Chapter 2
All Relevant Feature Selection Methods
and Applications

Witold R. Rudnicki, Mariusz Wrzesien and Wiestaw Paja

Abstract All-relevant feature selection is a relatively new sub-field in the domain
of feature selection. The chapter is devoted to a short review of the field and presen-
tation of the representative algorithm. The problem of all-relevant feature selection
is first defined, then key algorithms are described. Finally the Boruta algorithm,
under development at ICM, University of Warsaw, is explained in a greater detail
and applied both to a collection of synthetic and real-world data sets. It is shown
that algorithm is both sensitive and selective. The level of falsely discovered relevant
variables is low—on average less than one falsely relevant variable is discovered for
each set. The sensitivity of the algorithm is nearly 100 % for data sets for which clas-
sification is easy, but may be smaller for data sets for which classification is difficult,
nevertheless, it is possible to increase the sensitivity of the algorithm at the cost of
increased computational effort without adversely affecting the false discovery level.
It is achieved by increasing the number of trees in the random forest algorithm that
delivers the importance estimate in Boruta.
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2.1 Introduction

The usual goal of feature selection in machine learning is to find the best set of
features that allows one to build useful models of studied phenomena. The chapter
is devoted to a different application of feature selection process, where building
a machine learning model is merely a tool for extracting all features that are relevant
for a problem. The relevance is considered in a broad sense—it is sufficient for a
feature to be declared relevant, when it is useful for building a machine learning
model of the problem under scrutiny at some context. One may ask why this goal is
relevant at all? Why should anyone be interested in this type of relevance?

Let us firstly describe a toy problem that illustrates a need for the all-relevant
feature selection in an artificially transparent setting. Let us construct a system con-
taining 100 objects described with one hundred real-valued variables X 100, and
one binary decision variable D. The descriptive variables X| and X, are drawn from
a normal distribution N (0, 1). The value of the decision variable is determined from
values of these variables in the following manner. It is one (TRUE) if both vari-
ables have the same sign and is zero (FALSE) if their signs differ. The descriptive
variables X3, ..., X|o are obtained as a linear combination of X; and X», and nor-
malised to N (0, 1). The variables X, ..., Xj00, are drawn from a normal distribu-
tion N (0, 1). Finally the indexes of the variables are randomly permuted. The goal
of the researcher is to determine which variables are responsible for the value of a
decision variable.

There is a very easy path to the solution of this problem. One could take a clas-
sifier that is able to rank feature importance and select two most important features.
Unfortunately this path may lead us astray, as displayed in Fig.2.1, that shows the
ranking of feature importance for our toy problem returned by a random forest (RF)
[2] classifier. Here, for clarity, variable indexes are not permuted.

The toy problem is simple enough that it can be solved directly by a brute force
approach. Itis sufficient to build 4,950 models including two variables to find one that
gives perfect classification and hence is the most likely to be built on two variables
used to generate the model. However, for real life problems a number of descriptive
variables may be much larger, connections between these variables and decision may
be more complicated, measurements are subject to noise. Moreover, one does not
know beforehand how many variables influence decision. Finally, while for our toy
problem the model based on two variables used to generate the model usually gives
best results, this is not guaranteed to work in a general case. Hence the brute force
approach will not work in most cases.

As an example of a real-life application we may consider deciphering connection
between gene expression levels in humans with some medical condition. In this case a
number of variables is roughly twenty thousands, it is not known how many genes are
involved and how, and last but not least—measurements are subject both to normal
variability and experimental error. Analysis of such problem can be split into two
separate tasks: determination which variables are connected in some way with the
decision variable, and then identification of those variables that are responsible for
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Fig.2.1 Theillustration for the toy problem. The upper panel shows projection of the system on the
plane (X1X»). The lower panel shows the importance of variables in random forest classifier. Solid
squares correspond to variables used to generate the decision variable, solid circles correspond
to combinations of X and X, and open circles correspond to random variables. It is clear that
importance of variables obtained from random forest can be used to discern informative and non-
informative features. Nevertheless, the importance ranking does not allow to detect the variables
used for generation of the decision variable

a value of the decision variable. The first task can be tackled using the all-relevant
feature selection approach. The solution of the second task, which generally is much
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harder, should be easier when all relevant variables are identified and hence the
number of variables is reduced.

