� Preact ¼ 1� snσ: ð2:4Þ

Now consider a block of material of macroscopic thickness x. As shown in

Fig. 2.2, we can imagine this to comprise a large number of thin slabs each of

thickness s placed back-to-back.

The number of slabs is x/s. If No neutrons are incident on the left side of the

block, the number that would survive to emerge from the first thin slab would be

NoP, where P is the escape probability in (2.4). These neutrons are then incident on

the second slab, and the number that would emerge unscathed from that passage

would be (NoP)P¼NoP
2. These neutrons would then strike the third slab, and so

on. The number that survive passage through the entire block to escape from the

right side would be NoP
x/s, or

nuclear number
density n

s

surface
area

bombardment rate
Ro neutrons 
per m2 per second

Fig. 2.1 Neutrons

penetrating a thin target foil
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Nesc ¼ No 1� snσð Þx=s: ð2:5Þ

Define z¼�snσ. The number of neutrons that escape can then be written as

Nesc ¼ No 1þ zð Þ�σ n x=z ¼ No 1þ zð Þ1=z
h i�σ n x

: ð2:6Þ

Now, ideally, s is very small, which means that z! 0. The definition of the base

of the natural logarithms, e, is e ¼ lim
z!0

1þ zð Þ1=z, so we have

Nesc ¼ Noe
�σ n x,

or

P direct
eacape

¼ Nesc

No
¼ e�σ n x: ð2:7Þ

Equation (2.7) is the fundamental neutron escape probability law. In words, it

says that the probability that a bombarding neutron will pass through a slab of

material of thickness x depends exponentially on the product of x, the number

density of nuclei in the slab, and the reaction cross-section of the nuclei to incoming

neutrons. If σ¼ 0, all of the incident particles will pass through unscathed. If

(σ n x)!1, none of the incident particles will make it through.

In practice, (2.7) is used to experimentally establish values for cross-sections by

bombarding a slab of material with a known number of incident particles and then

seeing how many emerge from the other side; think of (2.7) as effectively defining
σ. Due to quantum-mechanical effects, the cross-section is not the geometric area of

a nucleus.

x

No
incident
neutrons

Ne
escaping
neutrons

s

Fig. 2.2 Neutrons

penetrating a thick target
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The total cross section had in mind here can be broken down into a sum of

cross-sections for individual processes such as fission, elastic scattering, inelastic

scattering, non-fission capture, etc.:

σtotal ¼ σfission þ σelastic
scatter

þ σinelastic
scatter

þ σcapture þ . . . : ð2:8Þ

In practice, cross-sections can depend very sensitively on the energy of the

incoming neutrons; such energy-dependence plays a crucial role in the difference

between how nuclear reactors and nuclear weapons function. As an example,

Fig. 2.3 shows the variation of the fission cross-section for 235U under neutron

bombardment for neutrons in the energy range 1–10 eV; note the dramatic reso-

nance effects at certain energies. The resonances show up even more dramatically

in Fig. 3.1, which shows the fission cross-section for 235U across many orders of

magnitude of bombarding-neutron energy.

A very important result that derives from this escape-probability law is an

expression for the average distance that an incident neutron will penetrate into

the slab before being involved in a reaction. Look at Fig. 2.4, where we now have a

slab of thickness L and where x is a coordinate for any position within the slab.

Imagine also a small slice of thickness dx whose front edge is located at position x.
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Fig. 2.3 Cross-section for

the 235U(n, f ) reaction over

the energy range 1–10 eV.

At 0.01 eV (off the left end
of the graph), the cross-

section for this reaction is

about 930 bn (Data from

National Nuclear Data

Center. See also Figs. 1.10

and 3.1)

x

No
incident
neutrons

Ne
escaping
neutrons

dx

x = 0 x = L

Fig. 2.4 Neutrons

penetrating a target of

thickness L
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From (2.7), the probability that a neutron will penetrate through the entire slab to

emerge from the face at x¼ L is Pemerge¼ e� σnL. This means that the probability

that a neutron will be involved in a reaction and not travel through to the face at

x¼ L will be Preact¼ 1� e� σnL. It follows that if No neutrons are incident at the

x¼ 0 face, then the number that will be consumed in reactions within the slab will

be Nreact¼No(1� e� σnL). We will use this result in a moment.

Also from (2.7), the number of neutrons that penetrate to distances x and x + dx
are given by

Nx ¼ Noe
�σ n x ð2:9Þ

and

Nxþdx ¼ Noe
�σ n xþdxð Þ: ð2:10Þ

Some of the neutrons that reach x will be involved in reactions before reaching

x + dx, that is, Nx>Nx + dx. The number of neutrons consumed between x and

x + dx, designated as dNx, is given by

dNx ¼ Nx � Nxþdx ¼ Noe
�σ n x 1� e�σ n dx

� �
: ð2:11Þ

If dx is infinitesimal, then (σ n dx) will be very small. This means that we can

write e� σn (dx) ~ 1� σ n(dx), and hence write dNx as

dNx ¼ Noe
�σ n x σ ndxð Þ, ð2:12Þ

a result equivalent to differentiating (2.7).

Now, these dNx neutrons penetrated distance x into the slab before being

consumed or diverted in a reaction, so the total travel distance accumulated by all

of them in doing so would be (x dNx). The average distance that a neutron will travel

before suffering a reaction is given by integrating accumulated travel distances over

the length of the slab and then dividing by the number of neutrons consumed in

reactions within the slab, Nreact¼No(1� e� σnL) from above:

xh i ¼ 1

Nreact

ðL
0

xdNx ¼ 1

No 1�e�σnLð Þ
ðL
0

Noσnð Þxe�σnxdx ¼ 1

σn

1�e�σnL 1 þ σnLð Þ
1�e�σnL

24 35:
ð2:13Þ

If we have a slab of infinite thickness, or, more practically, one such that the

product σnL is large, then e�σnL will be small and we will have

xh i σ n Lð Þ large ! 1

σ n
: ð2:14Þ
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This quantity is known as the characteristic length or mean free path for the

particular reaction quantified by σ. This quantity will figure prominently throughout

the remainder of this chapter. If it is computed for an individual cross section such

as σfission or σcapture, one speaks of the mean free path for fission or capture. Such

lengths are often designated by the symbol λ with a subscript indicating the type of

reaction involved. As an example, consider fission in 235U. The nuclear number

density n is 4.794� 1028 m�3, and the fast-neutron cross section is σf¼ 1.235

bn¼ 1.235� 10�28 m2 (again averaged over the energy spectrum of fission-

liberated neutrons). These numbers give λf¼ 16.9 cm, or about 6.65 in.

Finally, it should be emphasized that the derivations in this section do not apply

to bombarding particles that are charged, in which case one has very complex

ionization issues to deal with.

2.2 Critical Mass: Diffusion Theory

We now consider critical mass per se. Qualitatively, the concept of critical mass

derives from the observation that some species of nuclei fission upon being struck

by a bombarding neutron and consequently release secondary neutrons which can

potentially go on to induce other fissions, resulting in a chain reaction. However, the

development in the preceding section indicates that we can expect that a certain

number of neutrons will reach the surface of the mass and escape, particularly if the

mass is small. If the density of neutrons within the mass is increasing with time,

criticality is said to obtain. Whether or not this condition is fulfilled depends on

quantities such as the density of the material, its cross-section for fission, the

number of neutrons emitted per fission, and the kinetic-energy spectrum of the

neutrons. The number of neutrons emitted per fission is designated by the symbol v.
A comment on v is appropriate here. A given fission reaction will release some

integer number of neutrons, which on rare occasion could in fact be zero. In

carrying out calculations we will assume an operative average number of neutrons

per fission. This will inevitably be a decimal number (see Table 2.1), but it should

be borne in mind that a more advanced treatment would account for the spectrum of

neutron-number emission for a given material when bombarded by neutrons of

some spectrum of energies. There is almost no end to the increasingly complex

levels of sophistication with which one can approach nuclear-weapons calculations.

To explore the time-dependence of the number of neutrons in a bomb core

requires the use of time-dependent diffusion theory. In this section we use this

theory to calculate the critical masses of so-called “bare” spherical assemblies of
235U and 239Pu, the main “active materials” used in fission weapons. The term

“bare” is the technical terminology for an untamped core. More correctly, we

compute critical radii which can be transformed into equivalent critical masses
upon knowing the densities of the materials involved.

The development presented here is based on the derivation in Appendix G of a

differential equation which describes the spatiotemporal behavior of the neutron

number density N, that is, the number of neutrons per cubic meter within the core.
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The derivation in Appendix G depends upon on some material developed in

Sect. 3.5; it is consequently recommended that both those sections be read in

support of this one. Also, be sure not to confuse n and N; the former is the number

density of fissile nuclei while the latter is the number density of neutrons; both play
roles in what follows. Note also that the definition of N here differs from that in the

previous section, where it represented a number of neutrons.

Before proceeding, an important limitation of this approach needs to be made

clear. Following Serber (1992), I model neutron flow within a bomb core by use of a

diffusion equation. A diffusion approach is appropriate if neutron scattering is

isotropic. Even if this is not so, a diffusion approach will still be reasonable if

neutrons suffer enough scatterings so as to effectively erase non-isotropic angular

effects. Unfortunately, neither of these conditions are fulfilled in the case of a

uranium core: Fast neutrons elastically scattering against uranium show a strong

forward-peaked effect. Further, since the mean free path of a fast neutron in 235U,

about 3.6 cm, is only about half of the 8.4-cm bare critical radius (see Table 2.1),

one cannot help but question the inherent accuracy of the diffusion equation

developed in Appendix G. I adopt a diffusion-theory approach for a number of

reasons, however. As much of the physics of this area remains classified or at least

not easily accessible, we are forced to settle for an approximate model; diffusion

theory has the advantage of being analytically tractable at an upper-undergraduate

level. In actuality, however, we will see toward the end of this section that

the predictions of diffusion theory compare very favorably with experimentally-
measured critical masses. Also, as shown in Sect. 2.6, a comparison of critical radii

as predicted by diffusion theory with those estimated from an openly-published

more exact treatment shows that the two agree within about 5 % for the range of

fissility parameters of interest here. We can thus be quite confident in a diffusion

analysis despite its built-in approximations.

Central to any discussion of critical radius are the fission and transportmean free

paths for neutrons, respectively symbolized as λf and λt. These are given by (2.14) as

Table 2.1 Threshold critical

radii and masses (untamped;

α¼ 0)

Quantity Unit 235U 239Pu

Α gr/mol 235.04 239.05

ρ gr/cm3 18.71 15.6

σf bn 1.235 1.800

σel bn 4.566 4.394

ν – 2.637 3.172

n 1022 cm�3 4.794 3.930

λfission cm 16.89 14.14

λelastic cm 4.57 5.79

λtotal cm 3.60 4.11

ε – 1.467 1.090

τ 10�9 s 8.635 7.227

d cm 3.52 2.99

RO cm 8.37 6.346

MO kg 45.9 16.7
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λf ¼ 1

σf n
ð2:15Þ

and

λt ¼ 1

σtn
, ð2:16Þ

where σt is the so-called total or transport cross-section. If neutron scattering is

isotropic (which we assume), the transport cross-section is given by the sum of the

fission and elastic-scattering cross-sections:

σt ¼ σf þ σel: ð2:17Þ

We do not consider here the role of inelastic scattering, which affects the

situation only indirectly in that it lowers the mean neutron velocity.1

For a spherical bomb core, the diffusion theory of Appendix G provides the

following differential equation for the time rate of change of the neutron number

density:

∂N
∂t

¼ vneut
λf

v� 1ð ÞN þ λtvneut
3

∇2N
� �

, ð2:18Þ

where vneut is the average neutron velocity and the other symbols are as defined

earlier. The first term on the right side of (2.18) corresponds to the growth in the

1 Equations (2.15) and (2.16) assume that the product σnL is large; see the preceding section. For

U-235, the values of the square bracket in (2.13) for L¼ 10 cm are 0.267 for σfissnL and 0.816 for

σtotalnL, whereas the large-product approximation assumes that the square bracket will be equal to

one. The approximation is more dramatic for the fission mean free path due to its small cross-

section. It is thus somewhat surprising that diffusion theory ends up predicting critical masses in

close accord with experimentally-measured values; see the discussion following Table 2.1 and

Sect. 2.6. As for neglecting inelastic scattering, this is not as drastic as it may seem for a

combination of reasons. What matters to the growth of the neutron population is the time τ that
a neutron will typically travel before causing another fission; see (2.21). But, if one averages

through the many resonance spikes in Fig. 3.1, the fission cross-section for 235U (and 239Pu as well)

behaves approximately as σ ~ 1/vneut, where vneut is the neutron speed. This means that the mean

free path for fission is proportional to vneut, which, overall, makes τ independent of vneut. Hence, if
a neutron has been either elastically or inelastically scattered, the time for which it will typically

travel before causing a subsequent fission is largely independent of its speed. It would then seem

that one should add in the inelastic-scattering cross-section when forming the transport cross-

section in (2.17). This is true, but another effect comes into play: Elastic scattering is not isotropic.

