
Chapter 2
Introduction to DEA

Data envelopment analysis (DEA), a “data-oriented” approach to evaluate the
performance of a set of peer entities, has been widely used since it was first invented
by Charnes. This is followed by a series of theoretical extensions. See Banker
et al. [1], Charnes et al. [3], Petersen [12], Tone [14], and Cooper [6].

Our focus in this chapter is on basic DEA models for measuring the efficiency of
a DMU relative to similar DMUs in order to estimate a “best practice” frontier.
The initial DEA model, originally presented in Charnes et al. [2], was built on
the earlier work of Farrell [10]. After that, more than 4,000 relevant articles have
been published. Such rapid growth and widespread acceptance of the methodology
of DEA is testimony to its strength and applicability. Researchers in a number of
fields have quickly recognized that DEA is an excellent methodology for modeling
operational processes, and its empirical orientation and minimization of a priori
assumptions have made possible use in a number of studies involving efficient
frontier estimation in the nonprofit sector, the regulated sector, and the private
sector.

At present, DEA actually encompasses a variety of alternate approaches to
performance evaluation. Extensions to the original CCR work have facilitated
a deeper analysis of both the “multiplier side” from the dual model and the
“envelopment side” from the primal model of the mathematical duality structure.
Properties such as isotonicity; nonconcavity; economies of scale; piecewise linear-
ity; discretionary, categorical variables; and ordinal relationships can also be treated
through DEA.

In recent years a great variety of applications of DEA have been proposed. These
DEA applications have used DMUs in various forms to evaluate the performance
of such entities as hospitals, US Air Force wings, universities, cities, courts, and
business firms, as well as the performance of countries, regions, etc.

This chapter will present a literature review on DEA, including the funda-
mental concept of DEA, frequently used DEA models, and the DMU efficiency
definitions.
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46 2 Introduction to DEA

2.1 Symbols and Notations

In DEA, the organization under study is called a DMU (decision-making unit). The
definition of DMU is rather loose to allow flexibility in its use over a wide range
of possible applications. Generically a DMU is regarded as the entity responsible
for converting inputs into outputs and whose performances are to be evaluated.
In managerial applications, DMUs may include banks, department stores, and
supermarkets and extend to car makers, hospitals, schools, public libraries, and so
on. In engineering, DMUs may take such forms as airplanes or their components
such as jet engines. For the purpose of securing relative comparisons, a group of
DMUs is used to evaluate each other with each DMU having a certain degree of
managerial freedom in decision making.

Suppose there are n DMUs and the symbols and notations are listed as follows:

DMUi : the i th DMU, i D 1; 2; � � � ; n
DMU0: the target DMU
xi D .xi1; xi2; � � � ; xip/: the inputs vector of DMUi , i D 1; 2; � � � ; n
x0 D .x01; x02; � � � ; x0p/: the inputs vector of the target DMU0

y i D .yi1; yi2; � � � ; yiq/: the outputs vector of DMUi , i D 1; 2; � � � ; n
y0 D .y01; y02; � � � ; y0q/: the outputs vector of the target DMU0

u 2 Rp�1: the vector of input weights
v 2 Rq�1: the vector of output weights

2.2 CCR Model

This section deals with one of the most basic DEA models named CCR model,
which was initially proposed by Charnes et al. [2] in 1978:
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:

max
u;v

� D vTy0

uTx0
subject to:

vT yj � uTxj ; j D 1; 2; � � � ; n
u � 0

v � 0:

(2.1)

The constraints mean that the ratio of “virtual output” vs. “virtual input” should
not exceed 1 for every DMU. The objective is to obtain the ratio of the weighted
output to the weighted input weights. By virtue of the constraints, the optimal
objective value �� is at most 1. Mathematically, the nonnegativity constraint is
not sufficient for the fractional terms to have a positive value. We do not treat
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this assumption in explicit mathematical form at this time. Instead we put this in
managerial terms by assuming that all outputs and inputs have some nonzero worth
and this is to be reflected in the weights v and u being assigned some positive value.

