
Chapter 2
Probabilistic Graphical Models

Abstract This chapter introduces probabilistic graphical models as a statistical–
structural pattern recognition paradigm. Many pattern recognition problems can be
posed as labeling problems to which the solution is a set of linguistic labels assigned
to extracted features from speech signals, image pixels, and image regions. Graphical
models use Markov properties to measure a local probability on the labels within
the neighborhood system. The Bayesian decision theory guarantees the best labeling
configuration according to the maximum a posteriori criterion.

2.1 The Labeling Problem

As mentioned in Chap. 1, many pattern recognition problems can be posed as labeling
problems to which the solution is a set of linguistic labels assigned to extracted
features from speech signals, image pixels, and image regions. For instance, in speech
recognition, we may have labels representing phonemes, and such a label set for the
word “cat” would have labels for /k/, /a/, and /t/; in stroke segmentation of Chinese
characters, we may have labels representing directions, and each character pixel may
be associated with one of labels for horizontal, left-diagonal, vertical, and right-
diagonal strokes; in Chinese character recognition, we may have labels representing
stroke segments, which constitute different character structures; in topic modeling,
we may have labels representing topics, which are the basic thematic components
for a document. The labeling problem is shown in Fig. 2.1.

We specify a labeling problem in terms of a set of sites, 1 ≤ i ≤ I , and a set of
linguistic labels, 1 ≤ j ≤ J ; the j th label at any site i is denoted by si = j . A par-
ticular labeling configuration for the whole sites is denoted by S = {s1, s2, . . . , sI }.
Note that the system can have the same label j at different sites, and not every label
needs to be assigned to sites.

The sites may be successive times, image pixels, or image regions. We call them
“regular” sites if they have the natural ordering, as for instance successive times form
a one-dimensional sequence, in which sites i − 1 and i + 1 are before and behind
site i ; image pixels form a lattice, where sites (i ′, i − 1) and (i ′, i + 1) are on the
left and right side of site (i ′, i). On the other hand, “irregular” sites have no natural
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Fig. 2.1 Many pattern recognition problems can be posed as labeling problems

ordering such as image regions. We can define the ordering of irregular sites when
necessary.

The linguistic labels can reflect any relations, regularities, or structures inherent
in sites. For instance, phonemes can be divided into three stationary parts— initial,
central, and final parts— we may use three labels to represent three successive parts of
phoneme data. Chinese characters can be decomposed into blob-level regions (stroke
segments), and these regions may be associated with linguistic labels representing
character structures. Although labels can take continuous numerical values at each
site such as image pixel intensities, we mainly focus on discrete linguistic labels in
this book.

2.2 Markov Properties

Graphical models assume the label si is a random variable at site i , thus the labeling
configuration S is a stochastic process. Following the labeling problem, we put a
probability measure, namely Markov properties, on the set of all possible labeling
configurations,

P(S ) > 0, ∀S , (2.1)

P(si |S{/ i}) = P(si |Ni ), (2.2)

where S{/ i} are labels at all other sites except i , and Ni are all labels at neighboring
sites of i . This means that the probability of the label si is conditionally independent
of all other labels except its neighboring labels. The neighborhood system N plays
an important role to reduce the global measure P(si |S{/ i}) to the local measure
P(si |Ni ), which may significantly simplify the computational complexity in prac-
tice. If we define the neighborhood system at two-dimensional sites, such as image
pixels or regions, we call this graphical model the Markov random field (MRF) [1].
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If we define the neighborhood system at one-dimensional sites, such as successive
times, satisfying Ni = i − 1, that is,

P(si |s1, . . . , si−1, si+1, . . . , sI ) = P(si |si−1), (2.3)

we call this graphical model the first-order discrete-time Markov model.
Graphical models represent dependencies among random variables by a graph.

Nodes in the graph are equivalent to sites, and edges between nodes imply some
relationships between them. Obviously, the MRF is an undirected graphical model
with Markov properties, and the first-order discrete-time Markov model has Markov
properties on a directed chain graph. Markov properties simplify the global con-
straints P(si |S{/ i}) for all sites to the local constraints P(si |Ni ) for neighboring
sites, which greatly reduces the search space to find the best labeling configuration.
Moreover, such a simplification is reasonable for piece-wise stationary data in terms
of time and space.

Causality is an important property of the neighborhood systemN . IfNi is defined
by site i’s previous sites, it is strictly causal: The probabilities depend only on previous
sites. Because regular sites have a natural ordering, it is easy to define the concept
“previous.” For instance, the N of the first-order discrete Markov model is causal,
because time i − 1 always happens before time i ; the MRF may also have the causal
neighborhood system: If we scan the image pixels from left to right and from up to
down, then the previous sites of (i ′, i) are (i ′−1, i) and (i ′, i −1). On the other hand,
we often define a non-causal neighborhood system at irregular sites, such as image
regions, because the concept “previous” at irregular sites is inconsistent in different
conditions.

