
Chapter 2
Fundamental Principles of Holography

2.1 Light Waves

The behaviour of light can be modelled either as a propagating electromagnetic
(e-m) wave or as a stream of massless particles known as photons. Although the
models are seemingly contradictory both are necessary to fully describe the full
gamut of light phenomena. Whichever model is most appropriate depends on the
phenomenon to be described or the experiment under investigation. For example,
interaction of light with the atomic structure of matter is best described by the
photon model: the theory of photon behaviour and its interactions is known as
quantum optics. The phenomenon of refraction, diffraction and interference, how-
ever, are best described in terms of the wave model i.e. classical electromagnetism.

Interference and diffraction form the basis of holography An e-m wave is
described in terms of the propagation through space of mutually perpendicular
electric and magnetic fields. These fields oscillate in a plane that is perpendicular to
the direction of travel i.e. they are described as transverse waves, as depicted in
Fig. 2.1. Light waves can be described either by the electrical or by the magnetic
field, but in optics convention is to describe the e-m wave in terms of the electric
vector.

Light propagation is described by the wave equation, which follows from
Maxwell’s equations. The wave equation in a vacuum is

r2~E � 1
c2

o2~E
ot2

¼ 0 ð2:1Þ

Here ~E is the electric field and r2 is the Laplace operator defined as

r2 ¼ o2

ox2
þ o2

oy2
þ o2

oz2
ð2:2Þ
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and c is the speed of light in vacuum:

c ¼ 2:9979� 108 m/s ð2:3Þ

The electrical field ~E is a vector quantity and can vibrate in any direction
perpendicular to the direction of propagation. However, in many applications the
wave vibrates only in a single plane. Such light is called linear polarized light. In
this case it is sufficient to consider the scalar wave equation

r2E � 1
c2

o2E
ot2

¼ 0 ð2:4Þ

It can be easily verified that a linearly polarized, harmonic plane wave with
amplitude

E x; y; z; tð Þ ¼ a cos xt �~k~r � u0

� �
ð2:5Þ

is a solution of the above wave equation.
E(x,y,z,t) is the modulus of the electrical field vector at the point with spatial

vector~r ¼ ðx; y; zÞ at the time t. The quantity a is the amplitude of the wave. The
wave vector ~k describes the propagation direction of the wave:

~k ¼ k~n ð2:6Þ

~n is a unit vector in the propagation direction. Points of equal phase are located on
parallel planes that are perpendicular to the propagation direction. The modulus of~k
is the wave number and is described by

~k
��� ��� � k ¼ 2p

k
ð2:7Þ

The angular frequency ω corresponds to the frequency f of the light wave by

x ¼ 2pf ð2:8Þ

Frequency f and wavelength λ are related through the speed of light c:

Fig. 2.1 Electromagnetic wave propagating in z-direction
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c ¼ kf ð2:9Þ

The spatially varying term

u ¼ �~k~r � u0 ð2:10Þ

is the phase, with phase constant u0. It has to be pointed out that this definition is
not standardized. Some authors designate the entire argument of the cosine func-
tion, xt �~k~r � u0, as phase. The definition Eq. (2.10) is favourable to describe the
holographic process and therefore used in this book.

The vacuum wavelengths of visible light are in the range of 400 nm (violet) to
780 nm (deep red). The corresponding frequency range is 7:5� 1014 Hz to
3:8� 1014 Hz. Light sensors such as the human eye, photodiodes, photographic
film or CCD’s are not able to detect such high frequencies due to technical and
physical reasons. The only directly measurable quantity is the intensity. It is pro-
portional to the time average of the square of the electrical field:

I ¼ e0c E2� �
t¼ e0c lim

T!1
1
2T

ZT
�T

E2dt ð2:11Þ

E2
� �

t denotes the time average over many light periods. The constant factor e0c
results if the intensity is formally derived from the Maxwell equations. The constant
e0 is the vacuum permittivity. Note: we are using the term intensity here. In pho-
tometry and radiometry intensity has a different meaning (radiant power per solid
angle, unit W sr�1).

For a plane wave Eq. (2.5) has to be inserted:

I ¼ e0ca2 cos2 xt �~k~r � u0

� �D E
t
¼ 1

2
e0ca2 ð2:12Þ

According to Eq. (2.12) the intensity is proportional to the square of the
amplitude.

The expression (2.5) can be written in complex form as

E x; y; z; tð Þ ¼ aRe exp i xt �~k~r � u0

� �� �n o
ð2:13Þ

where ‘Re’ denotes the real part of the complex function. For computations the real
part ‘Re’ can be omitted (in accordance with the superposition principle). However,
only the real part represents the physical wave:

E x;y;z;tð Þ ¼ a exp i xt �~k~r � u0

� �� �
ð2:14Þ
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One advantage of the complex representation is that the spatial and temporal
parts factorize and Eq. (2.14) can be written as:

E x;y;z;tð Þ ¼ a exp iuð Þ exp ixtð Þ ð2:15Þ

In many calculations of optics only the spatial distribution of the wave is of
interest. In this case only the spatial part of the electrical field, its complex
amplitude, need be considered:

A x;y;zð Þ ¼ a exp iuð Þ ð2:16Þ

Equations (2.15) and (2.16) are not just valid for plane waves, but apply in
general to three-dimensional waves whose amplitude, a, and phase, φ, are functions
of x,y and z.

In complex notation the intensity is now simply calculated by taking the square
of the modulus of the complex amplitude

I ¼ 1
2
e0c Aj j2¼ 1

2
e0cA

�A ¼ 1
2
e0ca

2 ð2:17Þ

where * denotes complex conjugation. In many practical calculations where the
absolute value of I is not of interest the factor 1

2 e0c can be neglected, and the

intensity simplifies to I ¼ Aj j2.

