
Chapter 2
Signal Acquisition and Preprocessing

Abstract This chapter describes the detailed settings of the knee joint
vibroarthrographic signal acquisition system. The text also presents a cascade
moving average filter method to estimate the baseline wander in the raw signal,
along with the combination of the ensemble empirical mode decomposition and
detrended fluctuation analysis algorithms to remove the random noise. The filtering
techniques for reduction of muscle contraction interference are also reviewed in the
chapter.

2.1 Signal Analysis Procedures

The common flowchart of VAG signal analysis procedures is shown in Fig. 2.1. The
data acquisition system collects the raw time series and conditions the signal with
bandpass filters and amplifiers. The task of the signal preprocessing procedure is
to remove the artifacts in the raw signal. Such artifacts mainly include baseline
wander, random noise, and periodical power-line interference. With the artifact-
free signal, several computational methods can then be employed to study the
signal in the time scale or time-frequency domain. Advanced approaches can also
be applied to characterize the fractal and statistical properties of the VAG signal.
The distinct features extracted from the signal provide the particular information
about the signal variability and complexity in waveform shifting, frequency range,
or statistics [16–18]. The feature computing procedure mainly focuses on combining
and refining the most informative feature sets, by using feature selection or mapping
techniques [20]. Finally, the pattern analysis tools can be utilized to distinguish the
pathological signals recorded from symptomatic patients and the normal signals
recorded from healthy subjects [3, 28, 34].

2.2 Signal Acquisition

As shown in Fig. 2.2, VAG signals can be recorded with one or more accelerometers
[9, 21, 22] or an electro-stethoscope [8]. The sensor can be taped to the subject’s
patella [21, 22, 24], middle of the patella [9, 24, 38], lateral condyle of the tibia

© The Author(s) 2015
Y. Wu, Knee Joint Vibroarthrographic Signal Processing and Analysis,
SpringerBriefs in Bioengineering, DOI 10.1007/978-3-662-44284-5_2

17



18 2 Signal Acquisition and Preprocessing

Signal Preprocessing Feature Computing and
Pattern Classifications

VAG Signal Acquisition
Spatiotemporal/
Time-Frequency/

Statistical Analysis

Fig. 2.1 Diagram of knee joint VAG signal analysis methodology
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Fig. 2.2 Knee joint vibroarthrographic (VAG) data acquisition setup. Channel 1 records the VAG
signal at the middle position of patella; channel 2 records goniometer voltage (angle) information

[24, 25, 38], medial condyle of the tibia [8, 24], or tibial tuberosity [24, 38], by
using two-sided adhesive tapes. The subjects are commonly asked to bend the leg
at the knee joint (reducing the angle between the shank and thigh), and straighten
the leg until the full knee extension. The accelerometer sensor can measure the
acceleration and deceleration amplitude of the knee joint in the course of flexion
or extension. In addition to the accelerometer or stethoscope sensor, a VAG signal
acquisition system may also consist of an electro-goniometer in order to measure
the bending angle of the leg during the knee flexion or extension. Before the signal
recording, it is necessary to appropriately configure the supporting devices and
software, which commonly contain anti-aliasing bandpass filters, amplifiers, analog-
to-digital converter, graphic signal display, and signal condition toolkits.

This book presents the VAG signal acquisition system and the experimental
protocol developed by the research group of Rangayyan [10, 12, 19, 24, 36], as
a paradigm. A miniature accelerometer (Model 3115A, Dytran Instruments, Inc.,
Chatsworth, CA, USA) was adhered to the middle of the patella. The subjects were
requested to sit on a rigid chair with the legs both freely suspended in air. During
the signal recording procedure, each subject should voluntarily swing the shank
tested over an angle range from 135ı to 0ı (extension movement), and back to
135ı (flexion movement) in the duration of 4 s [19] (associated with an approximate
angular velocity of 67ı per second).
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The raw time series was collected by an instrumentation recorder (Model 3968A,
Hewlett Packard, San Diego, CA, USA) with a sampling rate of 2 kHz. Then, the
acceleration signal was conditioned by a bandpass filter with a bandwidth of 10 Hz–
1 kHz to prevent aliasing effects, and amplified by isolation pre-amplifiers (Model
11-5407-58, Gould Instrument Systems, Inc., Cleveland, OH, USA) and universal
amplifiers (Model 13-4615-18, Gould Instrument Systems, Inc., Cleveland, OH,
USA). The signal was digitized with a resolution of 12 bit per sample by using a
data acquisition board (AT-MIO-16L, National Instruments, Austin, TX, USA) and
the LabVIEW software (National Instruments, Austin, TX, USA).

