
Chapter 2
Groups With Given Systems of X-Permutable
Subgroups

2.1 Base Concepts

X-Permutable and c-Permutable Subgroups A subgroup A of a group G is said
to be permutable with a subgroup B if AB = BA. A subgroup A is said to be a
permutable or a quasinormal subgroup of G if A is permutable with all subgroups of
G. But we often meet the situation AB �= BA, nevertheless there exists an element
x ∈ G such that ABx = BxA, for instance, we have the following cases:

1) Let G = AB be a group. If Ap and Bp are Sylow p-subgroups of A and of B

respectively, then ApBp �= BpAp in general, but G has an element x such that
ApBx

p = Bx
pAp.

2) If A and B are Hall subgroups of a soluble group G, then there exists an element
x ∈ G such that ABx = BxA. (see [89, Theorem (I, 4.11)])

3) If A and B are normally embedded subgroups (see [89, Definition (I, 7.1)]) of a
soluble group, then A is permutable with some conjugate of B. (see [89, Theorem
(I, 7.11)])

4) If |G : A| = pα is a prime power, then for every Sylow subgroup Q of G, there
is x ∈ G such that AQx = QxA.

Based on the above observations, we give the following definitions.

Definition 1.1 Let A and B be subgroups of a group G, and let ∅ �= X ⊆ G. Then
we say:

(1) A is X-permutable with B in G if there exists some x ∈ X such that ABx = BxA;
(2) A is completely X-permutable (or hereditary X-permutable) with B in G if there

exists some x ∈ X ∩ 〈A, B〉 such that ABx = BxA;
(3) A is conditionally permutable (or in brevity, c-permutable) with B in G provided

A is G-permutable with B;
(4) A is completely c-permutable or (hereditary c-permutable) with B in G provided

A is complete G-permutable with B in G.
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By Chap. 1, Lemma 5.34(1), every s-quasinormal subgroup is subnormal. The fol-
lowing examples show that a subgroup of a group G which is c-permutable with all
Sylow subgroups of G is not necessarily s-quasinormal in general even in the case
when it is subnormal.

Example 1.2 Fixing some odd prime p, put A = 〈x, y|xp2 = yp = 1, xy = x1+p〉
and L = 〈y〉. Take some involution g in AutL, and put B = L � 〈g〉. Consider
a transitive permutation representation α : B −→ Sym(p) of degree p. Take the
wreath product G = A �α B = K � B of A and B with respect to α, where K

is the base of A �α B. Using the terminology of [89], put R = L
, and consider
N = NG(R). It is clear that B ⊆ N and N ∩ K = (NA(L))
. Since |A| = p3 and
NA(L) �= A, NA(L) is an abelian group, and so N ∩ K is also abelian. It is clear
that R is G-permutable with all Sylow subgroups of G and that R is subnormal in
G. Suppose that R is permutable with all Sylow 2-subgroups of G. Then for each
x ∈ G we have 〈g〉x ⊆ N . Consequently, the normal closure 〈g〉G of the subgroup
〈g〉 in G satisfies L ⊆ 〈g〉B = B ⊆ 〈g〉G ⊆ N ; thus, BG ⊆ N . Suppose further
that M = {(a1, . . ., ap)|ai ∈ A, a1. . . ap ∈ A′}. Then BG = MB by [89, A, (18.4)].
Consequently, M ⊆ N . However, if a1 = · · · = ap, then a

p

1 ⊆ A′. Hence M has
a subgroup which is isomorphic to A. This means that N ∩ K is not abelian. This
contradiction shows that R is not permutable with some Sylow 2-subgroup of G.

Example 1.3 Let M be a subgroup of a soluble group G. Suppose that |G : M| = p

is a prime. Then

(i) M completely c-permutes with all subgroups of G. Indeed, let T ≤ G. Let
M1, . . ., Mt and T1, . . ., Tt be some Sylow systems of the groups M and T , re-
spectively. Then G has Sylow systems Σ = {P1, . . ., Pt } and Σ1 = {Q1, . . ., Qt }
such that Mi = Pi ∩M and Ti = Qi ∩T for all i = 1, . . ., t (see Sect. 2 in [248,
Chap. VI]). Moreover, the systems Σ and Σ1 are conjugate, that is, G has an
element x such that Qx

i = Pi for all i = 1, . . ., t . Without loss of generality, we
may assume that P1 is a Sylow p-subgroup of G. Then M2 = P2, . . ., Mt = Pt .
Assume that T x

1 ⊆ M1. Then we have

T x ⊆ M1P2 . . . P2 = M ,

and so T xM = M = MT x .
Now let T x

1 � M1. Since |G : M| = p, we have |P1 : M1| = p and P1 = T x
1 M1.