2.2 Interference

The superposition of two or more waves in space is named interference. If each single
wave described by ~Eið~r; tÞ is a solution of the wave equation, the superposition

~E ~r; tð Þ ¼
X
i

~Ei ~r; tð Þ i ¼ 1; 2; . . . ð2:18Þ

is also a solution. This is because the wave equation is a linear differential equation.
In the following, interference of two monochromatic waves with equal fre-

quencies and wavelengths is considered. The waves shall have the same polariza-
tion directions, i.e. scalar formalism can be used. The complex amplitudes of the
respective waves are represented by;

A1 x;y;zð Þ ¼ a1 exp iu1ð Þ ð2:19Þ

A2 x;y;zð Þ ¼ a2 exp iu2ð Þ ð2:20Þ

The resulting complex amplitude is then calculated by the sum of the individual
amplitudes:
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A ¼ A1 þ A2 ð2:21Þ

According to Eq. (2.17) the intensity can be written as

I ¼ A1 þ A2j j2¼ A1 þ A2ð Þ A1 þ A2ð Þ�
¼ a21 þ a22 þ 2a1a2 cos u1 � u2ð Þ
¼ I1 þ I2 þ 2

ffiffiffiffiffiffiffi
I1I2

p
cosDu ð2:22Þ

where I1, I2 are the individual intensities and the phase difference between the two
waves is

Du ¼ u1 � u2 ð2:23Þ

The resulting intensity is the sum of the individual intensities plus the inter-
ference term 2

ffiffiffiffiffiffiffi
I1I2

p
cosDu, which depends on the phase difference between the

waves. The intensity reaches its maximum when the phase difference between
consecutive points is a multiple of 2π

Du ¼ 2np for n ¼ 0; 1; 2; . . . ð2:24Þ

This is known as constructive interference. The intensity reaches its minimum
when

Du ¼ 2nþ 1ð Þp for n ¼ 0; 1; 2; . . . ð2:25Þ

And this is known as destructive interference. The integer n is the interference
order. An interference pattern therefore consists of a series of dark and light lines,
“fringes”, across the field-of-view as a result of this constructive and destructive
interference. Scalar theory can also be applied to waves with different polarization
directions, if the components of the electric field vector are considered.

The superposition of two plane waves which intersect at an angle θ with respect
to each other results in an interference pattern with equidistant spacing, as seen in
Fig. 2.2. The fringe spacing d is the distance from one interference maximum to the
next and can be calculated from geometrical considerations. Figure 2.2 shows that

sin h1 ¼ Dl1
d

; sin h2 ¼ Dl2
d

ð2:26Þ

The quantities h1 and h2 are the angles between the propagation directions of the
wavefronts and the vertical direction of the screen. The length Dl2 is the path
difference between wavefront W2 and wavefront W1 at the position of the inter-
ference maximum P1 (W2 has to travel a longer path to P1 than W1). At the
neighboring maximum P2 the conditions are exchanged: now W1 has to travel a
longer path; the path difference of W2 with respect to W1 is �Dl1. The variation
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between the path differences at neighboring maxima is therefore Dl1 þ Dl2. This
difference is equal to one wavelength. Thus the interference condition is:

Dl1 þ Dl2 ¼ k ð2:27Þ

Combining Eq. (2.26) with Eq. (2.27) gives the fringe spacing as:

d ¼ k
sin h1 þ sin h2

¼ k

2 sin h1þh2
2 cos h1�h2

2

ð2:28Þ

The approximation cosðh1 � h2Þ=2 � 1 and h ¼ h1 þ h2 can be applied to give

d ¼ k

2 sin h
2

ð2:29Þ

Instead of the fringe spacing d, the fringe pattern can also be described in terms
of the spatial frequency f, which is just the reciprocal of d, i.e.

f ¼ d�1 ¼ 2
k
sin

h
2

ð2:30Þ

2.3 Coherence

2.3.1 General

Generally the resulting intensity of two different sources, e.g. two electric light
bulbs directed on a screen, is additive. Instead of dark and bright fringes as expected
by Eq. (2.22) only a uniform brightness according to the sum of the individual
intensities is visible.

P1 P2

W1

W2

l
Δ

Δ

θ
θ

1

l
2

d

1
2

Fig. 2.2 Interference of two plane waves W1 and W2. The marginal rays are sketched. θ1 is the
angle between W1 and the vertical, θ2 is the angle between W2 and the vertical. P1 and P2 are
adjacent interference maxima
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In order to observe interference fringes, the phases of the individual waves have
to be correlated. The ability of light to form interference patterns is called coherence
and is investigated in this chapter. The two aspects of coherence are temporal and
spatial coherence. Temporal coherence depends on the correlation of a wave with
itself at different instants in time [121], whereas spatial coherence is based on the
mutual correlation of different parts of the same wavefield in space.

2.3.2 Temporal Coherence

The phenomenon of interference between two coherent beams of light can be
described in terms of a two beam interferometer such as the Michelson-interfer-
ometer, as shown in Fig. 2.3. Light emitted by the source S is split into two waves
of reduced amplitude by the beam splitter BS. These waves travel to the mirrors M1
and M2 respectively, and are reflected back into their incident directions. After
passing the beam splitter again they are superimposed at a screen. Usually the
superimposed waves are not exactly parallel, but are incident at a small angle. As a
result a two-dimensional interference pattern becomes visible.

The optical path length from BS to M1 and back to BS is s1, and the optical path
length from BS to M2 and back to BS is s2. Experiments show that interference can
only occur if the optical path difference s1 � s2 does not exceed a certain length
L. If the optical path difference exceeds this limit, the interference fringes vanish
and just a uniform brightness is visible on the screen. The qualitative explanation
for this phenomenon is that interference fringes can only develop if the superim-
posed waves have a well defined (constant) phase relationship between them. The
phase difference between waves emitted by different sources varies randomly and
thus the waves do not interfere. The atoms within the light source emit wave trains
with a finite length L. If the optical path difference exceeds L, the recombined
waves do not overlap after passing the different ways and interference is not
observed.

Light
Source

BS

Screen

M1

M2

S1/2

S2/2

Fig. 2.3 Michelson’s
interferometer

2.3 Coherence 11



The critical path length difference or, equivalently, the length of a wave train is
the coherence length L of the wave. The corresponding time over which the wave
train is emitted is its coherence time,

s ¼ L
c

ð2:31Þ

According to the laws of Fourier analysis a wave train with finite length L cor-
responds to light with finite spectral width Δf, where

L ¼ c
Df

ð2:32Þ

The coherence length is therefore a measure for the spectral linewidth of the
source at a specific frequency, f. Light with a long coherence length accordingly has
a correspondingly small linewidth and is therefore highly monochromatic.

Typical coherence lengths of light radiated from thermal sources, e.g. conven-
tional electric light bulbs, are in the range of some micrometers. That means,
interference can only be observed if the arms of the interferometer have nearly
equal path lengths. On the other hand lasers have coherence lengths from a few
millimetres (e.g. a multi-mode diode laser) to several 100 m (e.g. a stabilized single
mode Nd:YAG-laser) up to several hundred kilometres for specially stabilized gas
lasers used for research purposes.

