Chapter 2
Critical Mass and Efficiency

Every gram of enriched uranium or synthesized plutonium produced in the Man-
hattan Project was obtained at great cost and with great difficulty, so estimating the
amount of fissile material needed to make a workable nuclear weapon—the
so-called critical mass—was a crucial issue for the developers of Little Boy and
Fat Man. Equally important was to estimate what efficiency one might expect for a
fission bomb. For various reasons, not all of the fissile material in a bomb core
undergoes fission during a nuclear explosion; if the expected efficiency were to
prove so low that one might just as well use a few conventional bombs to achieve
the same energy release, there would be no point in taking on the massive engi-
neering challenges involved in making nuclear weapons. In this chapter we inves-
tigate these issues.

The concept of critical mass involves two competing effects. As nuclei fission,
they emit secondary neutrons. A fundamental empirical law of nuclear physics,
derived in Sect. 2.1, shows that while some neutrons will cause other fissions, the
remainder will reach the surface of the mass and escape. If on average more than one
neutron is emitted per fission, however, we can afford to let some escape since only
one is required to initiate a subsequent fission. For a small sample of material the
escape probability is high; as the size of the sample increases, the escape probability
declines and at some point will reach a value such that the number of neutrons that
fail to escape will number enough to fission every nucleus in the mass—in theory, at
least. Thus, there is a minimum size (hence mass) of material for which every nucleus
will in principle be fissioned even while some neutrons escape.

The above description of critical mass should be regarded as a purely qualitative
one. Technically, the important issue is known as criticality. Criticality is said to
obtain when the number of free neutrons inside a bomb core is increasing with time.
A full understanding of criticality demands familiarity with time-dependent diffu-
sion theory. Application of diffusion theory to this problem requires understanding
a concept known as the mean free path (MFP) for neutron travel, so this is
developed in Sect. 2.1. Section 2.2 takes up a time-dependent diffusion theory
treatment of criticality. Section 2.3 addresses the effect of surrounding the fissile
core with a tamper. A tamper is a heavy metal casing which enhances weapon
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efficiency in two ways: By reflecting escaped neutrons back into the core and hence
giving them another chance at causing fissions, and by briefly retarding the violent
expansion of the core in order to give the chain reaction more time over which to
operate. Sections 2.4 and 2.5 respectively take up the issue of bomb efficiency
through analytic approximations and a numerical simulation. Section 2.6 presents
an alternate treatment of untamped criticality that has an interesting historical
connection, and Sect. 2.7 presents an approximate treatment of criticality for
cylindrical bomb cores.

For readers interested in further sources, an excellent account of the concept of
critical mass appears in Logan (1996); see also Bernstein (2002).

2.1 Neutron Mean Free Path

See Fig. 2.1. A thin slab of material of thickness s (ideally, one atomic layer) and
cross-sectional area X is bombarded by incoming neutrons at a rate R, neutrons/
(mzs).

Let the bulk density of the material be p gr/cm”. In nuclear reaction calculations,
however, density is usually expressed as a number density of nuclei in the material,
that is, as the number of nuclei per cubic meter. In terms of p this is given by

n=10° (”TNA) (2.1)

where N, is Avogadro’s number and A is the atomic weight of the material in grams
per mole; the factor of 10° arises from converting cm® to m>.

Assume that each nucleus presents a total reaction cross-section of o square
meters to the incoming neutrons. Cross-sections are usually measured in barns (bn),
where 1 bn=10">® m?, a value characteristic of the physical sizes of nuclei. The
first question we address is: “How many reactions will occur per second as a
consequence of the bombardment rate R,?” The volume of the slab is Xs, hence
the number of nuclei contained in it will be Xsn. If each nucleus presents an
effective cross-sectional area o to the incoming neutrons, then the total area
presented by all nuclei would be Xsno. The fraction of the surface area of the
slab that is available for reactions to occur is then (Xsno/X)=sno. The rate of
reactions R (reactions/s) can then sensibly be assumed to be the rate at which
incoming particles bombard the surface area of the slab times the fraction of the
surface area available for reactions:

(reactions per) . (incident neutron ) ( fraction of surface area )

second flux per second occupied by cross — section

or
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The probability P that an individual incident neutron precipitates a reaction is
then

reactions
per second
Piroger = =sno,
react . .
incident neutron flux
per second

(2.3)

the same value as the fraction of the surface area available for reactions.
For the present purposes, it is more useful to work with the probability that a
neutron will pass through the slab to escape out the back side:

Pescap() =1- Preact =1-sno. (24)

Now consider a block of material of macroscopic thickness x. As shown in
Fig. 2.2, we can imagine this to comprise a large number of thin slabs each of
thickness s placed back-to-back.

The number of slabs is x/s. If N, neutrons are incident on the left side of the
block, the number that would survive to emerge from the first thin slab would be
N,P, where P is the escape probability in (2.4). These neutrons are then incident on
the second slab, and the number that would emerge unscathed from that passage
would be (N,P)P =N,P>. These neutrons would then strike the third slab, and so
on. The number that survive passage through the entire block to escape from the
right side would be NP, or
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Define z = —sno. The number of neutrons that escape can then be written as
Nese :No(l +Z)7GHX/Z =N, |:(1 +Z)1/Zj|7 . (26)

Now, ideally, s is very small, which means that z — 0. The definition of the base

of the natural logarithms, e, is e = liI‘I(l) (1+ z)l/z, so we have

—Oonx
Nese = Noe s
or

N esc

o

P direct =e (2.7)
eacape

Equation (2.7) is the fundamental neutron escape probability law. In words, it
says that the probability that a bombarding neutron will pass through a slab of
material of thickness x depends exponentially on the product of x, the number
density of nuclei in the slab, and the reaction cross-section of the nuclei to incoming
neutrons. If =0, all of the incident particles will pass through unscathed. If
(6 n x) — o0, none of the incident particles will make it through.

In practice, (2.7) is used to experimentally establish values for cross-sections by
bombarding a slab of material with a known number of incident particles and then
seeing how many emerge from the other side; think of (2.7) as effectively defining
o. Due to quantum-mechanical effects, the cross-section is not the geometric area of
a nucleus.
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The total cross section had in mind here can be broken down into a sum of
cross-sections for individual processes such as fission, elastic scattering, inelastic
scattering, non-fission capture, etc.:

Ototal = Ofission T Oelastic + Oinelastic + Ocapture + - - - - (28)
scatter scatter

In practice, cross-sections can depend very sensitively on the energy of the
incoming neutrons; such energy-dependence plays a crucial role in the difference
between how nuclear reactors and nuclear weapons function. As an example,
Fig. 2.3 shows the variation of the fission cross-section for *>U under neutron
bombardment for neutrons in the energy range 1-10 eV; note the dramatic reso-
nance effects at certain energies. The resonances show up even more dramatically
in Fig. 3.1, which shows the fission cross-section for **°U across many orders of
magnitude of bombarding-neutron energy.

A very important result that derives from this escape-probability law is an
expression for the average distance that an incident neutron will penetrate into
the slab before being involved in a reaction. Look at Fig. 2.4, where we now have a
slab of thickness L and where x is a coordinate for any position within the slab.
Imagine also a small slice of thickness dx whose front edge is located at position x.
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From (2.7), the probability that a neutron will penetrate through the entire slab to
emerge from the face at x =L is P,erge = e~ °"". This means that the probability
that a neutron will be involved in a reaction and not travel through to the face at
x=L will be P,,,.;=1—e ", 1t follows that if N, neutrons are incident at the
x =0 face, then the number that will be consumed in reactions within the slab will
be N,puer =N,(1 — e~ “"F). We will use this result in a moment.

Also from (2.7), the number of neutrons that penetrate to distances x and x + dx
are given by

Nx = Nue—anx (29)
and
Noyae = Nye om0, (2.10)

Some of the neutrons that reach x will be involved in reactions before reaching
X + dx, that is, N >N, , 4. The number of neutrons consumed between x and
X + dx, designated as dN,, is given by

dN; =Ny —Nypar = Noe ®" (1 — 72" %), (2.11)

If dx is infinitesimal, then (o n dx) will be very small. This means that we can
write e~ 7" @9~ 1 — & n(dx), and hence write dN, as

dN, = N,e °"*(ondx), (2.12)

a result equivalent to differentiating (2.7).

Now, these dN, neutrons penetrated distance x into the slab before being
consumed or diverted in a reaction, so the total travel distance accumulated by all
of them in doing so would be (x dN,). The average distance that a neutron will travel
before suffering a reaction is given by integrating accumulated travel distances over
the length of the slab and then dividing by the number of neutrons consumed in
reactions within the slab, N, ..., = N,(1 — e~ °"L) from above:

L L
1 1 ’ 1 [1—e (1 +onL)
— de = (N —omx g '
<x> Nreaz:t Jx ’ Nu( 1— 676"L> J( (,an)xe * on 1— efonL
0 0

(2.13)

If we have a slab of infinite thickness, or, more practically, one such that the
product onL is large, then e~ " will be small and we will have

1

<x>(anL) large E (214)
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This quantity is known as the characteristic length or mean free path for the
particular reaction quantified by ¢. This quantity will figure prominently throughout
the remainder of this chapter. If it is computed for an individual cross section such
aS Gfigsion OF Ocapmure» ONE speaks of the mean free path for fission or capture. Such
lengths are often designated by the symbol A with a subscript indicating the type of
reaction involved. As an example, consider fission in 235U. The nuclear number
density n is 4.794 x 10%8 m_3, and the fast-neutron cross section is o= 1.235
bn=1.235x 10"*® m? (again averaged over the energy spectrum of fission-
liberated neutrons). These numbers give 4,=16.9 cm, or about 6.65 in.

Finally, it should be emphasized that the derivations in this section do not apply
to bombarding particles that are charged, in which case one has very complex
ionization issues to deal with.

2.2 Critical Mass: Diffusion Theory

We now consider critical mass per se. Qualitatively, the concept of critical mass
derives from the observation that some species of nuclei fission upon being struck
by a bombarding neutron and consequently release secondary neutrons which can
potentially go on to induce other fissions, resulting in a chain reaction. However, the
development in the preceding section indicates that we can expect that a certain
number of neutrons will reach the surface of the mass and escape, particularly if the
mass is small. If the density of neutrons within the mass is increasing with time,
criticality is said to obtain. Whether or not this condition is fulfilled depends on
quantities such as the density of the material, its cross-section for fission, the
number of neutrons emitted per fission, and the kinetic-energy spectrum of the
neutrons. The number of neutrons emitted per fission is designated by the symbol v.

A comment on v is appropriate here. A given fission reaction will release some
integer number of neutrons, which on rare occasion could in fact be zero. In
carrying out calculations we will assume an operative average number of neutrons
per fission. This will inevitably be a decimal number (see Table 2.1), but it should
be borne in mind that a more advanced treatment would account for the spectrum of
neutron-number emission for a given material when bombarded by neutrons of
some spectrum of energies. There is almost no end to the increasingly complex
levels of sophistication with which one can approach nuclear-weapons calculations.

To explore the time-dependence of the number of neutrons in a bomb core
requires the use of time-dependent diffusion theory. In this section we use this
theory to calculate the critical masses of so-called “bare” spherical assemblies of
25U and 239Pu, the main “active materials” used in fission weapons. The term
“bare” is the technical terminology for an untamped core. More correctly, we
compute critical radii which can be transformed into equivalent critical masses
upon knowing the densities of the materials involved.

