
Chapter 14
Amplitude Modulation (AM) Mode
in Dynamic Atomic Force Microscopy

In dynamic atomic force microscopy the cantilever is excited using a piezo actuator
which oscillates the cantilever base. The driving frequency is usually close to the
resonance frequency of the cantilever. Due to the interaction between tip and the
surface, the resonance frequency of the cantilever changes. As shown in this chapter,
an attractive force between tip and sample leads to a lower resonance frequency of the
cantilever, while for repulsive tip-sample forces the resonance frequency increases.1

This change in resonance frequency can be measured directly in the so called fre-
quency modulation mode (FM) of atomic force microscopy, as described in Chap. 17.
In this chapter, we describe the amplitude modulation mode (AM) of AFM. Here the
cantilever is driven at a fixed frequency with a fixed driving amplitude. The change
of the resonance frequency leads to a change of the vibration amplitude and of the
phase between excitation and oscillation, which can be measured.

We consider the AM detection mode in this chapter in the small amplitude limit
in which the tip-sample force is approximated as linear in the range of the oscillation
amplitude. In this case, the AM detection mode can be treated analytically. While in
practice the AM detection mode is rarely used in this limit, the basic concepts can be
explained more easily using this limit. When in the next chapter the small amplitude
limit is lifted, things become somewhat more complicated. However, armed with a
basic understanding obtained from the treatment of the small amplitude limit, the
more complicated case is then easier to comprehend.

14.1 Parameters of Dynamic Atomic Force Microscopy

Compared to STM which has only two parameters, the tunneling current and the
tunneling voltage, there are many more parameters in dynamic AFM.

1 Actually, this is not strictly true: As shown later it is not the sign of the force, but rather the sign
of the force gradient that determines the direction of the resonance frequency shift.

© Springer-Verlag Berlin Heidelberg 2015
B. Voigtländer, Scanning Probe Microscopy,
NanoScience and Technology, DOI 10.1007/978-3-662-45240-0_14

187

http://dx.doi.org/10.1007/978-3-662-45240-0_17


188 14 Amplitude Modulation (AM) Mode in Dynamic Atomic Force Microscopy

• The resonance frequency of the free cantilever ω0
• The force constant of the cantilever k
• The quality factor of the cantilever Qcant
• The driving amplitude of the oscillation Adrive
• The oscillation amplitude A
• The phase φ between driving and oscillation
• The driving frequency ωdrive
• The frequency shift of the resonance frequency �ω relative to ω0 due to a tip-

sample interaction

The first two parameters are given by the cantilever, while the Q-factor depends on
the cantilever and also on the operating environment (ambient or vacuum). Depending
on the operating mode, further parameters can be set by the operator or measured:

• In AM detection the amplitude A and phase φ of the oscillation are measured,
while ωdrive and Adrive are set.

• In FM detection the shift of the resonance frequency �ω is measured.

Because this multitude of parameters may seem somewhat discouraging, we will
discuss the parameters and the relations among them step by step in the following.

14.2 Principles of Dynamic Atomic Force Microscopy I
(Amplitude Modulation)

As the simplest model for the cantilever under the influence of a tip-sample inter-
action, we consider the driven damped harmonic oscillator as discussed in Sect. 2.3
including the influence of a time-independent external force Fts, which depends on
the tip-sample distance. In this section, we assume that dissipation enters only via
the (air) damping of the cantilever, while the tip-sample interaction is assumed to be
conservative.

We assume the limit of small amplitude, which means that Fts varies only slowly
in the range of the oscillation amplitude A. In this case, Fts will be approximated
as linear in the following. We use this limit here because this idealized scenario can
be solved analytically. For the usual vibration amplitudes (several nanometers) the
small amplitude limit does not hold.

The definition of the coordinates of the cantilever-tip-sample system is given in
Fig. 14.1. For the tip oscillation, we use the coordinate z. For the tip-sample force
Fts(d + z), we use the coordinate d + z (tip-sample distance), with the offset d being
the average tip-sample distance during an oscillation cycle.