The fringe visibility

V ¼ Imax � Imin

Imax þ Imin

ð2:33Þ

is a measure of the contrast of a particular interference pattern, where Imax and Imin

are two neighbouring intensity maxima and minima. They are calculated by
inserting Du ¼ 0 and Du ¼ p respectively into Eq. (2.22). In the ideal case of
infinite coherence length the visibility is given by,

V ¼ 2
ffiffiffiffiffiffiffi
I1I2

p
I1 þ I2

ð2:34Þ

To consider the effect of finite coherence length the complex self-coherence
function Γ(τ) is introduced:

C sð Þ ¼ E t þ sð ÞE� tð Þh i

¼ lim
T!1

1
2T

ZT
�T

E t þ sð ÞE� tð Þdt ð2:35Þ
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E(t) is the electrical field (to be precise: the complex analytical signal) of one
interfering wave while E(t + τ) is the electrical field of the other wave. The latter is
delayed in time by τ. Equation (2.35) represents the autocorrelation of the corre-
sponding electric field amplitudes. The quantity

c sð Þ ¼ C sð Þ
C 0ð Þ ð2:36Þ

is the normalized self-coherence function; the absolute value of γ defines the degree
of coherence.

With finite coherence length the interference equation (2.22) has to be replaced
by

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cj j cosDu ð2:37Þ

The maximum and minimum intensity are now calculated by

Imax ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cj j

Imin ¼ I1 þ I2 � 2
ffiffiffiffiffiffiffi
I1I2

p
cj j ð2:38Þ

Inserting these quantities into Eq. (2.33) yields

V ¼ 2
ffiffiffiffiffiffiffi
I1I2

p
I1 þ I2

cj j ð2:39Þ

For two partial waves with the same intensity, I1 ¼ I2 Eq. (2.39) becomes

V ¼ cj j ð2:40Þ

cj j is equal to the visibility and is therefore a measure of the ability of the two wave
fields to interfere. When cj j ¼ 1 we have ideally monochromatic light or, likewise,
light with infinite coherence length; when cj j ¼ 0 for the light is completely
incoherent. Partially coherent light therefore lies in the range 0\ cj j\1:

2.3.3 Spatial Coherence

Spatial coherence describes the mutual correlation of spatially separated parts of the
same wavefield. This property can be measured using, for example, a Young’s
interferometer, Fig. 2.4. Here, an extended light source emits light from a large
number of elementary point sources. An aperture with two transparent holes is
mounted between the light source and the screen. The aim of the experiment is to
determine the mutual correlation (degree of coherence) of the light incident on the
aperture at the spatially separated positions given by the holes. If the light at these
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positions is correlated, interference fringes are visible on the screen. In the fol-
lowing we will discuss the geometrical relations under which interference can be
observed for the simple case of an extended light source. The fringes result from the
different light paths traversed to the screen, either via the upper or via the lower hole
in the aperture [250]. The interference pattern vanishes if the distance between the
holes a exceeds the critical limit ak. This limit is named coherence distance. The
phenomenon is not related to the spectral width of the light source, but is due to the
waves emitted by different points of the extended light source being superimposed
on the screen. It may happen that a particular source point generates an interference
maximum at a certain point on the screen, while another source point generates a
minimum at the same point. This occurs because the optical path difference is
different for each source point. In general the contributions from all source points
cancel and the contrast vanishes. This cancellation is avoided if the following
condition is fulfilled for every point of the light source:

r2 � r1\
k
2

ð2:41Þ

This condition is fulfilled if it is restricted to rays emanating from the edges of
the light source. The following relations are valid for points at the edges:

r21 ¼ R2 þ a� h
2

� 	2

; r22 ¼ R2 þ aþ h
2

� 	2

ð2:42Þ

where h is the width of the light source. Applying the assumptions a � R and
h � R gives,

r2 � r1 � ah
2R

ð2:43Þ

Combining Eqs. (2.41) and (2.43) leads to the following expression:

ah
2R

\
k
2

ð2:44Þ

212
λ<−rr

a

R

h

r1

r2

Screen

Light-
source

Fig. 2.4 Young’s
interferometer
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The coherence distance ak is therefore given from,

akh
2R

¼ k
2

ð2:45Þ

In contrast to temporal coherence, the spatial coherence depends not only on
properties of the light source, but also on the geometry of the interferometer. A light
source may initially generate interference, which means Eq. (2.44) is fulfilled, but if
the distance between the holes increases or the distance between the light source
and the aperture decreases, Eq. (2.44) is violated and the interference vanishes.

To consider spatial coherence the autocorrelation function defined in Eq. (2.35)
is extended to,

C ~r1;~r2; sð Þ ¼ E ~r1; t þ sð ÞE� ~r2; tð Þh i

¼ lim
T!1

1
2T

ZT
�T

E ~r1; t þ sð ÞE� ~r2; tð Þdt ð2:46Þ

where ~r1, ~r2 are the spatial vectors of the holes in the aperture of the Young
interferometer. This cross correlation function is the mutual coherence function.
The normalized function is

c ~r1;~r2; sð Þ ¼ C ~r1;~r2; sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C ~r1;~r1; 0ð ÞC ~r2;~r2; 0ð Þp ð2:47Þ

where C ~r1;~r1; 0ð Þ is the intensity at ~r1 and C ~r2;~r2; 0ð Þ is the intensity at ~r2.
Equation (2.47) describes the degree of correlation between the lightfield at~r1 at a
time t þ s with the light field at~r2 at time t. The special function c ~r1;~r2; s ¼ 0ð Þ is a
measure for the correlation between the field amplitudes at ~r1 and~r2 at the same
time and is defined as the complex degree of coherence. The modulus of the mutual
coherence function c ~r1;~r2; sð Þj j is measured with the Young interferometer.

2.4 Diffraction

Consider a light wave incident on an obstacle such as an opaque screen with some
holes, or vice versa, a transparent medium with opaque obstructions. From geo-
metrical optics it is known that a shadow is visible on a screen behind the obstacle.
On closer examination, we see that if the dimensions of the obstacle (e.g. diameter
of holes in an opaque screen or size of opaque particles in a transparent volume) are
of the order of the wavelength of the incident light, then the light distribution is not
sharply bounded, but forms a pattern of dark and bright regions. This is the phe-
nomenon diffraction, see Fig. 2.5.
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Diffraction can be explained qualitatively with the Huygens’ principle: Every
point of a wave front can be considered as a source point for secondary spherical
waves. The wave field at any other place is the coherent superposition of these
secondary waves.