Auscultation of the knee joint using a stethoscope was also performed to
provide a qualitative description of sound intensity, along with the corresponding
relationship to the angle of knee joint. For the subjects who underwent arthroscopic
surgery, the lesion locations observed were used to estimate the joint angles at which
the appeared articular surfaces would come into contact and affect the corresponding
VAG signal segments.

2.3 Signal Preprocessing

In clinical application, it is essential to record high-quality VAG signals for
computer-aided diagnostic analysis of knee joint pathology [32]. However, record-
ing of the knee joint VAG signals with the sensor on the contact surface of the
subject’s patella is susceptible to several different types of artifacts, including
electromyogram, random noise, ambient interference, and baseline wander [2, 33].
The artifact of electromyogram is commonly induced by concurrent muscular
contractions during the knee flexion or extension motion. Random noise due to
the thermal effect in the ambient cables and amplifiers is inevitable in the signal
acquisition procedure. Since the mechanism of random noise is complex and
random, the range of signal-to-noise ratio of VAG signals cannot be determined
a priori [32]. The major environmental interference is caused by 50 or 60 Hz power-
supply lines and radio-frequency emissions from medical devices. However, the
signal acquisition system driven by direct-current battery power supply is free of
the periodical power-line interference. Sometimes, patients with knee joint disorders
may tremble the legs due to skin friction or the painful reaction when they bending
the leg in a vibration arthrometry examination, which would cause the baseline
wander in the raw signal.

2.3.1 Removal of Baseline Wander

In order to remove the baseline wander in the VAG record, we may use a cascade
moving average filter to estimate the such a artifact and then subtract it from the raw
signal [2]. The moving average filter is a type of finite impulse response (FIR) filter



20 2 Signal Acquisition and Preprocessing

Fig. 2.3 The hierarchical
structure of the cascade
moving average filter
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that is frequently used for time series analysis. In the filtering procedure, temporal
statistics are computed using a few samples of the signal along the time axis, and
the samples in a temporal moving window are averaged to produce the output at
various points of time [15]. Different from the conventional design of a moving
average filter, the cascade moving average filter consists of a hierarchical structure
that combines two-layer moving average operators, as shown in Fig. 2.3. The first
layer of the cascade filter includes a M-order and a N-order successive moving
average operators. The K inputs in the tail end of the M-order operator overlap with
the beginning inputs of the N-order operator. The output of the M-order operator
o1.i/ is written as

o1.i/ D 1

M
Œx.i � 1/ C � � � C x.i � M/�

D 1

M

MX

mD1

x.i � m/; (2.1)

and the output of the following N-order operator o2.i/ can be expressed as

o2.i/ D 1

N
Œx.i � M C K/ C � � � C x.i � M C K � N /�

D 1

N

NX

nD1

x.i � M C K � n/: (2.2)

The second layer of the moving average filter is designed to smooth the piecewise
linear trends obtained from the outputs of two moving average operators in the first
layer. The final output of the cascade moving average filter is given by
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y.i/ D Œo1.i/ C o2.i/� =2

D 1

2M

MX

mD1

x.i � m/ C 1

2N

NX

nD1

x.i � M C K � n/: (2.3)

By applying the z-transform, we may compute the transfer function H.z/ of the
cascade moving average filter as

H.z/ D Y.z/

X.z/
D 1

2M

�
z�1 C � � � C z�M

� C 1

2N

�
z�MCK�1 C � � � C z�MCK�N

�
;

(2.4)

where X.z/ and Y.z/ are the z-transform of the filter input x.i/ and output y.i/,
respectively.

To estimate the baseline wander in the VAG signal, the two moving average
operators in the first layer of the hierarchical model can be configured with the
equal orders, i.e., M D 20 and N D 20, respectively. The reason for such a filter
design is due to the symmetry of the leg swinging angles (135ı ! 0ı ! 135ı) in the
signal acquisition experiment. The number of the overlapping inputs of the moving
average operators is set to be K D 5. The frequency response of the cascade moving
average filter is shown in Fig. 2.4.
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Fig. 2.4 The frequency response of the cascade moving average filter for detrending the baseline
wander in knee joint vibroarthrographic signal
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Fig. 2.5 Subfigures from top to bottom: (a) the raw knee joint vibroarthrographic signal recorded
from a healthy subject, (b) the baseline wander estimated by the cascade moving average filter, and
(c) the baseline-wander-free signal of the filter output

