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Part I

The Basics
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Problems to Be Solved

In this chapter we discuss problems to be solved, as encountered frequently
by engineers, computer scientists, etc. We argue that problems and problem
solvers can, and should, be distinguished, and observe that the field of evolu-
tionary computing is primarily concerned with problem solvers. However, to
characterise any problem solver it is useful to identify the kind of problems
to which it can be applied. Therefore we start this book by discussing various
classes of problems, and, in fact, even different ways of classifying problems.

In the following informal discussion, we introduce the concepts and the
terminology needed for our purposes by examples, only using a formal treat-
ment when it is necessary for a good understanding of the details. To avoid
controversy, we are not concerned with social or political problems. The prob-
lems we have in mind are the typical ones with which artificial intelligence
is associated: more akin to puzzles (e.g., the famous zebra puzzle), numerical
problems (e.g., what is the shortest route from a northern city to a southern
city), or pattern discovery (e.g., what will a new customer buy in our online
book store, given their gender, age, address, etc).

1.1 Optimisation, Modelling, and Simulation Problems

The classification of problems used in this section is based on a black box
model of computer systems. Informally, we can think of any computer-based
system as follows. The system initially sits, awaiting some input from either
a person, a sensor, or another computer. When input is provided, the system
processes that input through some computational model, whose details are not
specified in general (hence the name black box). The purpose of this model is
to represent some aspects of the world relevant to the particular application.
For instance, the model could be a formula that calculates the total route
length from a list of consecutive locations, a statistical tool estimating the
likelihood of rain given some meteorological input data, a mapping from real-
time data regarding a car’s speed to the level of acceleration necessary to
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2 1 Problems to Be Solved

approach some prespecified target speed, or a complex series of rules that
transform a series of keystrokes into an on screen version of the page you are
reading now. After processing the input the system provides some outputs –
which might be messages on screen, values written to a file, or commands sent
to an actuator such as an engine. Depending on the application, there might
be one or more inputs of different types, and the computational model might
be simple, or very complex. Importantly, knowing the model means that we
can compute the output for any input. To provide some concrete examples:

• When designing aircraft wings, the inputs might represent a description
of a proposed wing shape. The model might contain equations of complex
fluid dynamics to estimate the drag and lift coefficients of any wing shape.
These estimates form the output of the system.

• A voice control system for smart homes takes as input the electrical signal
produced when a user speaks into a microphone. Suitable outputs might
be commands to be sent to the heating system, the TV set, or the lights.
Thus in this case the model consists of a mapping from certain patterns
in electrical waveforms coming from an audio input onto the outputs that
would normally be created by key-presses on a keyboard.

• For a portable music player, the inputs might be a series of gestures and
button presses – perhaps choosing a playlist that the user has created.
Here the response of the model might involve selecting a series of mp3 files
from a database and processing them in some way to provide the desired
output for that sequence of gestures. In this case the output would be a
fluctuating electrical signal fed to a pair of earphones that in turn produce
the sound of the chosen songs.

In essence, the black box view of systems distinguishes three components,
the input, the model, and the output. In the following we will describe three
problem types, depending on which of these three is unknown.

1.1.1 Optimisation

In an optimisation problem the model is known, together with the desired
output (or a description of the desired output), and the task is to find the
input(s) leading to this output (Fig. 1.1).

For an example, let us consider the travelling salesman problem. This ap-
parently rather abstract problem is popular in computer science, as there are
many practical applications which can be reduced to this, such as organising
delivery routes, plant layout, production schedules, and timetabling. In the
abstract version we are given a set of cities and have to find the shortest tour
which visits each city exactly once. For a given instance of this problem, we
have a formula (the model) that for each given sequence of cities (the inputs)
will compute the length of the tour (the output). The problem is to find an
input with a desired output, that is, a sequence of cities with optimal (mini-
mal) length. Note that in this example the desired output is defined implicitly.
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1.1 Optimisation, Modelling, and Simulation Problems 3

That is, rather specifying the exact length, it is required that the tour should
be shorter than all others, and we are looking for inputs realising this.