Huygens’ principle is illustrated in Fig. 2.6.
The Fresnel-Kirchhoff integral describes diffraction quantitatively [116] as,

C n0; g0ð Þ ¼ i
k

Z1
�1

Z1
�1

A x; yð Þ exp �i 2pk q
0
 �

q0
Qdxdy ð2:48Þ

Fig. 2.5 Diffraction of a
plane wave at an opaque
screen with a small hole

Primary

wavefront

Secondary
wavelets

Envelope
(new wavefront)

Fig. 2.6 Huygens’ principle
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with

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� n0ð Þ2þ y� g0ð Þ2þd2

q
ð2:49Þ

and

Q ¼ 1
2

cos hþ cos h0ð Þ ð2:50Þ

A(x, y) is the complex amplitude in the plane of the diffracting aperture, see the
coordinate system defined in Fig. 2.7. Γ(ξ′, η′) is the complex amplitude in the
observation plane. The term ρ′ is the distance between a point in the aperture plane
and a point in the observation plane.

Equation (2.48) can be understood as the mathematical formulation of Huygens’
principle. The light source S lying in the source plane with coordinates (ξ, η)
radiates spherical waves. A(x,y) is the complex amplitude of such a wave in the
aperture plane. At first an opaque aperture with only one hole at the position (x,y) is
considered. Such a hole is now the source for secondary waves. The field at the
position (ξ′, η′) of the diffraction plane is proportional to the field at the entrance
side of the aperture A(x,y) and to the field of the secondary spherical wave emerging
from (x,y), described by expð�i2p=kq0Þ=q0. Now the entire aperture as a plane
consisting of many sources for secondary waves is considered. The entire resulting
field in the diffraction plane is therefore the integral over all secondary spherical
waves, emerging from the aperture plane.

From the Huygens’ principle it follows that the secondary waves not only
propagate in the forward direction, but also back towards the source. Yet, experi-
ment demonstrates that the wavefronts always propagate in one direction. To
exclude this unrealistic situation the inclination factor Q defined in Eq. (2.50) is
formally introduced into the Fresnel-Kirchhoff integral. Q depends on the angle θ
between the incident light from the source and the unit vector~n perpendicular to the
aperture plane, and on the angle θ′ between the diffracted light and~n, see Fig. 2.8.
Q is approximately zero for h � 0 and h0 � p. This excludes the concept of waves
travelling in the backward direction. In most practical situations both θ and θ′ are

Diffraction
plane

y

x ξ'

η'

z

d

ρ'

Aperture
plane

Source
plane

S
ξ

ηFig. 2.7 Coordinate system
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very small and Q � 1. The inclination factor can be considered as an ad hoc
correction to the diffraction integral, as done here, or be derived in the formal
diffraction theory [73, 116].

Some authors use a “+” sign in the argument of the exponential function of the
Fresnel-Kirchhoff integral ½Cðn; gÞ ¼ . . .Aðx; yÞ expðþi2p=kq0Þ=q0. . .� instead of
the “−” sign used here. This is dependent on whether we define the harmonic wave
in Eq. (2.14), as either exp þiuð Þ or exp �iuð Þ. However, using the “+” sign in Eq.
(2.48) leads to the same expressions for all measurable quantities, as e.g. the
intensity and the magnitude of the interference phase used in Digital Holographic
Interferometry.

2.5 Speckle

A rough surface illuminated with coherent light always appears “grainy” or
“speckly” to an observer. This is due to the random fluctuations in intensity of the
light scattered from the surface and gives rise to a series of and dark and bright
spots or known as speckle, and forms a speckle pattern across the surface (Fig. 2.9).
A speckle pattern develops if the height variations of the rough surface are larger
than the wavelength of the light.

Speckle results from interference of light scattered by the surface points. The
phase of the waves scattered by different surface points fluctuate statistically due to
the height variations. If these waves interfere with each other, a stationary speckle
pattern is observed.

S P(ξ',η')

θ'

θ
n

Fig. 2.8 Propagation geometry

Fig. 2.9 A speckle pattern
from a rough surface under
coherent illumination
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It can be shown that the probability density function for the intensity in a speckle
pattern obeys negative exponential statistics [72]:

P Ið ÞdI ¼ 1
Ih i exp � I

Ih i
� 	

ð2:51Þ

P Ið ÞdI is the probability that the intensity at a certain point is lies between I and
I þ dI. Ih i is the mean intensity of the entire speckle field. The most probable
intensity value of a speckle is therefore zero, i.e. most speckles are black. The
standard deviation rI is calculated by

rI ¼ Ih i ð2:52Þ

That means the intensity variations are in the same order as the mean value. The
usual definition of the contrast of the speckle pattern is

V ¼ rI
Ih i ð2:53Þ

The contrast of a speckle pattern is therefore always unity.
One can distinguish between objective and subjective speckle formation. An

objective speckle pattern develops on a screen, located in a distance z from the
illuminated surface, Fig. 2.10. There is no imaging system between the surface and
the screen. The size of an individual speckle in an objective speckle pattern can be
estimated using the spatial frequency formula of Eq. (2.30). The two edge points of
the illuminated surface form the highest spatial frequency given as,

fmax ¼ 2
k
sin

hmax

2
� L

kz
ð2:54Þ

The reciprocal of fmax is a measure for the speckle size; and hence the diameter of
the speckle is,

L

z

P

Fig. 2.10 Objective speckle
formation
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dSp ¼ kz
L

ð2:55Þ

A subjective speckle pattern develops if the illuminated surface is focused with
an imaging system, e.g. a camera lens or the human eye, as in Fig. 2.11. In this case
the speckle diameter depends on the aperture diameter a of the imaging system. The
size of a speckle in a subjective speckle pattern can be estimated again using the
spatial frequency:

fmax ¼ 2
k
sin

hmax

2

� 	
� a

kb
ð2:56Þ

where b is the image distance of the imaging system. It follows that the speckle
diameter is given by

dSp ¼ kb
a

ð2:57Þ

The speckle size can be increased by reducing the aperture of the imaging
system.

2.6 Holography

2.6.1 Hologram Recording and Reconstruction

Holograms are usually recorded with an optical set-up consisting of a light source
(e.g. a laser), mirrors and lenses for beam guiding and a recording device (e.g. a
photographic sensor). A typical set-up is shown in Fig. 2.12 [79, 121]. Light with
sufficient coherence is split into two waves of reduced amplitude by a beam splitter

b

a

Fig. 2.11 Subjective speckle
formation
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(BS). The first wave illuminates the object, is scattered at the object surface and
reflected towards the recording medium. The second wave—the reference wave—
directly illuminates the light sensitive medium. The waves interfere with each other
to produce a characteristic interference pattern. In classical photographic hologra-
phy the interference pattern is recorded on a photosensitive material such as silver
halide films or plates and rendered permanent by wet chemical development of the
film. In digital holography the interference pattern is recorded directly onto an
electronic photosensor such as a CCD or CMOS array. The recorded interference
pattern is the hologram.