For example in our toy problem a perfect algorithm for all-relevant feature selec-
tion should find that 10 variables out of 1,000 are somehow connected with decision
variable, therefore the number of models tested in the brute force approach can be
reduced to 45. In a medical problem of a researcher studying a connection between
gene expression and a medical condition, a number of genes to consider may be
reduced from multiple thousands to hundreds or tens, or maybe even a handful of
variables. A domain specific knowledge can be then applied to build a model of a
problem under scrutiny.

2.1.1 Definitions

Up to this point the notion of relevance was used without definition, instead we relied
on its intuitive understanding. However, it has been already observed by Kohavi and
John [7] that there are several definitions of relevance that may be contradictory
and misleading. They proposed that two degrees of relevance (strong and weak) are
required to encompass all notions that are usually associated with this term. In their
approach the relevance is defined in the absolute terms, with the help of an ideal
Bayes classifier.

Definition 1 A feature X is strongly relevant when removal of X alone from the data
always results in deterioration of the prediction accuracy of the ideal Bayes classifier.

Definition 2 A feature X is weakly relevant if it is not strongly relevant and there
exists a subset of features S, such that the performance of ideal Bayes classifier on S
is worse than the performance on S U {X}.

Definition 3 A feature X is irrelevant if it is neither strongly nor weakly relevant.

One should note, that an information system might be constructed in such a way,
that there are no strongly relevant attributes. Indeed, it is easy to notice that the toy
system described above does not contain strongly relevant attributes.

Another useful notions were introduced by Nilson et al. [13], who used concepts
of weakly and strongly relevant features to define formally two problems of feature
selection. A minimal optimal problem in feature selection has the goal to find the
minimal set of attributes giving the best possible classifier. The other is an all relevant
problem, where one is interested in finding all strongly and weakly relevant attributes.

Definition 4 (Minimal optimal problem) Find a set of attributes consisting of all
strongly relevant attributes and such subset of weakly relevant attributes, that all
remaining weakly relevant attributes contain only redundant information.

Definition 5 (All-relevant problem) Find all strongly relevant and all weakly rele-
vant attributes.
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It has been shown by Nilsson and co-workers, that exact solution of the all rele-
vant problem requires an exhaustive search, which is intractable for all but smallest
systems.

The relevance defined earlier is a qualitative notion—a feature can either be rel-
evant or irrelevant. It is also an objective property of the system under scrutiny,
independent from the classifier used for building a model. This notion is distinct
from importance of variable, that is a quantitative and classifier-dependent measure
of the contribution of a variable to a model of the system. One can use various mea-
sures of importance of variable, provided that they satisfy the simple condition—the
importance of relevant variables should be higher than importance of irrelevant ones.
A useful and intuitive measure of importance was introduced by Breiman in random
forest (RF) classification algorithm [2].

Definition 6 (Importance of a variable) is the loss of the classification accuracy of
the model that was built using this variable, when the information on the variable’s
value is withdrawn.

A final concept that will be used often enough in the current chapter to deserve a
mention in this section is a contrast variable.

Definition 7 (Contrast variable) is such descriptive variable that does not carry
information on the decision variable by design.

Itis added to the system in order to discern relevant and irrelevant variables. It may be
obtained by drawing from theoretically justified probability distribution e.g. normal
or uniform; it may be also obtained from real variables by random permutation of
their values between objects. Application of contrast variables for feature selection
was first proposed by Stoppiglia et al. [15] and then independently by Tuv et al. [17],
and Rudnicki et al. [14].

One may notice, that any all-relevant feature selection algorithm is a special type of
classification algorithm. It assigns variables to two classes: relevant or non relevant.
Hence the performance of the algorithms can be measured using the same quantities
that are used for estimation of ordinary classifiers. Two measures are particularly
useful for estimation of performance: sensitivity S and positive predictive value
PPYV. Sensitivity S is measured as

S=TP/(TP+ FN), (2.1)

where TP is a number of truly relevant features recognised by an algorithm, FN is a
number of truly relevant features that are not recognised by an algorithm and FP is a
number of non relevant features that are incorrectly recognised as relevant. Positive
predictive value PPV is measured as

PPV = TP/(TP + FP). (2.2)



16 W.R. Rudnicki et al.

2.1.2 Algorithms for All-Relevant Feature Selection

There are two issues that are non-existent for the minimal optimal problem, but
are very important for the all relevant one. The first one is detection of weakly
relevant attributes that can be completely obscured by other attributes, the second
one is discerning between weakly but truly relevant variables from those that are
only seemingly relevant due to random fluctuations.