This has the effect of somewhat lowering the effective value of the elastic scattering cross-section.

For elements like uranium and plutonium, the two effects largely cancel each other, with the net

result that (2.17) is a quite reasonable approximation. Details are given in the Appendix to Serber’s

Primer; see also Soodak et al. (1962), Chap. 3.
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number of neutrons due to fissions, while the second term accounts for neutron loss

by their flying out of a volume being considered.

Now, let r represent the usual spherical radial coordinate as measured

from the center of the core. Upon assuming a solution for N(t,r) of the form

N(t,r)¼Nt(t)Nr(r), (2.18) can be separated as

1

Nt

∂Nt

∂t

� �
¼ v� 1

τ

� �
þ D

Nr

1

r2
∂
∂r

r2
∂Nr

∂r

� �� �
, ð2:19Þ

where D is the so-called diffusion coefficient,

D ¼ λtvneut
3

, ð2:20Þ

and where τ is the mean time that a neutron will travel before causing a fission:

τ ¼ λf
vneut

: ð2:21Þ

If the separation constant for (2.19) is defined as α/τ (that is, the constant to

which both sides of the equation must be equal), then the solution for the time-

dependent part of the neutron density emerges directly as

Nt tð Þ ¼ Noe
α=τð Þ t, ð2:22Þ

where No represents the neutron density at the center of the core at t¼ 0. No would

be set by whatever device is used to initiate the chain-reaction. We could have

called the separation constant just α, but this form will prove more convenient for

subsequent algebra. How α is determined is described following (2.31) below.

Equation (2.22) shows that the time-growth or decay (depending on the sign of α) of
the neutron density is exponential. While our main concern for the present is with the

spatial behavior of N, α will prove to be very important throughout this and subsequent
sections. We will return to the issue of time-dependence in Sects. 2.4 and 2.5.

With the above definition of the separation constant, the radial part of (2.19)

appears as

v� 1

τ

� �
þ D

Nr

1

r2
∂
∂r

r2
∂Nr

∂r

� �� �
¼ α

τ
: ð2:23Þ

The first and last terms in (2.23) can be combined; this is why the separation

constant was defined as α/τ. On then dividing through by D, we find

1

d2
þ 1

Nr

1

r2
∂
∂r

r2
∂Nr

∂r

� �� �
¼ 0, ð2:24Þ

where d is a characteristic length scale,
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λf λt
3 �αþ v� 1ð Þ

s
: ð2:25Þ

Now define a new dimensionless coordinate x according as

x ¼ r

d
: ð2:26Þ

This brings (2.24) to the form

1

Nr

1

x2
∂
∂x

x2
∂Nr

∂x

� �� �
¼ �1: ð2:27Þ

Aside from a normalization constant, the solution of this differential equation

can easily be verified to be

Nr rð Þ ¼ sin x

x

� �
: ð2:28Þ

To determine a critical radius RC, we need a boundary condition to apply to

(2.28). As explained in Appendix G, this takes the form

N RCð Þ ¼ � 2λt
3

∂N
∂r

� �
RC

¼ � 2λt
3d

∂N
∂x

� �
RC

: ð2:29Þ

On applying this to (2.28), one finds that the critical radius is given by solving

the transcendental equation

x cot xð Þ þ εx� 1 ¼ 0, ð2:30Þ

where

ε ¼ 3d

2λt
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λf

λt �αþ v� 1ð Þ

s
: ð2:31Þ

With fixed values for the density and nuclear constants for some fissile material,

Eqs. (2.30) and (2.31) contain two variables: the core radius r (through x) and the

exponential factor α, and the two equations can be solved in two different ways. For
both approaches, assume that we are working with material of “normal” density,

which we designate as ρo. For the first approach, start by looking back to (2.22). If

α¼ 0, the neutron number density is neither increasing nor decreasing with time; in

this case one has what is called threshold criticality. To determine the so-called

threshold bare critical radius Ro, set α¼ 0 in (2.25) and (2.31), set the density to ρo
to determine n, λf, and λt, solve (2.30) for x, and then get r (¼Ro) from (2.26). The
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corresponding threshold bare critical massMo then follows fromMo¼ (4π/3)Ro
3ρo.

It is this mass that one usually sees referred to as the critical mass; this quantity will

figure prominently in the discussion of bomb efficiency in Sects. 2.4 and 2.5.

The second solution begins with assuming that one has a core of some radius

r>Ro. In this case one will find that (2.30) will be satisfied by some value of α> 0,

with α increasing as r increases. The rationale here is that since the middle term in

(2.30), εx¼ 3r/2λt, is independent of α, we can set r to some desired value; (2.30)

can then be solved for x, which gives d from (2.26) and hence α from (2.25). If
α> 0, the reaction will in principle grow exponentially in time until all of the fissile

material is used up, a situation known as “supercriticality.”

To see why increasing the radius demands that α must increase, implicitly

differentiate (2.30) to show that dε/dx¼� (1/x)2(1� x2/sin2x). This expression

demands dε/dx> 0 for all values of x. From the definition of x, an increase in

r (and/or in the density, for that matter) will cause x to increase. To keep (2.30)

satisfied means that ε must increase, which, from (2.31), can happen only if α
increases.

We come now to a very important point. This is that the condition for threshold

criticality can in general be expressed as a constraint on the product ρr, where ρ is

the mass density of the material and r is the core radius. The factor ε in (2.30)

depends only on the cross-sections and secondary neutron number v, and so is

independent of the density, Hence, for α¼ 0, (2.30) will be satisfied by some unique

value of x which will be characteristic of the material being considered. Since

x¼ r/d and d itself is proportional to 1/ρ [see (2.25)], we can equivalently say that

the solution of (2.30) demands a unique value of ρr for a given combination of σ and
v values. If Ro is the bare threshold critical radius for material of normal density ρo,
then any combination of r and ρ such that ρr¼ ρoRo will also be threshold critical,

and any combination such that ρr> ρoRo will be supercritical. For a sphere of

material of mass M, the mass, density, and radius relate as M / ρr3, which means

that the “criticality product” ρr can be written as ρr / M/r2. This relationship

underlies the concept of implosion weapons. If a sufficiently strong implosion can

be achieved, then one can get away with having less than a “normal” critical mass

by starting with a sphere of material of normal density and crushing it to high

density by implosion; such weapons inherently make more efficient use of available

fissile material than those that depend on a non-implosive mechanism to assemble

subcritical components. As described in Sect. 4.2, the implosion technique also

helps to overcome predetonation issues with spontaneous fission. The key message

from the present development, however, is that there is no unique critical mass for a

given fissile material.

Table 2.1 shows calculated bare threshold critical radii and masses for U-235

and Pu-239.

Sources for the fission and elastic-scattering cross-sections appearing in the

Table are given in Appendix B; the values quoted therein are used as they are

averaged over the fission-energy spectra of the two nuclides. The v values were

adopted from the Evaluated Nuclear Data Files (ENDF) maintained by the National

Nuclear Data Center at Brookhaven National Laboratory (www.nndc.bnl.gov), and
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are for neutrons of energy 2 MeV, about the average energy of fission neutrons. The

density for 235U is (235/238) times the density of natural uranium, 18.95 gr/cm3.

It is worth noting that the timescales involved in fission-bomb phenomena are

remarkably brief: Neutrons travel for only τ ~ 1/100 microsecond (¼10 ns) between

fissions!

Lest you think that publishing estimates of critical masses is engaging in

revealing classified data, do not be alarmed; such estimates have been available

in the public domain for decades. In a review article on fast reactors, Koch and

Paxton (1959) quote a value of 48.7 kg for a spherical assembly of highly enriched

uranium (93.9 % U-235), and 16.6 kg for a sphere of Pu-239. A 1963 publication of

the United States Atomic Energy Commission, “Reactor Physics Constants,” a

compilation of data for nuclear engineers, lists the experimentally determined
bare critical mass for 93.9 % U-235 as 48.8 kg, and that for Pu-239 as 16.3 kg.

These values are close to those listed in Table 2.1. Estimating a critical mass is one

of the least difficult parts of making a nuclear weapon.

SpreadsheetCriticalityAnalytic.xls allows users to carry out the above calculations

for themselves. This spreadsheet is used for the calculations developed in this section as

well as those in Sects. 2.3 and 2.4. In its simplest use—corresponding to this section—

the user enters five parameters: the density, atomic weight, fission and scattering cross-

sections of the core material, and the number of secondary neutrons per fission. The

“Goal Seek” function then allows one to solve (2.30) and (2.31) for x (assuming α¼ 0),

from which the bare critical radius and mass are computed.

In practice, having available only a single critical mass of fissile material will not

produce much of an explosion. The reason for this is that fissioning nuclei give rise

to fission products with tremendous kinetic energies. The core consequently very

rapidly—within microseconds—heats up and expands, causing its density to drop

below that necessary to maintain criticality. In a core comprising only a single

critical mass this will happen at the moment fissions begin, so the chain reaction

will quickly fizzle as α falls below zero. To get an explosion of appreciable

efficiency, one must start with more than a single critical mass of fissile material

or implode an initially subcritical mass to high density before initiating the explo-

sion. The issue of using more than one critical mass to enhance weapon efficiency is

examined in more detail in Sects. 2.4 and 2.5. The effect of using a tamper is

examined analytically in Sect. 2.3 and numerically in Sect. 2.5.

To determine the value of the exponential growth factor α for a core of more than

one critical mass, it is necessary to solve Eqs. (2.26), (2.30), and (2.31) for α as

described following (2.31) above. For the purpose of generating a seed value or simply

for making quick estimates, however, an approximate value can be obtained as follows.

Equation (2.28) for the radial dependence of the neutron density appears as

Nr rð Þ ¼ sin x

x

� �
: ð2:32Þ
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As a simplified boundary condition, assume that Nr(Rcore)¼ 0, that is, that the

neutron density falls to zero at the edge of the core. This is a more restrictive

condition that the true boundary condition, (2.29), and will lead to a larger bare

threshold critical radius. In this case, (2.28) indicates that we must have sin(x)¼ 0,

or R/d¼ π. This will be the case whether a core is supercritical or just threshold

critical. If we use subscripts “core” and “o” to designate a supercritical and bare-

threshold core, respectively, then we must have

Rcore

dcore
¼ Ro

do
) Ro

Rcore

� �2

¼ do
dcore

� �2

: ð2:33Þ

Substitute for do and dcore from (2.25), setting α¼ 0 in the expression for do. The
result can then be solved for αcore:

αcore � v� 1ð Þ 1� Ro=Rcoreð Þ2
h i

: ð2:34Þ

This result is expressed as an approximation as a reminder that it does not derive

from the true boundary condition for neutron diffusion. This simplified boundary

condition is explored further in Exercises 2.4 and 2.11.

As an example of how good an estimate (2.34) provides, we consider the

Hiroshima Little Boy bomb core. We will see in the next section that this core

comprised about 64-kg of 235U. At a density of 18.71 gr/cm3, this would correspond

to Rcore¼ 9.347 cm. With Ro¼ 8.366 cm and v¼ 2.637 from Table 2.1, (2.34) gives

αcore ~ 0.326. The true value for α for such a core is 0.255. The approximation is

about 27 % high: not terribly accurate, but certainly in the ballpark (The Little Boy
core was actually cylindrical, so we have taken some liberty in this example for

sake of simplicity).