The original object wave is reconstructed by illuminating the hologram with the
reference wave, Fig. 2.13. An observer sees a virtual image, which is optically
indistinguishable from the original object. The reconstructed image exhibits all
effects of perspective, parallax and depth-of-field.

The holographic process is described mathematically using the formalism of
Sect. 2.2. Across the extent of the photographic plate, the complex amplitude of the
object wave is described by

EO x;yð Þ ¼ aO x;yð Þ exp iuO x;yð Þð Þ ð2:58Þ

with real amplitude aO and phase uO.

ER x;yð Þ ¼ aR x;yð Þ exp iuR x;yð Þð Þ ð2:59Þ

Laser

BS

Object Hologram

Fig. 2.12 Hologram recording
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is the complex amplitude of the reference wave with real amplitude aR and phase
uR:

Both waves interfere at the surface of the recording medium and the resultant
intensity is described by

I x;yð Þ ¼ EO x;yð Þ þ ER x;yð Þj j2
¼ EO x;yð Þ þ ER x;yð Þð Þ EO x;yð Þ þ ER x;yð Þð Þ�
¼ ER x;yð ÞE�

R x;yð Þ þ EO x;yð ÞE�
O x;yð Þ þ EO x; yÞE�

R x;yð Þ þ ER x;yð ÞE�
O x; yð Þ

ð2:60Þ

The amplitude transmission hðx; yÞ of the developed photographic plate (or of
other recording media) is proportional to I(x, y):

h x;yð Þ ¼ h0 þ bsI x;yð Þ ð2:61Þ

The constant β is the slope of the amplitude transmittance versus exposure
characteristic of the light sensitive material. For photographic emulsions β is neg-
ative. The exposure duration is denoted by τ and h0 is the amplitude transmission of
the unexposed plate; h(x,y) is the hologram function. In Digital Holography using
CCD or CMOS arrays as the recording medium, h0 can be neglected.

For hologram reconstruction in classical holography, the hologram is illuminated
with a replica of the original reference wave in terms of wavelength and phase. This
is represented mathematically as a multiplication of the amplitude transmission of
the medium with the complex amplitude of the reconstruction (reference) wave,

Laser

BS

Virtual image Hologram

Observer

stop

Fig. 2.13 Hologram reconstruction
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ER x;yð Þh x;yð Þ ¼ h0 þ bs a2R þ a2O

 �� 


ER x;yð Þ
þ bsa2REO x;yð Þ þ bsE2

R x;yð ÞE�
O x;yð Þ ð2:62Þ

The first term on the right side of this equation is the reference wave multiplied
by a constant factor. It represents the non-diffracted wave passing through the
hologram (zero diffraction order). The second term is the reconstructed object wave
and forms the virtual image. The real factor bsa2R only influences the brightness of
the image. The third term generates a distorted real image of the object. For off-axis
holography the virtual image, the real image and the non-diffracted wave are
spatially separated.

The reason for the distortion of the real image is the spatially varying complex
factor E2

R, which modulates the image forming conjugate object wave E�
O. An

undistorted real image can be generated by replaying the hologram with the
complex conjugate of the reference beam E�

R. This is mathematically represented
by,

E�
R x; yð Þh x; yð Þ ¼ h0 þ bs a2R þ a2O


 �� 

E�
R x; yð Þ

þ bsa2RE
�
O x; yð Þ þ bsE�2

R x; yð ÞEO x; yð Þ ð2:63Þ

2.6.2 The Imaging Equations

The virtual image appears at the position of the original object if the hologram is
reconstructed with the same parameters as those used in the recording process.
However, if one changes the wavelength or the coordinates of the reconstruction
wave source point with respect to the coordinates of the reference wave source
point used in the recording process, the position of the reconstructed image moves.
The coordinate shift is different for all points, thus the shape of the reconstructed
object is distorted. The image magnification is also influenced by the reconstruction
parameters.

The imaging equations relate the coordinates of an object point O to those of the
corresponding point in the reconstructed image. These equations are quoted here
without derivation but are described in some detail in other textbooks [79, 121].

The coordinate system is shown in Fig. 2.14. The coordinates of the object point
O are denoted as ðxO; yO; zOÞ, ðxR; yR; zRÞ are the coordinates of the source point of
the reference wave used for hologram recording and ðxP; yP; zPÞ are the coordinates
of the source point of the reconstruction wave. The ratio between the recording
wavelength λ1 and the reconstruction wavelength k2 is denoted by l ¼ k2=k1. The
coordinates of the point in the reconstructed virtual image, which corresponds to the
object point O, are:

x1 ¼ xPzOzR þ lxOzPzR � lxRzPzO
zOzR þ lzPzR � lzPzO

ð2:64Þ
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y1 ¼ yPzOzR þ lyOzPzR � lyRzPzO
zOzR þ lzPzR � lzPzO

ð2:65Þ

z1 ¼ zPzOzR
zOzR þ lzPzR � lzPzO

ð2:66Þ

The coordinates of the point in the reconstructed real image, which corresponds
to the object point O, are:

x2 ¼ xPzOzR � lxOzPzR þ lxRzPzO
zOzR � lzPzR þ lzPzO

ð2:67Þ

y2 ¼ yPzOzR � lyOzPzR þ lyRzPzO
zOzR � lzPzR þ lzPzO

ð2:68Þ

z2 ¼ zPzOzR
zOzR � lzPzR þ lzPzO

ð2:69Þ
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point (xR, yR, zR)

Recording
medium

Object source
point (xO, yO, zO)
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Reconstruction source
point (xP, yP, zP)

Hologram

(a) 

(b) 

Fig. 2.14 Coordinate system
used to describe holographic
reconstruction. a Hologram
recording. b Image
reconstruction
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An extended object can be considered to be made up of a number of point
objects. The coordinates of all surface points are described by the above equations.
The lateral magnification of the entire virtual image is:

Mlat;1 ¼ dx1
dxO

¼ 1þ z0
1
lzP

� 1
zR

� 	� ��1

ð2:70Þ

The lateral magnification of the real image is given by,

Mlat;2 ¼ dx2
dxO

¼ 1� z0
1
lzP

þ 1
zR

� 	� ��1

ð2:71Þ

The longitudinal magnification of the virtual image is given by:

Mlong;1 ¼ dz1
dzO

¼ 1
l
M2

lat;1 ð2:72Þ

The longitudinal magnification of the real image is:

Mlong;2 ¼ dz2
dzO

¼ � 1
l
M2

lat;2 ð2:73Þ

There is a difference between real and virtual image which should be noted:
since the real image is formed by the conjugate object wave O*, it has the curious
property that its depth is inverted. Corresponding points of the virtual image (which
coincide with the original object points) and of the real image are located at equal
distances from the hologram plane, but at opposite sides of it. The background and
the foreground of the real image are therefore exchanged. The real image appears
with the “wrong perspective”. It is called a pseudoscopic image, in contrast to a
normal or orthoscopic image.