Hence,

T xM = T x
2 . . . T x

t T x
1 M1M2 . . . Mt = T x

2 . . . T x
t P1P2 . . . Pt = G = MT x.

(ii) If G is supersoluble, then M is F (G)-permutable with every subgroup T of G.
Indeed, if F (G) ≤ M , then G′ ≤ M . Hence M is normal in G and so it is
quasinormal in G. Now assume that F (G) � M . Then by (i), there exists an
element x of G such that MT x = T xM . Then G = MF (G) and hence x = mf

for some m ∈ M and f ∈ F (G). Therefore MT x = MT mf = MT f = T f M .

These examples are a motivation for introducing the following concepts.
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Definition 1.4 Let A be a subgroup of a group G and ∅ �= X ⊆ G. Then we say
that:

(1) A is (completely) X-quasinormal or (completely) X-permutable in G if A is
(completely, respectively) X-permutable with all subgroups of G.

(2) A is (completely) X-s-permutable in G if A is (completely, respectively) X-
permutable with all Sylow subgroups of G. In particular, if X = 1, then an
X-s-permutable subgroup is said to be s-permutable (or s-quasinormal) in G.

(3) A is (completely) c-permutable in G if A is (completely, respectively) c-
permutable with all subgroups of G.

(4) A is (completely) s-c-permutable in G if A is (completely, respectively)
c-permutable with all Sylow subgroups of G.

In the following lemma we give the general properties of X-permutability.

Lemma 1.5 Let A, B, X be subgroups of G and K � G. Then the following
statements hold:

(1) If A is (completely) X-permutable with B, then B is (completely) X-
permutable with A.

(2) If A is (completely) X-permutable with B, then Ax is (completely) Xx-
permutable with Bx for all x ∈ G.

(3) IfA is (completely)X-permutable withB, thenAK/K is (completely)XK/K-
permutable with BK/K in G/K .

(4) Suppose that K ≤ A. Then A/K is (completely) XK/K-permutable with
BK/K if and only if A is (completely) X-permutable with B.

(5) If A, B ≤ M ≤ G and A is completely X-permutable with B, then A is
completely (X ∩M)- permutable with B.

(6) If A is (completely) X-permutable with B and X ≤ M ≤ G, then A is
(completely) M-permutable with B.

(7) If A is X-permutable with B and X ≤ NG(A), then A is permutable with B.
(8) If F is a quasinormal subgroup of G and A is (completely) X-permutable with

B, then AF is (completely) X-permutable with B.
(9) If A ≤ T , where T is a subnormal subgroup of a (solvable) group G, and A is

G-permutable with all Sylow (Hall) subgroups of G, then A is T -permutable
with all Sylow (Hall) subgroups of T .

(10) Suppose that G = AT and T1 is a subgroup of T . If A is (completely) G-
permutable with T1, then A is (completely) T -permutable with T1.

(11) If A is a maximal subgroup of G, T is a minimal supplement to A in G and
A is c-permutable with all subgroups of T , then T = 〈a〉 is a cyclic p-group
for some prime p, and ap ∈ A.

Proof (1)–(3) and (5)–(8) are obvious.
(4) Suppose that A/K is (completely) XK/K-permutable with KB/K in G/K .

Then there exists an element xK of XK/K (an element of (XK/K)∩ 〈A/K , KB/K〉,
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respectively) such that

(A/K)(BK/K)xK = (BK/K)xK (A/K).

This implies that ABxK = ABx = BxA. Clearly, xK = hK for some h ∈ X. We
may, therefore, assume that x ∈ X (respectively x ∈ X ∩ 〈A, KB〉 = X ∩ 〈A, B〉).
This means that A is (completely) X-permutable with B in G. On the other hand,
if A is (completely) X-permutable with B in G, then by (3), A/K is (completely)
X-permutable with BK/K in G/K .