To close this section, it is interesting to look briefly at a famousmiscalculation of
critical mass on the part of Werner Heisenberg. At the end of World War II a

number of prominent German physicists including Heisenberg were interned for

6 months in England and their conversations secretly recorded. This story is

detailed in Bernstein (2001); see also Logan (1996) and Bernstein (2002). On the

evening of August 6, 1945, the internees were informed that an atomic bomb had

been dropped on Hiroshima and that the energy released was equivalent to about

20,000 tons of TNT (In actuality, the yield was about 13,000 tons, but this is not the

problem with Heisenberg’s calculation). Heisenberg then estimated the critical

mass based on this number and a subtly erroneous model of the fission process.

We saw in Sect. 1.6 that complete fission of 1 kg of 235U liberates energy

equivalent to about 17 kt of TNT. Heisenberg predicated his estimate of the critical

mass on assuming that about 1 kg of material did in fact fission. One kilogram of
235U corresponds to about Ω ~ 2.56� 1024 nuclei. Assuming that on average v¼ 2

neutrons are liberated per fission, then the number of generations G necessary to

fission the entire kilogram would be vG¼Ω. Solving for G gives G¼ ln(Ω)/ln(v)
~ 81, which Heisenberg rounded to 80. So far, this calculation is fine. He then

argued that as neutrons fly around in the bomb core, they will randomly bounce

62 2 Critical Mass and Efficiency

http://dx.doi.org/10.1007/978-3-662-43533-5_1#Sec6


between nuclei, traveling a mean distance λf before causing fissions; λf is the mean

free path between fissions as in (2.15) above. From Table 2.1, λf ~ 17 cm for U-235,

but, at the time, Heisenberg took λf ~ 6 cm. Since a random walk of G steps where

each is of length λf will take one a distance reλf ffiffiffiffi
G

p
from the starting point, he

estimated a critical radius of re 6 cmð Þ ffiffiffiffiffi
80

p
~ 54 cm. This would correspond to a

mass of some 12,500 kg, roughly 13 tons! Given that only one kilogram of uranium

fissioned, this would be a fantastically inefficient weapon. Such a bomb and its

associated tamper, casing, and instrumentation would represent an unbearably

heavy load for a World War II-era bomber.

The problem with Heisenberg’s calculation was that he imagined the fission

process to be created by a single neutron that randomly bounces throughout the

bomb core, begetting secondary neutrons along the way. Further, his model is too

stringent; there is no need for every neutron to cause a fission; many neutrons

escape. In the days following August 6 Heisenberg revised his model, arriving at the

diffusion theory approach described in this section.

2.3 Effect of Tamper

In the preceding section it was shown how to calculate the critical mass of a sphere

of fissile material. In that development we neglected the effect of any surrounding

tamper. In this section we develop a model to account for the presence of a tamper.

The discussion here draws from the preceding section and from Serber (1992),

Bernstein (2002), and especially Reed (2009).

The idea behind a tamper is to surround the fissile core with a shell of dense

material, as suggested in Fig. 2.5. This serves two purposes: (1) It reduces the

critical mass, and (2) It slows the inevitable expansion of the core, allowing more

time for fissions to occur until the core density drops to the point where criticality

no longer holds. The reduction in critical mass occurs because the tamper will

reflect some escaped neutrons back into the core; indeed, the modern name for a

tamper is “reflector,” but I retain the historical terminology here. This effect is

explored in this section. Estimating the distance over which an untamped core

expands before criticality no longer holds is analyzed in Sect. 2.4. This slowing

effect is difficult to model analytically, but can be treated approximately with a

numerical model; this is done in Sect. 2.5.

The discussion here parallels that in Sect. 2.2. Neutrons that escape from the core

will diffuse into the tamper. If the tamper material is not fissile, we can describe the

behavior of neutrons within the tamper via (2.18) without the neutron-production

term, that is, without the first term on the right side:
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∂Ntamp

∂t
¼ λ tamptrans vneut

3
∇2Ntamp

� �
, ð2:35Þ

where Ntamp is the number density of neutrons within the tamper and λtamptrans is their

transport mean free path. vneut is the average neutron speed within the tamper,

which we will later assume for sake of simplicity to be the same as that within the

core. We are assuming that the tamper does not capture neutrons; otherwise, we

would have to add a term to (2.35) represent that effect.

Superscripts and subscripts tamp and core will be used liberally here as it will be
necessary to join tamper physics to core physics via suitable boundary conditions.

As was done in Sect. 2.2, take a trial solution for Ntamp of the form Ntamp(t, r)¼
Ntamp
t (t) Ntamp

r (r), where Ntamp
t (t) and Ntamp

r (r) are respectively the time-and space

dependences of Ntamp; r is the usual spherical radial coordinate measured from the

center of the core. Upon substituting this into (2.35) we find, in analogy to (2.19),

1

N tamp
t

∂N tamp
t

∂t

� �
¼ λ tamptrans vneut

3

� �
1

N tamp
r

1

r2
∂
∂r

r2
∂N tamp

r

∂r

� �� �
: ð2:36Þ

Define the separation constant here to be δ/τ where τ is the mean time that a

neutron will travel in the core before causing a fission, that is, as defined in (2.21):

τ ¼ λ corefiss

vneut
: ð2:37Þ

While it may seem strange to invoke a core quantity when dealing with diffusion
in the tamper, this choice is advantageous in that the neutron velocity vneut, which
we assume to be the same in both materials, will cancel out in later algebra. This

core

tamper

initiator

Fig. 2.5 Schematic

illustration of a tamped

bomb core
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choice is not equivalent to assuming at the outset that the core and tamper separa-

tion constants are the same, as δ may be different from the exponential factor α of

Sect. 2.2. However, we will find that boundary conditions demand that they too

must be equal.

This choice of separation constant renders (2.36) as

1

N tamp
t

∂N tamp
t

∂t

� �
¼ λ tamptrans vneut

3

� �
1

N tamp
r

1

r2
∂
∂r

r2
∂N tamp

r

∂r

� �� �
¼ δ

τ
: ð2:38Þ

The solution of (2.38) depends on whether δ is positive, negative, or zero; the

latter choice corresponds to threshold criticality in analogy to α¼ 0 in Sect. 2.2. The

situations of practical interest will be δ� 0, in which case the solutions have the

form

Ntamp ¼

A

r
þ B δ ¼ 0ð Þ

e δ=τð Þt A
er=dtamp

r
þ B

e�r=dtamp

r

8<:
9=; δ > 0ð Þ,

8>>>>><>>>>>:
ð2:39Þ

where A and B are constants of integration (different for the two cases), and where

dtamp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ tamptransλ

core
fiss

3δ

s
: ð2:40Þ

The situation we now have is that the neutron density in the core is described by

(2.22) and (2.28) as

Ncore ¼ Acoree
α=τð Þt sin r=dcoreð Þ

r
, ð2:41Þ

with dcore given by (2.25):

dcore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ corefiss λ coretrans

3 �αþ v� 1ð Þ

s
, ð2:42Þ

while the neutron density in the tamper is given by (2.39) and (2.40).

The question at this point is: “What boundary conditions apply in order that we

have a physically reasonable solution?” Let the core have radius Rcore and let the

outer radius of the tamper be Rtamp; we assume that the inner edge of the tamper is

snug against the core. First consider the core/tamper interface. If no neutrons are

created or lost at this interface, then it follows that both the density and flux of

neutrons across the interface must be continuous. That is, we must have
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Ncore Rcoreð Þ ¼ Ntamp Rcoreð Þ, ð2:43Þ

and, from (6.97) of Appendix G,

λ coretrans

∂Ncore

∂r

� �
Rcore

¼ λ tamptrans

∂Ntamp

∂r

� �
Rcore

: ð2:44Þ

Equation (2.44) accounts for the effect of any neutron reflectivity of the tamper

via λtamptrans. In writing (2.44), we have assumed that the speed of neutrons within the

core and tamper is the same, and hence cancels.

In addition, we must consider what is happening at the outer edge of the tamper.

If there is no “backflow” of neutrons from the outside, then the situation is

analogous to the boundary condition of (2.29) that was applied to the outer edge

of the untamped core:

Ntamp Rtamp

� � ¼ �2

3
λ tamptrans

∂Ntamp

∂r

� �
Rtamp

: ð2:45Þ

Applying (2.43), (2.44), and (2.45) to (2.39), (2.40), (2.41), and (2.42) results,

after some algebra, in the following constraints:

1þ 2Rthreshλ
tamp
trans

3R2
tamp

� Rthresh

Rtamp

24 35 Rthresh

dcore

0@ 1A cot
Rthresh

dcore

0@ 1A� 1

24 35
þ λ tamptrans

λ coretrans

¼ 0, δ ¼ 0ð Þ
ð2:46Þ

and, for δ> 0,

e2 xct�xtð Þ xc cot xc � 1� λ xct � 1ð Þ
Rtamp þ 2λ tamptrans xt � 1ð Þ=3

" #
¼ xc cot xc � 1þ λ xct þ 1ð Þ

Rtamp � 2λ tamptrans xt þ 1ð Þ=3

" #
, ð2:47Þ

where

xct ¼ Rcore=dtamp
xc ¼ Rcore=dcore
xt ¼ Rtamp=dtamp

λ ¼ λ tamptrans=λ
core
trans

9>>=>>;: ð2:48Þ

It is also necessary to demand that α¼ δ, as otherwise the fact that (2.43), (2.44),
and (2.45) must also hold as a function of time would be violated. Some comments

on these results follow.
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1. Equation (2.46) corresponds to tamped threshold criticality, whereα¼ δ¼ 0.Once

values for the d0s and λ0s are given, there are two ways to use this expression:

(a) If a core mass which is bare-threshold sub-critical is specified, use its radius
as Rthresh and solve (2.46) for Rtamp, the tamper outer radius which will just

render the core critical. The tamper mass can then be determined from the

two radii; see Fig. 2.6.

(b) If on the other hand Rtamp is specified, solve (2.46) for Rthresh, the radius of a

core which would just be critical for the specified tamper outer radius. This

can be a handy calculation if the size of your bomb is limited in advance by

some condition such as the diameter of a missile tube.

2. To use (2.47) and (2.48): Refer to case 1(b) above, where Rthresh is determined for

a given value of Rtamp. Keep Rtamp fixed to that value. Now choose a core radius

Rcore>Rthresh to use in (2.47) and (2.48). This means that for the chosen value of

Rtamp, you will have a numberC (>1) of tamped threshold critical masses for your

bomb core: C¼ (Rcore/Rthresh)
3. Then solve (2.47) numerically for δ (¼α), which

enters the d0s and x0s of (2.47) and (2.48) through (2.40) and (2.42).

The value of knowing α will become clear when the efficiency and yield

calculations of Sects. 2.4 and 2.5 are developed; for the present, our main concern

is with Rthresh.

A special-case application of (2.46) can be used to get a sense of how dramat-

ically the presence of a tamper decreases the threshold critical mass. Suppose that

the tamper is very thick, Rtamp >> Rthresh. In this case (2.46) reduces to

Rthresh=dcoreð Þ cot Rthresh=dcoreð Þ ¼ 1� λ tamptrans=λ
core
trans

� �
: ð2:49Þ

Now consider two sub-cases. The first is that the tamper is in fact a vacuum.

Since empty space would have essentially zero cross-section for neutron scattering,

this is equivalent to specifying λtamptrans ¼1, in which case (2.49) becomes
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Fig. 2.6 Mass (kg; solid curve, left scale) and thickness (cm; dashed curve, right scale) of a
snugly-fitting tamper of tungsten-carbide (A¼ 195.84 gr/mol, ρ¼ 14.8 gr/cm3, σelastic¼ 6.587 bn)

which will just render threshold critical a given core mass of pure 235U. The untamped critical

mass of 235U is about 45.9 kg (Table 2.1)
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Rthresh=dcoreð Þ cot Rthresh=dcoreð Þ ¼ �1: ð2:50Þ

This can only be satisfied if

Rthresh

dcore

� �
vacuum tamper

¼ π: ð2:51Þ

The second sub-case is more realistic in that we imagine a thick tamper with a

non-zero transport mean free path. For simplicity, assume that λcoretrans ~ λ
tamp
trans, that is,

that the neutron-scattering properties of the tamper are much like those of the core.