The development presented here is based on the derivation in Appendix G of a
differential equation which describes the spatiotemporal behavior of the neutron
number density N, that is, the number of neutrons per cubic meter within the core.
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Talzle 2.1 Threshold critical Quantity Unit 355 239p,

radii and masses (untamped;

a=0) A gr/mol 235.04 239.05
p gr/em’® 18.71 15.6
oy bn 1.235 1.800
Col bn 4.566 4.394
v - 2.637 3.172
n 10 cm ™ 4794 3.930
Afission cm 16.89 14.14
Aelastic cm 4.57 5.79
Atotal cm 3.60 4.11
€ - 1.467 1.090
T 107 8.635 7.227
d cm 3.52 2.99
Ro cm 8.37 6.346
Mo kg 459 16.7

The derivation in Appendix G depends upon on some material developed in
Sect. 3.5; it is consequently recommended that both those sections be read in
support of this one. Also, be sure not to confuse n and N; the former is the number
density of fissile nuclei while the latter is the number density of neutrons; both play
roles in what follows. Note also that the definition of N here differs from that in the
previous section, where it represented a number of neutrons.

Before proceeding, an important limitation of this approach needs to be made
clear. Following Serber (1992), I model neutron flow within a bomb core by use of a
diffusion equation. A diffusion approach is appropriate if neutron scattering is
isotropic. Even if this is not so, a diffusion approach will still be reasonable if
neutrons suffer enough scatterings so as to effectively erase non-isotropic angular
effects. Unfortunately, neither of these conditions are fulfilled in the case of a
uranium core: Fast neutrons elastically scattering against uranium show a strong
forward-peaked effect. Further, since the mean free path of a fast neutron in **°U,
about 3.6 cm, is only about half of the 8.4-cm bare critical radius (see Table 2.1),
one cannot help but question the inherent accuracy of the diffusion equation
developed in Appendix G. I adopt a diffusion-theory approach for a number of
reasons, however. As much of the physics of this area remains classified or at least
not easily accessible, we are forced to settle for an approximate model; diffusion
theory has the advantage of being analytically tractable at an upper-undergraduate
level. In actuality, however, we will see toward the end of this section that
the predictions of diffusion theory compare very favorably with experimentally-
measured critical masses. Also, as shown in Sect. 2.6, a comparison of critical radii
as predicted by diffusion theory with those estimated from an openly-published
more exact treatment shows that the two agree within about 5 % for the range of
fissility parameters of interest here. We can thus be quite confident in a diffusion
analysis despite its built-in approximations.

Central to any discussion of critical radius are the fission and transport mean free
paths for neutrons, respectively symbolized as Arand 4,. These are given by (2.14) as


http://dx.doi.org/10.1007/978-3-662-43533-5_3#Sec5

2.2 Critical Mass: Diffusion Theory 57

1
Qe = — 2.15
= o (2.15)
and
A *L (2.16)
r O't}’l, .

where o, is the so-called total or transport cross-section. If neutron scattering is
isotropic (which we assume), the transport cross-section is given by the sum of the
fission and elastic-scattering cross-sections:

0 = 6f + 0. (2.17)

We do not consider here the role of inelastic scattering, which affects the
situation only indirectly in that it lowers the mean neutron velocity.'

For a spherical bomb core, the diffusion theory of Appendix G provides the
following differential equation for the time rate of change of the neutron number
density:

a_N _ vneut
ot a lf

(v— 1)N+@(VZN), (2.18)

where v, is the average neutron velocity and the other symbols are as defined
earlier. The first term on the right side of (2.18) corresponds to the growth in the

! Equations (2.15) and (2.16) assume that the product onlL is large; see the preceding section. For
U-235, the values of the square bracket in (2.13) for L =10 cm are 0.267 for op,nL and 0.816 for
6:01aiML, whereas the large-product approximation assumes that the square bracket will be equal to
one. The approximation is more dramatic for the fission mean free path due to its small cross-
section. It is thus somewhat surprising that diffusion theory ends up predicting critical masses in
close accord with experimentally-measured values; see the discussion following Table 2.1 and
Sect. 2.6. As for neglecting inelastic scattering, this is not as drastic as it may seem for a
combination of reasons. What matters to the growth of the neutron population is the time 7 that
a neutron will typically travel before causing another fission; see (2.21). But, if one averages
through the many resonance spikes in Fig. 3.1, the fission cross-section for **3U (and **°Pu as well)
behaves approximately as ¢ ~ 1/v,,¢,;, Where v,,,,, is the neutron speed. This means that the mean
free path for fission is proportional to v,,,,, which, overall, makes 7 independent of v,,,,,. Hence, if
a neutron has been either elastically or inelastically scattered, the time for which it will typically
travel before causing a subsequent fission is largely independent of its speed. It would then seem
that one should add in the inelastic-scattering cross-section when forming the transport cross-
section in (2.17). This is true, but another effect comes into play: Elastic scattering is not isotropic.
This has the effect of somewhat lowering the effective value of the elastic scattering cross-section.
For elements like uranium and plutonium, the two effects largely cancel each other, with the net
result that (2.17) is a quite reasonable approximation. Details are given in the Appendix to Serber’s
Primer; see also Soodak et al. (1962), Chap. 3.


http://dx.doi.org/10.1007/978-3-662-43533-5_3#Fig1
http://dx.doi.org/10.1007/978-3-662-43533-5_3

58 2 Critical Mass and Efficiency

number of neutrons due to fissions, while the second term accounts for neutron loss
by their flying out of a volume being considered.

Now, let r represent the usual spherical radial coordinate as measured
from the center of the core. Upon assuming a solution for N(z,7) of the form
N(t,r) =N,(N (), (2.18) can be separated as

1 (ON)\ (v—1\ D[l 0 (,0N,
M(W)‘( : )*M[m(’ ar)]’ (2.19)

where D is the so-called diffusion coefficient,

D— AtVneur ,
3

(2.20)

and where 7 is the mean time that a neutron will travel before causing a fission:

A

vﬂ("llt

T =

(2.21)

If the separation constant for (2.19) is defined as a/z (that is, the constant to
which both sides of the equation must be equal), then the solution for the time-
dependent part of the neutron density emerges directly as

N(1) = N,el@?1, (2.22)

where N, represents the neutron density at the center of the core at 1 =0. N, would
be set by whatever device is used to initiate the chain-reaction. We could have
called the separation constant just a, but this form will prove more convenient for
subsequent algebra. How «a is determined is described following (2.31) below.

Equation (2.22) shows that the time-growth or decay (depending on the sign of a) of
the neutron density is exponential. While our main concern for the present is with the
spatial behavior of N, a will prove to be very important throughout this and subsequent
sections. We will return to the issue of time-dependence in Sects. 2.4 and 2.5.

With the above definition of the separation constant, the radial part of (2.19)

appears as
v—1 D[1 0 (,0N\] «a
( - >+17:["_25(' arﬂ_;. (2.23)

The first and last terms in (2.23) can be combined; this is why the separation
constant was defined as a/z. On then dividing through by D, we find

1 11 0 zaN,. _
d—2+]7){r—25<r 3 ):| =0, (2.24)

where d is a characteristic length scale,
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Af A[
d=|l—/—————. 2.25
3(—a+v—1) (225)
Now define a new dimensionless coordinate x according as
x="_ (2.26)

This brings (2.24) to the form

110 (,0NN\] _

Aside from a normalization constant, the solution of this differential equation
can easily be verified to be

N (r) = (Sinx>. (2.28)

X

To determine a critical radius R, we need a boundary condition to apply to
(2.28). As explained in Appendix G, this takes the form

24 ON 24 ON
N(R¢c) = Y <E)RC =734 (E) RC. (2.29)

On applying this to (2.28), one finds that the critical radius is given by solving
the transcendental equation

xcot(x) +ex—1=0, (2.30)

where

3d 1 34
_d_ 1y N 2.31
T, 2\ a(Carv—_1) (231)

With fixed values for the density and nuclear constants for some fissile material,
Egs. (2.30) and (2.31) contain two variables: the core radius r (through x) and the
exponential factor a, and the two equations can be solved in two different ways. For
both approaches, assume that we are working with material of “normal” density,
which we designate as p,. For the first approach, start by looking back to (2.22). If
a =0, the neutron number density is neither increasing nor decreasing with time; in
this case one has what is called threshold criticality. To determine the so-called
threshold bare critical radius R, set @ =0 in (2.25) and (2.31), set the density to p,
to determine 7, A and 4,, solve (2.30) for x, and then get r (=R,) from (2.26). The
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corresponding threshold bare critical mass M, then follows from M, = (471/3)R03p0.
It is this mass that one usually sees referred to as the critical mass; this quantity will
figure prominently in the discussion of bomb efficiency in Sects. 2.4 and 2.5.

The second solution begins with assuming that one has a core of some radius
r > R,. In this case one will find that (2.30) will be satisfied by some value of a > 0,
with a increasing as r increases. The rationale here is that since the middle term in
(2.30), ex=13r/24,, is independent of a, we can set r to some desired value; (2.30)
can then be solved for x, which gives d from (2.26) and hence a from (2.25). If
a > 0, the reaction will in principle grow exponentially in time until all of the fissile
material is used up, a situation known as “supercriticality.”

To see why increasing the radius demands that @ must increase, implicitly
differentiate (2.30) to show that de/dx= — (1/x)*(1 — x*/sin’x). This expression
demands de/dx >0 for all values of x. From the definition of x, an increase in
r (and/or in the density, for that matter) will cause x to increase. To keep (2.30)
satisfied means that ¢ must increase, which, from (2.31), can happen only if a
increases.

We come now to a very important point. This is that the condition for threshold
criticality can in general be expressed as a constraint on the product pr, where p is
the mass density of the material and r is the core radius. The factor € in (2.30)
depends only on the cross-sections and secondary neutron number v, and so is
independent of the density, Hence, for a = 0, (2.30) will be satisfied by some unique
value of x which will be characteristic of the material being considered. Since
x=r/d and d itself is proportional to 1/p [see (2.25)], we can equivalently say that
the solution of (2.30) demands a unique value of pr for a given combination of ¢ and
v values. If R, is the bare threshold critical radius for material of normal density p,,
then any combination of r and p such that pr = p,R, will also be threshold critical,
and any combination such that pr>p,R, will be supercritical. For a sphere of
material of mass M, the mass, density, and radius relate as M pr3, which means
that the “criticality product” pr can be written as pr oc M/r?. This relationship
underlies the concept of implosion weapons. If a sufficiently strong implosion can
be achieved, then one can get away with having less than a “normal” critical mass
by starting with a sphere of material of normal density and crushing it to high
density by implosion; such weapons inherently make more efficient use of available
fissile material than those that depend on a non-implosive mechanism to assemble
subcritical components. As described in Sect. 4.2, the implosion technique also
helps to overcome predetonation issues with spontaneous fission. The key message
from the present development, however, is that there is no unique critical mass for a
given fissile material.

Table 2.1 shows calculated bare threshold critical radii and masses for U-235
and Pu-239.

Sources for the fission and elastic-scattering cross-sections appearing in the
Table are given in Appendix B; the values quoted therein are used as they are
averaged over the fission-energy spectra of the two nuclides. The v values were
adopted from the Evaluated Nuclear Data Files (ENDF) maintained by the National
Nuclear Data Center at Brookhaven National Laboratory (www.nndc.bnl.gov), and
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are for neutrons of energy 2 MeV, about the average energy of fission neutrons. The
density for B5U is (235/238) times the density of natural uranium, 18.95 gr/cm3 .

It is worth noting that the timescales involved in fission-bomb phenomena are
remarkably brief: Neutrons travel for only 7 ~ 1/100 microsecond (=10 ns) between
fissions!