Another example is that of the eight-queens problem. Here we are given a
chess board and eight queens that need to be placed on the board in such a way
that no two queens can check each other, i.e., they must not share the same
row, column, or diagonal. This problem can be captured by a computational
system where an input is a certain configuration of all eight queens, the model
calculates whether the queens in a given configuration check each other or not,
and the output is the number of queens not being checked. As opposed to the
travelling salesman problem, here the desired output is specified explicitly:
the number of queens not being checked must be eight. An alternative system
capturing this problem could have the same set of inputs, the same model,
but the output can be a simple binary value, representing “OK” or “not OK”,
referring to the configuration as a whole. In this case we are looking for an
input that generates “OK” as output. Intuitively, this problem may not feel
like real optimisation, because there is no graded measure of goodness. In
Sect. 1.3 we will discuss this issue in more detail.

Fig. 1.1. Optimisation problems. These occur frequently in engineering and design.
The label on the Output reads “specified”, instead of “known”, because the specific
value of the optimum may not be known, only defined implicitly (e.g., the lowest of
all possibilities).

1.1.2 Modelling

In a modelling or system identification problem, corresponding sets of
inputs and outputs are known, and a model of the system is sought that
delivers the correct output for each known input (Fig. 1.2). In terms of human
learning this corresponds to finding a model of the world that matches our
previous experience, and can hopefully generalise to as-yet unseen examples.

Let us take the stock exchange as an example, where some economic and
societal indices (e.g., the unemployment rate, gold price, euro–dollar exchange
rate, etc.) form the input, and the Dow Jones index is seen as output. The task
is now to find a formula that links the known inputs to the known outputs,
thereby representing a model of this economic system. If one can find a correct
model for the known data (from the past), and if we have good reasons to
believe that the relationships captured in this model remain true, then we
have a prediction tool for the value of the Dow Jones index given new data.
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4 1 Problems to Be Solved

As another example, let us take the task of identifying traffic signs in images
– perhaps from video feeds in a smart car. In this case the system is composed
of two elements. In a preprocessing stage, image processing routines take the
electrical signals produced by the camera, divide these into regions of interest
that might be traffic signs, and for each one they produce a set of numerical
descriptors of the size, shape, brightness, contrast, etc. These values represent
the image in a digital form and we consider the preprocessing component to
be given for now. Then in the main system each input is a vector of numbers
describing a possible sign, and the corresponding output is a label from a
predefined set, e.g., “stop”, “give-way”, “50”, etc. (the traffic sign). The model
is then an algorithm which takes images as input and produces labels of traffic
signs as output. The task here is to produce a model that responds with
the appropriate traffic sign labels in every situation. In practice, the set of
all possible situations would be represented by a large collection of images
that are all labelled appropriately. Then the modelling problem is reduced to
finding a model that gives a correct output for each image in the collection.

Also the voice control system for smart homes described in the beginning of
this section includes a modelling problem. The set of all phrases pronounced
by the user (inputs) must be correctly mapped onto the set of all control
commands in the repertoire of the smart home.

Fig. 1.2. Modelling or system identification problems. These occur frequently in
data mining and machine learning

It is important to note that modelling problems can be transformed into
optimisation problems. The general trick is to designate the error rate of a
model as the quantity to be minimised or its hit rate to be maximised. As
an example, let us take the traffic sign identification problem. This can be
formulated as a modelling problem: that of finding the correct model m that
maps each one of a collection of images onto the appropriate label(s) identi-
fying the traffic signs in that image. The model m that solves the problem
is unknown in advance, hence the question mark in Figure 1.2. In order to
find a solution we need to start by choosing a technology. For instance, we
may wish to have it as a decision tree, an artificial neural network, a piece
of Java code, or a MATLAB expression. This choice allows us to specify the
required form or syntax of m. Having done that, we can define the set of all
possible solutions M for our chosen technology, being all correct expressions
in the given syntax, e.g., all decision trees with the appropriate variables or all
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1.2 Search Problems 5

possible artificial neural networks with a given topology. Now we can define
a related optimisation problem. The set of inputs is M and the output for a
given m ∈M is an integer saying how many images were correctly labelled by
m. It is clear that a solution of this optimisation problem with the maximum
number of correctly labelled images is a solution to the original modelling
problem.