2.7 Holographic Interferometry

2.7.1 Generation of Holographic Interferograms

Holographic Interferometry (HI) is a method of measuring optical path length
variations, which are caused by deformations of opaque bodies or refractive index
variations in transparent media, e.g. fluids or gases [175]. HI is a non-contact, non-
destructive metrological technique with a very high measurement sensitivity.
Optical path changes up to one hundredth of a wavelength are resolvable.

Two coherent wave fields, which are reflected from an object when it is in two
different states of excitation, interfere. This is achieved e.g. in double-exposure
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holography by the recording of two wave fields on a single photographic plate,
Fig. 2.15. The first exposure represents the object in its reference state (undeformed
state), the second exposure represents the object in its loaded (deformed) state. The
hologram is reconstructed by illumination with the reference wave, Fig. 2.16. As a
result of the superposition of two holographic recordings with slightly different

Laser

BS

Object,
primary state

Hologram

Object,
loaded state

Fig. 2.15 Recording of a double exposed hologram

Laser

BS

Virtual images,
both states

Hologram

Observer

Fig. 2.16 Reconstruction of the double-exposed hologram
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object waves, only one image superimposed by interference fringes is visible, see
example in Fig. 2.17. From this holographic interferogram the observer can
determine optical path changes due to the object deformation or other effects.

In real time HI, the hologram is replaced—after chemical processing—in exactly
the original recording position. When it is illuminated with the reference wave, the
reconstructed virtual image coincides with the object and is superimposed upon it.
Interference patterns caused by phase changes between the holographically
reconstructed reference object wave and the actual object wave are observable in
real time.

The following mathematical description is valid for both the double exposure
and real time techniques. The complex amplitude of the object wave in its initial
state is:

E1 x;yð Þ ¼ a x;yð Þ exp iu x;yð Þ½ � ð2:74Þ

where aðx;yÞ is the real amplitude and uðx;yÞ is the phase of the object wave.
Optical path changes due to deformations of the object surface can be described

by a variation of the phase from φ to φ + Δφ. The term Δφ represents the difference
between the reference and the actual phase and is known as the interference phase.
The complex amplitude of the actual object wave is therefore denoted by

E2 x;yð Þ ¼ a x;yð Þ exp i u x;yð Þ þ Du x;yð Þð Þ½ � ð2:75Þ

The intensity of a holographic interference pattern is described by the square of
the sum of the complex amplitudes. It is calculated as follows:

I x;yð Þ ¼ E1 þ E2j j2¼ E1 þ E2ð Þ E1 þ E2ð Þ�
¼ 2a2 1þ cos Duð Þð Þ ð2:76Þ

The general expression for the intensity within an interference pattern is
therefore:

Fig. 2.17 A holographic
interferogram of a pressure
vessel
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I x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cosDu x;yð Þ ð2:77Þ

The parameters Aðx;yÞ and Bðx;yÞ depend on the coordinates in the
interferogram.

In practice these parameters are not known due to several disturbing effects, such
as,

• uneven illumination of the object due to the Gaussian profile the expanded laser
beam gives rise to varying brightness of the holographic interferogram.

• high frequency speckle noise is superimposed upon interferogram.
• additional superimposed diffraction patterns due to dust particles in the optical

path.
• the varying reflectivity of the object under investigation may influence the

brightness and visibility of the interferogram.
• electronic recording and transmission of holographic interferograms can gen-

erate additional noise.

Equation (2.77) describes the relation between the intensity of the interference
pattern and the interference phase, which contains the information about the
physical quantity to be measured (object displacement, refractive index change or
object shape). In general it is not possible to calculate Δφ directly from the mea-
sured intensity, because the parameters A(x, y) and B(x, y) are not known. In
addition the cosine is an even function (cos 30° = cos −30°) and the sign of Δφ
cannot be determined unambiguously. Therefore several techniques have been
developed to determine the interference phase by recording additional information.
The most common techniques are the various phase shifting methods, which are
briefly discussed in Sect. 2.7.5.

2.7.2 Displacement Measurement by HI

In this chapter a relationship between the measured interference phase and the
displacement of the object surface under investigation is derived [121, 218]. The
geometric quantities are explained in Fig. 2.18. The vector ~d x;y;zð Þ is the dis-
placement vector. It describes the shift of a surface point from its initial position P1
to the new position P2 due to deformation. The terms~s1 and~s2 are unit vectors from
the illumination source point S to P1, and P2 respectively. Similarly,~b1 and~b2 are
unit vectors from P1 to the observation point B, and from P2 to B, respectively. The
optical path difference between a ray from S to B via P1 and a ray from S to B via P2
is therefore given by,

d ¼ SP1 þ P1B� SP2 þ P2B

 �

¼ s1
!SP1

�!þ b1
!

P1B
��!� s2

!SP2
��!� b2

�!
P2B
��! ð2:78Þ
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The lengths SP1=2 and P1=2B are in the range of metres, while ~d
��� ��� is in the range

of several micrometres. The vectors~s1 and~s2 can therefore be replaced by a unit
vector~s pointing into the bisector of the angle spread by~s1 and~s2:

~s1 ¼~s2 ¼~s ð2:79Þ

~b1 and ~b2 are accordingly replaced by a unit vector ~b pointing into the bisector of
the angle spread by ~b1 and ~b2

~b1 ¼~b2 ¼~b ð2:80Þ

The displacement vector ~d x;y;zð Þ is given by:

~d ¼ P1B
��!� P2B

��! ð2:81Þ

and

~d ¼ SP2
�!� SP1

�! ð2:82Þ

Inserting Eqs. (2.79) to (2.82) into Eq. (2.78) gives:

d ¼ ~b�~s
� �

~d ð2:83Þ

The following expression results for the interference phase:

Du x;yð Þ ¼ 2p
k
~d x;y;zð Þ ~b�~s

� �
¼~d x;y;zð Þ~S ð2:84Þ
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Fig. 2.18 Calculation of the
interference phase
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The vector

~S ¼ 2p
k

~b�~s
� �

ð2:85Þ

is called the sensitivity vector. The sensitivity vector is only defined by the
geometry of the holographic arrangement. It gives the direction in which the set-up
has maximum sensitivity. At each point the projection of the displacement vector
onto the sensitivity vector is measured. Equation (2.84) is the basis of all quanti-
tative measurements of the deformation of opaque bodies.