Lest you think that publishing estimates of critical masses is engaging in
revealing classified data, do not be alarmed; such estimates have been available
in the public domain for decades. In a review article on fast reactors, Koch and
Paxton (1959) quote a value of 48.7 kg for a spherical assembly of highly enriched
uranium (93.9 % U-235), and 16.6 kg for a sphere of Pu-239. A 1963 publication of
the United States Atomic Energy Commission, “Reactor Physics Constants,” a
compilation of data for nuclear engineers, lists the experimentally determined
bare critical mass for 93.9 % U-235 as 48.8 kg, and that for Pu-239 as 16.3 kg.
These values are close to those listed in Table 2.1. Estimating a critical mass is one
of the least difficult parts of making a nuclear weapon.

Spreadsheet Criticality Analytic.xls allows users to carry out the above calculations
for themselves. This spreadsheet is used for the calculations developed in this section as
well as those in Sects. 2.3 and 2.4. In its simplest use—corresponding to this section—
the user enters five parameters: the density, atomic weight, fission and scattering cross-
sections of the core material, and the number of secondary neutrons per fission. The
“Goal Seek” function then allows one to solve (2.30) and (2.31) for x (assuming a = 0),
from which the bare critical radius and mass are computed.

In practice, having available only a single critical mass of fissile material will not
produce much of an explosion. The reason for this is that fissioning nuclei give rise
to fission products with tremendous kinetic energies. The core consequently very
rapidly—within microseconds—heats up and expands, causing its density to drop
below that necessary to maintain criticality. In a core comprising only a single
critical mass this will happen at the moment fissions begin, so the chain reaction
will quickly fizzle as a falls below zero. To get an explosion of appreciable
efficiency, one must start with more than a single critical mass of fissile material
or implode an initially subcritical mass to high density before initiating the explo-
sion. The issue of using more than one critical mass to enhance weapon efficiency is
examined in more detail in Sects. 2.4 and 2.5. The effect of using a tamper is
examined analytically in Sect. 2.3 and numerically in Sect. 2.5.

To determine the value of the exponential growth factor a for a core of more than
one critical mass, it is necessary to solve Egs. (2.26), (2.30), and (2.31) for a as
described following (2.31) above. For the purpose of generating a seed value or simply
for making quick estimates, however, an approximate value can be obtained as follows.

Equation (2.28) for the radial dependence of the neutron density appears as

N (r) = (Sinx> . (2.32)

X
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As a simplified boundary condition, assume that N,(R.,,.) =0, that is, that the
neutron density falls to zero at the edge of the core. This is a more restrictive
condition that the true boundary condition, (2.29), and will lead to a larger bare
threshold critical radius. In this case, (2.28) indicates that we must have sin(x) =0,
or R/d= . This will be the case whether a core is supercritical or just threshold
critical. If we use subscripts “core” and “0” to designate a supercritical and bare-
threshold core, respectively, then we must have

R('m‘e R() R() 2 ( d() ) :
- = = : = —_— . 2 . 33
dcore dO (RCOFL’ > dcore ( )

Substitute for d, and d..,,. from (2.25), setting @ = 0 in the expression for d,,. The
result can then be solved for a,,,.:

eore ~ (v — 1) [1 _ (RO/Rw,.e)z] (2.34)

This result is expressed as an approximation as a reminder that it does not derive
from the true boundary condition for neutron diffusion. This simplified boundary
condition is explored further in Exercises 2.4 and 2.11.

As an example of how good an estimate (2.34) provides, we consider the
Hiroshima Little Boy bomb core. We will see in the next section that this core
comprised about 64-kg of >>>U. At a density of 18.71 gr/cm?, this would correspond
to Ripre = 9.347 cm. With R, = 8.366 cm and v = 2.637 from Table 2.1, (2.34) gives
Qcore ~0.326. The true value for a for such a core is 0.255. The approximation is
about 27 % high: not terribly accurate, but certainly in the ballpark (The Little Boy
core was actually cylindrical, so we have taken some liberty in this example for
sake of simplicity).

To close this section, it is interesting to look briefly at a famous miscalculation of
critical mass on the part of Werner Heisenberg. At the end of World War II a
number of prominent German physicists including Heisenberg were interned for
6 months in England and their conversations secretly recorded. This story is
detailed in Bernstein (2001); see also Logan (1996) and Bernstein (2002). On the
evening of August 6, 1945, the internees were informed that an atomic bomb had
been dropped on Hiroshima and that the energy released was equivalent to about
20,000 tons of TNT (In actuality, the yield was about 13,000 tons, but this is not the
problem with Heisenberg’s calculation). Heisenberg then estimated the critical
mass based on this number and a subtly erroneous model of the fission process.

We saw in Sect. 1.6 that complete fission of 1 kg of *°U liberates energy
equivalent to about 17 kt of TNT. Heisenberg predicated his estimate of the critical
mass on assuming that about 1 kg of material did in fact fission. One kilogram of
23U corresponds to about £ ~2.56 x 10** nuclei. Assuming that on average v =2
neutrons are liberated per fission, then the number of generations G necessary to
fission the entire kilogram would be W=0Q. Solving for G gives G =In(£2)/In(v)
~81, which Heisenberg rounded to 80. So far, this calculation is fine. He then
argued that as neutrons fly around in the bomb core, they will randomly bounce
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between nuclei, traveling a mean distance A; before causing fissions; A¢is the mean
free path between fissions as in (2.15) above. From Table 2.1, 4.~ 17 cm for U-235,
but, at the time, Heisenberg took A~ 6 cm. Since a random walk of G steps where
each is of length A; will take one a distance r~ﬂf\/5 from the starting point, he

estimated a critical radius of r~(6 cm)\/% ~ 54 cm. This would correspond to a
mass of some 12,500 kg, roughly 13 tons! Given that only one kilogram of uranium
fissioned, this would be a fantastically inefficient weapon. Such a bomb and its
associated tamper, casing, and instrumentation would represent an unbearably
heavy load for a World War II-era bomber.

The problem with Heisenberg’s calculation was that he imagined the fission
process to be created by a single neutron that randomly bounces throughout the
bomb core, begetting secondary neutrons along the way. Further, his model is too
stringent; there is no need for every neutron to cause a fission; many neutrons
escape. In the days following August 6 Heisenberg revised his model, arriving at the
diffusion theory approach described in this section.

2.3 Effect of Tamper

In the preceding section it was shown how to calculate the critical mass of a sphere
of fissile material. In that development we neglected the effect of any surrounding
tamper. In this section we develop a model to account for the presence of a tamper.
The discussion here draws from the preceding section and from Serber (1992),
Bernstein (2002), and especially Reed (2009).

The idea behind a tamper is to surround the fissile core with a shell of dense
material, as suggested in Fig. 2.5. This serves two purposes: (1) It reduces the
critical mass, and (2) It slows the inevitable expansion of the core, allowing more
time for fissions to occur until the core density drops to the point where criticality
no longer holds. The reduction in critical mass occurs because the tamper will
reflect some escaped neutrons back into the core; indeed, the modern name for a
tamper is “reflector,” but I retain the historical terminology here. This effect is
explored in this section. Estimating the distance over which an untamped core
expands before criticality no longer holds is analyzed in Sect. 2.4. This slowing
effect is difficult to model analytically, but can be treated approximately with a
numerical model; this is done in Sect. 2.5.

The discussion here parallels that in Sect. 2.2. Neutrons that escape from the core
will diffuse into the tamper. If the tamper material is not fissile, we can describe the
behavior of neutrons within the tamper via (2.18) without the neutron-production
term, that is, without the first term on the right side:
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Fig. 2.5 Schematic
illustration of a tamped
bomb core

tamp
aZVZamp _ j'frans Vneut

ot 3

(V>Niamp) (2.35)

where N, is the number density of neutrons within the tamper and A;qry is their

transport mean free path. v,,,, is the average neutron speed within the tamper,
which we will later assume for sake of simplicity to be the same as that within the
core. We are assuming that the tamper does not capture neutrons; otherwise, we
would have to add a term to (2.35) represent that effect.

Superscripts and subscripts tamp and core will be used liberally here as it will be
necessary to join tamper physics to core physics via suitable boundary conditions.
As was done in Sect. 2.2, take a trial solution for N,,,,, of the form N,,,(t,r) =
N (t) N“(r), where Ny () and N'“"P(r) are respectively the time-and space
dependences of Nyg,,; 7 is the usual spherical radial coordinate measured from the
center of the core. Upon substituting this into (2.35) we find, in analogy to (2.19),

1 ON tamp tamp o 1 12 ON lamp
— ( t > _ </1namv z> — [_ v <r2 r ﬂ ) (2.36)
N ot 3 N |r2 Or or

Define the separation constant here to be 6/z where 7 is the mean time that a
neutron will travel in the core before causing a fission, that is, as defined in (2.21):

c:ore
7= (2.37)

Vneut

While it may seem strange to invoke a core quantity when dealing with diffusion
in the tamper, this choice is advantageous in that the neutron velocity v,,.,;, which
we assume to be the same in both materials, will cancel out in later algebra. This
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choice is not equivalent to assuming at the outset that the core and tamper separa-
tion constants are the same, as § may be different from the exponential factor a of
Sect. 2.2. However, we will find that boundary conditions demand that they too
must be equal.

This choice of separation constant renders (2.36) as

t}lm aNtmmP _ Att,ilmnﬂ?vneut ,1"“ izg FZ aNll:”m/’ :(—S (238)
N 3 3 NP |2 Or or T

The solution of (2.38) depends on whether § is positive, negative, or zero; the
latter choice corresponds to threshold criticality in analogy to @ = 0 in Sect. 2.2. The
situations of practical interest will be 6§ > 0, in which case the solutions have the
form

A
—+B (6=0)
-
Niamp = o /dum o/ duamp (2.39)
e/ A +B (6 >0),

r r

where A and B are constants of integration (different for the two cases), and where

tamp 4 core
j’trans ’?'fl ss

dtamp = T (240)

The situation we now have is that the neutron density in the core is described by
(2.22) and (2.28) as

N = A ola/n S0/ deore) (2.41)
-
with d,,. given by (2.25):
A(OIEA L'.{)]'E<
deore = fiss Ztrans (242)

3(—a+v—1)

while the neutron density in the tamper is given by (2.39) and (2.40).

The question at this point is: “What boundary conditions apply in order that we
have a physically reasonable solution?” Let the core have radius R, and let the
outer radius of the tamper be R,,,,,; we assume that the inner edge of the tamper is
snug against the core. First consider the core/tamper interface. If no neutrons are
created or lost at this interface, then it follows that both the density and flux of
neutrons across the interface must be continuous. That is, we must have
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NC()I‘() (R('()I‘E) = Nl‘tlmp (RC()I‘L’ ) > (2 43)

and, from (6.97) of Appendix G,

o aN core aN am
e (244
07 ) Re 0 ) R
Equation (2.44) accounts for the effect of any neutron reflectivity of the tamper

via AjP In writing (2.44), we have assumed that the speed of neutrons within the

core and tamper is the same, and hence cancels.