The concepts of strong and weak relevance, and consequently also the problem of
all relevant feature selection, are defined in a context of a perfect classifier that is able
to use all available information. Yet, in real-world applications one is restricted to
use imperfect classification algorithms, that are not capable of using all information
present in the information system, and this may influence the outcome of the feature
selection algorithm. In particular, an algorithm may not be able to find and use
some of the relevant features. In many cases this will not disturb solution of the
minimal optimal problem, provided that final predictions of a classifier are sufficiently
accurate; yet it will significantly decrease a sensitivity of an all relevant feature
selection. Hence a classification algorithm used in all relevant feature selection
should be able to detect weak and redundant attributes.

Algorithms that may be used for finding all the relevant features [3, 6, 9, 14,
17] are designed around ensembles of decision trees, either using the random forest
algorithm [2] or an algorithm specially tailored for the task. The choice of decision
trees as base learners is due to their flexibility and relative robustness, when multiple
redundant features are present in the data set. Moreover, the estimate of the variable
importance is easily obtained for tree-based ensembles.

The second issue, namely discerning between the truly and randomly relevant
attributes arises because the analysis is performed for finite size samples. This gives
a chance for random correlations to emerge and significantly influence the results.
The probability of such an event increases with the decreasing number of objects; the
effect is also boosted by overall large number of attributes, which in addition increases
chances for random interactions between features. This issue is handled by introduc-
ing ‘contrast variables’ which are used as a reference. A statistical test is performed
that compares the importance of original variables with that of contrast variables.

Contrast variables have been used to find all relevant variables by four independent
groups. Tuv et al. [17] in ACE algorithm used ensembles of shallow classification
trees and iterative procedure in which the influence of the most important variables
on decision was removed in order to reveal variables of secondary importance. In
each step only these variables that were more important in the statistical test than the
75th percentile of contrast variables were deemed important.

Rudnicki et al. [14] introduced Boruta algorithm that used the importance estimate
from the random forest. The algorithm started by establishing initial ranking of
variables in random forest. Then the algorithm performed an iterative procedure in
which the least important variables were consecutively turned into contrast variables
by permuting their values between objects. Then the threshold level was increased by
a predefined step and procedure was repeated until the self-consistence was achieved.
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The procedure was carried out until the importance of all contrast variables was lower
than that of the unperturbed variables.

Huynh-Thu et al. [6] independently proposed a procedure that aimed at the same
goal from another end. In this approach the procedure starts similarly from establish-
ing the ranking of importance from RF. Then the algorithm estimates the importance
of noninformative variables by turning all variables into contrast variables. In the fol-
lowing steps the algorithm iteratively introduces back the informative variables into
the information system and computes the importance of both i informative variables
(the original most important variables) and N — i noninformative variables.

Dramifiski et al. [4] introduced the MCFS algorithm to improve a feature ranking
obtained from an ensemble of decision trees. It was constructed in such a way that
eliminated known bias of random forest towards variables with fewer number of
values. The algorithm was later extended for use as an all-relevant feature selection
algorithm [3] by introducing a comparison of the importance of variables with the
maximal importance obtained from a set where all variables were uninformative.

The second version of Boruta [9] was introduced to improve computational effi-
ciency and used a different heuristic procedure. In this version the original dataset
is extended with random contrast variables. For each original attribute a ’shadow’
attribute is generated by randomly permuting its values. Then, for each attribute,
it is tested whether its importance is higher than the maximal importance achieved
by a contrast attribute. In order to obtain statistically significant results this proce-
dure is repeated several times, with contrast variables generated independently for
each iteration. After each iteration, the algorithm checks how many times the impor-
tance of tested attributes is higher (or lower) than that of the highest ranked contrast
variable. Once this number is significantly higher than allowed under hypothesis of
equality with importance of highest random contrast, the attribute is deemed relevant
and not tested further. On the other hand, if this number is significantly lower than
allowed under the same hypothesis, then the attribute is deemed irrelevant and perma-
nently removed from the data set. The corresponding contrast variables can be either
retained or removed from the dataset; the former choice increases precision of the
result, whereas the other greatly improves computational efficiency. The algorithm
is terminated when either the relevance of all attributes is established or until prede-
fined number of steps is executed. The result of the algorithm is the assignment of
each variable to one of three classes—relevant, irrelevant, unresolved (or tentative).
The final decision about the unresolved (tentative) attributes is left to the user.