Due to the small amplitude assumption, we can expand the force Fts(d+z) around
the equilibrium position of the tip (z = 0, corresponding to a tip-sample distance d) as

Fts(d + z) = Fts(d) + ∂Fts

∂z

∣
∣
∣
∣
z=0

z + · · · . (14.1)
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Fig. 14.1 Definition of the coordinates for a driven damped harmonic oscillator under the influence
of a tip-sample force
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Fig. 14.2 a For the case of small amplitudes, the cantilever-tip-sample system can be effectively
described by two springs, one representing the cantilever with force constant k and one representing
the tip-sample interaction with force constant k′. b This system is equivalent to a system with an
effective spring constant of keff = k + k′

In this approximation the force changes linearly with z, like it is the case for a
spring. Hence the influence of the tip-sample force can be described by a spring with
a spring constant k′ equal to the negative force gradient, as

k′ = −∂Fts

∂z

∣
∣
∣
∣
z=0

. (14.2)

The tip-sample interaction can be represented by adding a small spring with spring
constant k′ � k, as shown in Fig. 14.2a. The two spring constants add up2 to an
effective spring constant keff = k + k′. However, this analogy (replacing the tip-
sample interaction by a spring) should not be stretched too far, since real spring
constants of springs are always positive, while a tip-sample interaction can also have

2 Since the two springs attach to the tip from above and below one might think that this should
lead to a subtraction of the spring constants. Here we show that the spring constants indeed add
up. As indicated in Fig. 14.2 the cantilever spring under the influence of a tip-sample force can be
replaced by a cantilever effective mass held by two springs. In static equilibrium, z = 0, the forces
of both springs compensate as Fk + Fk′ = 0. If the cantilever is moved by �z during the oscillation,
Fig. 14.2b shows that the force components relative to the forces in static equilibrium point in the
same direction for both springs and �F = �Fk + �Fk′ = −(k + k′)�z results. Thus the spring
constants k and k′ combine to keff = k + k′.
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a “negative spring constant”. Such a negative spring constant k′ cannot be realized
by a coil spring or a cantilever-shaped spring, but can exist in a more general sense
as a potential of negative curvature.

Before we analyze the harmonic oscillator with the spring constant keff , we con-
sider the static case (i.e. all oscillatory amplitudes in Fig. 14.1 are zero). Without a
sample being present, the tip is at its zero position z = 0 and the cantilever is unbent
(shown in light gray in Fig. 14.1). In this case the static bending �L is zero.3 If the
sample is now brought close to the tip, the tip-sample interaction will change the tip
position. Since we would like to probe the sample at a (tip-sample) distance d, the
initial zero position of the tip, z = 0, is restored by moving the cantilever base in
the opposite direction, shown in dark gray in Fig. 14.1. In static equilibrium with the
cantilever bent, the tip-sample force and the static bending force balance at z = 0 as

Fts (d) = −keff�L , (14.3)

with �L being the static (offset) deflection of the cantilever as indicated in Fig. 14.1.
We will now consider a sinusoidal excitation of the cantilever base at the fre-

quency ωdrive and amplitude Adrive around the position of static equilibrium as
zdrive = Adrive cos (ωdrivet). As a result of this excitation, the tip will oscillate in
the steady-state around its equilibrium position as z = A cos (ωdrivet + φ). This
case corresponds to the driven damped harmonic oscillator discussed in Sect. 2.3 and
using (2.17) the equation of motion can be written as

z̈ +
√

keff

m

1

Qcant
ż + keff

m
(z − zdrive) = 0. (14.4)

The tip-sample force is included by replacing the spring constant k by keff . As the
force Fts (d) cancels out the force due to the static bending of the cantilever −keff�L ,
according to (14.3), these terms have already be removed from the equation of motion.
The equation of motion (14.4) was solved in Sect. 2.3 with the result that a resonance
occurs at ω0 = √

k/m. Since we replaced k by the effective spring constant keff in
order to include the effect of a tip-sample force, the resonance frequency will shift
from ω0 for the case without tip-sample interaction to ω′

0 = √
keff/m. Thus

ω′
0 =

√

keff

m
=

√

k + k′
m

=
√

k

m

(

1 + k′
k

)

= ω0

√

1 + k′
k

. (14.5)

In the following, we assume that
∣
∣k′∣∣ � k. For small x the approximation

√
1 + x ≈

1 + 1
2 x holds. Therefore, the new resonance frequency of the cantilever can be

written as

ω′
0 ≈ ω0

(

1 + k′

2k

)

. (14.6)

3 The tip length is set to zero in order to avoid an additional offset length.
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The shift of the resonance frequency results in

�ω = ω′
0 − ω0 = ω0

k′

2k
= −ω0

2k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (14.7)

This result can be easily related to the experimentally observed frequency shift � f as

� f = ω′
0 − ω0

2π
= f0

k′

2k
= − f0

2k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (14.8)

Together with the resonance frequency (maximum of the resonance curve) also the
whole resonance curve shifts by � f . In summary, the frequency shift of the resonance
curve induced by the tip-sample interaction is proportional to the (negative) gradient
of the tip-sample force (F ′

ts(d) = ∂Fts(d + z)/∂z|z=0) if the following conditions
are fulfilled: (a) The tip-sample force can be approximated as linear in the range of
the oscillation amplitude, and (b) the tip-sample force gradient is much smaller than
the spring constant of the cantilever