In addition, we must consider what is happening at the outer edge of the tamper.
If there is no “backflow” of neutrons from the outside, then the situation is
analogous to the boundary condition of (2.29) that was applied to the outer edge
of the untamped core:

2 ON tan
N tamp (Rtanlp) = _5’1;1”{1':]: ( at;l 117) : (2-45)
Riamp

Applying (2.43), (2.44), and (2.45) to (2.39), (2.40), (2.41), and (2.42) results,
after some algebra, in the following constraints:

1+ 2Rthres2h/ltt/€larzg _ Rthresh Rthresh cot Rthresh _1
3Rtamp Rtan’[[) d(‘()re d(‘()l‘(’
(2.46)
ﬂt{tmp
+ e =0, (6=0)
trans
and, for 6 >0,
o2 (s xecotx, — 1 —A(xy — 1) _ [Xecotx, — L+ A(xe + 1) (2.47)
Riamp + 2iyans (X — 1)/3 Riamp = 2iyans (¢ +1)/3 | '
where
Xer = Rwre/ dtamp
Xe = Reore / deore
Xy = Rtamp/dtamp (248)

A= it [Aoms
It is also necessary to demand that a = §, as otherwise the fact that (2.43), (2.44),
and (2.45) must also hold as a function of time would be violated. Some comments
on these results follow.


http://dx.doi.org/10.1007/978-3-662-43533-5_6#Equ97

2.3 Effect of Tamper 67

500 p 12
D 400 19§
3 i 18 @
€ 300 e

L X
s_ N 46 ]
o) [ =
g 200} 1 %
© 3 14 o
| [ i =

100 | 12 8

0, b 0

18 22 26 30 34 38 42 46
Core mass (kg)

Fig. 2.6 Mass (kg; solid curve, left scale) and thickness (cm; dashed curve, right scale) of a
snugly-fitting tamper of tungsten-carbide (A = 195.84 gr/mol, p = 14.8 gr/cm?, 6,45 = 6.587 bn)
which will just render threshold critical a given core mass of pure 25U. The untamped critical
mass of 23U is about 45.9 kg (Table 2.1)

1. Equation (2.46) corresponds to tamped threshold criticality, where a = 6 = 0. Once
values for the d's and A's are given, there are two ways to use this expression:

(a) If a core mass which is bare-threshold sub-critical is specified, use its radius
as R,j.sn and solve (2.46) for R,,,,,, the tamper outer radius which will just
render the core critical. The tamper mass can then be determined from the
two radii; see Fig. 2.6.

(b) If on the other hand R, is specified, solve (2.46) for Ry s, the radius of a
core which would just be critical for the specified tamper outer radius. This
can be a handy calculation if the size of your bomb is limited in advance by
some condition such as the diameter of a missile tube.

2. Touse (2.47) and (2.48): Refer to case 1(b) above, where R,;,,., 1S determined for
a given value of R,,,,,,. Keep R,4,, fixed to that value. Now choose a core radius
Riore > Ripresn to use in (2.47) and (2.48). This means that for the chosen value of
R tamp> you will have a number C (>1) of tamped threshold critical masses for your
bomb core: C = (R pre/Rimres) - Then solve (2.47) numerically for 6 (=), which
enters the d’s and x’s of (2.47) and (2.48) through (2.40) and (2.42).

The value of knowing a will become clear when the efficiency and yield
calculations of Sects. 2.4 and 2.5 are developed; for the present, our main concern
is with Rrhresh-

A special-case application of (2.46) can be used to get a sense of how dramat-
ically the presence of a tamper decreases the threshold critical mass. Suppose that
the tamper is very thick, R;u,p >> Rypresn In this case (2.46) reduces to

(Rthresh/dmre) cot (Rthresh /dmre) =1- (/1;0::5 /)«;rglni) . (249)

Now consider two sub-cases. The first is that the tamper is in fact a vacuum.

Since empty space would have essentially zero cross-section for neutron scattering,

this is equivalent to specifying Ay = 0o, in which case (2.49) becomes
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(Rthresh /dcore) cot (Rrhresh /dcore) = —00. (250)

This can only be satisfied if

Ripresi
<— = (2.51)
d"”"f vacuum tamper

The second sub-case is more realistic in that we imagine a thick tamper with a

non-zero transport mean free path. For simplicity, assume that A°7¢ ~ A" that is,

trans
that the neutron-scattering properties of the tamper are much like those of the core.

In this case (2.49) becomes
(Rthrexh /dmre) cot (Rthresh/dmre) =0. (252)

The solution here is

Rthresh T
ick tamper =7 2.53
< d(‘m> thick tamp 5 (2.53)

finite cross—scetion

exactly one-half the value of the vacuum-tamper case. To summarize: With an
infinitely-thick tamper of finite transport mean free path, the threshold critical
radius is one-half of what it would be if no tamper were present at all. A factor of
two in radius means a factor of eight in mass, so the advantage of using a tamper is
dramatic even aside from the issue of any retardation of core expansion. This factor
of two in critical radius is predicated on an unrealistic assumption for the tamper
thickness and so we cannot expect such a dramatic effect in reality, but we are about
see that the effect is dramatic enough.

What sort of critical-mass reduction can one expect in practice? In a website
devoted to design details of nuclear weapons, Sublette (2007) records that the
Hiroshima Little Boy bomb used tungsten-carbide (WC) as its tamper material.
Tungsten has five naturally-occurring isotopes, 180y 182yy 183y 184w and '86W,
with abundances 0.0012, 0.265, 0.1431, 0.3064, and 0.2843, respectively. The
KAERI table-of-nuclides site referenced in Appendix B gives elastic-scattering
cross sections for the four most abundant of these as (in order of increasing weight)
4369, 3.914, 4253, and 4.253 bn. Neglecting the small abundance of '**W, the
abundance-weighted average of these is 4.235 bn. Adding the 2.352 bn elastic-
scattering cross-section for '>C gives a total of 6.587 bn; the cross-sections must be
added, not averaged, since we are considering the tungsten-carbide molecules to be
“single” scattering centers of atomic weight equal to the sum of the individual atomic
weights for W and C, 183.84 + 12.00 = 195.84. The bulk density of tungsten-carbide
is 14.8 g/em’. Figure 2.6 shows the tamper mass and corresponding outer radius
necessary to just render critical a U-235 core of a given mass. As an example, a 25-kg
core will be rendered just threshold critical when surrounded by a tamper of mass
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80 kg and thickness 4.89 cm; the outer radius of the entire core/tamper assembly
would be 11.7 cm.

Two spreadsheets are available for readers to run their own calculations along
these lines. In CriticalityAnalytic.xls, users enter the core parameters for the calcu-
lations of Sect. 2.2 along with the density, atomic weight, scattering cross-section and
outer radius of the tamper. The “Goal Seek” function is then used to determine the
tamped threshold critical radius and mass from (2.46). Conversely, ReflectedCore
allows the user to specify a bare-subcritical core mass and then, as in Fig. 2.6,
determine the tamper mass necessary to just render the core threshold critical.

In the case of the Hiroshima Little Boy bomb, Sublette records that the tamper had
amass of about 311 kg and that its core comprised about 64 kg of **U in a cylindrical
shape surrounded by a cylindrical WC tamper of diameter and length 13 in. (see also
Coster-Mullen 2010). Assuming spherical geometry for simplicity, a 64-kg core at a
density of 18.71 g/cm® would have an outer radius of 9.35 cm; a 311-kg tamper would
then require an outer radius of about 18 cm. From Fig. 2.6, a tamper of this mass will
render a core of mass ~19 kg threshold critical, so we can conclude that Little Boy
utilized about (64/19) ~ 3.4 tamped threshold critical masses of fissile material.

Why was tungsten-carbide used as the Little Boy tamper material? As one of the
purposes of the tamper is to briefly retard core expansion, denser tamper materials
are preferable; tungsten-carbide is fairly dense and has a low neutron capture cross-
section. In this sense it would seem that depleted uranium, which the Manhattan
Project possessed in abundance, would be an ideal tamper material (Depleted is the
term given to the uranium that remains after one has extracted some or all of its fissile
U-235; one could equivalently say that the remains are enriched in U-238, but
depleted is the preferred technical term). The reason that U-238 was not used may
be that it has a fairly high spontaneous fission rate, about 675 per kilogram per
second (see Sect. 4.2). Over the approximately 100 microseconds required to
assemble the core of a Hiroshima gun-type bomb, a 300 kg depleted-U tamper
would have a fairly high probability of suffering a spontaneous fission and hence of
initiating a predetonation. Further, as discussed in Sect. 1.9, U-238 has a significant
inelastic-scattering cross-section: fast neutrons striking it tend to be slowed so much
that they become likely to be captured and hence lost to the possibility of being
reflected back into the core. One of the best neutron-reflecting materials known is
beryllium, which has a fission-spectrum averaged elastic scattering cross section of
about 2.8 bn but an inelastic-scattering cross-section of only about 40 microbarns.
Beryllium has an additional advantage in weapons design: for fission-energy neu-
trons it has a modest cross-section (~0.05 barns) for net production of neutrons via
the reaction °Be (n, 2n) *Be.

2.4 Estimating Bomb Efficiency: Analytic

Material in this section is adopted from Reed (2007).
In the preceding sections we examined how to estimate critical masses for bare
and tamped cores of fissile material. The analysis in Sect. 2.2 revealed that the
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threshold bare critical mass of >>U is about 46 kg. In Sect. 1.6 we saw that
complete fission of 1 kg of **°U liberates energy equivalent to that of about 17 kt
of TNT. Given that the Little Boy uranium bomb that was dropped on Hiroshima
used about 64 kg of **°U and is estimated to have had an explosive yield of only
about 13 kt, we can infer that it must have been rather inefficient. The purpose of
this section is to explore what factors dictate the efficiency of a fission weapon and
to show how one can estimate that efficiency.

This section is the first of several in this chapter and in Chap. 4 devoted to the
question of weapon efficiency and yield. In this section these issues are examined
purely analytically. The advantage of an analytic approach is that it is helpful for
establishing a sense of how the efficiency depends on the parameters involved: The
mass and density of the core and the values of various nuclear constants. However,
conditions inside an exploding bomb core evolve very rapidly as a function of time,
and this evolution cannot be fully captured with analytic approximations. To get a
sense of the time-evolution of the process, one really needs to numerically integrate
the core conditions as a function of time, tracking core size, expansion rate, pressure,
neutron density, and energy release along the way. Such an analysis is the subject of
the next section; these two sections therefore closely complement each other and
should be read as a unit. Bomb efficiency and yield can also be affected by various
phenomena that can trigger the chain-reaction before the weapon core has reached its
fully assembled state; these issues are explored in Chap. 4.

In the present section we consider only untamped cores for sake of simplicity; a
tamped core is simulated numerically in Sect. 2.5.

To begin, it is helpful to appreciate that the efficiency of a nuclear weapon
involves three distinct time scales. The first is mechanical in nature: The time
required to assemble the subcritical fissile components into a critical assembly
before fission is initiated. In principle, this time can be as long as is desired, but in
practice it is constrained by the occurrence of spontaneous fissions, which could
lead to reaction-triggering stray neutrons during the assembly period.

What is the order of magnitude of the assembly time? In a simple “gun-type”
bomb, the idea is that a “projectile” piece of fissile material is fired like a shell
inside an artillery barrel toward a mating “target” piece of fissile material, as
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Fig. 2.8 Little Boy test units. Little Boy was 126 in. long, 28 in. in diameter, and weighed 9,700 1b
when fully assembled (Sublette 2007) (Photo courtesy Alan Carr, Los Alamos National
Laboratory)

sketched in Fig. 2.7. In World War II, the highest velocity that could be achieved for
an artillery shell was about 1,000 m/s. If a projectile piece of length ~10 cm is shot
toward a mating target piece at this speed, the time required for it to become fully
engaged with the target piece from the time that the leading edge of the projectile
meets the target piece will be ~ (10 cm)/(10° cm/s) ~10~* s~ 100 ps. This type of
assembly mechanism was used in the Hiroshima Litt/le Boy bomb, which explains
its cylindrical shape as illustrated in the photograph in Fig. 2.8. As shown in the
cross-sectional schematic in Fig. 2.9, the projectile piece was fired from the tail end
of the bomb and traveled about 5 ft toward the nose.

As we will see in Sect. 4.2, spontaneous fission was not an issue for the Little Boy
uranium core, but was such a problem with the Trinity and Fat Man plutonium
cores as to necessitate development of the implosion mechanism for triggering
those weapons. So far as the present section is concerned, however, the essential
idea is that if the spontaneous fission probability can be kept negligible during the
assembly time (which we assume), the efficiency of the weapon is dictated by the
two other time scales.