All these algorithms are quite similar to each other: they are based on the ensemble
of trees, they use similar measures of importance and use contrast variables to discern
relevant and non relevant attributes. They differ mostly in implementation of the
statistical test as well as in performance. The current study is devoted to detailed
analysis of performance of Boruta algorithm for a family of synthetic data sets with
varying number of truly relevant variables and total number of variables, and hence
varying difficulty. The difficulty is measured as the error level of the random forest
classifier built on the truly relevant variables. The small scale tests performed by us
have shown that results of these algorithms are also similar, hence we believe that the
analysis performed for single algorithm will be relevant also for other algorithms.
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2.1.3 Random Forest

The random forest algorithm is used in the current work both as a classifier and as
an engine for the feature selection algorithm, hence we give below a short summary
of its most important qualities. It is designed as an ensemble of weak classifiers
that combine their results during the final classification of each object. Individual
classifiers are built as classification trees. Each tree is constructed using different
bootstrap sample of the training set, roughly 1/3 of objects is not used for building a
tree. At each step of the tree construction a different subset of attributes is randomly
selected and a split is performed using an attribute which leads to a best distribution
of data between nodes of the tree.

Each object has not been used by roughly 1/3 of trees. This object is called ‘out
of bag’ (OOB) for these trees, and they are the OOB trees for this object. One may
perform (OOB) error estimate by comparing the classification of the ensemble of the
OOB trees for each object with the true decision. The OOB object can be used also
for estimation of variables’ importance using following procedure. For each tree all
its” OOB objects are classified and the number of votes for a correct class is recorded.
Then values of the variable under scrutiny are randomly permuted across objects, the
classification is repeated and the number of votes for a correct class is again recorded.
The importance of the variable for the single tree can be then defined as a difference
between a number of correct votes cast in original and permuted system, divided by
number of objects. The importance of the variable under scrutiny is then obtained by
averaging importance measures for individual trees. The implementation of random
forest in R library [11] is used in Boruta and also was used for classification tasks.

2.2 Testing Procedure

Boruta algorithm is a wrapper on the random forest, hence it is likely that quality
of feature selection depends on the quality of random forest model. Therefore in
the first step of the testing procedure we performed a series of tests of the random
forest algorithm itself on synthetic data sets. Then the performance of the all-relevant
feature selection algorithm was examined on the selected synthetic data sets as well
as on few real-world data sets.

2.2.1 Data Sets

Synthetic data sets were constructed as variants of the well known hypercube prob-
lem. In this problem a set of points are generated in corners of D-dimensional hyper-
cube, each coordinate of the corner is either 41 or —1. The corners of the hypercube
were assigned to one of two classes using two methods. The first one relies on random
process. Corners of a hypercube are numbered 1, ..., 22, then a random sample of
length 2(P~1 is drawn from the range (1, . .., 2) and corners with these numbers are
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assigned to class 1; the remaining corners assigned to class 2. The second method is
deterministic. Corners with odd number of —1 coordinates are assigned to class 1 and
the remaining corners are assigned to class 2. The points were generated using three
methods. In the first one, the points are generated from multidimensional Gaussian
distribution with mean zero and standard deviation one and assigned to the nearest
corner. In the second method, the multidimensional uniform distribution spanned on
(—1, 1) interval was used instead of Gaussian. In the third one, points were drawn
from 2P multidimensional Gaussian distributions with standard deviation 0.1, each
centred on the respective corner of the hypercube. Then two classes of additional
features were added to each data set. Features from the first class were obtained as a
linear combination of original variables. Features from the second class were drawn
randomly from the normal distribution. As a result we obtain the data set described
with three types of features. The generative features are the original variables used to
define the value of decision variable. The combination features are obtained as linear
combinations of generative features and hence they are also connected with decision
variable. These two sets of features are by definition relevant. One should note, how-
ever, that features of both types are weakly relevant—it is possible to replace any of
the features with combination of other features. The remaining variables are random
features—they are not connected with decision variable.