1.1.3 Simulation

In a simulation problem we know the system model and some inputs, and
need to compute the outputs corresponding to these inputs (Fig. 1.3). As an
example, think of an electronic circuit, say, a filter cutting out low frequen-
cies in a signal. Our model is a complex system of formulas (equations and
inequalities) describing the working of the circuit. For any given input signal
this model can compute the output signal. Using this model (for instance, to
compare two circuit designs) is much cheaper than building the circuit and
measuring its properties in the physical world. Another example is that of a
weather forecast system. In this case, the inputs are the meteorological data
regarding, temperature, wind, humidity, rainfall, etc., and the outputs are ac-
tually the same: temperature, wind, humidity, rainfall, etc., but at a different
time. The model here is a temporal one to predict meteorological data.

Simulation problems occur in many contexts, and using simulators offers
various advantages in different applications. For instance, simulation can be
more economical than studying the real-world effects, e.g., for the electronic
circuit designers. The real-world alternative may not be feasible at all, for
instance, performing what-if analyses of various tax systems in vivo is prac-
tically impossible. And simulation can be the tool that allows us to look into
the future, as in weather forecast systems.

Fig. 1.3. Simulation problems. These occur frequently in design and in socio-
economical contexts

1.2 Search Problems

A deeply rooted assumption behind the black box view of systems is that
a computational model is directional: it computes from the inputs towards
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6 1 Problems to Be Solved

the outputs and it cannot be simply inverted. This implies that solving a
simulation problem is different from solving an optimisation or a modelling
problem. To solve a simulation problem, we only need to apply the model
to some inputs and simply wait for the outcome.1 However, solving an op-
timisation or a modelling problem requires the identification of a particular
object in a space of possibilities. This space can be, and usually is, enormous.
This leads us to the notion that the process of problem solving can be viewed
as a search through a potentially huge set of possibilities to find the desired
solution. Consequently, the problems that are to be solved this way can be
seen as search problems. In terms of the classification of problems discussed in
Section 1.1, optimisation and modelling problems can be naturally perceived
as search problems, while this does not hold for simulation problems.

This view naturally leads to the concept of a search space, being the
collection of all objects of interest including the solution we are seeking. De-
pending on the task at hand, the search space consists of all possible inputs to
a model (optimisation problems), or all possible computational models that
describe the phenomenon we study (modelling problems). Such search spaces
can indeed be very large; for instance, the number of different tours through n
cities is (n−1)!, and the number of decision trees with real-valued parameters
is infinite. The specification of the search space is the first step in defining a
search problem. The second step is the definition of a solution. For optimi-
sation problems such a definition can be explicit, e.g., a board configuration
where the number of checked queens is zero, or implicit, e.g., a tour that is
the shortest of all tours. For modelling problems, a solution is defined by the
property that it produces the correct output for every input. In practice, how-
ever, this is often relaxed, only requiring that the number of inputs for which
the output is correct be maximal. Note that this approach transforms the
modelling problem into an optimisation one, as illustrated in Section 1.1.2.

This notion of problem solving as search gives us an immediate benefit: we
can draw a distinction between (search) problems – which define search spaces
– and problem solvers – which are methods that tell us how to move through
search spaces.

1.3 Optimisation Versus Constraint Satisfaction

The classification scheme discussed in this section is based on distinguishing
between objective functions to be optimised and constraints to be satisfied. In
general, we can consider an objective function to be some way of assigning
a value to a possible solution that reflects its quality on a scale, whereas a
constraint represents a binary evaluation telling us whether a given require-
ment holds or not. In the previous sections several objective functions were
mentioned, including:

1 The main challenge here is very often to build the simulator, which, in fact,
amounts to solving a modelling problem.
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1.3 Optimisation Versus Constraint Satisfaction 7

(1) the number of unchecked queens on a chess board (to be maximised);
(2) the length of a tour visiting each city in a given set exactly once (to be

minimised);
(3) the number of images in a collection that are labelled correctly by a given

model m (to be maximised).

These examples illustrate that solutions to a problem can be identified in
terms of optimality with respect to some objective function. Additionally, so-
lutions can be subject to constraints phrased as criteria that must be satisfied.
For instance:

(4) Find a configuration of eight queens on a chess board such that no two
queens check each other.

(5) Find a tour with minimal length for a travelling salesman such that city
X is visited after city Y .