The first of these other time scales is nuclear in nature. Once fission has been
initiated, how much time is required for all of the fissile material to be consumed?
This time we call #4,,. The other time scale is again mechanical. As soon
as fissions have been initiated, the core will begin to expand due to the extreme
gas pressure of the fission fragments. This expansion will lead after a time 7.,icairy
to loss of criticality, after which the reaction rate will diminish. Weapon efficiency
will depend on how these times compare: If Zc,isicariry > thssion then in principle all
of the core material will undergo fission and the efficiency would be 100 %.
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Fig. 2.9 Cross-section drawing of Y-1852 Little Boy showing major components. Not shown are
radar units, clock box with pullout wires, barometric switches and tubing, batteries, and electrical
wiring. Numbers in parentheses indicate quantity of identical components. Drawing is to scale.
Copyright by and used with kind permission of John Coster-Mullen
(A) Front nose elastic locknut attached to 1-in. diameter Cd-plated draw bolt
(B) 15.125-in. diameter forged steel nose nut
(C) 28-in. diameter forged steel target case
(D) Impact-absorbing anvil with shim
(E) 13-in. diameter 3-piece WC tamper liner assembly with 6.5-in. bore
(F) 6.5-in. diameter WC tamper insert base
(G) 14-in. diameter K-46 steel WC tamper liner sleeve
(H) 4-in. diameter U-235 target insert discs (6)
(I) Yagi antenna assemblies (4)
(J) Target-case to gun-tube adapter with 4 vent slots and 6.5-in. hole
(K) Lift lug
(L) Safing/arming plugs (3)
(M) 6.5-in. bore gun
(N) 0.75-in. diameter armored tubes containing priming wiring (3)
(O) 27.25-in. diameter bulkhead plate
(P) Electrical plugs (3)
(Q) Barometric ports (8)
(R) 1-in. diameter rear alignment rods (3)
(S) 6.25-in. diameter U-235 projectile rings (9)
(T) Polonium-beryllium initiators (4)
(U) Tail tube forward plate
(V) Projectile WC filler plug
(W) Projectile steel back
(X) 2-1b Cordite powder bags (4)
(Y) Gun breech with removable inner breech plug and stationary outer bushing
(Z) Tail tube aft plate
(AA) 2.25-in. long 5/8-18 socket-head tail tube bolts (4)
(BB) Mark-15 Mod 1 electric gun primers with AN-3102-20AN receptacles (3)
(CC) 15-in. diameter armored inner tail tube
(DD) Inner armor plate bolted to 15-in. diameter armored tube
(EE) Rear plate with smoke puff tubes bolted to 17-in. diameter tail tube

Before proceeding with the detailed analysis, we pause to make a rough estimate
of how much time is required to fission the entire core once the chain reaction has
been initiated. In Sect. 2.2 we saw that once a neutron is emitted in a fission it will
travel for only about 10 ns before causing another fission. Suppose that we have a
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core of mass M kilograms of fissile material of atomic weight A grams per mole.
The number of nuclei N in the mass will be N = 1O3MNA/A. If v neutrons are
produced per generation, then the number of generations G that will be required to
fission the entire mass will be v¥ =N. At 7 seconds per generation, the time to
fission the entire mass will thus be #,,~ 7 G ~ 7 In(N)/In(v). For M = 50 kg of U-235
with A =235 gr/mol, v=2.6, and 7~ 8 X 107° S, tiss~ 0.5 ps, an incredibly brief
time. Even if only half of the neutrons cause fissions (v = 1.3), #45,~2 ps. Such are
the timescales of nuclear-weapon physics.

Once a chain reaction has been initiated, a bomb core will rapidly (within about a
microsecond) heat up, melt, vaporize, and thereafter behave as an expanding gas
with the expansion driven by the gas pressure in a thermodynamic PAV manner; we
assume that the vast majority of energy liberated in fission reactions can be assumed
to go into the form of kinetic energy of the fission products. Our approach to
estimating yield and efficiency will be to use these concepts to establish the range
of radius (and hence time) over which the core can expand before the expansion
lowers the density of the fissile material to subcriticality. Some fissions will
continue to happen after this time, but it is this “criticality shutdown timescale”
that fundamentally sets the efficiency scale of the weapon.

On average, a neutron will cause another fission after traveling for a time given
by 7= A¢/Vyeu Where A is the mean free path for fission and v,,,, is the average
neutron velocity; see (2.21). Inverting this, we can say that a single neutron will
lead to a subsequent fission at a rate of 1/t per second:

1
rate of fissions per neutron = —. (2.54)
T

The total number of fissions per second would be this rate times the number
of neutrons in the core. The latter will be the product of the number density
N(t) =N, from (2.22) times the volume V of the core. Hence we have

N,V
fissions/sec = (—) /o1, (2.55)

T

In this expression, a is given by solving (2.25), (2.30), and (2.31) for the core at
hand, and N, is the central neutron density at # = 0; this will be set by the number of
neutrons released by some “initiator” device. Recall that a=0 for threshold
criticality, whereas a >0 for a core of more than one critical mass, an issue to
which we will return shortly.

Equation (2.55) is actually more complicated than it appears because o and 7 are
functions of time. To appreciate this, consider a core of some general radius » and
density p. As the core expands, » will increase while p decreases. The decreasing
density will cause 7 to increase; simultaneously, the discussion following (2.31)
indicates that we can expect a to decrease. For sake of simplicity, we assume that o
and 7 remain constant; not accounting for changes in them will lead to overestimating
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the fission rate in (2.55). Since an exponential function is involved, the overestimate
could be serious; indeed, we will see in Sect. 2.5 that direct use of our resulting yield
formula, Eq. (2.67), can easily result in overestimating the efficiency by an order of
magnitude. For the present, however, we will stick with the assumption of constant a
and 7 values since the purpose here is to get a sense of how the expected yield and
efficiency depend in principle on the various factors involved. Section 2.5 discusses a
simple refinement to (2.67) that eliminates much of the overestimate.

The time required to fission the entire core can be computed by demanding that
the integral of (2.55) from time zero to time f to be equal to the total number of
nuclei within the core, nV:

Liss

N,V T an
A (@/7)¢ - — (2|22
nV ( . )Je dt = thg (a)ln{NJ, (2.56)
0

where it has been assumed that ¢“?'>>1 for the timescale of interest, an

assumption to be investigated a posteriori.

What happens as the exploding core expands? Recall from Sect. 2.2 that the
condition for criticality can be expressed as pr > K, where K is a constant charac-
teristic of the material being used. We also saw that for a core of some mass M, pr
M/r*. As the core expands the value of pr must drop, and will eventually fall below
the level needed to maintain criticality; one might call this situation “criticality
shutdown,” but the preferred technical term is second criticality.

For a single critical mass of normal-density material, second criticality will occur
as soon as the expansion begins. One way to circumvent this is to provide a tamper to
momentarily retard the expansion and so to give the reaction time to build up to a
significant degree. Another is to start with a core of more than one critical mass of
material of normal density, and this is what is assumed here. The effect of a tamper
and the detailed time-evolution of a(f) and 7 are dealt with in the following section.

To begin, assume that we have a core of C (>1) untamped threshold critical
masses of material of normal density; the initial radius of such a core will be
r;=C'"R,. We can then solve the diffusion-theory criticality Eqs. (2.30) and
(2.31) for the value of « that just satisfies those equations upon setting the radius
to be C' times the threshold critical radius listed in Table 2.1.

Now consider the energy released by fissions. If each fission liberates energy Ey,
then the rate of energy liberation throughout the entire volume of the core will be,
from (2.55),

dE_ (NJVEf\ (/o)
i ( . ) e . (2.57)

Integrating this from time ¢ = 0 to some general time ¢ gives the energy liberated
to that time:
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t

E([) _ (NUVEf> Je(a/r) ldt — <w> e(a/f)l‘. (258)
T a

To determine the pressure within the core, we appeal to a result from thermo-
dynamics. This is that pressure is given by P(f) =y U(t), where U(¢) is the energy
density corresponding to E(¢): U(¢) = E(t)/V. The value of the constant y depends on
whether gas pressure (y = 2/3) or radiation pressure (y = 1/3) is dominant; this issue
is discussed below. Thus, the pressure will behave as

N, E¢
P(f) _ <7/ 4 f) e(a/f)r =P, e(a/r)t’ (259)
a

where P, = (y N,E/a) is the central pressure at = 0.

The equation of state P(¢f) =y U(f) deserves some comment. In the case of a gas of
non-relativistic material particles each of mass m, this expression can be understood
on the basis of simple kinetic theory where one considers the rate at which momen-
tum is transferred to the walls of a container by collisions of the particles with the
walls; this is covered in any freshman-level physics or chemistry text. The value of
U is taken to be the total kinetic energy of all particles divided by the volume V of the
container; each particle is assumed to have the same average value of the squared
speed, <v*>. y emerges from this calculation as 2/3, with the factor of 2 arising from
K=m<v*>/2, and the factor of 3 having its origin in the presumed isotropy of
velocity components over three dimensions. To show that y = 1/3 in the case of a gas
of photons requires some background in the relativistic energy-momentum relation-
ship of photons, but an ersatz justification for this value can be argued as follows. The
non-relativistic result can be re-written as P = p < v*>/3 where p is the mass density
of the gas. Photons do not have mass, but for the purposes of this quick argument we
can use Einstein’s famous E = mc” equation to assign the total energy of all photons
an effective mass m,,, = Em,/cz. Hence the density becomes p = m,,,/V = Et,,,/(cz\/),
and so the pressure becomes P =E,,,; < v2>/(302\/). Setting < V>=cP= E../3V,
or P =U/3 as advertised. In the case of a “gas” of uranium nuclei of standard density
of that metal, radiation pressure dominates for per-particle energies greater than about
2 keV (see Exercise 2.14)

How does a gas of photons arise to give a radiation pressure in an exploding bomb
core? Fission fragments are bare nuclei and so are highly electrically charged. As they
decelerate, they naturally emit energy in the form of photons of wavelengths across
the electromagnetic spectrum. Much of the energy released in a nuclear explosions in
the form of gamma-rays and x-rays which ionize the surrounding air.

For simplicity, we model the bomb core as an expanding sphere of radius r(¢)
with every atom in it moving radially outwards at speed v. Do not confuse this
velocity with the average neutron speed v,,,;, Which enters into z. If the sphere is of
density p(f) and total mass M, its total kinetic energy will be
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1 2
Kore = EMVZ = ({) PV, (2.60)

Now invoke the work-energy theorem in its thermodynamic formulation
W = P(#)dV, and equate the work done by the gas (or radiation) pressure in changing
the core volume by dV over time dt to the change in the core’s kinetic energy over that
time:

dV. dK ore
P(t) —=———. 2.61

(1) — o (2.61)
To formulate this explicitly, write dK_,,../dt = (2n/3)pr3(2vdv/dt) from (2.60),

put dV/dt = Anr? (dr/dt), and incorporate (2.59) to give

dv 3P0 (a/7)t
—=(—) %7 2.62
dt (ﬂr)e 262)

To solve this for the radius of the core as a function of time we face the problem
of what to do about the fact that both p and r are functions of time. We deal with this
by means of an approximation.

Review the discussion regarding core expansion following (2.55) above. As the
core expands, its density when it has any general radius r will be p(r) = Cpo(Ro/r)3,
and criticality will hold until such time as pr=p,R,, or, on eliminating p,
r=C" 2RO. We can then define Ar, the range of radius over which criticality holds:

Ar = Fsecond = Tinitial = (C1/2 - C1/3) R,, (2.63)

criticlity

a result we will use shortly.