∣
∣k′∣∣ � k (the spring constant of the cantilever k

is always positive).
The small amplitude limit and its interpretation in terms of the effective spring

constant is also summarized in Fig. 14.3. A Lennard-Jones type force is shown
together with the tip oscillation path with amplitude A around the average tip-sample
distance d. The cantilever force Fcant = −kz is shown as a green line. The tip-sample
force is approximated locally around z = 0 as linear �Fts = −k′z = ∂Fts/∂z|z=0 z,
which is indicated by the dashed blue line. The resulting total force is shown as a red
line with a slope of keff = k + k′. Since k′ < 0 and

∣
∣k′∣∣ � k, the spring constant of

the cantilever spring constant k is reduced by
∣
∣k′∣∣ comparing the green and red lines.
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the cantilever spring constant
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For a positive tip-sample force gradient ∂Fts/∂z = −k′ > 0 the resonance
frequency will shift to lower values � f < 0, while for a negative force gradient
∂Fts/∂z = −k′ < 0 the resonance frequency will shift to higher values � f > 0.
The frequency shift does not depend on the constant static offset force Fts(d). This
offset force results only in a static deflection of the cantilever, which is compensated
by an offset shift of the cantilever base by �L , according to (14.3).

Often it is stated slightly imprecisely that the frequency shift � f is positive
(towards higher frequencies relative to ω0) for repulsive forces and negative for
attractive forces. We can understand this if we have a closer look at Fig. 14.4, where
the potential, the force, and the (negative) force gradient are shown. Here again
the Lennard-Jones potential is considered as a model for the tip-sample interaction.
The border between the repulsive and attractive regime is located at the zero of the
force (dotted line in Fig. 14.4). Correspondingly, the border between the positive
and negative force gradient is shown by a dashed line. For the largest range of tip-
sample distances, the force and the negative force gradient (green and blue curves
in Fig. 14.4, respectively) have the same sign. Only for a small range of distances
(shaded gray in Fig. 14.4) do the tip-sample force and the negative force gradient
have a different sign. As discussed above, the frequency shift � f is proportional to
the negative force gradient (14.8). Correspondingly, attractive forces (negative sign)
lead (in the majority of cases—except in the gray-shaded range) to a decrease of
the resonance frequency. Thus the statement that the frequency shift � f is positive
(towards higher frequencies) for repulsive forces and negative for attractive forces is
true for most tip-sample distances.

The relative frequency change can be written as

� f

f0
= k′ A2

2k A2 = Einteraction

2Ecantilever
. (14.9)

Fig. 14.4 Potential, force
and negative force gradient
for the Lennard-Jones model
potential shown as a function
of the average tip-sample
distance d. As the frequency
shift � f is proportional to
the negative force gradient it
can be stated: For distances
outside the shaded region the
frequency shift � f is
positive (towards higher
frequencies relative to ω0)
for repulsive forces, and
negative for attractive forces
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This means that the relative frequency shift is given by the ratio of the energy of the
tip-sample interaction (spring constant k′) divided by twice the energy stored in the
cantilever oscillation (spring constant k).

14.3 Amplitude Modulation (AM) Detection Scheme
in Dynamic Atomic Force Microscopy

We have seen that in the small amplitude limit a force gradient of the tip-sample inter-
action shifts the resonance frequency ω0 by �ω. Accordingly, the whole resonance
curve shifts by �ω relative to that of the free cantilever, as shown in Fig. 14.5b.

In the amplitude modulation (AM) detection scheme, the cantilever is excited with
a fixed driving amplitude Adrive at a fixed frequency ωdrive close to the resonance
frequency. The resulting cantilever oscillation amplitude A is measured. As shown in
Fig. 14.5, this amplitude depends indirectly on the tip-sample distance. The amplitude
depends on the frequency shift of the resonance curve, which depends on the force
gradient, which depends in turn on the tip-sample distance as A(�ω(F ′

ts(d))).