There are a number of observations to be made about these examples. Ex-
ample 2 refers to a problem whose solution is defined purely in terms of opti-
misation. On the other hand, example 4 illustrates the case where a solution is
defined solely in terms of a constraint: a given configuration is either good or
not. Note that this overall constraint regarding a whole configuration is actu-
ally composed from more elementary constraints concerning pairs of queens.
A complete configuration is OK if all pairs of queens are OK. Example 5 is
a mixture of these two basic types since it has an objective function (tour
length) and a constraint (visit X after Y ). Based on these observations we
can set up another system for classifying problems, depending on the presence
or absence of an objective function and constraints in the problem definition.
The resulting four categories are shown in Table 1.1.

Objective function

Constraints Yes No

Constrained Constraint
Yes optimisation satisfaction

problem problem

Free
No optimisation No

problem problem

Table 1.1. Problem types distinguished by the presence or absence of an objective
function and constraints

In these terms, the travelling salesman problem (item 2 above) is a free
optimisation problem (FOP), the eight-queens problem (item 4 above)
is a constraint satisfaction problem (CSP), and the problem shown in
item 5 is a constrained optimisation problem (COP). Comparing items
1 and 4 we can see that constraint satisfaction problems can be transformed
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8 1 Problems to Be Solved

into optimisation problems. The basic trick is the same as in transforming
modelling problems into optimisation problems: rather than requiring per-
fection, we just count the number of satisfied constraints (e.g., non-checking
pairs of queens) and introduce this as an objective function to be maximised.
Obviously, an object (e.g., a board configuration) is a solution of the original
constraint satisfaction problem if and only if it is a solution of this associated
optimisation problem.

To underpin further interesting insights about problems, let us have a closer
look at the eight-queens problem. Its original formulation is in natural lan-
guage:

Place eight queens on a chess board in such a way that no two
queens check each other.

This problem definition is informal in the sense that it lacks any reference
to the formal constructs we have introduced here, such as inputs/outputs, a
search space, etc. In order to develop an algorithm for this problem, it needs
to be formalised. As it happens, it can be formalised in different ways, and
these lead to different types of formal problems describing it. The easiest way
to illustrate a number of options is to take the search perspective.

FOP If we define search space S to be the set of all board configurations with
eight queens, we can capture the original problem as a free optimisation
problem with an objective function f that reports the number of free
queens for a given configuration, and define a solution as a configuration
s ∈ S with f(s) = 8.

CSP Alternatively, we can formalise it as a constraint satisfaction problem
with the same search space S and define a constraint φ such that φ(s) =
true if and only if no two queens check each other for the configuration s.

COP Yet another formalisation is obtained if we take a different search
space. This can be motivated by the observation that in any solution of
the eight-queens problem the number of queens in each column must be
exactly one. Obviously, the same holds for rows. So we could distinguish
vertical constraints (for columns), horizontal constraints (for rows), and
diagonal constraints, and decide to restrict ourselves to board configura-
tions that satisfy the vertical and horizontal constraints already. This is a
workable approach, since it is rather easy to find configurations with one
queen in each column and in each row. These configurations are a subset of
the original search space – let us call this S′. Formally, we can then define
a constrained optimisation problem over S with a modified constraint ψ′

such that ψ′(s) = true if and only if all vertical and horizontal constraints
are satisfied in s (i.e. φ′(s) = true if and only if s is in S′) and a new
function g that reports the number of pairs of queens in s that violate
the diagonal constraints. It is easy to see that a board configuration is a
solution of the eight-queens problem if and only if it is a solution of this
constrained optimisation problem with g(s) = 0 and φ′(s) = true.
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1.4 The Famous NP Problems 9

These examples illustrate that the nature of a problem is less obvious than
it may seem. In fact, it all depends on how we choose to formalise it. Which
formalisation is to be preferred is a subject for discussion. It can be argued
that some formalisations are more natural, or fit the problem better, than
others. For instance, one may prefer to see the eight-queens problem as a con-
straint satisfaction problem by nature and consider all other formalisations as
secondary transformations. Likewise, one can consider the traffic sign recogni-
tion problem as a modelling problem in the first place and transform it to an
optimisation problem for practical purposes. Algorithmic considerations can
also be a major influence here. If one has an algorithm that can solve free
optimisation problems well, but cannot cope with constraints, then it is very
sensible to formalise problems as free optimisation.