(9) Take some Sylow p-subgroup Tp of T and some Sylow subgroup Gp of G

containing Tp. Pick x ∈ G such that AGx
p = Gx

pA. Then AGx
p is a subgroup of

G. Hence AGx
p ∩ T = A(Gx

p ∩ T ) = (Gx
p ∩ T )A is a subgroup of T . Since T is

subnormal in G, Gx
p ∩ T is a Sylow p-subgroup of T . Take some element t in T

such that (Gx
p ∩ T )t = Tp. Then A(Gx

p ∩ T ) = AT t−1

p = T t−1

p A. Similarly we can
prove the second claim.

(10) Suppose that A is completely G-permutable with T1. Then there exists some
element x ∈ 〈A, T1〉 such that AT x

1 = T x
1 A. Since G = AT , x = at for some a ∈ A

and t ∈ T . Hence

AT x
1 = AatT1t

−1a−1 = aAtT1t
−1a−1 = a(AT t

1 )a−1

is a subgroup of G. Hence, AT t
1 = T t

1 A, where t ∈ T ∩〈A, T1〉 (because x ∈ 〈A, T1〉).
This shows that A is completely T -permutable with T1. If A is G-permutable with
T1, then similarly we can show that A is T -permutable with T1.

(11) Take a maximal subgroup M of T . By (10) for some t ∈ T we have AMt =
MtA. Since T is a minimal supplement to A in G, AM �= G and so AMt �= G.
Since A is a maximal subgroup of G, Mt ≤ A. Suppose that T has some maximal
subgroup M1 which is not conjugate to M . Then as above we see that M

t1
1 ≤ A for

some t1 ∈ T . It is clear that Mt �= M
t1
1 and T = 〈Mt , Mt1

1 〉 ≤ A. This implies that
G = AT = A, a contradiction. Therefore T is a primary cyclic group and M ≤ A.

Lemma 1.6 Suppose that G = HT , where H is a completely c-permutable proper
subgroup of G and T is a nilpotent subgroup of G. Then G has a chain of subgroups

H = T0 ≤ T1 ≤ . . . ≤ Tt−1 ≤ Tt = G

such that |Ti : Ti−1| is a prime for all i = 1, . . ., t .

Proof We may assume that G �= DH for any proper subgroups D of T . Let T1 be
a maximal subgroup of T . Suppose that T1 ≤ H . Then |G| = |T ||H |

|T∩H | = |T ||H |
|T1| . Since

T is nilpotent, |G : H | = |T : T1| is a prime.
Now assume that T1 � H . By hypothesis, for some element x ∈ G, we have

HT x
1 = T x

1 H . Since G = HT , x = th, where t ∈ T and h ∈ H . Hence T x
1 = T h

1 .
Since T1 � Hh−1 = H , T h

1 � H . Moreover, because T h
1 H ≤ G, we have

(T h
1 H )h

−1 = T1H ≤ G. It is clear that T1H �= G. Assume that T ∩ H � T1. Then
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T = T1(T ∩ H ) ⊆ T1H , and so G = T H ⊆ T1H , which is impossible. Hence
T ∩H ⊆ T1 and so |T ∩H | = |T1 ∩H |. It follows that

|T H : T1H | = |T ||H |
|T ∩H | ·

|T1 ∩H |
|T1||H | = |T : T1|

is a prime. Since |T1H | < |G| and by hypothesis H is completely c-permutable in
G, by induction on |G|, T1H has a chain of subgroups

H = D0 ≤ D1 ≤ . . . ≤ Dn−1 ≤ Dn = HT1

such that |Di : Di−1| is a prime for all i = 1, . . ., n. This completes the proof.

Proposition 1.7 [207]. Let A be a proper group of a group G.

(1) If G is soluble and A is a completely c-permutable subgroup of G, then G has
a chain of subgroups

A = T0 ≤ T1 ≤ . . . ≤ Tt−1 ≤ Tt = G

such that |Ti : Ti−1| is a prime for all i = 1, . . ., t .
(2) If A is subnormal in G and A c-permutes with all Sylow subgroup of G, then

A/AG is soluble.