In this case (2.49) becomes

Rthresh=dcoreð Þ cot Rthresh=dcoreð Þ ¼ 0: ð2:52Þ

The solution here is

Rthresh

dcore

� �
thick tamper
finite cross�scetion

¼ π

2
, ð2:53Þ

exactly one-half the value of the vacuum-tamper case. To summarize: With an

infinitely-thick tamper of finite transport mean free path, the threshold critical

radius is one-half of what it would be if no tamper were present at all. A factor of

two in radius means a factor of eight in mass, so the advantage of using a tamper is

dramatic even aside from the issue of any retardation of core expansion. This factor

of two in critical radius is predicated on an unrealistic assumption for the tamper

thickness and so we cannot expect such a dramatic effect in reality, but we are about

see that the effect is dramatic enough.

What sort of critical-mass reduction can one expect in practice? In a website

devoted to design details of nuclear weapons, Sublette (2007) records that the

Hiroshima Little Boy bomb used tungsten-carbide (WC) as its tamper material.

Tungsten has five naturally-occurring isotopes, 180W, 182W, 183W, 184W, and 186W,

with abundances 0.0012, 0.265, 0.1431, 0.3064, and 0.2843, respectively. The

KAERI table-of-nuclides site referenced in Appendix B gives elastic-scattering

cross sections for the four most abundant of these as (in order of increasing weight)

4.369, 3.914, 4.253, and 4.253 bn. Neglecting the small abundance of 180W, the

abundance-weighted average of these is 4.235 bn. Adding the 2.352 bn elastic-

scattering cross-section for 12C gives a total of 6.587 bn; the cross-sections must be

added, not averaged, since we are considering the tungsten-carbide molecules to be

“single” scattering centers of atomic weight equal to the sum of the individual atomic

weights for W and C, 183.84+ 12.00¼ 195.84. The bulk density of tungsten-carbide

is 14.8 g/cm3. Figure 2.6 shows the tamper mass and corresponding outer radius

necessary to just render critical a U-235 core of a given mass. As an example, a 25-kg

core will be rendered just threshold critical when surrounded by a tamper of mass
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80 kg and thickness 4.89 cm; the outer radius of the entire core/tamper assembly

would be 11.7 cm.

Two spreadsheets are available for readers to run their own calculations along

these lines. In CriticalityAnalytic.xls, users enter the core parameters for the calcu-

lations of Sect. 2.2 along with the density, atomic weight, scattering cross-section and

outer radius of the tamper. The “Goal Seek” function is then used to determine the

tamped threshold critical radius and mass from (2.46). Conversely, ReflectedCore

allows the user to specify a bare-subcritical core mass and then, as in Fig. 2.6,

determine the tamper mass necessary to just render the core threshold critical.

In the case of the Hiroshima Little Boy bomb, Sublette records that the tamper had

a mass of about 311 kg and that its core comprised about 64 kg of 235U in a cylindrical

shape surrounded by a cylindrical WC tamper of diameter and length 13 in. (see also

Coster-Mullen 2010). Assuming spherical geometry for simplicity, a 64-kg core at a

density of 18.71 g/cm3 would have an outer radius of 9.35 cm; a 311-kg tamper would

then require an outer radius of about 18 cm. From Fig. 2.6, a tamper of this mass will

render a core of mass ~19 kg threshold critical, so we can conclude that Little Boy
utilized about (64/19) ~ 3.4 tamped threshold critical masses of fissile material.

Why was tungsten-carbide used as the Little Boy tamper material? As one of the

purposes of the tamper is to briefly retard core expansion, denser tamper materials

are preferable; tungsten-carbide is fairly dense and has a low neutron capture cross-

section. In this sense it would seem that depleted uranium, which the Manhattan

Project possessed in abundance, would be an ideal tamper material (Depleted is the
term given to the uranium that remains after one has extracted some or all of its fissile

U-235; one could equivalently say that the remains are enriched in U-238, but

depleted is the preferred technical term). The reason that U-238 was not used may

be that it has a fairly high spontaneous fission rate, about 675 per kilogram per

second (see Sect. 4.2). Over the approximately 100 microseconds required to

assemble the core of a Hiroshima gun-type bomb, a 300 kg depleted-U tamper

would have a fairly high probability of suffering a spontaneous fission and hence of

initiating a predetonation. Further, as discussed in Sect. 1.9, U-238 has a significant

inelastic-scattering cross-section: fast neutrons striking it tend to be slowed so much

that they become likely to be captured and hence lost to the possibility of being

reflected back into the core. One of the best neutron-reflecting materials known is

beryllium, which has a fission-spectrum averaged elastic scattering cross section of

about 2.8 bn but an inelastic-scattering cross-section of only about 40 microbarns.

Beryllium has an additional advantage in weapons design: for fission-energy neu-

trons it has a modest cross-section (~0.05 barns) for net production of neutrons via

the reaction 9Be (n, 2n) 8Be.

2.4 Estimating Bomb Efficiency: Analytic

Material in this section is adopted from Reed (2007).

In the preceding sections we examined how to estimate critical masses for bare

and tamped cores of fissile material. The analysis in Sect. 2.2 revealed that the
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threshold bare critical mass of 235U is about 46 kg. In Sect. 1.6 we saw that

complete fission of 1 kg of 235U liberates energy equivalent to that of about 17 kt

of TNT. Given that the Little Boy uranium bomb that was dropped on Hiroshima

used about 64 kg of 235U and is estimated to have had an explosive yield of only

about 13 kt, we can infer that it must have been rather inefficient. The purpose of

this section is to explore what factors dictate the efficiency of a fission weapon and

to show how one can estimate that efficiency.

This section is the first of several in this chapter and in Chap. 4 devoted to the

question of weapon efficiency and yield. In this section these issues are examined

purely analytically. The advantage of an analytic approach is that it is helpful for

establishing a sense of how the efficiency depends on the parameters involved: The

mass and density of the core and the values of various nuclear constants. However,

conditions inside an exploding bomb core evolve very rapidly as a function of time,

and this evolution cannot be fully captured with analytic approximations. To get a

sense of the time-evolution of the process, one really needs to numerically integrate

the core conditions as a function of time, tracking core size, expansion rate, pressure,

neutron density, and energy release along the way. Such an analysis is the subject of

the next section; these two sections therefore closely complement each other and

should be read as a unit. Bomb efficiency and yield can also be affected by various

phenomena that can trigger the chain-reaction before the weapon core has reached its

fully assembled state; these issues are explored in Chap. 4.

In the present section we consider only untamped cores for sake of simplicity; a

tamped core is simulated numerically in Sect. 2.5.

To begin, it is helpful to appreciate that the efficiency of a nuclear weapon

involves three distinct time scales. The first is mechanical in nature: The time

required to assemble the subcritical fissile components into a critical assembly

before fission is initiated. In principle, this time can be as long as is desired, but in

practice it is constrained by the occurrence of spontaneous fissions, which could

lead to reaction-triggering stray neutrons during the assembly period.

What is the order of magnitude of the assembly time? In a simple “gun-type”

bomb, the idea is that a “projectile” piece of fissile material is fired like a shell

inside an artillery barrel toward a mating “target” piece of fissile material, as

~ 10 cm

Target piece

Projectile
piece

~ 1000 m/s

~ 10 cm

Fig. 2.7 Assembly

timescale for a gun-type

fission weapon
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sketched in Fig. 2.7. InWorld War II, the highest velocity that could be achieved for

an artillery shell was about 1,000 m/s. If a projectile piece of length ~10 cm is shot

toward a mating target piece at this speed, the time required for it to become fully

engaged with the target piece from the time that the leading edge of the projectile

meets the target piece will be ~ (10 cm)/(105 cm/s) ~ 10�4 s ~ 100 μs. This type of

assembly mechanism was used in the Hiroshima Little Boy bomb, which explains

its cylindrical shape as illustrated in the photograph in Fig. 2.8. As shown in the

cross-sectional schematic in Fig. 2.9, the projectile piece was fired from the tail end

of the bomb and traveled about 5 ft toward the nose.

As we will see in Sect. 4.2, spontaneous fission was not an issue for the Little Boy
uranium core, but was such a problem with the Trinity and Fat Man plutonium

cores as to necessitate development of the implosion mechanism for triggering

those weapons. So far as the present section is concerned, however, the essential

idea is that if the spontaneous fission probability can be kept negligible during the

assembly time (which we assume), the efficiency of the weapon is dictated by the

two other time scales.

The first of these other time scales is nuclear in nature. Once fission has been

initiated, how much time is required for all of the fissile material to be consumed?

This time we call tfission. The other time scale is again mechanical. As soon

as fissions have been initiated, the core will begin to expand due to the extreme

gas pressure of the fission fragments. This expansion will lead after a time tcriticality
to loss of criticality, after which the reaction rate will diminish. Weapon efficiency

will depend on how these times compare: If tcriticality> tfission then in principle all

of the core material will undergo fission and the efficiency would be 100 %.

Fig. 2.8 Little Boy test units. Little Boy was 126 in. long, 28 in. in diameter, and weighed 9,700 lb

when fully assembled (Sublette 2007) (Photo courtesy Alan Carr, Los Alamos National

Laboratory)
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Before proceeding with the detailed analysis, we pause to make a rough estimate

of how much time is required to fission the entire core once the chain reaction has

been initiated. In Sect. 2.2 we saw that once a neutron is emitted in a fission it will

travel for only about 10 ns before causing another fission. Suppose that we have a

Fig. 2.9 Cross-section drawing of Y-1852 Little Boy showing major components. Not shown are

radar units, clock box with pullout wires, barometric switches and tubing, batteries, and electrical

wiring. Numbers in parentheses indicate quantity of identical components. Drawing is to scale.

Copyright by and used with kind permission of John Coster-Mullen

(A) Front nose elastic locknut attached to 1-in. diameter Cd-plated draw bolt

(B) 15.125-in. diameter forged steel nose nut

(C) 28-in. diameter forged steel target case

(D) Impact-absorbing anvil with shim

(E) 13-in. diameter 3-piece WC tamper liner assembly with 6.5-in. bore

(F) 6.5-in. diameter WC tamper insert base

(G) 14-in. diameter K-46 steel WC tamper liner sleeve

(H) 4-in. diameter U-235 target insert discs (6)

(I) Yagi antenna assemblies (4)

(J) Target-case to gun-tube adapter with 4 vent slots and 6.5-in. hole

(K) Lift lug

(L) Safing/arming plugs (3)

(M) 6.5-in. bore gun

(N) 0.75-in. diameter armored tubes containing priming wiring (3)

(O) 27.25-in. diameter bulkhead plate

(P) Electrical plugs (3)

(Q) Barometric ports (8)

(R) 1-in. diameter rear alignment rods (3)

(S) 6.25-in. diameter U-235 projectile rings (9)

(T) Polonium-beryllium initiators (4)

(U) Tail tube forward plate

(V) Projectile WC filler plug

(W) Projectile steel back

(X) 2-lb Cordite powder bags (4)

(Y) Gun breech with removable inner breech plug and stationary outer bushing

(Z) Tail tube aft plate

(AA) 2.25-in. long 5/8–18 socket-head tail tube bolts (4)

(BB) Mark-15 Mod 1 electric gun primers with AN-3102-20AN receptacles (3)

(CC) 15-in. diameter armored inner tail tube

(DD) Inner armor plate bolted to 15-in. diameter armored tube

(EE) Rear plate with smoke puff tubes bolted to 17-in. diameter tail tube
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core of mass M kilograms of fissile material of atomic weight A grams per mole.
The number of nuclei N in the mass will be N ¼ 103MNA/A. If v neutrons are

produced per generation, then the number of generations G that will be required to

fission the entire mass will be vG¼N. At τ seconds per generation, the time to

fission the entire mass will thus be tfiss ~ τ G~ τ ln(N )/ln(v). ForM¼ 50 kg of U-235

with A¼ 235 gr/mol, v¼ 2.6, and τ ~ 8� 10�9 s, tfiss ~ 0.5 μs, an incredibly brief

time. Even if only half of the neutrons cause fissions (v¼ 1.3), tfiss ~ 2 μs. Such are

the timescales of nuclear-weapon physics.