Fig. 14.5 In dynamic AFM
the measured signal depends
indirectly on the tip-sample
distance. a Primarily, the
force gradient and therefore
also the resonance frequency
(shift) depend on the
tip-sample distance (here a
Lennard-Jones potential is
assumed). b Secondly, the
measured amplitude depends
on the frequency shift. For
clarity �ω0 has been chosen
to be large compared to the
width of the resonance curve.
c When scanning over a step
edge, the tip-sample distance
changes until the feedback
restores the old tip-sample
distance
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In the following, we go through these dependence step by step. The dependence
of the force gradient on the tip-sample distance F ′

ts(d) based on the Lennard-Jones
model potential is shown in Fig. 14.5a. As discussed in the previous section, the
frequency shift is proportional to the force gradient indicated by the double labeling
of the ordinate in Fig. 14.5a. In Fig. 14.5b resonance curves A(ω) are shown which
are shifted together with the respective resonance frequency. The actual oscillation
amplitude of the cantilever at the driving frequency is the measurement signal. In
the feedback loop for the amplitude signal, a setpoint amplitude is selected, e.g.
A1 in Fig. 14.5b. The feedback loop controls the measured amplitude to the setpoint
value by changing the z-position of the sample. This changes the tip-sample distance,
which changes the force gradient, which changes the resonance frequency, and thus
indirectly the amplitude is ultimately changed and kept at its setpoint value. If the
feedback loop maintains a constant oscillation amplitude throughout a scan, this
corresponds to a height profile taken at constant force gradient. Due to the dependence
of the amplitude on the slope of the resonance curve the AM detection scheme is
also called slope detection. In order for an amplitude change to be highly sensitive
to the corresponding frequency change, the amplitude setpoint should be close to the
position of maximum slope of the resonance curve.

In our example, we chose ωdrive < ω0, corresponding to a negative force gradient
(roughly: attractive tip-sample interaction). If a driving frequency larger than ω0 is
selected, this corresponds to a working point in the regime of a positive force gradient
(negative negative force gradient) (roughly: repulsive tip-sample interaction).

Now we discuss the feedback process for the case of the tip scanning over
a step edge as shown in Fig. 14.5c. Initially the amplitude setpoint A1 stabilizes
a frequency shift ω1 and the corresponding tip-sample distance d1 (working point 1 in
Fig. 14.5a, b). If the tip approaches the step edge, the tip-sample distance decreases
to d2. This brings the tip into a region of larger (more negative) force gradient, shift-
ing the resonance frequency by δω to ω2 (working point 2 in Fig. 14.5). This shift of
the resonance frequency by δω leads to an increase of the amplitude by δA to A2 at
ωdrive, as shown in Fig. 14.5b. The feedback acts on this deviation from the setpoint
value A1 by increasing the tip-sample distance d until the setpoint amplitude A1 is
restored to d1.

In summary, a certain amplitude change corresponds to a certain resonance fre-
quency shift, which corresponds to a certain tip-sample force gradient, which cor-
responds to a certain tip-sample distance A(�ω(F ′

ts(d))). Therefore, keeping the
feedback loop at a constant oscillation amplitude corresponds to establishing a con-
stant tip-sample distance. An image scanned at constant tip-sample distance is called
the topography. However, this assignment is only true if the same frequency shift-
distance relation (Fig. 14.5a) is present all over the surface.

Let us now consider scanning over a border with two different dependences of
the frequency shift as a function of tip-sample distance as shown in Fig. 14.6. This
will lead to an apparent height contrast even if the actual height of the atoms in
both areas is the same. Initially the tip is in region A with the corresponding force
gradient dependence shown in Fig. 14.6b. The setpoint frequency ω1 stabilizes the
tip-sample distance to dA (working point 1). If by lateral scanning the tip crosses



14.3 Amplitude Modulation (AM) Detection Scheme … 195

(d)

d

(b)

(a)

dA dB

dd

1

2
4

A

A B

3B

C

2

Fig. 14.6 a A scan from a region with material A to a region with material B can lead to a different
apparent tip height in atomic force microscopy. b This arises due to the different force gradient-
distance curves present in the two regions. For another force gradient-distance curve C an instability
will occur due to the different sign of the slope of the force gradient, i.e. due to the non-monotonous
character of the force gradient on the tip-sample distance

the border from A to B, the force gradient curve B in Fig. 14.6b applies, resulting in
a different frequency shift ω2 (working point 2). The feedback restores the setpoint
frequency ω1 by reducing the tip-sample distance to dB (working point 3). This leads
to a reduced apparent height dB as shown in Fig. 14.6a. It is similar to the electronic
effects in scanning tunneling microscopy.

While the assumed force gradient curve B resulted in a different apparent height
in region B, more severe cases are also possible. Let us now assume the extreme
case of the force gradient curve C in Fig. 14.6b. This case will lead to a jump to
the working point 4 when the tip enters region C. At this working point the force
gradient-distance curve has a negative slope and thus the feedback works in the
wrong direction: The feedback will reduce the tip-sample distance in order try to
restore the larger (more negative) frequency shift setpoint. While this direction of
feedback was the right one for a positive slope of the force gradient curve, it is the
wrong feedback direction for the opposite slope at working point 4. The feedback
will constantly reduce the tip-sample distance, leading to a tip crash. This shows that
the non-monotonous dependence of the force gradient on the distance can lead to
serious instabilities.
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Fig. 14.7 Experimental setup for the AM detection scheme using a lock-in amplifier to detect the
deviation of the oscillation amplitude from the setpoint value

14.4 Experimental Realization of the AM Detection Mode

A scheme of the experimental setup for the amplitude modulation AFM detection is
shown in Fig. 14.7. The sinusoidal driving signal at ωdrive is generated by an oscillator.
This signal excites the piezoelectric actuator driving the cantilever base.