The results of baseline wander removal in the VAG signals for a healthy subject
and a patient (33-year-old male) with Grade II-III chondromalacia patellae are
plotted in Figs. 2.5 and 2.6, respectively. It is noted that the normal VAG signal
in Fig. 2.5a is contaminated with a few random noise, but the signal variation is
relatively small in amplitude. The abnormal VAG signal in Fig. 2.6a dramatically
fluctuates from 0.8 to 1.25 s, and later from 1.8 to 2.3 s, which corresponds to the
pathological joint surface at the angle range from 30ı to 110ı. It can be observed
from Fig. 2.5b that the baseline wander in the normal signal exhibits higher degree
of regularity in the waveform than that in the pathological signal shown in Fig. 2.6b.
The baseline wander estimated in Fig. 2.6b is caused due to the uncomfortable
trembling of the leg in the course of knee extension and flexion through the
degenerative joint surface. It is noted from Figs. 2.5c and 2.6c that the drifts have
been effectively eliminated by the cascade moving average filter, and the baselines
of the filtered VAG signals are placed back to the isoelectric line (the zero level).

2.3.2 Removal of Random Noise

The noise in the form of random fluctuations around the isoelectric line is a common
type of artifacts in biomedical signals [11, 29, 31, 33]. The random noise could
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Fig. 2.6 Subfigures from top to bottom: (a) the raw knee joint vibroarthrographic signal recorded
from a patient (male, age: 33 years old) with Grade II-III chondromalacia patellae, (b) the baseline
wander estimated by the cascade moving average filter, and (c) the baseline-wander-free signal
output by the cascade moving average filter

be generated due to the unavoidable thermal effect or semiconductor defects of
medical instruments [30]. In this section, we introduce an effective method that
combines the ensemble empirical mode decomposition and detrended fluctuation
analysis algorithms to remove random noise in the VAG signal [35]. The EEMD
first divides the raw VAG signal into several intrinsic mode functions (IMFs) in the
successive decomposition processes. The DFA algorithm is then applied to identify
the inherent correlation property of each IMF. Finally, the IMFs that contain the
dominant artifacts of random noise and monotonic baseline residue can be removed
in the reconstructed artifact-reduced signal.

2.3.2.1 Ensemble Empirical Mode Decomposition

The empirical mode decomposition (EMD) was introduced by Huang et al. [4]
as a popular technique for nonlinear and nonstationary signal analysis. The EMD
method works by sifting a given signal into a set of intrinsic mode functions
(IMFs) that represent the fast and slow oscillations in the signal [5]. Although this
rationale shares much with the wavelet analysis philosophy, the IMFs with slow
oscillations are not defined through any prescribed filtering operation [23]. For each
IMF, the local maxima are all positive and the local minima are all negative [33].
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The envelops of the IMFs defined in the sifting operator are zero-crossing and
symmetrical. For a signal that is composed of two or more spectral components,
the EMD method has the capability to separate these components with different
amplitude levels in the decomposed IMFs, as confirmed in the previous work of
Rilling and Flandrin [23]. However, the effectiveness of the EMD method is limited
by the mode mixing effect [6]. Mode mixing is a phenomenon that the oscillations
with disparate time scales are preserved in one IMF, or that the oscillations with the
same time scale are sifted into different IMFs.

Recently, Wu and Huang [27] proposed a noise-assisted EMD algorithm, called
ensemble empirical mode decomposition (EEMD), to overcome the mode mixing
obstacle. The EEMD adds different series of white noise into the signal in several
trials [35]. The added white noise plays a crucial role in the decomposition process,
because it provides uniformly distributed references of different scales [26]. In
each trial, the added noise is different, such that the decomposed IMFs have no
correlation with the corresponding IMFs from one trial to another. If the number of
trials is sufficient, the added noise can be canceled out by ensemble averaging of
the corresponding IMFs obtained in the different trials. The details of the EEMD
process are described as follows [27].

1. In the nth trial, a white noise time series un.t/ is added to a given signal x.t/, in
order to attain a new time series yn.t/ D x.t/ C un.t/, n D 1; 2; : : : ; N , where
N denotes the number of ensemble.

2. The noise-contaminated signal yn.t/ is decomposed into a set of IMFs using the
original EMD method [4], that is

yn.t/ D
iX

j D1

cn
j C rn

i ; (2.5)

where i denotes the total number of the IMFs in each decomposition, cn
j is

the j th IMF, and rn
i represents the residue of yn.t/ in the nth trial. To ensure

that the number of IMFs in each decomposition to be equal, we may assign
a fixed siftings number of 10, so as to produce the IMF in each VAG signal
decomposition process.