Multiple data sets with varying numbers of generative, combination and random
features, as well as varying number of objects were generated using four combinations
of the class assignment and point distributions methods, resulting in four series of data
sets. The first series, denoted as NORM used the deterministic class assignment and
single Gaussian in a centre for generation of data points. The second one, denoted as
UNTI used deterministic class assignment and uniform distribution of points, the third
one used random class assignment and uniform distribution of points. The last series
was obtained using random class assignment and Gaussians centered on corners of
the hypercube for points generation. Two last series were generated with functions
mlbench.xor and mlbench.hypercube from the mlbench package [10] in R [16], with
default parameters for data dispersion and are denoted as XOR and HYPER.

In addition to analysis of synthetic data sets the relevance of the variables was
examined for four recently published data sets deposited in the UCI repository [1]:
MicroMass, QSAR biodegradation (Q-b) [12], Turkiye Student Evaluation Data Set
(TSE) [5] and Amazon Commerce Reviews Set (ACRS).

2.2.2 Classification

The tests of classification accuracy for random forest were performed for four series
of data sets described earlier. However, the data sets used for survey of classification
results were simpler than those used for feature selection. The number of generative
variables varied between 2 and 8, the number of combination features was either
zero or two times the number of original features and the number of objects varied
between 100 and 2,000. The systems were not extended with random features—the
goal of this survey was to find the region of parameter space that is feasible for
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classification in the best settings, without additional noise from random features.
The random forest implementation in R [11] was used to perform classification,
using the default parameters: 500 trees in ensemble and the number of variables used
for split generation set at the square root of the total.

2.2.3 Feature Selection

Two series of data sets were selected for further analysis with Boruta feature selection
algorithm implemented in a package in R [8]. In higher dimensions both functions
using deterministic class assignment generated data sets that were too difficult for the
random forest algorithm, hence only sets generated with the help of two functions
from mlbench package that were based on random were used in feature selection test.

The result of the classification testing has shown that the quality of models depends
monotonically on the number of objects—the OOB classification error decreases with
increasing number of objects. This relationship was universal, but in some cases the
number of objects required to obtain model of good quality was very high. This is
especially true for the high dimensional problems. Therefore to reduce the number of
variable parameters we fixed the number of objects at single value 500, that allowed
us to scan a wide range of difficulties for numbers of variables varying between 50
and 10,000.

The tests were performed for the following grid of parameters describing data sets:
Ngen = (2,3,4,5) generative variables x Neomp = (35, 10, 20, 50, 100, 200, 500)
combination variables x N,; = (50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000)
all variables, where Nyjj = Ngen + Neomb + Nrana (and Nygpg is a number of random
variables). Obviously, the grid points corresponding to negative number of random
variables were not explored. The number of variable parameters in the test is four,
therefore generation of every possible combination is neither feasible nor interesting.
Data sets that are either very easy or very difficult are not interesting for further
analysis. For the purpose of this work the data set was considered easy when the
OOB estimate of the classification error of random forest model is below 2 % and
it is considered hard when the OOB error is above 30 %. Therefore only a subset of
possible datasets within the range of parameters was generated and tested. For each
number of generative variables the initial test system was generated that comprised
of 500 objects with 5 combination features and 50 random features. Then the number
of objects, combination features and random features was varied until either easy or
hard region of the parameter space was found.

Additionally, the influence of number of trees in the forest on the feature selection
procedure was examined. To this end, the entire procedure was repeated using random
forest classifiers obtained with three different numbers of trees, namely 500, 1,000
and 2,000.

Despite fixing the number of objects and examining only two set series of data
sets, the number of possible combinations was still too high to be practical, hence
not all of the possible grid points were examined. The set of combinations examined
is given in Table2.1.
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Table 2.1 Data sets generated for the all relevant feature selection analysis

# objects | # generative variables | # combination variables | Total variables | # Trees

500 (2,3,4,5) (5, 10, 20, 50) 100 (500, 1,000, 2,000)
500 (2,3.4,5) (5, 10, 20, 50, 100) 200 (500, 1,000, 2,000)
500 (2,3,4,5) (5, 10, 20, 50, 100, 200) | 500 (500, 1,000, 2,000)
500 (2,3,4,5) (5, 10, 20, 50, 100, 200) | 1,000 (500, 1,000, 2,000)
500 (2,3,4,5) (5, 10, 20, 50, 100, 200) | 2,000 (500, 1,000, 2,000)
500 (2.3.4,5) (5, 10, 20, 50, 100, 200) | 5,000 (500, 1,000, 2,000)