Cantilevers have resonance frequencies of up to several hundred kHz. In order to
excite such cantilevers close to their resonance frequency the piezoelectric actuator
must have an even higher resonance frequency. Often this cannot be realized using a
tube piezo element, since this has too low resonance frequencies. Therefore, an addi-
tional piezo plate with a high resonance frequency is used to oscillate the cantilever
base and is frequently called the dither piezo element. The cantilever excitation results
in a cantilever oscillation of amplitude A, which is, since it is close to resonance,
much larger than the excitation amplitude. If tip and sample approach each other,
the oscillation amplitude at the fixed excitation frequency ωdrive will change due to a
shift of the resonance frequency induced by the tip-sample interaction, as discussed
in the previous section. The cantilever deflection (sinusoidal signal) is measured, for
instance, by the beam deflection method as indicated in Fig. 14.7. The signal from
the split photodiode is converted by the preamplifer electronics to a voltage signal
proportional to the cantilever deflection. This signal is an AC signal at the frequency
ωdrive with an amplitude proportional to the cantilever oscillation amplitude A.

Using a lock-in amplifier (described in Chap. 6), the amplitude of the AC signal
at frequency ωdrive is measured. The lock-in amplifier needs the driving signal as

http://dx.doi.org/10.1007/978-3-662-45240-0_6
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a reference signal. At the output of the lock-in amplifier, a quasi-DC signal of the
amplitude is obtained.4

This quasi-DC amplitude signal (demodulated from the AC signal at ωdrive) is used
as the input signal for the z-feedback controller. The measured cantilever amplitude
is compared to the setpoint amplitude. The controller determines an appropriate z-
signal need to maintain a constant oscillation amplitude. Via the quite indirect relation
between oscillation amplitude and tip-sample distance, maintaining a constant oscil-
lation amplitude corresponds to maintaining a constant tip-sample distance. Thus the
z-feedback signal is used as the height signal, mapping the topography during data
acquisition.

In the following, we describe the operation of the feedback in more detail by
considering the example of a scan over a step edge. As a starting condition, we
assume that before scanning over a step edge the amplitude is nicely kept closely to
the amplitude setpoint value. When the step is approached laterally, the tip-sample
distance will decrease. This leads, as discussed in the last section, to a deviation of the
oscillation amplitude (from the setpoint amplitude) which is measured at the output
of the lock-in amplifier. Thus this quasi-DC amplitude signal contains the deviations
from the setpoint amplitude (e.g. due to the topography of the surface) before they
are compensated by the feedback. Subsequently, this measured amplitude enters the
feedback controller and deviations from the setpoint are compensated by changing
the z-signal to a value equivalent to the step height. After this, the setpoint oscillation
amplitude (corresponding to a certain tip-sample distance) is recovered.

A lock-in amplifier can also provide a phase signal, the difference between the
phase of the cantilever oscillation and the phase of the driving signal. During a scan
of the surface structure the phase signal can be recorded as free signal (i.e. not used
for the feedback). This phase signal contains useful information on the tip-sample
interaction, as we will discuss later in Chap. 15. Less frequently, the phase signal is
used as a feedback signal and the oscillation amplitude is recorded as a free signal.

The setup shown in Fig. 14.7 can also be used to record the resonance curve of the
free cantilever not in contact with the sample. This is done by disabling the feedback
and ramping the driving frequency over the resonance frequency, while measuring
the oscillation amplitude and the phase. The measurement of the resonance curve
allows parameters like the resonance frequency ω0, the Q-factor, and the amplitude at
the resonance frequency A(ω0) = Afree to be determined. The value of ω0 is needed
to chose the driving frequency and Afree is needed to choose a proper amplitude
setpoint.