Once a chain reaction has been initiated, a bomb core will rapidly (within about a

microsecond) heat up, melt, vaporize, and thereafter behave as an expanding gas

with the expansion driven by the gas pressure in a thermodynamic PΔVmanner; we

assume that the vast majority of energy liberated in fission reactions can be assumed

to go into the form of kinetic energy of the fission products. Our approach to

estimating yield and efficiency will be to use these concepts to establish the range

of radius (and hence time) over which the core can expand before the expansion

lowers the density of the fissile material to subcriticality. Some fissions will

continue to happen after this time, but it is this “criticality shutdown timescale”

that fundamentally sets the efficiency scale of the weapon.

On average, a neutron will cause another fission after traveling for a time given

by τ¼ λf /vneut where λf is the mean free path for fission and vneut is the average

neutron velocity; see (2.21). Inverting this, we can say that a single neutron will

lead to a subsequent fission at a rate of 1/τ per second:

rate of fissions per neutron ¼ 1

τ
: ð2:54Þ

The total number of fissions per second would be this rate times the number

of neutrons in the core. The latter will be the product of the number density

N(t)¼Noe
(α/τ)t from (2.22) times the volume V of the core. Hence we have

fissions=sec ¼ NoV

τ

� �
e α=τð Þ t: ð2:55Þ

In this expression, α is given by solving (2.25), (2.30), and (2.31) for the core at

hand, and No is the central neutron density at t¼ 0; this will be set by the number of

neutrons released by some “initiator” device. Recall that α¼ 0 for threshold

criticality, whereas α> 0 for a core of more than one critical mass, an issue to

which we will return shortly.

Equation (2.55) is actually more complicated than it appears because α and τ are

functions of time. To appreciate this, consider a core of some general radius r and
density ρ. As the core expands, r will increase while ρ decreases. The decreasing

density will cause τ to increase; simultaneously, the discussion following (2.31)

indicates that we can expect α to decrease. For sake of simplicity, we assume that α
and τ remain constant; not accounting for changes in them will lead to overestimating
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the fission rate in (2.55). Since an exponential function is involved, the overestimate

could be serious; indeed, we will see in Sect. 2.5 that direct use of our resulting yield

formula, Eq. (2.67), can easily result in overestimating the efficiency by an order of

magnitude. For the present, however, we will stick with the assumption of constant α
and τ values since the purpose here is to get a sense of how the expected yield and

efficiency depend in principle on the various factors involved. Section 2.5 discusses a

simple refinement to (2.67) that eliminates much of the overestimate.

The time required to fission the entire core can be computed by demanding that

the integral of (2.55) from time zero to time tfiss to be equal to the total number of

nuclei within the core, nV:

nV ¼ NoV

τ

� � ðtfiss
0

e α=τð Þ tdt ) tfiss ¼ τ

α

	 

ln

αn

No

� �
, ð2:56Þ

where it has been assumed that e(α/τ)t>> 1 for the timescale of interest, an

assumption to be investigated a posteriori.
What happens as the exploding core expands? Recall from Sect. 2.2 that the

condition for criticality can be expressed as ρr�K, where K is a constant charac-

teristic of the material being used. We also saw that for a core of some massM, ρr/
M/r2. As the core expands the value of ρr must drop, and will eventually fall below

the level needed to maintain criticality; one might call this situation “criticality

shutdown,” but the preferred technical term is second criticality.
For a single critical mass of normal-density material, second criticality will occur

as soon as the expansion begins. One way to circumvent this is to provide a tamper to

momentarily retard the expansion and so to give the reaction time to build up to a

significant degree. Another is to start with a core of more than one critical mass of

material of normal density, and this is what is assumed here. The effect of a tamper

and the detailed time-evolution of α(t) and τ are dealt with in the following section.

To begin, assume that we have a core of C (>1) untamped threshold critical

masses of material of normal density; the initial radius of such a core will be

ri¼C1/3Ro. We can then solve the diffusion-theory criticality Eqs. (2.30) and

(2.31) for the value of α that just satisfies those equations upon setting the radius

to be C1/3 times the threshold critical radius listed in Table 2.1.

Now consider the energy released by fissions. If each fission liberates energy Ef,

then the rate of energy liberation throughout the entire volume of the core will be,

from (2.55),

dE

dt
¼ NoV Ef

τ

� �
e α=τð Þ t: ð2:57Þ

Integrating this from time t¼ 0 to some general time t gives the energy liberated
to that time:
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E tð Þ ¼ NoVEf

τ

� �ðt
0

e α=τð Þ tdt ¼ NoVEf

α

� �
e α=τð Þ t: ð2:58Þ

To determine the pressure within the core, we appeal to a result from thermo-

dynamics. This is that pressure is given by P(t)¼ γ U(t), where U(t) is the energy
density corresponding to E(t): U(t)¼E(t)/V. The value of the constant γ depends on
whether gas pressure (γ¼ 2/3) or radiation pressure (γ¼ 1/3) is dominant; this issue

is discussed below. Thus, the pressure will behave as

P tð Þ ¼ γNoEf

α

� �
e α=τð Þ t ¼ Po e

α=τð Þ t, ð2:59Þ

where Po¼ (γ NoEf/α) is the central pressure at t¼ 0.

The equation of state P(t)¼ γ U(t) deserves some comment. In the case of a gas of

non-relativistic material particles each of mass m, this expression can be understood

on the basis of simple kinetic theory where one considers the rate at which momen-

tum is transferred to the walls of a container by collisions of the particles with the

walls; this is covered in any freshman-level physics or chemistry text. The value of

U is taken to be the total kinetic energy of all particles divided by the volume V of the

container; each particle is assumed to have the same average value of the squared

speed,<v2>. γ emerges from this calculation as 2/3, with the factor of 2 arising from

K¼m< v2>/2, and the factor of 3 having its origin in the presumed isotropy of

velocity components over three dimensions. To show that γ¼ 1/3 in the case of a gas

of photons requires some background in the relativistic energy-momentum relation-

ship of photons, but an ersatz justification for this value can be argued as follows. The

non-relativistic result can be re-written as P¼ ρ< v2>/3 where ρ is the mass density

of the gas. Photons do not have mass, but for the purposes of this quick argument we

can use Einstein’s famous E¼mc2 equation to assign the total energy of all photons
an effective mass mtot¼Etot/c

2. Hence the density becomes ρ¼mtot/V¼Etot/(c
2V),

and so the pressure becomes P¼Etot< v2>/(3c2V). Setting< v2>¼ c2, P¼Etot/3V,
or P¼U/3 as advertised. In the case of a “gas” of uranium nuclei of standard density

of that metal, radiation pressure dominates for per-particle energies greater than about

2 keV (see Exercise 2.14)

How does a gas of photons arise to give a radiation pressure in an exploding bomb

core? Fission fragments are bare nuclei and so are highly electrically charged. As they

decelerate, they naturally emit energy in the form of photons of wavelengths across

the electromagnetic spectrum. Much of the energy released in a nuclear explosions in

the form of gamma-rays and x-rays which ionize the surrounding air.

For simplicity, we model the bomb core as an expanding sphere of radius r(t)
with every atom in it moving radially outwards at speed v. Do not confuse this

velocity with the average neutron speed vneut, which enters into τ. If the sphere is of
density ρ(t) and total mass M, its total kinetic energy will be
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Kcore ¼ 1

2
Mv2 ¼ 2π

3

� �
ρv2r3: ð2:60Þ

Now invoke the work-energy theorem in its thermodynamic formulation

W¼P(t)dV, and equate the work done by the gas (or radiation) pressure in changing
the core volume by dV over time dt to the change in the core’s kinetic energy over that
time:

P tð Þ dV
dt

¼ dKcore

dt
: ð2:61Þ

To formulate this explicitly, write dKcore/dt¼ (2π/3)ρr3(2vdv/dt) from (2.60),

put dV/dt¼ 4πr2(dr/dt), and incorporate (2.59) to give

dv

dt
¼ 3Po

ρ r

� �
e α=τð Þ t: ð2:62Þ

To solve this for the radius of the core as a function of time we face the problem

of what to do about the fact that both ρ and r are functions of time. We deal with this

by means of an approximation.

Review the discussion regarding core expansion following (2.55) above. As the

core expands, its density when it has any general radius r will be ρ(r)¼Cρo(Ro/r)
3,

and criticality will hold until such time as ρr¼ ρoRo, or, on eliminating ρ,
r¼C1/2Ro. We can then define Δr, the range of radius over which criticality holds:

Δr ¼ rsecond
criticlity

� rinitial ¼ C1=2 � C1=3
	 


Ro, ð2:63Þ

a result we will use shortly.

Now, since ri¼C1/3Ro, (ρr)initial¼C1/3(ρoRo). For C¼ 2 (for example), this

gives (ρr)initial¼ 1.26(ρoRo). At second criticality we will have (ρr)crit¼ (ρoRo), so

(ρr)crit and (ρr)initial do not differ very greatly. In view of this, we assume that the

product ρr in (2.62) can be replaced with a mean value given by the average of the

initial and final values of ρr:

ρrh i ¼ 1

2
1þ C1=3

	 

ρoRo: ð2:64Þ

We can now integrate (2.62) from time t¼ 0 to some general time t to determine

the velocity of the expanding core at that time:

v tð Þ ¼ 3Po

ρ rh i
� �ðt

0

e α=τð Þ tdt ¼ 3Po τ

ρ rh iα
� �

e α=τð Þ t, ð2:65Þ

where it has again been assumed that e(α/τ)t>> 1.
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The stage is now set to compute the amount of time that the core will take to

expand through the distance Δr of (2.63). Writing v¼ dr/dt and integrating (2.65)

from r¼ ri to ri+Δr for time t¼ 0 to tcriticality gives

tcrit � τ

α

	 

ln

Δrα2 ρ rh i
3Poτ2

� �
¼ τ

α

	 

ln

Δrα3 ρ rh i
3γ τ2NoEf

� �
, ð2:66Þ

again assuming e(α/τ)t>> 1 and using Po¼ γ NoEf /α. Notice that we cannot deter-
mine tcrit without knowing the initial neutron density No. However, since tcrit
depends logarithmically on No, the result is not terribly sensitive to the choice

made for that number; presumably the minimum sensible value is given by assum-

ing one initial neutron.

The energy yield Y is defined to be the energy released to time tcrit. From (2.58)

and (2.66), this evaluates as

Y ¼ EfNo V

α

� �
exp α=τð Þ tcrit½ � ¼ Δrα2 ρ rh iV

3γ τ2
¼ Δrα2 ρ rh iMcore

3γ τ2ρ
: ð2:67Þ

Efficiency is defined as the yield as a fraction of the energy which would be

liberated if all of the nuclei in the core fissioned:

Efficiency ¼ Y

Ef nV
¼ Δrα2 ρ rh i

3γ nτ2Ef
: ð2:68Þ

Note that the yield and efficiency do not depend on the initial neutron density.
Now recall the earlier comments regarding how assuming constant values for α

and τ will lead to overestimating the yield; this should be clear by examining (2.68).

This tendency to overestimate will be somewhat offset by the fact that the core

density ρ will drop as the core expands, so if we assume that ρ remains constant at

its initial value during the expansion we would tend to underestimate the efficiency

if α and τ did in fact remain constant. However, the efficiency depends on the

squares of if α and τ and only on the first power of ρ, so the effects of changing α
and τ will dominate over that of the changing density.