Now, since r;=C"’R,, (PP initial = c 3(P0Ro)- For C =2 (for example), this
gives (P)inital = 1.26(p,R,). At second criticality we will have (pr)..i = (p.R,), SO
(Pr)cric and (p7)iniiar do not differ very greatly. In view of this, we assume that the
product pr in (2.62) can be replaced with a mean value given by the average of the
initial and final values of pr:

(or) = % (1 + c1/3) p.Ro. (2.64)

We can now integrate (2.62) from time 7= 0 to some general time 7 to determine
the velocity of the expanding core at that time:

t

0= (G5) = GE)er o

where it has again been assumed that ¢/*”" > > 1.
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The stage is now set to compute the amount of time that the core will take to
expand through the distance Ar of (2.63). Writing v = dr/dt and integrating (2.65)
from r=r; to r;+ Ar for time =0 10 ?iicatiry E1VES

T Ara? (pr) T Ara® (pr)
e (] - ule) e

again assuming "> > 1 and using P, =y N,E¢/a. Notice that we cannot deter-

mine f.;, without knowing the initial neutron density N,. However, since t..;
depends logarithmically on N,, the result is not terribly sensitive to the choice
made for that number; presumably the minimum sensible value is given by assum-
ing one initial neutron.

The energy yield Y is defined to be the energy released to time #,,;,. From (2.58)
and (2.66), this evaluates as

E/N,V Ara? (pr)V  Ara® (pr)Meore
Y = —_— t{,‘l'i = = . 2.67
(Z55 Jexpltar)on] =25 ) (2.67)

Efficiency is defined as the yield as a fraction of the energy which would be
liberated if all of the nuclei in the core fissioned:

Y :Ara2<pr>
ErnV  3yni’Ep

Efficiency = (2.68)

Note that the yield and efficiency do not depend on the initial neutron density.

Now recall the earlier comments regarding how assuming constant values for a
and 7 will lead to overestimating the yield; this should be clear by examining (2.68).
This tendency to overestimate will be somewhat offset by the fact that the core
density p will drop as the core expands, so if we assume that p remains constant at
its initial value during the expansion we would tend to underestimate the efficiency
if a and 7 did in fact remain constant. However, the efficiency depends on the
squares of if @ and 7 and only on the first power of p, so the effects of changing a
and 7 will dominate over that of the changing density.

To help determine what value of y to use, we can compute the total energy
liberated to time #.,;, as in (2.66), and then compute the average energy per particle
by dividing by the number of nuclei in the core, nV. The result is

energy per nucleus v

<at fime 1.4 ) = (efficiency)E;. (2.69)
Even if the efficiency is very low, say 0.1 %, then for E,= 180 MeV the energy

per nucleus would be 180 keV, much higher than the ~2 keV per-particle energy

where radiation pressure dominates over gas pressure. It would thus seem reason-

able to take y = 1/3 in most cases, although y = 2/3 would be more appropriate early

in the explosion process before much energy has been liberated.
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Table 2.2 Criticality and efficiency parameters for C = 1.5, E;= 180 MeV, y=1/3

Quantity Unit Physical meaning 5y 29y
Finitial cm Initial core radius 9.58 7.26
n 102 cm~? Nuclear number density 4794 3.930
a - Criticality parameter o 0.307 0.376
Ro cm Threshold critical radius 8.37 6.345
Ar cm Expansion distance to crit shutdown 0.67 0.51
Efficiency % Efficiency 1.03 1.29
P(t..i) 10" Pa Pressure at crit shutdown 4.73 4.87
Yield kt Explosive yield 12.4 5.6
tiss Hs Time to fission all nuclei 1.67 1.12
terir us Time to crit shutdown 1.54 1.04
N, neutron/m’ Initial neutron density 271.8 622.9

Initial number of neutrons = 1
Secondary neutron energy =2 MeV

Further, it can be shown by substituting (2.66) into (2.59) and (2.65) that the core
velocity and pressure at the time of second criticality are given by

A
V(tc'/‘it) = il s (270)
T
and
P(teri) _ @ Aripr) (2.71)
crit) — 31_2 . .

Curiously, this pressure does not depend on the value of y.

Numbers for uranium and plutonium cores of C = 1.5 bare threshold critical
masses appear in Table 2.2. Secondary neutrons are assumed to have E =2 MeV,
and it is assumed that the initial number of neutrons is one.

The timescales and pressures involved in the detonation process are extreme.
Criticality shuts down after only 1-2 ps; a pressure of 10'° Pa is equivalent to about
10 billion atmospheres. Even though t,;/t55,~ 0.9, the efficiencies are low: small
changes in an exponential argument lead to large changes in the results. In the case
of U, changing the initial number of neutrons to 1,000 changes the fission and
criticality timescales by only about 10 %, down to 1.47 and 1.34 ps, respectively.
Also, the comment following (2.56) that ¢**" can be assumed to be much greater
than unity for the timescale of interest can now be appreciated from the fact that
(@Dt erin~50: €0~ 107",

Spreadsheet CriticalityAnalytic.xls carries out these efficiency and yield cal-
culations for an untamped core. In addition to the parameters already entered for the
calculations of the preceding two sections, the user need only additionally specify
an initial number of neutrons, a value for y, and the mass of the core. The “Goal
Seek” function is then run a third time, to solve (2.30) and (2.31) for the value of a.
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The spreadsheet then computes and displays quantities such as the expansion
distance to second criticality, the fission and criticality timescales, the pressure
within and velocity of the core at second criticality, and the efficiency and yield.

When applied to a bare 64 kg **°U core (C=1.39), CriticalityAnalytic.xls
indicates that the yield will be about 6.3 kt; Eq. (2.63) indicates the core-expansion
distance to second criticality is Ar=0.53 cm. This yield figure is not directly
comparable to the true ~13 kt yield of Little Boy, however, as that device was
tamped; a more realistic simulation of Little Boy that incorporates a tamper is
discussed in the next section.

How drastically does this analysis tend to overestimate efficiency? In Sect. 2.5 a
program is described which carries out a time-dependent simulation of a tamped
core. Applying this program to a >**U core of mass 68.8 kg (C = 1.5, exactly) with
no tamper gives a predicted yield of only about 0.29 kt, about 1/40 of the analytical
result of 12.4 kt! The reason for this drastic discrepancy is explored further at the
end of Sect. 2.5. In the meantime, there is a moral here: Beware of the danger of
blindly applying an impressive-looking formula.

It is important to emphasize that the above calculations cannot be applied to a
tamped core; that is, one cannot simply solve (2.47) and (2.48) for a core of some
specified mass and tamper of some outer radius and use the value of a so obtained in
the time and efficiency expressions established above. The reason for this has to do
with the distance Ar through which the core expands before second criticality,
Eq. (2.63) above. This expression derived from the fact that the criticality equation
for the untamped case involves the density and radius of the core in the combination
pr; in the tamped case the criticality condition admits no such combination of
parameters, so the subsequent calculations of criticality timescale and efficiency do
not transform unaltered to using a tamped core. Efficiency in the case of a tamped
core can only be established numerically.

To close this section, we compare the efficiency formula derived here to what
was probably the first recorded formulation of the energy expected to be liberated
by a nuclear weapon. This appeared in a document which has come to be known as
the Frisch-Peierls Memorandum. This remarkable 7-page manuscript was prepared
by Otto Frisch and Rudolf Peierls in March, 1940, to alert British government and
military officials to the possibly of creating extremely powerful bombs based on
utilizing a chain reaction in uranium; the title of their memo was “On the construc-
tion of a “super-bomb”, based on a nuclear chain reaction in uranium.” Their work
was remarkably prescient: They discuss how a chain reaction could not happen in
ordinary uranium, raised the possibility of bringing together two subcritical pieces
of pure 235U to create a supercritical mass, discussed how neutrons in cosmic
radiation could be used to trigger the device, described how ***U could be isolated
by diffusion, and remarked that such a device would create significant radioactive
fallout. Copies of the memorandum can be found in many online sites; a printed
copy appears in Serber (1992). Readers are warned, however, that many reprintings
contain various typographical errors. A detailed analysis of the physics involved in
the memorandum is presented by Bernstein (2011), who also describes the errors.
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The only mathematical formula appearing in the Frisch-Peierls memorandum is
one for the expected yield of an untamped weapon. In terms of the notation of this
book, this appears as

Y = 0.2Meore(Reore/7) (\/Rm,.g R, — 1). (2.72)

This looks almost completely unlike the present yield formula, (2.67). However,
the latter can be transformed into (2.72) in a few steps via some sensible approx-
imations. First, write the core volume or mass in (2.67) in terms of the core radius;
also, set y = 1/3. These manipulations give

_4zR}, a*Ar{pr)

Y Lore 2.73
3172 ( )
Now consider the product Ar{pr). From (2.63) and (2.64),
1
Arpr) =3 (c‘/z - c‘/3) (1 n c1/3) p.R2. (2.74)

In the second bracket in this expression, make the approximation that C'*~1 to
give (1+C 133) ~ 2. This is reasonable as that bracket contains the sum of two similar
quantities. We do not make this approximation within the first bracket, however, as
it contains the difference of two similar quantities. In this case, extract a factor of
C'? from within the bracket and write it as C'* =R,,,./R,. The factor of C'/°
remaining within the first bracket can then be written as /R o /R,. Thus, (2.74)
becomes

Ar(pr) ~ (\/Rw,,e /R, — 1) puRoReore- (2.75)

On substituting this into (2.73), we can write 4zR> _p,/3 =M., and the yield
becomes

Y ~ azMz:are (RoRcore/Tz) ( V Rz:are/Ro - 1) . (276)

Finally, it is not unreasonable to make the approximation R..,,. R,~R? . and so

core’®
arrive at
Y ~ @M ore(Reore /T)z(m _ 1), (2.77)

precisely the form of the Frisch-Peierls formula. They evidently took @ =0.2. On
considering that we just found @;,;;. = 0.307 for 1.5 critical masses of 25U, their
estimate was reasonable. Frisch and Peierls must have worked out the relevant
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diffusion and criticality theory “in the background” before composing their mem-
orandum. Indeed, Peierls was a master theoretical physicist very familiar with
diffusion problems; in Sect. 2.6 we will examine a formulation of criticality that
he had published in the fall of 1939, several months before he teamed up with Frisch
to produce their now-famous memorandum.

2.5 Estimating Bomb Efficiency: Numerical

In this section, a numerical approach to estimating weapon efficiency and yield is
developed. The essential physics necessary for this development was established in
the preceding three sections; what is new here is how that physics is used. The
analysis presented in this section is adopted from Reed (2010).

The approach taken here is one of standard numerical integration: The parameters
of a bomb core and tamper are specified, along with a timestep Az. At each timestep
the energy released from the core is computed, from which the acceleration of the
core at that moment can be determined. The velocity and radius of the core can then
be tracked until such time as second criticality occurs, after which the rate of fissions
will drop drastically and very little additional energy will be liberated.

The integration process involves eight steps:

(i) Fundamental parameters are specified: The mass of the core, its atomic
weight, initial density, and nuclear characteristics oy, 6., and v. Similarly,
the atomic weight, density, initial outer radius (and hence mass) and elastic-
scattering cross-section of the tamper are specified. The energy release per
fission Ey and gas/radiation pressure constant y are set. A timestep At also
needs to be chosen; this is discussed below. The initial number of neutrons
also has to be specified as this value enters into the fission rate and energy
release at each timestep in steps (iv) and (v) below.

(ii) Elapsed time, the speed of the core, and the total energy released are initialized
to zero; the core radius is initialized according as its mass and initial density.