Proof

(1) Suppose the claim false and take a counterexample G of minimal order. Let L be
any minimal normal subgroup of G. Since G is soluble, L is abelian. Suppose
that G = LA. Then Lemma 1.6 implies (1), which contradicts the choice of
G. Now assume that LA �= G. Since |LA| < |G| and A is a completely c-
permutable subgroup of LA by Lemma 1.5(5), the choice of G implies that LA

has a series
A = T0 ≤ T1 ≤ . . . ≤ Tt−1 ≤ Tt = LA

such that |Ti : Ti−1| is a prime for all i = 1, . . ., t .
Consider G/L. By Lemma 1.5(3), AL/L is a completely c-permutable subgroup
of G/L, and so G/L has se series

AL/L = T0/L ≤ T1/L ≤ . . . ≤ Tt−1/L ≤ Tt/L = G/L

such that |Ti/L : Ti−1/L| = |Ti : Ti−1| is a prime for all i = 1, . . ., t . Hence G

has a series
A = T0 ≤ T1 ≤ . . . ≤ Tt−1 ≤ Tt = G

of subgroups with prime indexes. This completes the proof of Claim (1).
(2) By Lemma 1.5(4) we may assume that AG = 1. Let R = AS. Then, obviously,

R = R′. Assume that A is not soluble. Then R �= 1. Let p ∈ π (G) and Gp

be a Sylow p-subgroup of G such that D = GpA = AGp. Let Q be a Sylow
q-subgroup of A, where q �= p. Then evidently Q is a Sylow q-subgroup of
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D. Since A is subnormal in G, A is subnormal in D and Qx ∩ A is a Sylow q-
subgroup of A, for all x ∈ D. Hence Lq = 〈Qx | x ∈ D〉 ⊆ A. Clearly, Lq � D.
Let L be the product of all Lq , where q runs through all prime divisors of the
order of A which are different from p. Then L � D. Since LR/L 
 R/L ∩ R

and D/L is a p-group, we have R ⊆ L. Let R1 be the smallest normal subgroup
of L with a soluble quotient. Then R1 char L � A, and so R1 � A. Since L/R1

is a soluble group, R1 ⊆ R. But since R′ = R, R1 = R char L � D. Therefore
R � D. Consequently, Gp ⊆ NG(R) for any p ∈ π (G). It follows that R � G.
Therefore AG �= 1. This contradiction completes the proof.

X-semipermutable Let A, B be subgroups of a group G. If AB = G, then B is
called a supplement of A in G.

Definition 1.8 Let A and B be subgroups of a group G, and let ∅ �= X ⊆ G.
Then we say that A is (completely) X-semipermutable in G if A is (completely)
X-permutable with all subgroups of some supplement T of A in G.

We use X(A) (Xc(A)) to denote the set of all supplements T of A in a group G such
that A is (completely ) X-permutable in G with all subgroups of T . Thus A is (com-
pletely) X-semipermutable in G if and only if X(A) �= ∅ (Xc(A) �= ∅, respectively).

Example 1.9 Let G = A5 × C7, where C7 is a group of order 7 and A5 is the
alternating group of degree 5. Let C5 be a Sylow 5-subgroup of A5. Let A 
 A4 be a
subgroup of G with |G : A| = 5 and T = C5 × C7. Then AT = G and evidently A

permutes with all subgroups of T . Hence A is 1-semipermutable in G. On the other
hand, A is not c-permutable in G. Indeed, let P be a Sylow 3-subgroup of A5. Then
|A5 : NA5 (P )| = 10. Hence A is not c-permutable with NA5 (P ).