1.4 The Famous NP Problems

Up to this point we have discussed a number of different ways of categorising
problems, and have deliberately stayed away from discussions about problem-
solvers. Consequently, it is possible to classify a problem according to one
of those schemes by only looking at the problem. In this section we discuss
a classification scheme where this is not possible because the problem cate-
gories are defined through the properties of problem-solving algorithms. The
motivation behind this approach is the intention to talk about problems in
terms of their difficulty, for instance, being hard or easy to solve. Roughly
speaking, the basic idea is to call a problem easy if there exists a fast solver
for it, and hard otherwise. This notion of problem hardness leads to the study
of computational complexity.

Before we proceed we need to make a further distinction among optimisa-
tion problems, depending on the type of objects in the corresponding search
space. If the search space S is defined by continuous variables (i.e., real num-
bers), then we have a numerical optimisation problem. If S is defined by
discrete variables (e.g., Booleans or integers), then we have a combinatorial
optimisation problem. The various notions of problem hardness discussed
further on are defined for combinatorial optimisation problems. Notice that
discrete search spaces are always finite or, in the worst case, countably infinite.

We do not attempt to provide a complete overview of computational com-
plexity as this is well covered in many books, such as [180, 330, 331, 318].
Rather, we provide a brief outline of some important concepts, their impli-
cations for problem-solving, and also of some very common misconceptions.
Furthermore, we do not treat the subject with mathematical rigour as it would
not be appropriate for this book. Thus, we do not give precise definitions of es-
sential concepts, like algorithm, problem size, or run-time, but use such terms
in an intuitive manner, explaining their meaning by examples if necessary.

The first key notion in computational complexity is that of problem size,
which is grounded in the dimensionality of the problem at hand (i.e., the num-
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10 1 Problems to Be Solved

ber of variables) and the number of different values for the problem variables.
For the examples discussed before, the number of cities to visit, or the num-
ber of queens to place on the board could be sensible measures to indicate
problem size. The second notion concerns algorithms, rather than problems.
The running-time of an algorithm is the number of elementary steps, or
operations, it takes to terminate. The general, although not always correct,
intuition behind computational complexity is that larger problems need more
time to solve. The best-known definitions of problem hardness relate the size
of a problem to the (worst-case) running-time of an algorithm to solve it. This
relationship is expressed by a formula that specifies an upper-bound for the
worst-case running-time as a function of the problem size. To put it simply, this
formula can be polynomial (considered to indicate relatively short running-
times) or superpolynomial, e.g., exponential (indicating long running-times).
The final notion is that of problem reduction, which is the idea that we
can transform one problem into another via a suitable mapping. Note that the
transformation might not be reversible. Although this idea of transforming or
reducing problems is slightly complex, it is not entirely unfamiliar since we
saw in the previous section that a given problem in the real world can often
by formalised in different, but equivalent ways. The frequently used notions
regarding problem hardness can now be phrased as follows.

A problem is said to belong to the class P if there exists an algorithm that
can solve it in polynomial time. That is, if there exists an algorithm for it
whose worst-case running-time for problem size n is less than F (n) for some
polynomial formula F . In common parlance, the set P contains the problems
that can be easily solved, e.g., the Minimum Spanning Tree problem.

A problem is said to belong to the class NP if it can be solved by some
algorithm (with no claims about its run-time) and any solution can be verified
within polynomial time by some other algorithm.2 Note that it follows that
P is a subset of NP , since a polynomial solver can also be used to verify so-
lutions in polynomial time. An example of an NP -problem is the subset-sum
problem: given a set of integers, is there some set of one or more elements of
that set which sum to zero? Clearly, giving a negative answer to this prob-
lem for a given set of numbers would require examining all possible subsets.
Unfortunately, the number of the possible subsets is more than polynomial in
the size of the set. However verifying that a solution is valid merely involves
summing the contents of the subset discovered.

A problem is said to belong to the class NP-complete if it belongs to
the class NP and any other problem in NP can be reduced to this problem
by an algorithm which runs in polynomial time. In practice these represent
difficult problems which crop up all the time. Several large lists of well-known
examples of NP -complete problems can readily be found on the internet –

2 For the sake of correctness, here we commit the most blatant oversimplification.
We ‘define’ NP without any reference to non-deterministic Turing Machines, or
restricting the notion to decision problems.
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