(iii) The exponential neutron-density growth parameter « is determined by numer-
ical solution of (2.47) and (2.48).
(iv) The rate of fissions at a given time is computed from (2.55):

N,V
fissions/sec = <—> e/, (2.78)
T

(v) The amount of energy released during time At is computed from (2.57):

T

AE = (NVEf) e IN(AY). (2.79)
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(vi) The total energy released to time ¢ is updated, E(f) = E(¢) + AE, and, from the
discussion following (2.58), the pressure at time ¢ is given by

rE(1)

Pcore(t) = vV (I) .

(2.80)

I use the core volume in (2.80) on the rationale that the fission products which
cause the gas/radiation pressure will likely largely remain within the core.

(vii) A key step is computing the change in the speed of the core over the elapsed
time At due to the energy released during that time. In the discussion leading
up to (2.61), this was approached by invoking the work-energy theorem:

dV('UI'C‘ dKCOI’E
P(0) e dr

(2.81)

To improve the veracity of the simulation, it is desirable to account, at least in
some approximate way, for the retarding effect of the tamper on the expansion of
the core. To do this, I treat the dK/dt term in (2.81) as involving the speed of the core
but with the mass as the sum of the core and tamper masses. The dV/dt term is taken
to apply to the core only. I treat the tamper as being of constant density, which is
effected by recomputing its outer radius at each step; the inner edge of the tamper is
assumed to remain snug against the expanding core. With r as the radius and v the
speed of the core, we have

14 E (’) dvmre _ detal
Veore (t) dt N dt

yE(1) ,dr 1 dv
. == _M a 2 7 K
Veore(t) T o Mhroral | <V

from which we can compute the change in expansion speed of the core over time At
as

dnr*yE (Z)}
Av = |[————=| (A?). 2.82
|:V(for'e M total ( ) ( )
With this, the expansion speed of the core and its outer radius are updated
according as v(¢) = v(f) + Av and r(f) = r(f) + v(¢)At. The outer radius of the tamper
is then adjusted on the assumption that its density and mass remain constant.

(viii) Increment time according as = ¢+ At and return to step (iii) to begin the next
timestep; continue until second criticality is reached when a=0. At the
beginning of each timestep, update the core density to reflect its increased
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radius; this will concomitantly demand updating the nuclear number density
of the core, its fission and transport mean-free paths, and the neutron travel-
time between fissions, Egs. (2.15), (2.16), and (2.21).

The assumption that the density of the tamper remains constant is probably not
realistic. Nuclear engineers speak of the “snowplow” effect, where high-density
tamper material piles up just ahead of the expanding core/tamper interface. But the
point here is an order-of-magnitude pedagogical model.

This author has developed a FORTRAN program for carrying out this simulation;
the code and an accompanying user manual are available at the companion website.

What of the timestep At ? In setting this, it is helpful to appreciate that it is not
necessary to start a simulation at £ =0. From (2.79), little energy will be released
while (a/7)t is small. An example using U-235 will help make this clear. With
7~8.64 x 10~ s (Table 2.2). and, say, a~0.5, then (a/7) ~5.8 x 10" s, Starting a
simulation at = 10"% s should thus sacrifice no accuracy. However, the choice of a
timestep Af is a sensitive issue as the rate of energy release grows exponentially at
later times. For a function of the form y=exp[(a/7)f], the fractional change in
y over a time Ar will be dy/y = (a/t) At; to have dy/y be small suggests adopting a
value of At no larger than the inverse of (a/r), which is about 1.7 x 1078 s.
Consequently, all of the results described in what follows utilized a starting time
of 10 8sand Ar=5x 1071° s; a run to a final time of 1.1 microseconds would then
involve nearly 2,200 timesteps. With this value of At, dy/y ~0.029.

2.5.1 A Simulation of the Hiroshima Little Boy Bomb

Using the parameters for the Little Boy bomb given in Sect. 2.3 (64 kg core of radius
9.35 cm plus a 311 kg tungsten-carbide tamper of outer radius 18 cm), the following
results were obtained with the author’s program. The initial number of neutrons was
set to be one.

Figure 2.10 shows the run of a(r) for this situation: it behaves linearly over the
expansion of the core to second criticality at a radius of 12.29 cm. This represents
an expansion distance of Ar=2.94 cm from the initial core radius of 9.35 cm. As
remarked earlier, for an untamped 64 kg core, (2.63) predicts a value for Ar of only
0.53 cm; a tamper significantly affects the expansion distance over which criticality
holds.

Figures 2.11 and 2.12 show a, the core radius, the integrated energy release, and
the fission rate and pressure as functions of time. While a decreases with increasing
radius, the initial increase in radius is so slow that « remains close to its initial value
until just before second criticality. The brevity and violence of the detonation are
astonishing. The vast majority of the energy is liberated within an interval of about
0.1 ps. The pressure peaks at about 4.2 x 10'° Pa, or about 40 billion atmospheres,
equivalent to about one-fifth of that at the center of the Sun. The fission rate peaks at
about 3.5 x 10°! per second. Second criticality occurs at 1~ 1.07 ps, at which time
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the core expansion velocity is about 270 km/s. These graphs dramatically illustrate
what Robert Serber wrote in The Los Alamos Primer: “Since only the last few
generations will release enough energy to produce much expansion, it is just
possible for the reaction to occur to an interesting extent before it is stopped by
the spreading of the active material.”
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Fig. 2.13 Yield of a 64-kg 16
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The predicted yield of Little Boy from this simulation is 11.8 kt. Officially
published yield estimates, are, however, quite variable. A 1952 Los Alamos report
on the Hiroshima bombing, http://www.fas.org/sgp/othergov/doe/lanl/la-1398.pdf,
gives a yield of 18.5+5 kt. A later analysis published by Penney et al. (1970)
reduced this estimate to ~12-kt, close to the present result. At a fission yield of
17.59 kt per kg of pure U-235 (180 MeV/fission), this represents an efficiency of
just over 1 % for the 64-kg core. While some of this agreement must be fortuitous in
view of the approximations incorporated into the present model, it is encouraging to
see that it gives results of the correct order of magnitude. If the number of initial
number of neutrons is increased to 100, the yield rises to 12.8 kt; 200 neutrons
yields 13.0 kt.

Figure 2.13 shows how the simulated yield of a 64-kg core varies as a function of
tamper mass; the points are the results of simulations for tampers of outer radii of
12, 13, ... 17, 17.5, 18, 18.5, and 19 cm. In the latter case the mass of the tamper
would be about 375 kg, or just over 800 Ib. A linear fit to Fig. 2.13 shows that the
effect of increasing tamper can be expressed approximately as

d (Yield kt
d (Yield) 639 K (2.83)
dmtamp kg

Of course, we would expect this curve to eventually level off to the theoretical
maximum Yyield as the tamper mass becomes very great.

It was remarked in Sect. 2.4 that a simulation of an untamped U-235 core of mass
68.8 kg (C = 1.5 bare critical masses) results in a yield of only 0.287 kt, about 1/40 that
predicted by Eq. (2.67). Why are these predictions so wildly discrepant? The culprit
proves to be that in deriving (2.67), the criticality factor & was assumed to be constant.
Look back to Fig. 2.11, which shows that once «a begins to decline appreciably, very
little additional yield occurs. In assuming that @ remains constant until the core reaches
second criticality, (2.67) consequently seriously overestimates the yield. Some numbers
for the 68.8-kg simulation are instructive. The initial core radius in this case is
9.575 cm, and the initial value of a is 0.3062. The second-criticality radius is


http://www.fas.org/sgp/othergov/doe/lanl/la-1398.pdf
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10.245 cm (Ar=0.67 cm), but by the time that the radius has expanded to only
9.607 cm (an increase of only 0.336 %), fully 90 % of the final yield has already
been realized. By this point a has dropped by only about 4.5 % from its initial value, but
the reaction has already begun shutting down (It is true that Fig. 2.11 is a tamped-core
simulation, but the behavior of « is very similar for an untamped case).

Can (2.67) be modified to account for this problem? Here is a straightforward
approach: When integrating (2.65) to determine the time to second criticality, replace
the upper limit of integration r; + Ar with (1 +f), where f'is the fractional increase in
the core radius corresponding to that time at which you think the reaction begins
shutting down; for example, for the above numbers, f= 0.0034 corresponds to 90 %
energy release. Carrying out the integral shows that yield emerges as (2.67) except
that the factor of Ar in the numerator is replaced with fi;. For the present case of
r;=9.575 cm and f=0.00336, this modification predicts a yield of 0.597 kt, just
twice the simulation result. There is obviously no preferred value of f to use, but this
artifice removes much of the discrepancy in a straightforward way.

To close this section, a dose of perspective: Do not be too upset that Eq. (2.67) is
not very accurate. It pertians to an untamped core, and any serious bomb-maker will
incorporate a tamper. Ultimately, numerical analyses are what tell the tale of
efficiency and yield. Also, treat this discrepancy as a valuable lesson. Analytic
results have a compelling attractiveness and are powerful for getting a sense of how
something depends on the parameters involved, but always be prepared to question
the validity of underlying assumptions.

2.6 Another Look at Untamped Criticality: Just One
Number

In Sect. 2.2, we saw that the criticality condition for threshold criticality (@ = 0) for
an untamped core can be expressed as [Egs. (2.30) and (2.31)]

xcot(x) +ex—1=0, (2.84)

1 3% 1| 3
P 25

Once the nuclear parameters oy, ., and v are set, (2.84) is solved numerically for
x, from which the critical radius R follows from (2.26):

R=dx= |- =" 2.
dx \/3(v1)x n\/30'fo',(vl)x (2.86)

The critical radius is fundamentally set by oy, 6., v, and n; our concern here will
be with the first three of these variables.

with
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Since these various quantities will be different for different fissile isotopes, it
would appear that there is no general statement one can make regarding critical radii.
However, oy, 6., and v can be combined into one convenient dimensionless variable
that dictates the critical radius in any particular case—the “just one number” of the
title of this section.

As formulated, (2.84) and (2.85) are convenient in that both x and e are
dimensionless, but they are awkward in that € is not bounded: If v is very large, ¢
will approach zero, but as v — 1, € diverges to infinity. It would be handy to have
some combination of o5, 6., and v that is finitely bounded. Such a combination was
developed by Peierls (1939) in a paper which was the first publication in English to
explore what he termed “criticality conditions in neutron multiplication.” He
defined a dimensionless quantity & given by

—1
poolv=b (2.87)
Oel T Vor

For 1 <v < o0, 0 <£< 1. Note that it is the elastic-scattering cross-section o,;
that appears in the denominator of this definition, not the transport cross-section
6, =0, t0f.

If (v —1) is eliminated between (2.85) and (2.87), € and & prove to be related as

e= %(g}z— 1). (2.88)

Similarly, if (v —1) is extracted from the definition of d in (2.86) and substituted

into (2.87), then one finds
1/1

A general formulation of critical radii can now be made as follows: For a range
of values of £ between 0 and 1, (2.84) and (2.88) can be solved for x. For each
solution, (2.86) and (2.89) show that the ratio of R to 4, can be expressed purely as a
function of &:

F=x@d© =03 (1) (2.90)

In other words, a graph of x(&) d(&) =R/A, vs. £ can be used to immediately
indicate the ratio of the untamped threshold critical radius to the transport mean free
path for any combination of oy, ¢,;, and v values. The advantage of this approach is
that the graph need only be constructed once.