Given the data, we measure the efficiency of each DMU once and hence need n
optimizations, one for each DMU to be evaluated.

Definition 2.1 (CCR Efficiency). DMU0 is CCR-efficient if �� D 1 and there
exists at least one optimal u� > 0 and v� > 0.

We now replace the above fractional program (FP) by the following linear
program (LP):
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max
u;v

� D vTy0

subject to:
uTx0 D 1

vTyj � uTxj � 0; j D 1; 2; � � � ; n
u � 0

v � 0:

(2.2)

Theorem 2.1. The fractional program (2.1) is equivalent to the linear
program (2.2).

The dual problem of the linear program (2.2) is expressed with a real variable �
and a nonnegative vector � D .�1; �2; � � � ; �n/ of variables as follows:
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� D min �
subject to:

nP

jD1
xij �j � �xi0; i D 1; 2; � � � ; p

nP

jD1
yrj �j � yr0; r D 1; 2; � � � ; q

�j � 0; j D 1; 2; � � � ; n:

(2.3)

This model (2.3) is sometimes referred to as the “Farrell model” because it is
the one used in Farrell. In the economics portion of the DEA literature, it is said
to conform to the assumption of “strong disposal,” but the efficiency evaluation it
makes ignores the presence of nonzero slacks. In the operations research portion of
the DEA literature, this is referred to as “weak efficiency.”

The dual model (2.3) has a feasible solution �� D 1; ��
0 D 1; ��

j D 0 .j ¤ 0/.
Hence the optimal value �� is not greater than 1. The optimal solution, ��, yields
an efficiency score for a particular DMU. The process is repeated for each DMUj ,
j D 1; 2; � � � ; n. DMUs for which �� < 1 are inefficient, while DMUs for which
�� D 1 are boundary points.
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Some boundary points may be “weakly efficient” because we have nonzero
slacks. This may appear to be worrisome because alternate optima may have
nonzero slacks in some solutions, but not in others. However, we can avoid being
worried even in such cases by invoking the following linear program in which the
slacks are taken to their maximal values:
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max
mP

iD1
s�
i C

sP

rD1
sC
r

subject to:
nP

jD1
xij �j C s�

i D ��xi0; i D 1; 2; : : : ; p

nP

jD1
yrj �j � sC

r D yr0; r D 1; 2; : : : ; q

�j � 0; j D 1; 2; � � � ; n
s�
i � 0; i D 1; 2; � � � ; p
sC
r � 0; r D 1; 2; � � � ; q

(2.4)

where we note the choices of s�
i and sC

r do not affect the optimal ��, which is
determined from model (2.3).

These developments now lead to the following definitions based upon the
“relative efficiency” in Definition 2.1.

Definition 2.2 (DEA Efficiency). The performance of DMU0 is fully (100 %)
efficient if and only if both (1) �� D 1 and (2) all slacks s��

i D sC�
r D 0.

Definition 2.3 (Weakly DEA Efficiency). The performance of DMU0 is weakly
efficient if and only if both (1) �� D 1 and (2) s��

i ¤ 0 and/or sC�
r ¤ 0 for some i

or r in some alternate optima.

It is to be noted that the preceding development amounts to solving the following
problem in two steps:
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rD1
sC
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subject to:
nP

jD1
xij �j C s�

i D �xi0; i D 1; 2; � � � ; p
nP

jD1
yrj �j � sC

r D yr0; r D 1; 2; � � � ; q
�j � 0; j D 1; 2; � � � ; n
s�
i � 0; i D 1; 2; � � � ; p
sC
r � 0; r D 1; 2; � � � ; q

(2.5)
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where the s�
i and sC

r are slack variables used to convert the inequalities in (2.3) to
equivalent equations. Here, " > 0 is a so-called non-Archimedean element defined
to be smaller than any positive real number. This is equivalent to solving (2.3) in two
stages by first minimizing � and then fixing � D �� as in (2.4), where the slacks are
to be maximized without altering the previously determined value of � D ��.