In contrast with the synthetic data sets, information on true relevance of variables
is unknown for real-world data sets. Therefore, we can measure directly neither
sensitivity nor PPV of the algorithm. However, we can estimate the PPV using
contrast variables, by measuring how many of them algorithm deems relevant. To
this end, we generate contrast variables as ‘shadows’ of original variables, which
are obtained by copying values of original variables and randomly permuting them
between objects. Each variable is accompanied by a shadow variable. The system
extended in this way is then analysed with the Boruta algorithm. Then the PPV
estimate is obtained as

Nrelevant (Xoriginal )

PPV* = ,
Nrelevant (Xoriginal ) + Nretevant(Xcontrast)

(2.3)

where PPV* denotes approximate PPV, Nyeievant Xoriginal) and Nyelevant KXeontrast) are
respectively a number of original and contrast variables that algorithm has deemed
relevant. Entire analysis was repeated five times to check robustness of the results.
Boruta algorithm assigns variables to three classes: (Confirmed, Tentative, Rejected).
One can treat the Tentative class either as relevant or irrelevant, hence two measures
of PPV* were used, PPV’ and PPV that differed in the assignment of the Tentative
variables. The former assigns them to irrelevant, whereas latter to relevant class.

2.3 Results and Discussion

Four series of datasets were generated using small variations of the same approach,
nevertheless, the results differ significantly for these sets. Two series of synthetic
data sets generated with deterministic class assignment were generally difficult to
classify with random forest algorithm. The classification results for these sets were
satisfactory (OOB error less then 30 %) only for low dimensional problems (2 and 3).
The problems of higher dimensionality were solvable only when large number of
objects was available. Therefore further analysis for synthetic sets was performed
for two remaining series.
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2.3.1 Classification

The results of the classification survey are in general agreement with intuitive expec-
tations, see Fig.2.2. Increasing the dimensionality of the problem makes it more
difficult, adding noise to the problem makes it more difficult, and increasing the

number of objects helps in building better models.

OOB Error

OOB Error

Fig. 2.2 Classification results for four variants of hypercube problem. 7Top 2D and 3D models.
Bottom 4D and 5D models. Labels for series are constructed from the first letter of the series name
and dimension of the problem, for example X3 denotes three dimensional data sets from XOR
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Fig. 2.3 The OOB error for two series of HYPER data sets, one with points described with genera-
tive variables only, and the other with additional combination features. The number of combination
features is two times the number of generative features. The datasets with combination features are
marked with a “*’

One result that may be less intuitive is that introduction of features that are lin-
ear combinations of original variables may improve the classification. These fea-
tures in some cases may form lower dimensional subspace that allows to separate
clusters located originally in corners of the hypercube. This is not universal, but
observed for the last series. Hence presence of the combination features in the data
set may facilitate transition of a problem that is formally N-dimensional to easier
(N-k)-dimensional one. The effect is displayed in Fig.2.3. The classification error is
significantly lower for series with original generative features augmented with lin-
ear combinations. This result shows that relationship between importance and true
relevance may not be straightforward.

2.3.2 Feature Selection

In line with expectations the results of the feature selection are correlated with the
results of the classifications. It is difficult to identify important features for data sets
that are difficult to classify and relatively easy for those that are easy to classify.
This is clearly visible in Table2.2 that collects the overall results of the survey of
the synthetic data sets. For the XOR series the sensitivity is very high for easy
2-dimensional data sets and drops to 25 % for hard 5-dimensional data sets. On the
other hand, the level of false discovery is uniformly low—the expected value of false
positive discovery is 0.3. It means that on average only 3 falsely relevant variables
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Table 2.2 The cumulative results for the XOR and HYPER series of data sets

XOR HYPER
DIM | TP | FP | EN | Sensitivity (%) | PPV (%) | TP | FP | FN | Sensitivity (%) | PPV (%)
2 51.2103| 02|98 98 - - |- |- -
3 42.1102| 82|81 97 50.5/0.1| 13|97 99.7
4 37.0/0.3 | 15.0| 65 99 52210.1]0.7 |96 99.6
5 142103362 |23 97 47.710.1]53|91 99.0

The average number of false positive, false negative, sensitivity and PPV were computed for the
entire range of parameters

Table 2.3 Cumulative results for four dimensional data set

Ntotal Mean TP Mean FP Mean FN Mean sensitivity (%) Mean PPV (%)
100 24.5 0.7 0.8 91.7 97.4
200 40.1 0.5 0.9 90.2 98.7
500 61.6 0.1 6.6 81.5 99.8
1,000 524 0.3 15.7 53.6 99.4
2,000 48.2 0.1 19.9 59.7 99.9
5,000 29.7 0.1 42.6 33.8 99.6
10,000 25.6 0.1 57.2 342 99.6

The average number of true and false positive, false negative, sensitivity and PPV are displayed for
varying number of total variables. The averaging was performed over variable number of combina-
tion variables

should be expected in 10 runs of Boruta algorithm. Both sensitivity and PPV are very
high for the sets in the HYPER series, hence deeper analysis is devoted to the more
difficult XOR series.