The causal neighborhood systems reduces the search space from “previous” and
“following” to only “previous”. Such “cause-and-effect” relations are amenable to
dynamic programming leading to high computational efficiency. For instance, we
can search the best labeling configuration, S ∗ = {s∗

1 , . . . , s∗
I }, for a time sequence

as follows: (1) First find the best label s∗
1 , and then (2) find the best label s∗

2 based
on the best label s∗

1 . We repeat this process until s∗
I .

2.3 The Bayesian Decision Theory

In practice, we have to bridge the gap between labels and data so as to characterize any
relations, regularities, or structures inherent in some source of data. After assigning
a label si to site i , we assume that si simultaneously generates an observation oi ,
which may be symbols, feature vectors, or image pixel values. At each labeling
configuration, we will have an observation set, O = {o1, . . . , oI }, at all sites, where
O belongs to the observation space �I .

In the labeling problem, the task of pattern recognition is equivalent to finding a
model λ that can provide the best labeling configuration,S ∗ = {s∗

1 , . . . , s∗
I }, to inter-

pret observations, O = {o1, . . . , oI }. The Bayesian decision theory is a fundamental
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statistical approach to the problem of pattern recognition. Given a set of observations
O and class models λω, we classify O to the class ω∗ by maximizing the posterior
probability,

ω∗ = arg max
ω

{P(ω|O, λω)}. (2.4)

By employing the Bayes formula,

P(ω|O, λω) = P(O|λω)P(ω)

P(O)
, (2.5)

where P(O|λω) is the likelihood of λω given O, and P(O) is a constant normalization
factor for all classes ω. For simplicity, we often assume equal prior class probability
P(ω), so that the posterior probability is proportional to the likelihood,

P(ω|O, λω) ∝ P(O|λω). (2.6)

Then Eq. (2.4) becomes

ω∗ = arg max
ω

P(O|λω), (2.7)

which is the maximum-likelihood (ML) criterion.
In graphical models, the class model λω is a set of parameters λ and labels S .

We assign a labeling configuration S to the observations O with a joint probability
P(S |λ, O). Thus, the P(O|λ) in Eq. (2.7) is computed by summing over all possible
configurations,

P(O|λ) =
∑

S

P(S , O|λ). (2.8)

Because the direct computation of Eq. (2.8) is usually an intractable combinatorial
problem, we can approximate the likelihood P(O|λ) by the most likely labeling
configuration, S ∗ = {s∗

1 , . . . , s∗
I }, i.e.,

P(O|λ) ≈ P(S ∗, O|λ). (2.9)

Again the optimal labeling configuration S ∗ for the observations O can be
obtained by maximizing the following posterior probability,

S ∗ = arg max
S

P(S |O, λ). (2.10)
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From the Bayes formula,

P(S |O, λ) = P(S , O|λ)

P(O|λ)
= p(O|S , λ)P(S |λ)

P(O|λ)
, (2.11)

where P(O|λ) is a constant normalization factor for all configurations S . Thus, we
obtain

P(S |O, λ) ∝ p(O|S , λ)P(S |λ), (2.12)

where p(O|S , λ) is the likelihood function for S given O, and P(S |λ) is the prior
probability of S . Therefore, Eq. (2.10) can be rewritten as

S ∗ = arg max
S

p(O|S , λ)P(S |λ). (2.13)

When we have the knowledge about the data distribution but no appreciable prior
information about the pattern, we may use the ML criterion to estimate the best
labeling configuration. When the situation is the opposite, that is, when we have only
prior information, we may use the principle of maximum entropy to find the least
biased model that encodes the prior information. With both sources of information
available, the best labeling configuration we can get is based on the Bayesian decision
theory.

The Bayesian decision theory can be interpreted as a weighting mechanism that
weighs the likelihood and prior distributions, and combines them to form the poste-
rior. If these two distributions overlap significantly, this mathematical combination
produces a desirable result. Otherwise, it may be possible that the posterior will
fall into the region unsupported by either the likelihood or the prior. Therefore, in
real applications, we have to balance the likelihood and prior to achieve a desirable
labeling configuration.

Note that the likelihood function p(O|S , λ) is not a probability but a subjective
function, which enables us to assign relative weights to different configurations S
given O. On the other hand, the prior probability P(S |λ) is the source of information
that exists prior to test data in the form of expert judgement and other historical
information (training data). For instance, we may specify some structural information
in the labeling space based on the knowledge of the problem domain, or just obtain this
information from training data automatically. The Bayesian decision rule provides
a convenient method to combine two different sources of information, i.e., the data
and the prior. It is advantageous to combine distribution functions from different
information sources in that the uncertainty in the posterior distribution is reduced
when the information in the likelihood and prior distributions are consistent with each
other. In other words, the integral information from the data and the prior distribution
may have less uncertainty because the data and the prior are from two different
information sources that may support each other. From the regularization point of
view, the combination of the likelihood and the prior may convert a mathematically
ill-posed recognition problem into a well-posed one.
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2.3.1 Descriptive and Generative Models

We further investigate the graphical models within Bayesian framework in the view
of descriptive and generative models.