Alternately, one could have started with the output side and considered instead
the ratio of virtual input to output. This would reorient the objective from max to
min, as in (2.1), to obtain
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� D uTx0

vTy0
subject to:

uTxj � vTyj ; j D 1; 2; � � � ; n
u � " > 0

v � " > 0

(2.6)

where " > 0 is the previously defined non-Archimedean element.
Similar to model (2.2) and (2.5), the input models are as follows:
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u;v

� D uTx0

subject to:
vTy0 D 1

uTxj � vT yj � 0; j D 1; 2; � � � ; n
u � " > 0

v � " > 0;

(2.7)

and

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

max� C "

�
mP

iD1
s�
i C

sP

rD1
sC
r

�

subject to:
nP

jD1
xij �j C s�

i D xio; i D 1; 2; � � � ; p
nP

jD1
yrj �j � sC

r D �yro; r D 1; 2; � � � ; q
�j � 0; j D 1; 2; � � � ; n
s�
i � 0; i D 1; 2; � � � ; p
sC
r � 0; r D 1; 2; � � � ; q

(2.8)

See Cooper et al. [7] for a formal development of this transformation and
modification of the expression for " > 0.
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Table 2.1 CCR DEA model

Envelopment model Multiplier model
Input-oriented

min � � "

�
mP

iD1

s�

i C
sP

rD1

sC

r

�

Subject to:
nP

jD1

xij �j C s�

i D �xi0 i D 1; 2; � � � ; p
nP

jD1

yrj �j � sC

r D yr0 r D 1; 2; � � � ; q
�j � 0 j D 1; 2; � � � ; n

max z D
qP

rD1

�ryr0

Subject to:
qP

rD1

�ryrj �
qP

iD1

viyij � 0

pP

iD1

vixi0 D 1

ur ; vi � " > 0

Output-oriented

max� C "
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iD1

s�

i C
sP

rD1

sC

r

�

Subject to:
nP

jD1

xij �j C s�

i D xi0 i D 1; 2; � � � ; p
nP

jD1

yrj �j � sC

r D �yr0 r D 1; 2; � � � ; q
�j � 0 j D 1; 2; � � � ; n

min q D
pP

iD1

vixio

Subject to:
pP

iD1

vixij �
qP

rD1

�ryrj � 0

qP

rD1

�ryr0 D 1

�r ; vi � " > 0

Here, we use a model with an output-oriented objective as contrasted with the
input orientation in (1.6). However, as before, model (1.9) is calculated in a two-
stage process. First, we calculate �� by ignoring the slacks. Then we optimize the
slacks by fixing �� in the following linear programming problem:
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rD1
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subject to:
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jD1
xij �j C s�

i D xio i D 1; 2; � � � ; p
nP

jD1
yrj �j � sC

r D ��yro r D 1; 2; � � � ; q
�j � 0 j D 1; 2; � � � ; n:

(2.9)

Table 2.1 presents the CCR model in input-and-output-oriented versions, each in
the form of a pair of dual linear programs.

2.3 BCC Model

The input-oriented BCC model proposed by Banker et al. [1] evaluates the efficiency
of DMU0 by solving the following linear program:
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kD1
�k D 1

�k � 0; k D 1; 2; � � � ; n:

(2.10)

Some boundary points may be “weakly efficient” because we have nonzero
slacks. This may appear to be worrisome because alternate optima may have
nonzero slacks in some solutions, but not in others. However, we can avoid being
worried even in such cases by invoking the following linear program in which the
slacks are taken to their maximal values:
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�k � 0; k D 1; 2; � � � ; n
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i � 0; i D 1; 2; � � � ; p
sC
j � 0; j D 1; 2; � � � ; q:

(2.11)

It is to be noted that the preceding development amounts to solving the following
problem in two steps:
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(2.12)
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The dual multiplier form of the linear program (2.10) is expressed as
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max
u;v;v0

�B D vTy0 � v0
subject to:

uTx0 D 1

vTyj � uTxj � v0 � 0; j D 1; 2; � � � ; n
u � 0

v � 0

(2.13)

where v and u are vectors. The scalar v0 may be positive or negative (or zero). The
equivalent BCC fractional program is obtained from the dual program (2.13) as
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max
u;v