A certain minimal detectable amplitude change in AM detection translates via
the slope of the resonance curve to a minimal detectable frequency shift and finally
to the resolution obtained for the tip-sample distance. The larger the slope of the
resonance curve, the smaller the frequency shifts that can be detected for a given

4 Technically the driving signal can be considered as a carrier signal which is modulated by a low-
frequency (quasi-DC) amplitude signal (deviations from the desired amplitude setpoint). Then the
task of the lock-in amplifier is the demodulation of the low frequency amplitude signal. The term
demodulation is traditionally used in connection with signal detection in AM radio receivers. This
is the reason why the term AM detection is used for this detection scheme.

http://dx.doi.org/10.1007/978-3-662-45240-0_15
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minimal detectable amplitude change. The slope of the resonance curve increases
with increasing Q-factor. Thus, in AM detection the sensitivity with which a fre-
quency shift can be detected increases for higher Q-factors. However, as we will see
in the following section, high Q-factors lead in the AM detection scheme to unac-
ceptably long time constants (low bandwith). Due to this the AM detection scheme
is not used for cantilevers with Q-factors larger than about 500.

14.5 Time Constant in AM Detection

The time constant for AM detection can be obtained by analyzing the solution of the
equation of motion for the driven damped harmonic oscillator (2.17). The change
of the motion z(t) in reaction to a changed tip-sample interaction can be modeled
by an (instantaneous) change of the resonance frequency of the harmonic oscillator
from ω0 to ω′

0. Either a numerical solution of the equation of motion or an analytical
solution can be analyzed.

According to Sect. 2.4 the analytic solution of the equation of motion of the driven
damped harmonic oscillator after a change of the resonance frequency at time t = 0
can be written as

z(t > 0) = A′ cos(ωdrivet + φ′) + Ge−ω′
0t/(2Q) cos(ωhomt + φ). (14.10)

The first term corresponds to the new steady-state oscillation at the driving frequency
ωdrive under the influence of the shifted resonance frequency ω′

0. The new steady-
state amplitude A′ and phase φ′ are given by (2.25) and (2.28), respectively, replacing
ω0 by ω′

0. The second term in (14.10) corresponds to an exponentially decreasing
transient. G and φ are determined by the initial conditions and ωhom is introduced in
Sect. 2.4.

In Fig. 14.8a the envelope of the cantilever deflection z(t) is plotted as a function of
time for a Q-factor of 100, a resonance frequency f0 = 150 kHz, and an instantaneous
increase of the resonance frequency by � f = f0 − f ′

0 = 1319 Hz at time zero.5 The
envelope of the cantilever deflection z(t) is plotted, since a single oscillation is not
visible on the time scale shown. The transient to the new steady-state amplitude is
characterized by exponential behavior and a strong beat term. The new steady-state
amplitude of half of the original amplitude is reached after about Q oscillations,
corresponding to a time τ ≈ Q/( f0π) = 0.2 ms (cf. (2.36)). This time constant still
allows for fast scanning speeds in AFM scanning.

In Fig. 14.8b the time dependence of the phase is shown. The phase was determined
from the cantilever deflection z(t) numerically simulating a lock-in detection. Similar
to the amplitude, also the phase reaches its new steady-state value after a transient
of about Q oscillations.

5 This value for the frequency shift was chosen as it leads to half of the original amplitude in the
steady-state.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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Fig. 14.8 The envelope of
the oscillation amplitude (a)
and the phase (b) in reaction
to a change of the resonance
frequency from ω0 to ω′

0 at
time t = 0. The amplitude
and phase response show
that, after a transient, the
new steady-state amplitude
and phase are reached after
about Q oscillations
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For the case of a high Q-factor of 10,000, the time constant τ is 100 times larger,
leading to unacceptably long scanning times when using cantilevers with a large Q-
factor (i.e. in vacuum) in the AM detection mode. When the tip-sample interaction
changes quickly, for instance during a fast scan over a sharp step edge, it takes several
times τ before the corresponding tip oscillation amplitude changes to its new steady-
state value, corresponding to the new tip-sample distance. In the transient time until
the new amplitude has been established a false amplitude enters into the feedback
loop, which does not yet correspond to the actual new tip-sample distance. Thus,
only after this settling time can the tip be moved on to the next measuring point.
For cantilevers with a high Q-factor this results in an unacceptably long scanning
time. Therefore, AM detection is not used for high Q cantilevers (i.e. in vacuum).
For high Q cantilevers a different detection scheme (FM detection) is used, which
will be discussed in Chap. 17. The AM detection scheme is used for cantilevers
under ambient conditions, where the quality factor is less than several hundred due
to dissipative damping in air.

http://dx.doi.org/10.1007/978-3-662-45240-0_17
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14.6 Dissipative Interactions in Non-contact AFM
in the Small Amplitude Limit

Up to now we have considered the AM detection method in the limit where the
tip-sample interaction is conservative. As discussed, a conservative tip-sample inter-
action induces a shift of the resonance frequency of the cantilever. In this section, we
will consider a model which includes dissipative tip-sample interactions in a very
crude way. To keep things simple, we will still deal with the small amplitude limit,
i.e. an expansion of the tip-sample force up to the linear order is sufficient.