3. The above two steps are repeated for N trials, with different white noise series
un.t/ added in each trial.

4. The corresponding j th IMFs obtained in the total N trials are averaged, that is

cave
j D 1

N

NX

nD1

cn
j ; (2.6)

where cave
j is the final IMF of the EEMD.

The effectiveness of the EEMD method depends on the appropriate setting of
the ensemble number and the amplitude of added white noise. Wu and Huang [27]
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suggested that the number of ensemble (N ) and the amplitude of added noise (A)
should satisfy the following rule:

" D Ap
N

; (2.7)

where " represents the final standard deviation of error, which indicates the
difference between the original data and the sum of the IMFs produced by the
EEMD method. The ratio of the standard deviation of the added noise and that of
the raw VAG signal could be 0.2. And the number of ensemble could be fixed at
N D 100 to average the corresponding IMFs obtained in the total 100 trials of the
EEMD.

Figure 2.7 shows the IMFs decomposed by the EEMD method from the VAG
signal of a patient with anterior cruciate ligament (ACL) and chondromalacia in
the knee. The EEMD provided the C1–C11 IMFs in the successive decomposition
iterations, and remained the monotonic trend as the final residue. It is visualized in
Fig. 2.7 that different IMFs exhibit the components of the raw signal with different
levels of fluctuations. The first three IMFs (C1–C3) are composed of most of the
fast (high-frequency) oscillations in the raw VAG signal. The IMFs decomposed
at the higher levels (C4–C11), on the other hand, consist of more slow (low-
frequency) oscillations. The distinct morphological characteristics associated with
the pathological conditions of ACL (from 0.9 to 1.1 s and from 3.7 to 4 s) and
chondromalacia (from 1.4 to 1.9 s) can be observed in the C4–C6 IMFs in Fig. 2.7.

2.3.2.2 Fractal Scaling Index

With the IMFs decomposed by the EEMD method, the next task is to identify
whether an IMF contains the dominant artifacts in the knee joint VAG signal. In
most cases, the artifacts and the signal components possess different correlation
properties (for example, anti-correlated or long-range correlated). The detrended
fluctuation analysis (DFA) algorithm can be applied to study such correlation
properties of each IMF [35]. It is very popular for the detection of nonstationary
time series that exhibit long-range correlation properties [1]. The DFA algorithm
computes the fractal scaling index parameter that describes the subtle fluctuations
associated with intrinsic correlations of the dynamics in the signal. The fractal
scaling index (˛) is often used to measure the statistical self-affinity of a signal
[13, 14].

Given an L-length decomposed IMF cave
j .l/ with the mean value of wj , the

integrated IMF time series s.m/ is defined by

s.m/ D
mX

lD1

h
cave

j .l/ � wj

i
: (2.8)
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Fig. 2.7 Plots of the intrinsic mode functions (IMFs) decomposed by the EEMD from the VAG
signal of a patient with anterior cruciate ligament and chondromalacia. From top to bottom: the
raw signal, the corresponding IMFs (C1–C11), and the monotonic trend (Residue)

The integrated time series s.m/ is then divided into several window segments of
equal size k, and a least-squares line (i.e., the local linear trend), denoted as sk.m/,
that fits the window samples. The local detrended fluctuation is then computed by
subtracting the local linear trend sk.m/ from the integrated time series s.m/ in
each window segment. The averaged fluctuation F.k/ is computed with the local
detrended fluctuations in the root-mean-square sense as

F.k/ D
"

1

L

LX

mD1

Œs.m/ � sk.m/�2

# 1
2

: (2.9)
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For the VAG signal sampled at 2 kHz, the averaged fluctuation computation could
be iteratively performed over the time scales defined by the window sizes in the
range of from 10 to 250, with an increment of 20, for each decomposed IMF. The
function relating the averaged fluctuation F.k/ to the window size k is usually
plotted with a double logarithmic graph. The fractal scaling index (˛) is defined
as the slope of the linear relationship between log10 F.k/ and log10 k, which is
expressed by a power law as F.k/ � k˛ [14]. In the case of 0:5 < ˛ < 1,
the integrated and detrended time series possess persistent long-range power-law
correlations, whereas 0 < ˛ < 0:5 indicates an anti-correlated property of the
time series [7]. Typically, the fractal scaling index ˛ D 0:5 indicates the integrated
and detrended time series is considered as white noise [13]. For the pink noise
(1=f noise) and Brown noise, the fractal scaling index values of the integrated and
detrended time series are ˛ D 1 and ˛ D 1:5, respectively [13].