�B D vTy0 � v0
uTx0

subject to:
vT yj � v0

uTxj
� 1; j D 1; 2; � � � ; n

u � 0

v � 0:

(2.14)

It is clear that a difference between the CCR and BCC models is present in the

free variable v0, which is the dual variable associated with the constraint
nP

kD1
�k D 1

that also does not appear in the CCR model. In the first phase, we minimize � by
model (2.10) and, in the second phase, we maximize the sum of the input excesses
and output shortfalls, keeping �� (the optimal objective value obtained in Phase
one) by model (2.11). The evaluations secured from the CCR and BCC models
are also related to each other as follows. An optimal solution for (2.10) and (2.11)
is represented by

�
��
B; s

��; sC��, where s�� and sC� represent the maximal input
excesses and output shortfalls, respectively. Notice that ��

B is not less than the
optimal objective value �� of the CCR model, since (2.10) imposes one additional

constraint,
nP

kD1
�k D 1, so its feasible region is a subset of feasible region for the

CCR model.

Definition 2.4 (BCC Efficiency). If an optimal solution
�
��
B; s

��; sC�� obtained in
this two-phase process for model (2.10) satisfies ��

B D 1 and has no slack s�� D
sC� D 0, then the DMU0 is called BCC-efficient; otherwise it is BCC-inefficient.

Theorem 2.2. The improved activity .��x � s��;y C sC�/ is BCC-efficient.

Theorem 2.3. A DMU that has a minimum input value for any input item, or a
maximum output value for any output item, is BCC-efficient.
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The output-oriented BCC model is
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subject to:
nP

jD1
xij �j � xi0; i D 1; 2; � � � ; p

nP

jD1
yrj �j � �yr0; r D 1; 2; � � � ; q

nP

kD1
�k D 1

�k � 0; k D 1; 2; � � � ; n:

(2.15)

The dual form associated with the above linear program (2.15) is expressed as
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min
u;v;u0

vTy0 � v0
subject to:

vTy0 D 1

uTxj � vTyj � v0 � 0; j D 1; 2; � � � ; n
u � 0

v � 0

(2.16)

where v0 is the scalar associated with
nP

kD1
�k D 1 in the envelopment model. Finally,

we have the equivalent (BCC) fractional programming formulation for model (2.16):
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uTx0 � u0
vT y0

subject to:
uTxj � v0

vTyj
� 1; j D 1; 2; � � � ; n

u � 0

v � 0:

(2.17)

2.4 Additive Model

The preceding models required us to distinguish between input-oriented and output-
oriented models. Now, however, we combine both orientations in a single model,
called additive model proposed by Charnes et al. [3].
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Let us consider a production possibility set (PPS), consisting of all convex
combinations of .xk; yk/, k D 1; 2; � � � ; n. We can formulate it as

PPS D
(

.x;y/jx D
nX

kD1
xk�k; y D

nX

kD1
yk�k;

nX

kD1
�k D 1; �1 � 0; �2 � 0; � � � ; �n � 0

)

:

Then the additive model can be given as
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max
pP

iD1
s�
i C

qP

jD1
sC
j

subject to:
nP

kD1
xki�k D x0i � s�

i ; i D 1; 2 � � � ; p
nP

kD1
ykj �k D y0j C sC

j ; j D 1; 2; � � � ; q
nP

kD1
�k D 1

�k � 0; k D 1; 2; � � � ; n
s�
i � 0; i D 1; 2; � � � ; p
sC
j � 0; j D 1; 2; � � � ; q

(2.18)

where s�
i and sC

j represent output and input slacks, respectively.
It is clear that this model considers the total slacks of inputs and output

simultaneously in arriving at a point on the efficient frontier.

Definition 2.5 (ADD Efficiency). DMU0 is ADD-efficient if s��
i and sC�

j are zero

for i D 1; 2; � � � ; p and j D 1; 2; � � � ; q, where s��
i and sC�

j are optimal solutions
of (2.18).