To help determine what value of γ to use, we can compute the total energy

liberated to time tcrit as in (2.66), and then compute the average energy per particle

by dividing by the number of nuclei in the core, nV. The result is

energy per nucleus
at time tcrit

� �
¼ efficiencyð ÞEf : ð2:69Þ

Even if the efficiency is very low, say 0.1 %, then for Ef¼ 180 MeV the energy

per nucleus would be 180 keV, much higher than the ~2 keV per-particle energy

where radiation pressure dominates over gas pressure. It would thus seem reason-

able to take γ¼ 1/3 in most cases, although γ¼ 2/3 would be more appropriate early

in the explosion process before much energy has been liberated.
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Further, it can be shown by substituting (2.66) into (2.59) and (2.65) that the core

velocity and pressure at the time of second criticality are given by

v tcritð Þ ¼ αΔr
τ

, ð2:70Þ

and

P tcritð Þ ¼ α2Δr ρrh i
3τ2

: ð2:71Þ

Curiously, this pressure does not depend on the value of γ.
Numbers for uranium and plutonium cores of C¼ 1.5 bare threshold critical

masses appear in Table 2.2. Secondary neutrons are assumed to have E¼ 2 MeV,

and it is assumed that the initial number of neutrons is one.

The timescales and pressures involved in the detonation process are extreme.

Criticality shuts down after only 1–2 μs; a pressure of 1015 Pa is equivalent to about
10 billion atmospheres. Even though tcrit/tfiss ~ 0.9, the efficiencies are low: small

changes in an exponential argument lead to large changes in the results. In the case

of 235U, changing the initial number of neutrons to 1,000 changes the fission and

criticality timescales by only about 10 %, down to 1.47 and 1.34 μs, respectively.
Also, the comment following (2.56) that e(α/τ)t can be assumed to be much greater

than unity for the timescale of interest can now be appreciated from the fact that

(α/τ)tcrit ~ 50: e
50 ~ 1021.

Spreadsheet CriticalityAnalytic.xls carries out these efficiency and yield cal-

culations for an untamped core. In addition to the parameters already entered for the

calculations of the preceding two sections, the user need only additionally specify

an initial number of neutrons, a value for γ, and the mass of the core. The “Goal

Seek” function is then run a third time, to solve (2.30) and (2.31) for the value of α.

Table 2.2 Criticality and efficiency parameters for C¼ 1.5, Ef¼ 180 MeV, γ¼ 1/3

Quantity Unit Physical meaning 235U 239Pu

rinitial cm Initial core radius 9.58 7.26

n 1022 cm�3 Nuclear number density 4.794 3.930

α – Criticality parameter α 0.307 0.376

RO cm Threshold critical radius 8.37 6.345

Δr cm Expansion distance to crit shutdown 0.67 0.51

Efficiency % Efficiency 1.03 1.29

P(tcrit) 1015 Pa Pressure at crit shutdown 4.73 4.87

Yield kt Explosive yield 12.4 5.6

tfiss μs Time to fission all nuclei 1.67 1.12

tcrit μs Time to crit shutdown 1.54 1.04

No neutron/m3 Initial neutron density 271.8 622.9

Initial number of neutrons¼ 1

Secondary neutron energy¼ 2 MeV
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The spreadsheet then computes and displays quantities such as the expansion

distance to second criticality, the fission and criticality timescales, the pressure

within and velocity of the core at second criticality, and the efficiency and yield.

When applied to a bare 64 kg 235U core (C¼ 1.39), CriticalityAnalytic.xls

indicates that the yield will be about 6.3 kt; Eq. (2.63) indicates the core-expansion

distance to second criticality is Δr¼ 0.53 cm. This yield figure is not directly

comparable to the true ~13 kt yield of Little Boy, however, as that device was

tamped; a more realistic simulation of Little Boy that incorporates a tamper is

discussed in the next section.

How drastically does this analysis tend to overestimate efficiency? In Sect. 2.5 a

program is described which carries out a time-dependent simulation of a tamped

core. Applying this program to a 235U core of mass 68.8 kg (C¼ 1.5, exactly) with

no tamper gives a predicted yield of only about 0.29 kt, about 1/40 of the analytical

result of 12.4 kt! The reason for this drastic discrepancy is explored further at the

end of Sect. 2.5. In the meantime, there is a moral here: Beware of the danger of

blindly applying an impressive-looking formula.

It is important to emphasize that the above calculations cannot be applied to a

tamped core; that is, one cannot simply solve (2.47) and (2.48) for a core of some

specified mass and tamper of some outer radius and use the value of α so obtained in

the time and efficiency expressions established above. The reason for this has to do

with the distance Δr through which the core expands before second criticality,

Eq. (2.63) above. This expression derived from the fact that the criticality equation

for the untamped case involves the density and radius of the core in the combination

ρr; in the tamped case the criticality condition admits no such combination of

parameters, so the subsequent calculations of criticality timescale and efficiency do

not transform unaltered to using a tamped core. Efficiency in the case of a tamped

core can only be established numerically.

To close this section, we compare the efficiency formula derived here to what

was probably the first recorded formulation of the energy expected to be liberated

by a nuclear weapon. This appeared in a document which has come to be known as

the Frisch-Peierls Memorandum. This remarkable 7-page manuscript was prepared

by Otto Frisch and Rudolf Peierls in March, 1940, to alert British government and

military officials to the possibly of creating extremely powerful bombs based on

utilizing a chain reaction in uranium; the title of their memo was “On the construc-

tion of a “super-bomb”, based on a nuclear chain reaction in uranium.” Their work

was remarkably prescient: They discuss how a chain reaction could not happen in

ordinary uranium, raised the possibility of bringing together two subcritical pieces

of pure 235U to create a supercritical mass, discussed how neutrons in cosmic

radiation could be used to trigger the device, described how 235U could be isolated

by diffusion, and remarked that such a device would create significant radioactive

fallout. Copies of the memorandum can be found in many online sites; a printed

copy appears in Serber (1992). Readers are warned, however, that many reprintings

contain various typographical errors. A detailed analysis of the physics involved in

the memorandum is presented by Bernstein (2011), who also describes the errors.
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The only mathematical formula appearing in the Frisch-Peierls memorandum is

one for the expected yield of an untamped weapon. In terms of the notation of this

book, this appears as

Y ¼ 0:2Mcore Rcore=τð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcore=Ro

p
� 1

	 

: ð2:72Þ

This looks almost completely unlike the present yield formula, (2.67). However,

the latter can be transformed into (2.72) in a few steps via some sensible approx-

imations. First, write the core volume or mass in (2.67) in terms of the core radius;

also, set γ¼ 1/3. These manipulations give

Y ¼ 4πR3
core α

2Δr ρ rh i
3τ2

: ð2:73Þ

Now consider the product Δrhρri. From (2.63) and (2.64),

Δr ρrh i ¼ 1

2
C1=2 � C1=3

	 

1þ C1=3

	 

ρoR

2
o: ð2:74Þ

In the second bracket in this expression, make the approximation that C1/3 ~ 1 to

give (1 +C1/3) ~ 2. This is reasonable as that bracket contains the sum of two similar

quantities. We do not make this approximation within the first bracket, however, as

it contains the difference of two similar quantities. In this case, extract a factor of

C1/3 from within the bracket and write it as C1/3¼Rcore/Ro. The factor of C1/6

remaining within the first bracket can then be written as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcore=Ro

p
. Thus, (2.74)

becomes

Δr ρrh i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcore=Ro

p
� 1

	 

ρoRoRcore: ð2:75Þ

On substituting this into (2.73), we can write 4πR3
coreρo/3¼Mcore, and the yield

becomes

Y � α2Mcore RoRcore=τ
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcore=Ro

p
� 1

	 

: ð2:76Þ

Finally, it is not unreasonable to make the approximation Rcore Ro ~R
2
core, and so

arrive at

Y � α2Mcore Rcore=τð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcore=Ro

p
� 1

	 

, ð2:77Þ

precisely the form of the Frisch-Peierls formula. They evidently took α2¼ 0.2. On

considering that we just found αinitial¼ 0.307 for 1.5 critical masses of 235U, their

estimate was reasonable. Frisch and Peierls must have worked out the relevant
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diffusion and criticality theory “in the background” before composing their mem-

orandum. Indeed, Peierls was a master theoretical physicist very familiar with

diffusion problems; in Sect. 2.6 we will examine a formulation of criticality that

he had published in the fall of 1939, several months before he teamed up with Frisch

to produce their now-famous memorandum.

2.5 Estimating Bomb Efficiency: Numerical

In this section, a numerical approach to estimating weapon efficiency and yield is

developed. The essential physics necessary for this development was established in

the preceding three sections; what is new here is how that physics is used. The

analysis presented in this section is adopted from Reed (2010).

The approach taken here is one of standard numerical integration: The parameters

of a bomb core and tamper are specified, along with a timestep Δt. At each timestep

the energy released from the core is computed, from which the acceleration of the

core at that moment can be determined. The velocity and radius of the core can then

be tracked until such time as second criticality occurs, after which the rate of fissions

will drop drastically and very little additional energy will be liberated.

The integration process involves eight steps:

(i) Fundamental parameters are specified: The mass of the core, its atomic

weight, initial density, and nuclear characteristics σf, σel, and v. Similarly,

the atomic weight, density, initial outer radius (and hence mass) and elastic-

scattering cross-section of the tamper are specified. The energy release per

fission Ef and gas/radiation pressure constant γ are set. A timestep Δt also
needs to be chosen; this is discussed below. The initial number of neutrons

also has to be specified as this value enters into the fission rate and energy

release at each timestep in steps (iv) and (v) below.

(ii) Elapsed time, the speed of the core, and the total energy released are initialized

to zero; the core radius is initialized according as its mass and initial density.

(iii) The exponential neutron-density growth parameter α is determined by numer-

ical solution of (2.47) and (2.48).

(iv) The rate of fissions at a given time is computed from (2.55):

fissions=sec ¼ NoV

τ

� �
e α=τð Þ t: ð2:78Þ

(v) The amount of energy released during time Δt is computed from (2.57):

ΔE ¼ NoVEf

τ

� �
e α=τð Þ t Δtð Þ: ð2:79Þ

2.5 Estimating Bomb Efficiency: Numerical 81



(vi) The total energy released to time t is updated, E(t)¼E(t) +ΔE, and, from the

discussion following (2.58), the pressure at time t is given by

Pcore tð Þ ¼ γE tð Þ
Vcore tð Þ : ð2:80Þ

I use the core volume in (2.80) on the rationale that the fission products which

cause the gas/radiation pressure will likely largely remain within the core.

(vii) A key step is computing the change in the speed of the core over the elapsed

time Δt due to the energy released during that time. In the discussion leading

up to (2.61), this was approached by invoking the work-energy theorem:

P tð Þ dVcore

dt
¼ dKcore

dt
: ð2:81Þ

To improve the veracity of the simulation, it is desirable to account, at least in

some approximate way, for the retarding effect of the tamper on the expansion of

the core. To do this, I treat the dK/dt term in (2.81) as involving the speed of the core

but with the mass as the sum of the core and tamper masses. The dV/dt term is taken

to apply to the core only. I treat the tamper as being of constant density, which is

effected by recomputing its outer radius at each step; the inner edge of the tamper is

assumed to remain snug against the expanding core. With r as the radius and v the
speed of the core, we have

γE tð Þ
Vcore tð Þ

dVcore

dt

0@ 1A ¼ dKtotal

dt

) γE tð Þ
Vcore tð Þ 4π r2

dr

dt

0@ 1A ¼ 1

2
Mtotal 2v

dv

dt

0@ 1A,

from which we can compute the change in expansion speed of the core over time Δt
as

Δv ¼ 4π r2γE tð Þ
VcoreMtotal

� �
Δtð Þ: ð2:82Þ

With this, the expansion speed of the core and its outer radius are updated

according as v(t)¼ v(t) +Δv and r(t)¼ r(t) + v(t)Δt. The outer radius of the tamper

is then adjusted on the assumption that its density and mass remain constant.

(viii) Increment time according as t¼ t+Δt and return to step (iii) to begin the next
timestep; continue until second criticality is reached when α¼ 0. At the

beginning of each timestep, update the core density to reflect its increased
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radius; this will concomitantly demand updating the nuclear number density

of the core, its fission and transport mean-free paths, and the neutron travel-

time between fissions, Eqs. (2.15), (2.16), and (2.21).