In the treatment of the simple harmonic oscillator, dissipation was included by
the Q-factor. The types of dissipative forces included via the Q-factor are: energy
losses (damping) if the cantilever oscillates in air or a liquid, as well as internal
energy losses in the cantilever material (i.e. the cantilever itself is not 100 % elastic).
This cantilever dissipation energy Ediss

cant leads according to (2.41) to a corresponding
Q-factor Qcant ∝ 1/Ediss

cant. An additional dissipative tip-sample interaction leads
to a dissipated energy per cycle of Ediss

ts and a corresponding Q-factor Qts. As the
dissipation energies add up to a total dissipation energy, the inverse Q-factors add
up to an effective Q-factor as

1

Qeff
= 1

Qcant
+ 1

Qts
. (14.11)

This is not the proper way to include tip-sample dissipation, as the Q-factor takes into
account only the continuous damping of the cantilever in a fluid (2.17). This damping
force was considered proportional to the velocity, having its maximal value at zero
amplitude of the oscillation, while the dissipative tip-sample interaction should be
maximal at the lower turnaround point of the tip, i.e. closest to the sample. Never-
theless, we will now consider the damping via the effective Q-factor, since in this
case we can still use the previously derived equations for the amplitude and the phase
(2.25) and (2.27) of a driven damped harmonic oscillator. We use the effective quality
factor and replace the resonance frequency of the free cantilever ω0 by the shifted
resonance frequency ω′

0 = ω0 + ω0k′/(2k), according to (14.6). In order to avoid
too many subscripts we identify ω ≡ ωdrive. With this the amplitude and phase read
as a function of the driving frequency ω as

A2 = A2
drive

(

1 − ω2

ω′2
0

)2

+ 1
Q2

eff

ω2

ω′2
0

. (14.12)

and

tan φ = −ω′
0ω

Qeff
(

ω′2
0 − ω2

) , (14.13)

respectively.

http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
http://dx.doi.org/10.1007/978-3-662-45240-0_2
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In the following, we show that in AM detection it cannot be distinguished whether
a conservative interaction (leading to a frequency shift) or a dissipative interaction
(leading to a different Q-factor) is the reason for a certain measured amplitude
change. We consider the two limiting cases of only conservative interaction or only
dissipative interaction.

In Fig. 14.9a the amplitude and phase for a free cantilever (blue curve: ω0, Q)
are compared to the case in which a conservative tip-sample interaction is included
(red curve: ω′

0, Q). In this case, the conservative tip-sample interaction leads to a
shift of the whole resonance curve.6 Due to the constant quality factor, the amplitude
and shape of the resonance curve and phase do virtually do not change. This shift
of the resonance curve and phase curve leads to a different amplitude and phase
measured at the (fixed) driving frequency ω = ωdrive, as indicated by the vertical
line in Fig. 14.9a. In this figure, the driving frequency was selected to be somewhat
larger than ω0.

The opposite assumption is that only the damping changes and the resonance
frequency stays constant (ω0, Q′). In this case, the frequency at which the maximal
amplitude of the resonance curve occurs stays approximately constant very close to
ω0 with and without interaction Fig. 14.9b, while the resonance curve and the phase
as a function of frequency become broader with increasing damping (lower quality
factor) as shown by the green line in Fig. 14.9b. This leads to a reduced amplitude and
also to a change of the phase shift at the driving frequency (vertical line in Fig. 14.9b).

As in the AM detection mode only the amplitude is measured, during scanning it is
not possible to distinguish whether an amplitude change occurs due to a conservative
interaction (resonance frequency shift) or due to a dissipative interaction (change of
the Q-factor). Both lead to a change of the amplitude at the driving frequency. It
is not known whether an initial change of A during a scan (later balanced by the
feedback loop) arises due to a change of �ω or Q.

The dependence of the amplitude on Q can lead to a material contrast. If in two
laterally adjacent areas the true height of the two different materials as well as the
conservative tip-sample interactions are the same, different damping occurring due to
the two different materials can lead to a different oscillation amplitude, which results,
after restoration of the amplitude by the feedback, in an apparent height difference
between the two materials due to the different tip-sample dissipation.

If both A and φ were measured (during scanning) it is in principle possible to
use these two measured values and invert (14.12) and (14.13) for ω′

0 and Qeff . Since
(14.12) and (14.13) are a rather complicated to solve, alternatively the complete
resonance curves of amplitude and phase (like the ones shown in Fig. 14.9) can be
measured in a spectroscopic type of measurement. The frequency shift can then be
obtained from the position of the maximum in the amplitude or the frequency at
which the phase is −90◦ so that the force gradient can be determined. The damping
Qeff can be determined from the width of the resonance curve in amplitude or phase.