DMU0 is ADD-efficient if there is no .x; y/ 2 PPS such that x � x0 and y � y0
with strict inequality holding for at least one of the components in the input or the
output vector.

The dual problem to the additive model (2.18) can be expressed as follows:
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max
u;v;v0

uTx0 � vT y0 C v0

subject to:
vTyj � uTxj � v0 � 0; j D 1; 2; � � � ; n
u � e

v � e:

(2.19)

Theorem 2.4. DMU0 is ADD-efficient if and only if it is BCC-efficient.

Theorem 2.5 (Tone [14]). DMU0 is CCR-efficient if and only if it is SBM-efficient.
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The model (2.18) uses a metric that differs from the one used in the “radial
measure” model which uses what is called the `1 metric in mathematics, and the
“city block metric” in operations research. It also dispenses with the need for
distinguishing between an “output” and an “input” orientation as was done in
the discussion leading up to (2.9) because the objective in (2.18) simultaneously
maximizes outputs and minimizes inputs in the sense of vector optimizations. This
can be seen by utilizing the solution to (2.18) to introduce new variables Oyro; Oxio
defined as follows:

Oyr0 D yr0 C sC�
r � yr0; r D 1; � � � ; q

Oxi0 D xi0 � s��
i � xi0; i D 1; � � � ; p: (2.20)

Now, note that the slacks are all independent of each other. Hence, an optimum
is not reached until it is not possible to increase an output Oyro or reduce an input Oxio
without decreasing some other output or increasing some other input.

We now use the class of additive models to develop a different route to treating
technical, allocative, and overall inefficiencies and their relations to each other. This
can help to avoid difficulties in treating possibilities such as negative or zero profits,
which are not easily treated by the ratio approaches, which are commonly used in the
DEA literature. See the discussion in Cooper et al. [4, 5] from which the following
development is taken. See also Chap. 8 in Cooper et al. [7].

First, we observe that we can multiply the output slacks by unit prices and the
input slacks by unit costs after we have solved (1.19) and thereby accord a monetary
value to this solution. Then, we can utilize (1.20) to write

sX

rD1
pros

C�
r C

mX

iD1
cios

��
i

D
 

sX

rD1
pro Oyro �

sX

rD1
proyro

!

C
 

mX

iD1
cioxio �

mX

iD1
cio Oxio

!

D
 

sX

rD1
pro Oyro �

mX

iD1
cio Oxio

!

�
 

sX

rD1
proyro �

mX

iD1
cioxio

!

: (2.21)

From the last pair of parenthesized expressions, we find that, at an optimum, the
objective in (2.18) after multiplication by unit prices and costs is equal to the profit
available when production is technically efficient minus the profit obtained from
the observed performance. Hence, when multiplied by unit prices and costs, the
solution to (2.18) provides a measure in the form of the amount of the profits lost by
not performing in a technically efficient manner term by term if desired.

We can similarly develop a measure of allocative efficiency by means of the
following additive model:
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max
sP

rD1
pr0 OsC

r C
mP

iD1
ci0 Os�

i

subject to:

Oyr0 D
nP

jD1
yrj O�j � OsC

r ; r D 1; 2; � � � ; q

Oxi0 D
nP

jD1
xij O�j C Os�

i ; i D 1; 2; � � � ; p
nP

jD1
O�j D 1

O�j � 0; j D 1; 2; � � � ; n:

(2.22)

2.5 SBM Model

We now augment the additive models by introducing a measure that makes its
efficiency evaluation, as effected in the objective, invariant to the units of measure
used for the different inputs and outputs. That is, we would like this summary
measure to assume the form of a scalar that yields the same efficiency value when
distances are measured in either kilometers or miles. More generally, we want this
measure to be the same when xij are replaced by kixij and yrj are replaced by cryrj ,
where the ki and cr are arbitrary positive constants, i D 1; 2 � � � ; p, j D 1; 2 � � � ; q.