Figure 2.14 shows R/, as a function of £. For 235U and **’Pu, £~0.5084 and
0.6221, and R/4,~2.33 and 1.54, respectively. It is intuitively sensible that for small
values of ¢ (that is, for v — 1), the critical radius will be large, and vice-versa.
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Fig. 2.14 Ratio of 7
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An important aspect of Peierls’ analysis is that it provides an independent check
on the diffusion method of analyzing critical mass that has been used throughout
this chapter. Peierls showed that his analysis led to approximate analytic solutions
for the critical radius R in two limiting cases: £ — 0 and £ — 1. These are given by

1 [05528+02168 (&—0)
PR {0.78 1.02(1 —¢&) (£—1), (2.91)
where

B =n(oa+voy). (2.92)

p is identical to the denominator of (2.87) but for a factor of the nuclear number
density n.

PR can be expressed in terms of x and £ through the following manipulations.
First, from (2.88) and (2.89) we can write d = 21,&/3. With this result we can write
x=R/d as x=3R/(2 4,¢). By eliminating o (v-1) between (2.85) and (2.87), we can
show that A,=3/(4p & ) Substituting this result into the expression for x then
shows that

1 28%

R x (2.93)

We can compare the results of Peierls’ approach to those of diffusion analyses in
much the same way as Fig. (2.14) was constructed: For a range of values of &
between zero and one, solve (2.84) and (2.88) for x, which can be translated to
1/(BR) through (2.93) and then compared to the predictions of (2.91). Figure 2.15
shows the results of such an analysis for 0.1 <& <0.9. It is reassuring to see that the
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results of the diffusion analysis do not differ markedly from those of Peierls, This is
particularly true for small values of &, where the core will be large and we expect
diffusion theory to be accurate; curiously, the diffusion approach overestimates the
critical radius for &€ — 1. For *°U, (2.91) predicts critical radii of 7.93 cm (& — 0)
and 9.57 cm (£ — 1). These radii correspond to masses of 39-69 kg, which bracket
the diffusion result of 46 kg. For *Pu the Peierls-estimates masses evaluate as 13.4
and 17.0 kg, which again bracket the diffusion result of 16.7 kg.

2.7 Critical Mass of a Cylindrical Core (Optional)

In Sect. 2.4 it was pointed out that the core of the Little Boy bomb was cylindrical in
shape. It is consequently natural to wonder how that shape affects the calculation of
critical mass presented in Sect. 2.2, which was done for a spherical core.

It is difficult to analyze the situation for a cylindrical core because the boundary
condition (2.29) that was used for the neutron diffusion equation in the spherical case,

N(Re) = — % @’;’) g (2.94)

is not easily generalized to the cylindrical case. However, if we are willing to admit
a cruder boundary condition, much headway can be made with the cylindrical case.
This is done in this section. This derivation can be considered optional as we
consider only spherical cores in any subsequent section where the core geometry
is relevant, such as in the analysis of predetonation in Chap. 4.

The cruder boundary condition is that the neutron density N is assumed to drop
to zero at the surface for a cylinder of critical size. This situation is considered for a
sphere and a cube in Exercises 2.11 and 2.4, respectively, where it is found that the
critical volumes are


http://dx.doi.org/10.1007/978-3-662-43533-5_4
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4
Viphere = (gn“)oﬁ =129.94° (2.95)
and
Vo = (37 )& = 1611, (2.96)

where d is the characteristic length (2.25), which for threshold criticality (o = 0) has the
form

Af }'t

=150y

(2.97)

For 235U, d is about 3.5 cm.

Before beginning the formal solution, a few remarks on the diffusion equation in
cylindrical coordinates are appropriate. Reactor engineers have been dealing with
neutron fluxes in cylindrical geometries for decades, so the mathematics here,
which involves so-called Bessel functions, is not new. Bessel functions show up
in a number of areas of mathematical physics such as quantum mechanics (the
infinite cylindrical quantum well), acoustics (vibrations of drumheads), optics
(diffraction through circular apertures) and electromagnetism (waveguides). Their
appearance in criticality calculations illustrates connections between very different
areas of physics.

We begin with the general neutron diffusion equation of Appendix G:

87N _ vl‘[["l,{t
ot - lf

AtVneut

(v—1)N + (V°N). (2.98)

The goal here is to apply this to the neutron population within a cylinder of
radius R and length L as illustrated in Fig. 2.16. The bottom of the cylinder is
imagined to by lying in the xy plane, with its center at (x, y) = (0,0).

The separation of the diffusion equation into time and space-dependent parts
proceeds as in Sect. 2.2; the temporal dependence is not of interest to us here as we
seek to determine the threshold-critical condition. The spatial part of the neutron
density N will be a function of the cylindrical coordinates (p, ¢, z), and is assumed
to be separable as

Nop:(ps #,2) = Ny(p)Ng(¢)N-(2). (2.99)
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The Laplacian operator in cylindrical coordinates is

1O [ ONps\ 1 0Ny +32Nn¢z
p Op op pr 0’ 02

VN, = (2.100)

On substituting (2.99) and (2.100) into (2.98) and dividing through by N ., the
spatial part of the diffusion equation appears, in analogy to (2.24), as

11 0 <pazv,,> 1 °N, 1 9°N.

& Npop\" ) TN, o TN, 02

e =0. (2.101)

The solution of (2.101) proceeds as does that of any separated differential
equation. First, take the z-term to the right side of the equal sign:

2 2
11 a<aNp> 1 O°Ny 19N, 2.10)

E N, p\" 0 ) TN, 3 T N, 02

Since z is independent of p and ¢, (2.102) can be true only if both sides are equal
to a constant. This separation constant is traditionally defined to be + k?, that is,

1 0°N,
— 3 2.103
N, 92 : ( )

The solution of this differential equation is
N.(z) = Ae™ + Be %7, (2.104)

a result to which we will return presently.
Return to the left side of (2.102) and equate it to + k. Then multiply through by
p? to clear that factor from the denominator of the ¢ term, move the ¢ term to the
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right side, and move the resulting kfp2 term to the left side to effect another level of
separation:

p 0 aN/,> (1 2) ) 1 0°Ny
LS — - )= —— : 2.105
N, 3p (” ) \@ %) TN, o (2.105)

As with (2.102), (2.105) can only be true if both sides are equal to a constant,
which can be written as + ké. This renders the ¢-dependence as

1 O°N,
— — 2, 2.106
Ny 0¢? ¢ (2.106)
which has the solution
Ny(¢p) = Ce™#?  De o7, (2.107)

Now return to the left side of (2.105). Equate it to ké and expand the derivative.
This gives the radial dependence of the neutron density as

o’N ON 1
o) [Goepthos o

If we now define

1
K= (? - kj) (2.109)
and establish the dimensionless variable
X =Kp, (2.110)
(2.108) becomes
0°N ON,
2 x X 2 2 _
53 +x( ax>+(x —k(/))NX—O. (2.111)

(Note that x here is not the Cartesian-coordinate x, it is just a variable). Equation
(2.111) is Bessel’s equation of argument x and order k. Solutions to this physically
important differential equation can be found in any good textbook on mathematical
physics. However, we will not need to examine the detailed solutions; our interest is
in satisfying the boundary condition that at the surface of the cylinder, N(edge) =0.

Consider first the z-direction. In (2.104), we must demand N.(0) =0 and N.(L) =
0. The first of these demands that A+ B =0, or B = —A; this gives
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N.(z) = A(e" — e, (2.112)

which is equivalent to
N.(z) = 2:1Asin (k,z). (2.113)

Now consider the condition N,(L)=0 applied to (2.113). This requires
sin(k.L) =0, which can only be satisfied if k.L is equal to an integer times z:
nr

sin(kL) =0 = k=" (2.114)

Now consider the ¢-direction, where we have (2.107):
Ny(p) = Ce*#? 4 De 49 (2.115)

Since there is no “edge” to the cylinder in the ¢-direction it is not immediately
obvious what we should do with this expression. But the separation constant k4 does
appear in the radial Eq. (2.111), so we do need to pin it down somehow.

The condition to be applied to N arises from the fact that ¢ is a so-called cyclic
coordinate: If the value of ¢ is changed by adding any integral multiple of 2z
radians, then one has returned to the same direction from whence one began. We
can express this by demanding that

Ny(p) = Ny(¢ + 27), (2.116)
or, more explicitly,
Ce™? 4 De~hvb = Ceto#+27) 4 pemike(d+2m), (2.117)
This can be rewritten as
Ce™? 4 De 19 = Ce*v? (240  De "7 (¢34, (2.118)

This can only be satisfied if etk — 1, that is, if
cos (2mky) £ 1sin (27ky) = 1. (2.119)
This expression will only be satisfied if
ky =0,1,2,3, .... (2.120)

That ¢ is cyclic has led to the restriction that the order of our Bessel equation
must be an integer.
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With k, now established (at least to some extent), we can begin to get to the issue
of the length and radius of a threshold-critical core. Return to the radial Eq. (2.111):

2
20N, +x<8Nx> n (xz _ ké)Nx —0. (2.121)

0x2 Ox

The length L of the core appears explicitly in k,, which is incorporated into this
expression through « and x.

To determine when criticality is achieved, we need to know what value(s) of
x will just render (2.121) satisfied for a given value of the order ky; this will dictate
the critical radius p through (2.110). For a given choice of kg, there prove to be an
infinitude of values of x that make this so; these values are known as the zeros of
Bessel’s equation for order ky and are extensively tabulated in many sources. In
general, the values of the zeros increase monotonically within a given order, and the
value of the m’th zero (m=1, 2, 3, ...) also increases monotonically as a function
of order number. The m’th zero for some order k is commonly designated as Jy,,;
order numbers start at k=0. In general, then, we will have criticality when x is
equal to some zero Jy,,, or, on combining (2.109), (2.110), and (2.114), when

1 2 o\ 1/2
(?—”L—’;) R=1Ju, (2.122)

where the radius p has been written as R. The volume of the core is 7R’L. We can
solve (2.122) for R and express the volume entirely in terms of L:

nJ? d*L

Verie =

The lowest possible critical volume will obtain for the lowest possible value of

J i and the lowest possible value for n; we can choose these independently of each

other as they arose from different separation constants. As for n, the lowest

acceptable value is n=1; n=0 would not do as it would render N,(z) =0 every-
where throughout the core, not just at its edge [see (2.113) and (2.114)]. The lowest-

valued zero Jy,, is Jo; = 2.40483, that is, the first zero for the Bessel equation of
order zero. This corresponds to k=0, which is physically acceptable as it renders
N4 equal to a constant [see (2.115)]. The minimum critical volume then becomes

k&L

Verie = (142——71'2612) .

(2.124)

An interesting physical consequence here is that there is a minimum length
required for the denominator of (2.124) to be positively-valued:
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This result is intuitively appealing on the rationale that if the core is not long
enough, too many neutrons will escape and criticality cannot be obtained. For **°U,
this critical length evaluates as about 11.04 cm.

The least possible critical volume is found by determining the value of L that
minimizes (2.124). This proves to be

Ve
oL

=0 = L=+/3nd, (2.126)

which, when back-substituted into (2.124) gives

33/2
Vinin = (Tnzf(%l)cﬁ = 148.34°. (2.127)

For 23U, this corresponds to a mass of about 121 kg. This result lies between
those quoted at the beginning of this section for a sphere and a cube. The ratios of
the critical volumes go as

Viphere : Veyt : Veupe = 11 1.142 : 1.241. (2.128)

The penalty for using a Little Boy-type core instead of a sphere is thus only about
a 14 % increase in mass.

Figure 2.17 shows the critical mass and cylinder radius corresponding to a given
choice of L in (2.122) and (2.124) for our usual parameters for B3U: (6 Ceps v, p) =
(1.235 bn, 4.566 bn, 2.637, 18.71 gr/cm3). The minimum critical mass corresponds
to a length of about 19.2 cm and a radius of about 10.3 cm—a cylinder almost as
long as it is wide.
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