The four-dimensional data sets are examined in closer detail in the Table2.3,
where the results for a range of total number of variables is presented. It is clear that
the sensitivity of the algorithm drops with increasing number of variables, in line
with the number of false positive discoveries.

The drop in sensitivity with increasing number of variables is expected behaviour.
When the number of variables is large, the chance for a variable to be included in
a tree in few first splits is diminished, hence the impact of individual variable is
a subject to larger variability when compared with systems with a small number
of variables. Therefore it is more difficult to discern relevant variables with lesser
impact from random ones. This effect can be circumvented by increasing a number
of trees in the system; see Table 2.4, where cumulative data for all four-dimensional
sets is presented as well as a more detailed analysis of a five-dimensional set.

Another interesting effect is presented in Table 2.5. Systems with different number
of relevant variables have variable behaviour of sensitivity when the number of
variables is increasing. For example, when the total number of variables is 500,
the sensitivity is 100 % for a system with 54 relevant variables, whereas it is 87 %
for a system with 204 relevant variables. When the number of random variables is



2 All Relevant Feature Selection Methods and Applications 25

Table 2.4 Change of sensitivity as a function of a number of trees in Boruta

Average for 4D systems Average for 5D systems

Ntree |TP | FN | Sensitivity (%) | PPV (%) | TP FN Sensitivity (%) | PPV (%)
100 |- - - - 40.2 | 164.8 | 19.6 100
200 |- - - - 70.2 | 134.8 | 34.2 100
500 (349 |21.1 |57.8 99.7 123.6 | 814 |60.3 100
1,000 {39.9 | 16.0 | 63.5 99.5 157.6 | 474|769 100
2,000 (434 | 12.5 | 68.5 98.9 180.4 | 24.6 | 88.0 99.8
5,000 |- - - - 189.6 | 154 | 925 99.5
10,000 |- - - - 193.2 | 11.8 | 94.2 99.4
20,000 |- - - - 195.6 94 954 99.4

The average results for all 4-dimensional systems examined with Boruta using 500, 1,000, and
2,000 trees are shown in the left panel. The more detailed inspection of results for sets described
with 5 generative, 200 combination and 1,000 total variables is presented in the right panel. Average
results for five instances are presented for Boruta using 100 to 20,000 trees

Table 2.5 Results of feature selection presented for two series of 4-dimensional data sets for
varying total number of variables in the system

Ncomb |Ntotal | Mean TP | Mean FP | Mean FN | Mean sensitivity (%) | Mean PPV (%)
50 100 | 54 0.0 0.0 100.0 100.0
200 | 54 0.7 0.0 100.0 98.8
500 | 54 0.0 0.0 100.0 100.0
1,000 | 46.7 1.3 7.3 86.4 97.2
2,000 | 52.0 0.3 2.0 96.3 99.4
5,000 | 21.7 0.0 323 40.1 100.0
10,000 | 10.7 0.0 433 19.8 100.0
200 500 |176.7 0.0 27.3 86.6 100.0
1,000 | 173.3 0.0 30.7 85.0 100.0
2,000 | 145.7 0.0 58.3 71.4 100.0
5,000 | 112.7 0.0 91.3 55.2 100.0
10,000 | 84.7 0.0 119.3 41.5 100.0

The average number of true and false positive, false negative, sensitivity and PPV are displayed.
The averaging was performed over Random Forest models built from 500, 1,000, and 2,000 trees

increased, the sensitivity for the system with 54 relevant variables drops faster than
for the system with 204 ones, reaching 20 % when total number of variables arrives
at 10,000, whereas the sensitivity for the system with 204 relevant features is still
40 % at this point.