This property is known by names such as “dimension free” (see [13]) and “units
invariant.” In this section, we introduce such a measure for additive models in
the form of a single scalar called “SBM” (Slacks-Based Measure), which was
introduced by Tone [14] and has the following important properties:

P1 The measure is invariant with respect to the unit of measurement of each input
and output item. (Units invariant)

P2 The measure is monotone decreasing in each input and output slack.
(Monotone)

In order to estimate the efficiency, we formulate the following fractional program:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

min � D
1 � 1

p

Pp
iD1 s�

i =x0i

1C 1
q

Pq
jD1 s

C
j =y0j

subject to:
nP

kD1
xki�k D x0i � s�

i ; i D 1; 2 � � � ; p
nP

kD1
ykj �k D y0j C sC

j ; j D 1; 2; � � � ; q
�k � 0; k D 1; 2; � � � ; n
s�
i � 0; i D 1; 2; � � � ; p
sC
j � 0; j D 1; 2; � � � ; q:

(2.23)
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In this model, we assume that xk � 0, k D 1; 2; � � � ; n. If x0i D 0, we delete
the term s�

i =x0i in the objective function. If y0j � 0, we replace it by a very small
positive number so that the term s�

i =x0i plays a role of penalty.
It is readily verified that the objective function value � satisfies (PI) because the

numerator and denominator are measured in the same units for every item in the
objective of (2.23). It is also readily verified that an increase in either s�

i or sC
j , all

else held constant, will decrease this objective value and, indeed, do so in a strictly
monotone manner.

Furthermore, we have

0 � � � 1:

The formula for � in (2.23) can be transformed into

� D
 
1

p

pX

iD1

x0i � s�
i

x0i

! 
1

q

qX

iD1

y0j C sC
j

y0j

!�1
: (2.24)

The ratio
�
x0i � s�

i

�
=x0i evaluates the relative reduction rate of input i and,

therefore, the first term corresponds to the mean proportional reduction rate
of inputs or input mix inefficiencies. Similarly, in the second term, the ratio�
y0j C sC

j

�
=y0j evaluates the relative proportional expansion rate of output j and

.1=q/
Pq

iD1
�
y0j C sC

j

�
=y0j is the mean proportional rate of output expansion.

Its inverse, the second term, measures output mix inefficiency. Thus, � can be
interpreted as the ratio of mean input and output mix inefficiencies. Further, we
have the following theorem.

Theorem 2.6. If DMUA dominates DMUB so that xA � xB and yA � yB , then
��
A � ��

B .

Definition 2.6 (SBM Efficiency). DMU0 is SBM-efficient if and only if �� D 1,
where �� D 1 is the optimal value of (2.23).

Theorem 2.7. The optimal �� in SBM model (2.23) is not greater than the optimal
�� in CCR model (2.1).

2.6 Russell Measure Model

We now introduce a model described as the “Russell Measure Model.” Actually it
was introduced and named by Färe and Lovell [8]. Their formulation is difficult to
compute, however, so we turn to a more recent development due to Pastor et al. [11].
This model is given as follows:
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 D min
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Pp
iD1 �i=pPq
jD1 �j =q

subject to:
nP

kD1
xki�k � �ix0i ; i D 1; 2 � � � ; p

nP

kD1
ykj �k � �j y0j ; j D 1; 2; � � � ; q

�k � 0; k D 1; 2; � � � ; n
0 � �i � 1; i D 1; 2; � � � ; p
�j � 1; j D 1; 2; � � � ; q:

(2.25)

Pastor et al. [11] refer to this as the “Enhanced Russell Graph Measure of
Efficiency,” but we shall refer to it as ERM (Enhanced Russell Measure). See Färe
et al. [9] for the meaning of “graph measure.” Such measures are said to be “closed,”
so  includes all inefficiencies that the model can identify. In this way we avoid
limitations of the radial measures which cover only some of the input or output
inefficiencies and hence measure only “weak efficiency.”

The closure property is shared by SBM. In fact SBM and ERM are related as in
the following theorem.

Theorem 2.8. ERM as formulated in (2.25) and SBM as formulated in (2.23) are
equivalent in that � values that are optimal for one are also optimal for the other.
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