In the general case of a three dimensional deformation field Eq. (2.84) contains
the three components of ~d as unknown parameters. Three interferograms of the
same surface with linear independent sensitivity vectors are necessary to determine
the displacement. In many practical cases it is not the three dimensional displace-
ment field that is of interest, but the deformation perpendicular to the surface. This
out-of-plane deformation can be measured using an optimised set-up with parallel
illumination and observation directions ð~S ¼ 2p=kð0; 0; 2ÞÞ. The component dz is
then calculated from the interference phase by

dz ¼ Du
k
4p

ð2:86Þ

A phase variation of 2π corresponds to a deformation of λ/2.

2.7.3 Holographic Contouring

Another application of HI is the generation of a fringe pattern corresponding to
contours of constant elevation with respect to a reference plane. Such contour
fringes can be used to determine the shape of a three-dimensional object.

Holographic contour interferograms can be generated by different methods. In
the following the

• two-wavelength method and the
• two-illumination-point method

are described. A third method, the two-refractive-index technique, has less practical
applications and is not considered here.

The principal set-up of the two-wavelength method is shown in Fig. 2.19. A
plane wave illuminates the object surface. The back scattered light interferes with
the plane reference wave at the holographic recording medium. In the set-up of
Fig. 2.19 the illumination wave is reflected onto the object surface via a beam
splitter in order to ensure parallel illumination and observation directions. Two
holograms are recorded with different wavelengths k1 and k2 on the same
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photographic plate. This can be done either simultaneously using two lasers with
different wavelengths or in succession by changing the wavelength of a tuneable
laser, e.g. a dye laser. After processing, the double exposed hologram is replaced
and reconstructed with only one of the two wavelengths, say k2. Two virtual images
become visible. The image recorded with k2 coincides with the object surface. The
other image, recorded with k1 but reconstructed with k2, is slightly distorted. The
z-coordinate of this image z’ is calculated with the imaging Eq. (2.66):

z0 ¼ z2Rz

zzR þ k2
k1
z2R � k2

k1
zzR

� z
k1
k2

ð2:87Þ

The indices “1” for virtual image ðz01 � z0Þ and “O” for object ðzO � zÞ are
omitted and it is assumed not to change the source coordinates of the reconstruction
wave with respect to those of the recording coordinates ðzP � zR ! 1Þ. The axial
displacement of the image recorded with k1 but reconstructed with k2 is therefore:

Dz ¼ z0 � z ¼ z
k1 � k2j j

k2
ð2:88Þ

The path difference of the light rays on their way from the source to the surface
and from the surface to the hologram is 2Dz. The corresponding phase shift is thus,

Du x;yð Þ ¼ 2p
k1

2Dz ¼ 4pz
k1 � k2j j
k1k2

ð2:89Þ

The two shifted images interfere. According to Eq. (2.89) the phase shift
depends on the distance z from the hologram plane. All points of the object surface
having the same z-coordinate (height) are therefore connected by a contour line. As
a result an image of the surface superimposed by contour fringes develops. The
height jump between adjacent fringes is:

z
BS

Surface Hologram

Δ

Reference
wave

Fig. 2.19 Holographic
contouring
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DH ¼ z Du ¼ nþ 1ð Þ2pð Þ � z Du ¼ n2pð Þ ¼ k1k2
2 k1 � k2j j ¼

K
2

ð2:90Þ

K ¼ k1k2= k1 � k2j j is known as the synthetic wavelength or equivalent wavelength.
The object is intersected by parallel planes which have a distance of DH, see the
principle in Fig. 2.20 and a typical example in Fig. 2.21.

The equations derived in this chapter are valid only for small wavelength dif-
ferences, because in addition to the axial displacement (which generates contour
lines) also a lateral image displacement occurs. This lateral displacement can be
neglected for small wavelength differences.

The principle of the two-illumination-point method is to make a double exposure
hologram in which the point source illuminating the object is shifted slightly
between the two exposures. If the illumination point S is shifted to S′ between the
two exposures (Fig. 2.22), the resulting optical path length difference δ is:

d ¼ SPþ PB� S0Pþ PB

 � ¼ SP� S0P

¼ s1
! SP

�!� s2
!S0P

�! ð2:91Þ

The unit vectors s1
! and s2

! are defined as for the derivation of the interference
phase due to deformation in Sect. 2.7.2. The same approximation is used and these
vectors are replaced by a common unit vector:

~s1 ¼~s2 ¼~s ð2:92Þ

Furthermore,

~p ¼ SP
�!� S0P

�! ð2:93Þ

is introduced as a vector from S to S′. The optical path difference is then given by

d ¼~p~s ð2:94Þ

Contour
lines

Planes of
constant phase

Fig. 2.20 Object intersection
by contour lines
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The corresponding phase change is:

Du ¼ 2p
k
~p~s ð2:95Þ

Fig. 2.21 Two-wavelength
contour fringes
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Fig. 2.22 Two-illumination
point contouring
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The object surface is intersected by fringes which consist of a set of hyperbo-
loids. Their common foci are the two points of illumination S and S′. If the
dimensions of the object are small compared to the distances between the source
points and the object, plane contouring surfaces result. A collimated illumination
together with a telecentric imaging system also generates plane contouring surfaces.
The distance between two neighbouring surfaces is

DH ¼ k

2 sin h
2

ð2:96Þ

where θ is the angle between the two illumination directions. Equation (2.96) is
analogue to the fringe spacing in an interference pattern formed by two intersecting
plane waves, see Eq. (2.29) in Sect. 2.2.

2.7.4 Refractive Index Measurement by HI

Another application of HI is the measurement of refractive index variations within
transparent media. This mode of HI is used to determine temperature or concen-
tration variations in fluid or gaseous media.