6 The curves in Fig. 14.9 are plotted using (14.12) and (14.13). The resonance curves for two
different resonance frequencies do not exactly correspond to a shift of the resonance curve. However,
Fig. 14.9a shows that these curves correspond to a very good approximation to a shift.
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Fig. 14.9 a Amplitude and phase for a free cantilever (blue curve) compared to the case with
a conservative tip-sample interaction included (red curve). The two resonance curves as well as
the phase curves are shifted with respect to each other by �ω. b Amplitude and phase for a free
cantilever compared to the case with a dissipative tip-sample interaction included (green line), i.e.
the effective quality factor is different, while the frequency shift stays constant. In both cases (a) and
(b) the oscillation amplitude at ωdrive is reduced, which makes it impossible to distinguish between
a conservative and a dissipative interaction during scanning in the AM detection mode
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All these measurements have to be performed without feedback and therefore require
high stability (i.e. low drift). Further, these parameters can be obtained as a function
of the tip-sample distance d at a specific location on the surface.

14.7 Dependence of the Phase on the Damping
and on the Force Gradient

Generally, the dependence of the phase on the damping and on the force gradient is
contained in (14.13). From Fig. 14.9, we can see that the dependence of the phase as
function of frequency can be approximated as linear close to the resonance at ω = ω0
or φ = −90◦. In the following, we will derive this linear relation between phase and
frequency. Using in the nominator of (14.13), the approximation ω′

0 ≈ ω0 and in the
denominator the approximation ω′

0 +ω0 ≈ 2ω0, as well as subsequently the relation
�ω = ω′

0 − ω, results in

tan φ = −ωω′
0

Qeff
(

ω′2
0 − ω2

) ≈ −ω2
0

Qeff
(

ω′
0 + ω

) (

ω′
0 − ω

) ≈ ω0

2Qeff�ω
= k

Qeff k′ .

(14.14)

Close to the resonance, the phase will be close −π/2 and the deviation from this
value will be termed the phase shift �φ with φ = −π/2 + �φ. The arctan can be
approximated in this case as arctan x ≈ −π/2 − 1/x , resulting in

φ = −π

2
+ �φ = arctan

(
ω0

2Qeff�ω

)

≈ −π

2
− 2Qeff

ω0
�ω. (14.15)

Thus the phase shift �φ relative to the phase −90◦ results as

�φ = −2Qeff

ω0
�ω = − Qeff k′

k
= Qeff

k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (14.16)

This equation can be used for conversion between the frequency shift and the phase
shift close to resonance. The phase shift depends linearly on both the effective quality
factor and the force gradient of the tip-sample interaction. Since the phase depends
on �ω and Qeff in a different way than the amplitude, the phase recorded as a free
signal (not used for the feedback) can result in a different contrast (phase contrast)
than the amplitude signal.

According to (14.16), the sign of the force gradient determines the sign of the phase
shift, since Qeff is always positive. For attractive forces (more precisely, positive force
gradients) the phase is more negative than −90◦ (φ < −90◦), and correspondingly
for repulsive forces (more precisely, negative force gradients) the relation φ > −90◦
holds for the phase.
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14.8 Summary

• If the tip oscillation amplitude is small, the tip-sample interaction can be described
by a second small spring k′ acting between tip and sample additionally to the
cantilever spring k. The spring constant k′ is given by the negative force gradient
of the tip-sample interaction.

• The frequency shift of the resonance frequency under the influence of a conserv-
ative tip-sample interaction is given by

�ω = ω0
k′

2k
= −ω0

2k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (14.17)

This equation holds if the tip-sample force can be approximated as linear within
the range of the oscillation amplitude and if

∣
∣k′∣∣ � k.

• Roughly, the frequency shift �ω is positive (towards higher frequencies) for repul-
sive forces and negative for attractive forces.

• In the amplitude detection mode (AM), the cantilever is driven at a fixed frequency
and amplitude. The oscillation amplitude (and phase) is measured using the lock-in
technique and used as the feedback signal.

• The measured oscillation amplitude depends on the frequency shift of the
resonance curve induced by the tip-sample interaction. Feedback on constant
oscillation amplitude corresponds to constant frequency shift and finally constant
tip-sample distance.

• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities in the feedback behavior.

• A measured change of the amplitude (phase) during imaging in the AM mode can
be induced by a frequency shift (conservative interaction) as well as by a change
in quality factor (dissipative interaction).

• The phase shift close to the resonance is proportional to the frequency shift as
�φ = − 2Qeff

ω0
�ω. Thus the phase shift depends linearly on Qeff and the force

gradient.
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