Descriptive methods construct the model for a pattern by imposing statistical con-
straints on features extracted from patterns. Linguistic labels can be viewed as high-
level features extracted from patterns. Therefore, graphical models are descriptive
models, as for instance the first-order discrete Markov model imposes statistical con-
straints for labels at successive times; the MRF imposes local statistical constraints
of labeling configuration at neighboring image pixels or regions. Descriptive models
specify the structural constraints P(si |S{/ i}) in the labeling space either specified
by prior knowledge or learned through training samples. We may view descriptive
constraints as the necessary condition for the pattern class, in which all samples in
the pattern class must satisfy these constraints (with high probability), while samples
from other classes may also satisfy such constraints. Figure 2.2 shows the relation-
ship between descriptive models and samples, where the circle of descriptive models
contains all samples as the necessary condition. Obviously, such a necessary condi-
tion is not enough to model the difference among pattern classes, because different
pattern classes may probably share the same structure or substructure in the labeling
space.

In contrast to descriptive models, generative models are able to randomly generate
observed data, typically given some hidden variables at sites. Linguistic labels are
a kind of hidden variables, and after randomly assigned to all sites, they simultane-
ously generate observations O. The hidden variables employed to generate observa-
tions usually follow very simple models, such as Gaussian mixture models (GMMs).
Furthermore, existing generative models appear to suffer from an oversimplified
assumption that the observations are independent and identical distributed (i.i.d.)
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Fig. 2.2 Descriptive models are the necessary condition and generative models are the sufficient
condition for samples from a specific pattern class
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for all sites. So the joint probability of observations can be written as a product of
probabilities of individual observations,

p(O|S ) =
I∏

i=1

p(oi |si = j), 1 ≤ j ≤ J. (2.14)

As a result, generative models are not sufficient enough to model realistic patterns. We
may view generative models as the sufficient condition for the pattern class, in which
the model generates all samples belonging to the pattern class (with high probability),
whereas some samples from the pattern class may not be generated by the model (with
low probability). Figure 2.2 shows the relationship between generative models and
samples, where generative models are subsets of samples as the sufficient condition.

Bayesian decision rule integrates both descriptive and generative models to pro-
vide the sufficient and necessary conditions for the pattern class in a hierarchical
system. The bottom level of the system is generative in nature, because the observa-
tions are generated by hidden variables such as labels. The top level of the system is
descriptive in nature, because it governs the relationships among random hidden vari-
ables probabilistically. For instance, in speech recognition, we use labels (GMMs) to
generate speech feature vectors at each time i , and use transition probability a j j ′ to
control the jump from label j to j ′; in Chinese character recognition, we use labels
(GMMs) to generate stroke segments, and use prior clique potentials to encourage
or penalize different local labeling configurations.

2.3.2 Statistical–Structural Pattern Recognition

The integration of descriptive and generative models also combines both structural
and statistical information of the pattern. Descriptive models P(S ) can describe
the high-level structure of linguistic labels, while generative models p(O|S ) can
describe low-level statistical uncertainty of observations. Therefore, graphical mod-
els with the Bayesian decision rule provide a theoretically well-founded framework
to represent both structural and statistical information existing universally in pat-
tern recognition problems. We call this paradigm the statistical–structural pattern
recognition.

2.4 Summary

Labeling problems have been proposed to solve problems of computer vision and
image analysis in [2]. In this chapter, we extend the same concept to more gen-
eral problems of pattern recognition. The Bayesian theory has long been the domi-
nant classification methods in pattern recognition, because it rests on an axiomatic
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foundation that is guaranteed to have quantitative coherence; some other classifi-
cation methods may not [3]. Further study of the role of the Bayesian theory in
fuzzy logic can be found in [4]. The formulation of Bayesian framework for labeling
problems is actually the compound Bayes decision problem by the use of context
information [3], in which the states of nature are equivalent to the labels here. Markov
properties simplify the interdependence of labels by assuming that the labels are only
dependent on their neighbors, which avoids the computation of P(S ) for all J I pos-
sible values of labeling configuration. Therefore, graphical models have been widely
applied to problems of pattern recognition [3], such as speech recognition, handwrit-
ing recognition, gesture recognition, face recognition, human motion recognition,
and DNA sequence recognition.

The relationship between descriptive models and generative models has been
discussed in [5, 6]. We use this idea to justify the modeling ability of graphical models
for labeling problems. Graphical models can integrate both descriptive and generative
models so that they satisfy the sufficient and necessary conditions to model samples
from pattern classes. Murphy and Smyth considered Markov models are special cases
of graphical models [7–9], in which HMMs and MRFs are acyclic directed graphs
and undirected graphs with Markov properties, respectively. The graph represents the
structure of random variables, so graphical models can represent structural patterns
statistically [10]. Taking higher order of statistical dependencies between labels into
account, graphical models can indirectly reflect statistical dependencies between
observations, despite the conditionally independent assumption upon observations
in terms of the labels.
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