This effect is most likely due to the method for generation of splits in random
forest algorithm. The subset of variables is randomly selected from all variables and
split is performed for the variable that produces the best split. When the number of
relevant variables is large in comparison with the sample size, the variables with low



26 W.R. Rudnicki et al.

importance are rarely selected and hence their apparent importance is similar to that
of random variables. When the number of relevant variables is small, but not very
small, then there is a good chance that one or two relevant variables will be selected
at each step. In this case the truly relevant variables have the highest chance to be
selected and hence their apparent importance is high. Finally when the number of
variables is very small in comparison with the number of total variables the chance of
truly relevant variable being included in the sample is small and this again decreases
the apparent importance of relevant variables in comparison with random ones, and
hence decreases sensitivity.

The systematic survey of range of synthetic data sets generated with varying
parameters shows that the results of Boruta algorithm are robust. While the sensitivity
may be low for systems described with very large number of variables, nevertheless,
the variables that are reported as relevant are relevant with very high probability.

2.3.2.1 Real-World Data Sets

Boruta algorithm has been also applied to four real-world data sets recently deposited
in the UCI repository (see Table 2.6). In this case only the false discovery ratio could
be estimated since the true relevance of the attributes is unknown. In two cases of
the sets described with small number of attributes nearly all attributes were deemed
relevant.

The level of false discovery was very low. In all cases the PPV, was 100 %—not
a single false discovery was made with the strict definition of relevance. With the
more relaxed definition, accommodating also Boruta’s tentative class as relevant,
some false discoveries were reported for QSAR biodegradation data set. Neverthe-
less, even in this case the expected value of false discovery was 0.4 and PPV;* was
98.9 %. Therefore we may assume that nearly all features identified by Boruta as
relevant are truly so. The case of QSAR biodegradation data set could suggest that
variables assigned by Boruta to tentative class, bear higher risk of being false positive.

Table 2.6 Results for the real-world data sets from the UCI repository

Data Original Contrast PPV} | PPV}
Dataset Instances | Variables | Conf | Tent | Rej Conf | Tent | Rej (%) (%)
Q-b 1,055 41 36.2 0.8 [4.0 0.0 |04 |40.6 100.0 | 98.9
TES 5,820 33 300 (1.0 |1.0 0.0 [0.0 [32.0 100.0 | 100.0
MM-500 931 1,300 293 |66 |941 0 0 1,300 100 100
MM-1000 | 931 1,300 363 |58 (879 |0 0 1,300 100 100
ACRS 1,500 10,000 220 (84 19,696 |0.0 |0.0 |10,000.0 | 100.0 | 100.0

The MicroMass data set was analysed with Random Forest runs with 500 and 1,000 trees that are
described as MM-500 and MM-1000, respectively. The number of variables marked as confirmed
(Conf), tentative (Tent) and rejected (Rej) is reported for original and contrast variables. The PPV’
was computed according to Eq.2.3 counting as relevant only these variables with confirmed status,
for PPV} also variables with tentative status were taken into account
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Nevertheless, in the case of MicroMass data set all attributes deemed tentative by
Boruta using 500 trees, were later deemed confirmed by Boruta using 1,000 trees,
without any false positive hits. This suggests that when the number of variables
deemed tentative is large, it is quite likely that most of them are truly relevant and
Boruta run with larger number of trees is required.

2.4 Conclusions

As it was demonstrated in the chapter, the all-relevant feature selection algorithms
are capable of discerning between relevant and non relevant variables. The Boruta
algorithm, which was used as a representative algorithm of the class, was examined
on a wide range of synthetic problems and several recently published real-world data
sets. Algorithm works particularly well for systems for which good quality models
may be obtained by means of random forest classification algorithm. The sensitivity
of the algorithm is close to 100 % for such systems. The sensitivity of Boruta can
be improved by utilising random forest with larger number of decision trees. The
level of false discoveries is very low for all data sets examined, therefore all relevant
feature selection is suitable for generation of robust knowledge.

The main factor limiting analysis with Boruta algorithm is time of computations.
The single iteration of the random forest algorithm can take several hours for larger
systems. The algorithm in the best case requires at least time equivalent to 30 random
forest iterations to complete, hence entire analysis may take more then one CPU-
week. The random forest is computationally demanding and its implementation in
R, while very useful, is not very efficient for large problems. In particular, while the
random forest is trivially parallel its implementation is strictly sequential. This limits
application of the algorithm for analysis of truly large datasets described with tens
or even hundreds thousands variables and thousands of objects.
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