A refractive index change in a transparent medium causes a change of the optical
path length and thereby a phase variation between two light waves passing the
medium before and after the change. The interference phase due to refractive index
variations is given by:

Du x;yð Þ ¼ 2p
k

Zl2
l1

n x;y;zð Þ � n0½ �dz ð2:97Þ

where n0 is the refractive index of the medium under observation in its initial,
unperturbed state and n(x, y, z) is the final refractive index distribution. The light
passes through the medium in the z-direction and integration is along the propa-
gation direction. Equation (2.97) is valid for small refractive index gradients, where
the light rays propagate along straight lines. The simplest case is that of a two-
dimensional phase object with no variation of refractive index in z. In this case the
refractive index distribution n(x, y) can be calculated directly from Eq. (2.97). In the
general case of a refractive index varying also in the z-direction Eq. (2.97) cannot
be solved without further information about the process. However, in many prac-
tical experiments only two-dimensional phase objects have to be considered.

A set-up for the recording of holograms of transparent phase objects consists of a
coherent light source, the transparent medium under investigation and optical
components as in Fig. 2.23.
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The laser beam is split into two separate waves. One wave is expanded by a
telescopic lens system and illuminates the medium, which is located for example in
a test cell with transparent walls. The transmitted part, the object wave, interferes
with the reference wave at the surface of the hologram plate. After processing, the
object wave is reconstructed by illuminating the hologram with the reference wave
again, Fig. 2.24. Holographic Interferometry can be carried out either by the double
exposure method or by the real-time method.

A holographic interferogram of a pure transparent object without any scattering
consists of clear fringes undisturbed by speckle noise. These fringes are not
localized in space, because there are no object contours visible. Yet, for some
applications localized fringes are desired. In that case a diffusing screen can be
placed in front of or behind the object volume.

2.7.5 Phase Shifting HI

As discussed in Sect. 2.7.1 it is not possible to calculate Δφ unambiguously from
the measured intensity, because the parameters A(x, y) and B(x, y) in Eq. (2.77) are
not known and the sign is not determined.

Phase shifting Holographic Interferometry is a method which enables us to
determine the interference phase by recording additional information [17, 36, 98,
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Fig. 2.23 Recording set-up
for transparent phase objects
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of phase object
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Fig. 2.24 Reconstruction of
phase objects
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99]. The principle is to record three or more interference patterns with mutual phase
shifts. For the case of three recordings, the interference patterns are described by:

I1 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duð Þ
I2 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ að Þ
I3 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 2að Þ

ð2:98Þ

The equation system can be solved unambiguously for Δφ if the phase angle α is
known (e.g. 120°).

The phase shift can be realized in practice for example by employing a mirror
mounted on a piezo-electric translator. The mirror is placed either in the object
beam or in the reference beam. If appropriate voltages are applied to the piezo-
electric translator during the hologram reconstruction, well defined path changes in
the range of fractions of a wavelength can be introduced. These path changes
correspond to phase differences between object—and reference wave.

Instead of using the minimum number of three reconstructions with two mutual
phase shifts, Eq. (2.98), it is also possible to generate four reconstructions with
three mutual phase shifts:

I1 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duð Þ
I2 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ að Þ
I3 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 2að Þ
I4 x;yð Þ ¼ A x;yð Þ þ B x;yð Þ cos Duþ 3að Þ

ð2:99Þ

In that case the equation system can be solved without knowledge of the phase
shift angle, α, as long as it is constant. The solution for Δφ is [121]:

Du ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 þ I2 � I3 � I4

p 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I2 � 3I3 � I1 þ I4

p
I2 þ I3 � I1 � I4

ð2:100Þ

Various HI phase shifting methods have been published [121], which differ in
the number of recordings (at least 3), the value of α, and the method of generating
the phase shift (stepwise or continuously). These methods will not be discussed in
detail here. The principle has been described briefly in order to prepare for a
comparison of phase determination in conventional HI using photographic plates
and with the techniques used to obtain phase information in Digital Holographic
Interferometry (Chap. 4). Finally it is noted that phase shifting HI is not the only
way to determine the phase from a fringe pattern, but it is the most commonly
applied. Other phase evaluating techniques include Fourier Transform methods,
skeletonizing or heterodyne techniques.
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2.7.6 Phase Unwrapping

Even after having determined the interference phase by a method such as phase
shifting HI, a problem remains: the cosine function is periodic, i.e. the interference
phase distribution is indefinite to an additive integer of 2π:

cos Duð Þ ¼ cos Duþ 2pnð Þ n 2 Z ð2:101Þ

Interference phase maps calculated with the arctan function or other inverse
trigonometric functions therefore contain 2π jumps at those positions where an
extreme value of Δφ (either −π or π) is reached. The interference phase change
along a line of such a phase image resembles a saw tooth function, Fig. 2.25a. The
correction of these modulo 2π jumps in order to generate a continuous phase
distribution is called demodulation, continuation or phase unwrapping.

Several unwrapping algorithms have been developed in the last years. In the
following the so called path-dependent unwrapping algorithm is described. At first
a one-dimensional interference phase distribution is considered. The difference
between the phase values of adjacent pixels Duðnþ 1Þ � DuðnÞ is calculated. If
this difference is less than −π, all phase values from the (n + 1)th pixel onwards are
increased by 2π. If this difference is greater than +π, 2π is subtracted from all phase
values, starting from (n + 1). If none of the above mentioned conditions is valid the
phase value remains unchanged. The practical implementation of this procedure is
done by first calculating a step function, which cumulates the 2π jumps for all
pixels, Fig. 2.25b. The continuous phase distribution is then calculated by adding
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Fig. 2.25 Phase unwrapping.
a Interference phase modulo
2π: Du2pðxÞ b Step function:
DujumpðxÞ c unwrapped
interference phase:
Du2pðxÞ þ DujumpðxÞ
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this step function to the unwrapped phase distribution, Fig. 2.25c. Almost every
pixel can be used as a starting point for this unwrapping procedure, not necessarily
the pixel at the start of the line. If a central pixel is chosen as the starting point the
procedure has to be carried out in both directions from that point.

This one-dimensional unwrapping scheme can be transferred to two dimensions.
One possibility is to unwrap first one row of the two dimensional phase map with
the algorithm described above. The pixels of this unwrapped row act then as
starting points for column demodulation.

One disadvantage of the simple unwrapping procedure described here is that
difficulties occur if masked regions are in the phase image. These masked areas
might be caused by e.g. holes in the object surface. To avoid this and other diffi-
culties several other, more sophisticated demodulation algorithms have been
developed [121].

Finally it should be mentioned that the unwrapping procedure is always the same
for all methods of metrology that generate saw-tooth like images. This means the
various unwrapping algorithm developed for HI and other methods can be used also
for Digital Holographic Interferometry, because this technique also generates
modulo 2π-images (see Chap. 4).
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