The assumption that the density of the tamper remains constant is probably not

realistic. Nuclear engineers speak of the “snowplow” effect, where high-density

tamper material piles up just ahead of the expanding core/tamper interface. But the

point here is an order-of-magnitude pedagogical model.

This author has developed a FORTRAN program for carrying out this simulation;

the code and an accompanying user manual are available at the companion website.

What of the timestep Δt ? In setting this, it is helpful to appreciate that it is not

necessary to start a simulation at t¼ 0. From (2.79), little energy will be released

while (α/τ)t is small. An example using U-235 will help make this clear. With

τ ~ 8.64� 10�9 s (Table 2.2). and, say, α ~ 0.5, then (α/τ) ~ 5.8� 107 s�1. Starting a

simulation at t¼ 10�8 s should thus sacrifice no accuracy. However, the choice of a

timestep Δt is a sensitive issue as the rate of energy release grows exponentially at

later times. For a function of the form y¼ exp[(α/τ)t], the fractional change in

y over a time Δt will be dy/y¼ (α/τ) Δt; to have dy/y be small suggests adopting a

value of Δt no larger than the inverse of (α/τ), which is about 1.7� 10�8 s.

Consequently, all of the results described in what follows utilized a starting time

of 10�8 s and Δt¼ 5� 10�10 s; a run to a final time of 1.1 microseconds would then

involve nearly 2,200 timesteps. With this value of Δt, dy/y ~ 0.029.

2.5.1 A Simulation of the Hiroshima Little Boy Bomb

Using the parameters for the Little Boy bomb given in Sect. 2.3 (64 kg core of radius

9.35 cm plus a 311 kg tungsten-carbide tamper of outer radius 18 cm), the following

results were obtained with the author’s program. The initial number of neutrons was

set to be one.

Figure 2.10 shows the run of α(r) for this situation: it behaves linearly over the

expansion of the core to second criticality at a radius of 12.29 cm. This represents

an expansion distance of Δr¼ 2.94 cm from the initial core radius of 9.35 cm. As

remarked earlier, for an untamped 64 kg core, (2.63) predicts a value for Δr of only
0.53 cm; a tamper significantly affects the expansion distance over which criticality

holds.

Figures 2.11 and 2.12 show α, the core radius, the integrated energy release, and
the fission rate and pressure as functions of time. While α decreases with increasing

radius, the initial increase in radius is so slow that α remains close to its initial value

until just before second criticality. The brevity and violence of the detonation are

astonishing. The vast majority of the energy is liberated within an interval of about

0.1 μs. The pressure peaks at about 4.2� 1015 Pa, or about 40 billion atmospheres,

equivalent to about one-fifth of that at the center of the Sun. The fission rate peaks at

about 3.5� 1031 per second. Second criticality occurs at t ~ 1.07 μs, at which time
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the core expansion velocity is about 270 km/s. These graphs dramatically illustrate

what Robert Serber wrote in The Los Alamos Primer: “Since only the last few

generations will release enough energy to produce much expansion, it is just

possible for the reaction to occur to an interesting extent before it is stopped by

the spreading of the active material.”
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The predicted yield of Little Boy from this simulation is 11.8 kt. Officially

published yield estimates, are, however, quite variable. A 1952 Los Alamos report

on the Hiroshima bombing, http://www.fas.org/sgp/othergov/doe/lanl/la-1398.pdf,

gives a yield of 18.5� 5 kt. A later analysis published by Penney et al. (1970)

reduced this estimate to ~12-kt, close to the present result. At a fission yield of

17.59 kt per kg of pure U-235 (180 MeV/fission), this represents an efficiency of

just over 1 % for the 64-kg core. While some of this agreement must be fortuitous in

view of the approximations incorporated into the present model, it is encouraging to

see that it gives results of the correct order of magnitude. If the number of initial

number of neutrons is increased to 100, the yield rises to 12.8 kt; 200 neutrons

yields 13.0 kt.

Figure 2.13 shows how the simulated yield of a 64-kg core varies as a function of

tamper mass; the points are the results of simulations for tampers of outer radii of

12, 13, . . . 17, 17.5, 18, 18.5, and 19 cm. In the latter case the mass of the tamper

would be about 375 kg, or just over 800 lb. A linear fit to Fig. 2.13 shows that the

effect of increasing tamper can be expressed approximately as

d Yieldð Þ
dmtamp

� 0:039
kt

kg
: ð2:83Þ

Of course, we would expect this curve to eventually level off to the theoretical

maximum yield as the tamper mass becomes very great.

It was remarked in Sect. 2.4 that a simulation of an untamped U-235 core of mass

68.8 kg (C¼ 1.5 bare critical masses) results in a yield of only 0.287 kt, about 1/40 that

predicted by Eq. (2.67). Why are these predictions so wildly discrepant? The culprit

proves to be that in deriving (2.67), the criticality factor α was assumed to be constant.

Look back to Fig. 2.11, which shows that once α begins to decline appreciably, very

little additional yield occurs. In assuming that α remains constant until the core reaches

second criticality, (2.67) consequently seriously overestimates the yield. Some numbers

for the 68.8-kg simulation are instructive. The initial core radius in this case is

9.575 cm, and the initial value of α is 0.3062. The second-criticality radius is
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10.245 cm (Δr¼ 0.67 cm), but by the time that the radius has expanded to only

9.607 cm (an increase of only 0.336 %), fully 90 % of the final yield has already

been realized. By this point α has dropped by only about 4.5% from its initial value, but

the reaction has already begun shutting down (It is true that Fig. 2.11 is a tamped-core

simulation, but the behavior of α is very similar for an untamped case).

Can (2.67) be modified to account for this problem? Here is a straightforward

approach: When integrating (2.65) to determine the time to second criticality, replace

the upper limit of integration ri+Δrwith ri(1 + f ), where f is the fractional increase in
the core radius corresponding to that time at which you think the reaction begins

shutting down; for example, for the above numbers, f¼ 0.0034 corresponds to 90 %

energy release. Carrying out the integral shows that yield emerges as (2.67) except

that the factor of Δr in the numerator is replaced with fri. For the present case of

ri¼ 9.575 cm and f¼ 0.00336, this modification predicts a yield of 0.597 kt, just

twice the simulation result. There is obviously no preferred value of f to use, but this
artifice removes much of the discrepancy in a straightforward way.

To close this section, a dose of perspective: Do not be too upset that Eq. (2.67) is
not very accurate. It pertians to an untamped core, and any serious bomb-maker will

incorporate a tamper. Ultimately, numerical analyses are what tell the tale of

efficiency and yield. Also, treat this discrepancy as a valuable lesson. Analytic

results have a compelling attractiveness and are powerful for getting a sense of how

something depends on the parameters involved, but always be prepared to question

the validity of underlying assumptions.

2.6 Another Look at Untamped Criticality: Just One

Number

In Sect. 2.2, we saw that the criticality condition for threshold criticality (α¼ 0) for

an untamped core can be expressed as [Eqs. (2.30) and (2.31)]

x cot xð Þ þ εx� 1 ¼ 0, ð2:84Þ

with

ε ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λf

λt v� 1ð Þ

s
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3σt

σf v� 1ð Þ

s
: ð2:85Þ

Once the nuclear parameters σf, σel, and v are set, (2.84) is solved numerically for

x, from which the critical radius R follows from (2.26):

R ¼ d x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λf λt
3 v� 1ð Þ

s
x ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3σf σt v� 1ð Þ

s
x: ð2:86Þ

The critical radius is fundamentally set by σf, σel, v, and n; our concern here will
be with the first three of these variables.
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Since these various quantities will be different for different fissile isotopes, it

would appear that there is no general statement one can make regarding critical radii.

However, σf, σel, and v can be combined into one convenient dimensionless variable

that dictates the critical radius in any particular case—the “just one number” of the

title of this section.

As formulated, (2.84) and (2.85) are convenient in that both x and ε are

dimensionless, but they are awkward in that ε is not bounded: If v is very large, ε
will approach zero, but as v! 1, ε diverges to infinity. It would be handy to have

some combination of σf, σel, and v that is finitely bounded. Such a combination was

developed by Peierls (1939) in a paper which was the first publication in English to

explore what he termed “criticality conditions in neutron multiplication.” He

defined a dimensionless quantity ξ given by

ξ2 ¼ σf v� 1ð Þ
σel þ vσf

: ð2:87Þ

For 1� v � 1, 0� ξ� 1. Note that it is the elastic-scattering cross-section σel
that appears in the denominator of this definition, not the transport cross-section

σt¼ σel + σf .
If (v –1) is eliminated between (2.85) and (2.87), ε and ξ prove to be related as

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

1

ξ2
� 1

� �s
: ð2:88Þ

Similarly, if (v –1) is extracted from the definition of d in (2.86) and substituted

into (2.87), then one finds

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

ξ2
� 1

� �s
λt: ð2:89Þ

A general formulation of critical radii can now be made as follows: For a range

of values of ξ between 0 and 1, (2.84) and (2.88) can be solved for x. For each
solution, (2.86) and (2.89) show that the ratio of R to λt can be expressed purely as a
function of ξ:

R

λt
¼ x ξð Þd ξð Þ ¼ x ξð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

ξ2
� 1

� �s
: ð2:90Þ

In other words, a graph of x(ξ) d(ξ)	R/λt vs. ξ can be used to immediately

indicate the ratio of the untamped threshold critical radius to the transport mean free

path for any combination of σf, σel, and v values. The advantage of this approach is

that the graph need only be constructed once.

Figure 2.14 shows R/λt as a function of ξ. For 235U and 239Pu, ξ ~ 0.5084 and

0.6221, and R/λt ~ 2.33 and 1.54, respectively. It is intuitively sensible that for small

values of ξ (that is, for v! 1), the critical radius will be large, and vice-versa.
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An important aspect of Peierls’ analysis is that it provides an independent check

on the diffusion method of analyzing critical mass that has been used throughout

this chapter. Peierls showed that his analysis led to approximate analytic solutions

for the critical radius R in two limiting cases: ξ! 0 and ξ! 1. These are given by

1

βR
� 0:552ξþ 0:216ξ2 ξ ! 0ð Þ

0:78� 1:02 1� ξð Þ ξ ! 1ð Þ,
�

ð2:91Þ

where

β ¼ n σel þ vσf
� �

: ð2:92Þ

β is identical to the denominator of (2.87) but for a factor of the nuclear number

density n.
βR can be expressed in terms of x and ξ through the following manipulations.

First, from (2.88) and (2.89) we can write d¼ 2λtε/3. With this result we can write

x¼R/d as x¼ 3R/(2 λtε). By eliminating σf (v-1) between (2.85) and (2.87), we can
show that λt¼ 3/(4β ξ 2ε 2). Substituting this result into the expression for x then

shows that

1

βR
¼ 2ξ2ε

x
: ð2:93Þ

We can compare the results of Peierls’ approach to those of diffusion analyses in

much the same way as Fig. (2.14) was constructed: For a range of values of ξ
between zero and one, solve (2.84) and (2.88) for x, which can be translated to

1/(βR) through (2.93) and then compared to the predictions of (2.91). Figure 2.15

shows the results of such an analysis for 0.1� ξ� 0.9. It is reassuring to see that the
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results of the diffusion analysis do not differ markedly from those of Peierls, This is

particularly true for small values of ξ, where the core will be large and we expect

diffusion theory to be accurate; curiously, the diffusion approach overestimates the
critical radius for ξ! 1. For 235U, (2.91) predicts critical radii of 7.93 cm (ξ! 0)

and 9.57 cm (ξ! 1). These radii correspond to masses of 39–69 kg, which bracket

the diffusion result of 46 kg. For 239Pu the Peierls-estimates masses evaluate as 13.4

and 17.0 kg, which again bracket the diffusion result of 16.7 kg.

2.7 Critical Mass of a Cylindrical Core (Optional)

In Sect. 2.4 it was pointed out that the core of the Little Boy bomb was cylindrical in

shape. It is consequently natural to wonder how that shape affects the calculation of

critical mass presented in Sect. 2.2, which was done for a spherical core.