To identify the artifact components in the VAG signal, the DFA algorithm is
implemented to compute the fractal scaling index (˛) value for each IMF. The
double-logarithmic relationships between the averaged fluctuation and the window
size for the C1, C6, and C8 IMFs are displayed in Fig. 2.8. It is clear that these three
IMFs possess different ˛ values, i.e., the slope of the linear fitting in the root-mean-
square sense. The fractal scaling index value of the C1 IMF is equal to 0.14, which
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Fig. 2.8 Double logarithmic plots of the linear relationship between averaged fluctuation F.k/

and the window size k, for the IMFs C1, C6, and C8, decomposed from the VAG signal of a
patient with anterior cruciate ligament and chondromalacia
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indicates that such an IMF contains plenty of anti-correlated components. The ˛

values of the C6 and C8 IMFs are larger than 1.5, which implies that both of these
IMFs are with long-range power-law correlations. The C6 IMF (˛ D 1:6) involves
less long-range correlated components than the C8 IMF (˛ D 1:86), because the C6
IMFs contains more fast oscillations of the VAG signal. Since the random noise are
not long-range correlated, the VAG signal can be reconstructed with the long-range
correlated IMFs (˛ > 0:5), such that the IMFs with anti-correlations (0 < ˛ < 0:5)
and the final monotonic residue (baseline wander) are considered as artifacts. A
comparison of the raw VAG signal and the reconstructed artifact-reduced signal
is shown in Fig. 2.9. It is clear that the removed artifacts in Fig. 2.9b contains
a larger number of fast oscillations, and the morphological segments associated
with the pathological conditions are not distorted in the artifact-free VAG signal
in Fig. 2.9c. It is also worth noting that there still exist some components with
rapidly variations in the reconstructed VAG signal in Fig. 2.9c. These long-range
correlated components are the mechanomyographic and vibromyographic responses
of the superficial muscles contracted in the duration of knee flexion and extension
in the signal acquisition procedure.
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Fig. 2.9 Subfigures from top to bottom: (a) the raw knee joint vibroarthrographic signal a patient
with anterior cruciate ligament and chondromalacia, (b) the noise components decomposed by the
ensemble empirical mode decomposition method, and (c) the reconstructed artifact-free signal
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2.3.3 Reduction of Muscle Contraction Interference

Muscle contraction interference (MCI) is another type of dominant artifacts that
may obscure the VAG signal analysis. MCI involves the effects of vibromyogram
(VMG) associated with contraction of skeletal muscles [37, 39]. The VMG signal,
also known as the muscle sound, is the acoustic manifestation of the mechanical
activity of muscle fibers, and can be detected with accelerometers placed on the skin
surface over an active muscle. Zhang et al. [37] compared simultaneous recordings
of VMG and electromygram (EMG) generated by skeletal muscles during voluntary
isometric and isotonic contractions. Their results suggested that the VMG and EMG
signals are equally sensitive to muscle contraction levels at various joint angles,
and that the frequency and intensity of the VMG signal vary in direct proportion
to the muscular contraction level. To reduce the MCI, Zhang et al. [39] applied
a two-stage least-mean-squares (LMS) adaptive filter. The first stage was used to
remove the measurement noise in the accelerometers and associated amplifiers,
and the second stage was designed to cancel the muscle signal. The step size of
the LMS adaptive filter was optimized by using a root-mean-squared-error-based
gradient noise (or misadjustment) factor and a time-varying estimate of the input
signal power [36]. The MCI reference was recorded with an accelerometer placed
on the skin at the distal rectus femoris position using two-sided adhesive tapes.
Krishnan et al. [10] improved the adaptive MCI cancellation technique with a 6th-
order recursive least-squares (RLS) adaptive filter with the forgetting factor fixed
at 0.98. The RLS adaptive filter provided two major advantages over the LMS
adaptive filter. First, the convergence of the RLS algorithm was faster than that of the
LMS algorithm. Second, the parameter (forgetting factor) of the RLS adaptive filter
could be fixed, whereas the step size of the LMS filter had to be optimized with
reference to input signal power, which varies with time spans. The results of the
experiments of Krishnan et al. [10] indicated that MCI filtering was not an essential
preprocessing step before feature extraction, and that the adaptive MCI cancellation
step could make the results of VAG signal classification even worse. Based on such a
conclusion, several subsequent studies related to VAG signal analysis [9, 16–18, 20]
did not include the step of MCI reduction.
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