It is difficult to analyze the situation for a cylindrical core because the boundary

condition (2.29) that was used for the neutron diffusion equation in the spherical case,

N RCð Þ ¼ � 2λt
3

∂N
∂r

� �
RC

, ð2:94Þ

is not easily generalized to the cylindrical case. However, if we are willing to admit

a cruder boundary condition, much headway can be made with the cylindrical case.

This is done in this section. This derivation can be considered optional as we

consider only spherical cores in any subsequent section where the core geometry

is relevant, such as in the analysis of predetonation in Chap. 4.

The cruder boundary condition is that the neutron density N is assumed to drop

to zero at the surface for a cylinder of critical size. This situation is considered for a

sphere and a cube in Exercises 2.11 and 2.4, respectively, where it is found that the

critical volumes are
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Vsphere ¼ 4

3
π4

� �
d3 ¼ 129:9d3 ð2:95Þ

and

Vcube ¼ 33=2π3
	 


d3 ¼ 161:1d3, ð2:96Þ

where d is the characteristic length (2.25), which for threshold criticality (α¼ 0) has the

form

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λf λt

3 v� 1ð Þ

s
: ð2:97Þ

For 235U, d is about 3.5 cm.

Before beginning the formal solution, a few remarks on the diffusion equation in

cylindrical coordinates are appropriate. Reactor engineers have been dealing with

neutron fluxes in cylindrical geometries for decades, so the mathematics here,

which involves so-called Bessel functions, is not new. Bessel functions show up

in a number of areas of mathematical physics such as quantum mechanics (the

infinite cylindrical quantum well), acoustics (vibrations of drumheads), optics

(diffraction through circular apertures) and electromagnetism (waveguides). Their

appearance in criticality calculations illustrates connections between very different

areas of physics.

We begin with the general neutron diffusion equation of Appendix G:

∂N
∂t

¼ vneut
λf

v� 1ð ÞN þ λtvneut
3

∇2N
� �

: ð2:98Þ

The goal here is to apply this to the neutron population within a cylinder of

radius R and length L as illustrated in Fig. 2.16. The bottom of the cylinder is

imagined to by lying in the xy plane, with its center at (x, y)¼ (0,0).

The separation of the diffusion equation into time and space-dependent parts

proceeds as in Sect. 2.2; the temporal dependence is not of interest to us here as we

seek to determine the threshold-critical condition. The spatial part of the neutron

density N will be a function of the cylindrical coordinates (ρ, ϕ, z), and is assumed

to be separable as

Nρϕz ρ;ϕ; zð Þ ¼ Nρ ρð ÞNϕ ϕð ÞNz zð Þ: ð2:99Þ
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The Laplacian operator in cylindrical coordinates is

∇2Nρϕz ¼ 1

ρ

∂
∂ρ

ρ
∂Nρϕz

∂ρ

� �
þ 1

ρ2
∂2

Nρϕz

∂ϕ2
þ ∂2

Nρϕz

∂z2
: ð2:100Þ

On substituting (2.99) and (2.100) into (2.98) and dividing through by Nρϕz, the

spatial part of the diffusion equation appears, in analogy to (2.24), as

1

d2
þ 1

Nρρ

∂
∂ρ

ρ
∂Nρ

∂ρ

� �
þ 1

ρ2Nϕ

∂2
Nϕ

∂ϕ2
þ 1

Nz

∂2
Nz

∂z2
¼ 0: ð2:101Þ

The solution of (2.101) proceeds as does that of any separated differential

equation. First, take the z-term to the right side of the equal sign:

1

d2
þ 1

Nρρ

∂
∂ρ

ρ
∂Nρ

∂ρ

� �
þ 1

ρ2Nϕ

∂2
Nϕ

∂ϕ2
¼ � 1

Nz

∂2
Nz

∂z2
: ð2:102Þ

Since z is independent of ρ and ϕ, (2.102) can be true only if both sides are equal
to a constant. This separation constant is traditionally defined to be + k2z , that is,

1

Nz

∂2
Nz

∂z2
¼ �k2z : ð2:103Þ

The solution of this differential equation is

Nz zð Þ ¼ Aeιkzz þ Be�ιkzz, ð2:104Þ

a result to which we will return presently.

Return to the left side of (2.102) and equate it to + k2z . Then multiply through by

ρ2 to clear that factor from the denominator of the ϕ term, move the ϕ term to the
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Fig. 2.16 Cylindrical core

of radius R and height L
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right side, and move the resulting k2zρ
2 term to the left side to effect another level of

separation:

ρ

Nρ

∂
∂ρ

ρ
∂Nρ

∂ρ

� �
þ 1

d2
� k2z

� �
ρ2 ¼ � 1

Nϕ

∂2
Nϕ

∂ϕ2
: ð2:105Þ

As with (2.102), (2.105) can only be true if both sides are equal to a constant,

which can be written as + k2ϕ. This renders the ϕ-dependence as

1

Nϕ

∂2
Nϕ

∂ϕ2
¼ �k2ϕ, ð2:106Þ

which has the solution

Nϕ ϕð Þ ¼ Ceιkϕϕ þ De�ιkϕϕ: ð2:107Þ

Now return to the left side of (2.105). Equate it to k2ϕ and expand the derivative.

This gives the radial dependence of the neutron density as

ρ2
∂2

Nρ

∂ρ2
þ ρ

∂Nρ

∂ρ

� �
þ 1

d2
� k2z

�
ρ2 � k2ϕ

� �
Nρ ¼ 0:

�
ð2:108Þ

If we now define

κ2 ¼ 1

d2
� k2z

��
ð2:109Þ

and establish the dimensionless variable

x ¼ κρ, ð2:110Þ

(2.108) becomes

x2
∂2

Nx

∂x2
þ x

∂Nx

∂x

� �
þ x2 � k2ϕ

	 

Nx ¼ 0: ð2:111Þ

(Note that x here is not the Cartesian-coordinate x, it is just a variable). Equation
(2.111) is Bessel’s equation of argument x and order kϕ. Solutions to this physically
important differential equation can be found in any good textbook on mathematical

physics. However, we will not need to examine the detailed solutions; our interest is

in satisfying the boundary condition that at the surface of the cylinder, N(edge)¼ 0.

Consider first the z-direction. In (2.104), we must demand Nz(0)¼ 0 and Nz(L )¼
0. The first of these demands that A+B¼ 0, or B¼�A; this gives
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Nz zð Þ ¼ A eιkzz � e�ιkzz
� �

, ð2:112Þ

which is equivalent to

Nz zð Þ ¼ 2ιA sin kzzð Þ: ð2:113Þ

Now consider the condition Nz(L )¼ 0 applied to (2.113). This requires

sin(kzL )¼ 0, which can only be satisfied if kzL is equal to an integer times π:

sin kzLð Þ ¼ 0 ) kz ¼ nπ

L
: ð2:114Þ

Now consider the ϕ-direction, where we have (2.107):

Nϕ ϕð Þ ¼ Ceιkϕϕ þ De�ιkϕϕ: ð2:115Þ

Since there is no “edge” to the cylinder in the ϕ-direction it is not immediately

obvious what we should do with this expression. But the separation constant kϕ does
appear in the radial Eq. (2.111), so we do need to pin it down somehow.

The condition to be applied to Nϕ arises from the fact that ϕ is a so-called cyclic
coordinate: If the value of ϕ is changed by adding any integral multiple of 2π
radians, then one has returned to the same direction from whence one began. We

can express this by demanding that

Nϕ ϕð Þ ¼ Nϕ ϕþ 2πð Þ, ð2:116Þ

or, more explicitly,

Ceιkϕϕ þ De�ιkϕϕ ¼ Ceιkϕ ϕþ2πð Þ þ De�ιkϕ ϕþ2πð Þ: ð2:117Þ

This can be rewritten as

Ceιkϕϕ þ De�ιkϕϕ ¼ Ceιkϕϕ e2πιkϕ
� �þ De�ιkϕϕ e�2πιkϕ

� �
: ð2:118Þ

This can only be satisfied if e�2π ιkϕ ¼ 1, that is, if

cos 2πkϕ
� �� ι sin 2πkϕ

� � ¼ 1: ð2:119Þ

This expression will only be satisfied if

kϕ ¼ 0, 1, 2, 3, . . . : ð2:120Þ

That ϕ is cyclic has led to the restriction that the order of our Bessel equation
must be an integer.
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With kϕ now established (at least to some extent), we can begin to get to the issue

of the length and radius of a threshold-critical core. Return to the radial Eq. (2.111):

x2
∂2

Nx

∂x2
þ x

∂Nx

∂x

� �
þ x2 � k2ϕ

	 

Nx ¼ 0: ð2:121Þ

The length L of the core appears explicitly in kz, which is incorporated into this

expression through κ and x.
To determine when criticality is achieved, we need to know what value(s) of

x will just render (2.121) satisfied for a given value of the order kϕ; this will dictate
the critical radius ρ through (2.110). For a given choice of kϕ, there prove to be an

infinitude of values of x that make this so; these values are known as the zeros of
Bessel’s equation for order kϕ and are extensively tabulated in many sources. In

general, the values of the zeros increase monotonically within a given order, and the

value of the m’th zero (m¼ 1, 2, 3, . . .) also increases monotonically as a function

of order number. The m’th zero for some order k is commonly designated as Jkm;
order numbers start at k¼ 0. In general, then, we will have criticality when x is

equal to some zero Jkm, or, on combining (2.109), (2.110), and (2.114), when

1

d2
� n2π2

L2

� �1=2

R ¼ Jkm, ð2:122Þ

where the radius ρ has been written as R. The volume of the core is πR2L. We can

solve (2.122) for R and express the volume entirely in terms of L:

Vcrit ¼ πJ2kmd
2L3

L2 � n2π2d2
� � : ð2:123Þ

The lowest possible critical volume will obtain for the lowest possible value of

Jkm and the lowest possible value for n; we can choose these independently of each

other as they arose from different separation constants. As for n, the lowest

acceptable value is n¼ 1; n¼ 0 would not do as it would render Nz(z)¼ 0 every-
where throughout the core, not just at its edge [see (2.113) and (2.114)]. The lowest-
valued zero Jkm is J01¼ 2.40483, that is, the first zero for the Bessel equation of

order zero. This corresponds to kϕ¼ 0, which is physically acceptable as it renders

Nϕ equal to a constant [see (2.115)]. The minimum critical volume then becomes

Vcrit ¼ πJ201 d
2L3

L2 � π2d2
� � : ð2:124Þ

An interesting physical consequence here is that there is a minimum length

required for the denominator of (2.124) to be positively-valued:
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L > πd: ð2:125Þ

This result is intuitively appealing on the rationale that if the core is not long

enough, too many neutrons will escape and criticality cannot be obtained. For 235U,

this critical length evaluates as about 11.04 cm.

The least possible critical volume is found by determining the value of L that

minimizes (2.124). This proves to be

∂Vcrit

∂L
¼ 0 ) L ¼

ffiffiffi
3

p
πd, ð2:126Þ

which, when back-substituted into (2.124) gives

Vmin ¼ 33=2

2
π2J201

� �
d3 ¼ 148:3d3: ð2:127Þ

For 235U, this corresponds to a mass of about 121 kg. This result lies between

those quoted at the beginning of this section for a sphere and a cube. The ratios of

the critical volumes go as

Vsphere : Vcyl : Vcube ¼ 1 : 1:142 : 1:241: ð2:128Þ

The penalty for using a Little Boy-type core instead of a sphere is thus only about
a 14 % increase in mass.

Figure 2.17 shows the critical mass and cylinder radius corresponding to a given

choice of L in (2.122) and (2.124) for our usual parameters for 235U: (σf, σel, v, ρ)¼
(1.235 bn, 4.566 bn, 2.637, 18.71 gr/cm3). The minimum critical mass corresponds

to a length of about 19.2 cm and a radius of about 10.3 cm—a cylinder almost as

long as it is wide.
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Fig. 2.17 Computed 235U

critical mass (solid line, left
scale) and radius (dashed
line, right scale) as a
function of length for a

cylindrical core. Note that

these results hold only for

the simplified boundary

condition N(edge)¼ 0
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