Lemma 1.10 Let A and X be subgroups of G. Then the following statements hold:

(1) If N is a permutable subgroup of G and A is X-semipermutable in G, then NA

is a X-semipermutable subgroup of G.
(2) If N � G, A is X-semipermutable in G and T ∈ X(A), then AN/N is XN/N -

semipermutable in G/N and T N/N ∈ (XN/N )(AN/N ).
(3) If A/N is XN/N -semipermutable in G/N and T/N ∈ (XN/N )(A/N ), then A

is X-semipermutable in G and T ∈ X(A).
(4) If A is X-semipermutable in G and A ≤ D ≤ G, X ≤ D, then A is X-

semipermutable in D.
(5) If A is a maximal subgroup of G, T is a minimal supplement of A in G and

T ∈ G(A), then T = 〈a〉 is a cyclic p-group, for some prime p and ap ∈ A.
(6) If T ∈ X(A) and A ≤ NG(X), then T x ∈ X(A), for all x ∈ G.
(7) If A is X-semipermutable in G and X ≤ D, then A is D-semipermutable in G.

Proof

(1) This part follows directly from Lemma 1.5(8).
(2) It is obvious that T N/N is a supplement of AN/N in G/N . If T1/N is a

subgroup of T N/N , then T1/N = (T1 ∩ N )T/N = N (T1 ∩ T )/N and so
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AN/N is XN/N -permutable with T1/N in G/N by Lemma 1.5(3). Hence,
T N/N ∈ (XN/N )(AN/N ).

(3) The proof of this part is the same as the proof in (2).
(4) This part is evident.
(5) See Lemma 1.5(11).
(6) Obviously, T x is a supplement of A in G for any x ∈ G. Let T1 be a subgroup

of T x. We need to prove that A is X-permutable with T1. Since G = AT , we
have x = ta, for some a ∈ A, t ∈ T . Hence T x = T a. Note that T a−1

1 ≤ T and
A = Aa−1

. By hypothesis, for some d ∈ X, we have A(T a−1

1 )d = (T a−1

1 )dA =
Aa(d−1)a(T a−1

1 )ada = AT da

1 = T da

1 A, where da ∈ X since A ∈ NG(X). This
shows that T x ∈ X(A).

(7) This part is evident.

Xm-semipermutable subgroups.

Definition 1.11 Let A be a subgroup of a group G and X a nonempty subset of G.
Then we say that:

(1) A is Xm-permutable in G if A is X-permutable with all maximal subgroups of
all Hall subgroups of G.

(2) A is Xm-semipermutable in G if A is X-permutable with all maximal subgroups
of all Hall subgroups of some minimal supplement of A in G.

In particular, if A is 1m-permutable (1m-semipermutable) in G, then we say that A

is m-permutable (respectively, m-semipermutable) in G.

Example 1.12 Let A be a p-group with p an odd prime and B = Dm =
〈x, y|x2m−1 = y2 = 1, xy = x−1〉 a dihedral group of order 2m, where m > 2.
Let G = A× B and L = 〈y〉. Since G is nilpotent, every maximal subgroup of any
Hall subgroup of G is normal in G. Hence L is m-permutable in G. On the other
hand, L is clearly not permutable with 〈yx〉. Thus the class of the Xm-permutable
subgroups is in general a broader class than the class of the X-permutable subgroups.

Example 1.13 Let B and L be the groups as in Example 1.12. Then, it is easy to
see that there is a 2-group P such that B ≤ P ′ and so B ≤ �(P ). Therefore P is the
only minimal supplement of L in P . This shows that L is Xm-semipermutable but
not X-semipermutable in P . Thus the class of the Xm-semipermutable subgroups is
in general a broader class than the class of the X-semipermutable subgroups.

We will use Xm(A) to denote the set of all minimal supplement T of A in a group
G such that A is X-permutable with all maximal subgroups of any Hall subgroup of
T . Thus A is Xm-semipermutable in G if and only if Xm(A) �= ∅.

Lemma 1.14 Let A, T , X be subgroups of G and H be a minimal normal subgroup
of G. Then:

(1) If either H ≤ A or H ≤ T and if T is a minimal supplement of A in G, then
T H/H is a minimal supplement of AH/H in G/H .
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(2) Suppose that A is X-permutable with all maximal subgroups of any Hall sub-
group of T . Assume that or H is abelian or (|H |, |T |) = 1 or T is soluble. Then
AH/H is XH/H -permutable with all maximal subgroups of any Hall subgroup
of T H/H .

Proof

(1) Suppose that H ≤ A and let E/H be a supplement of A/H in G/H such
that E/H ≤ T H/H . Then E = E ∩ T H = H (E ∩ T ) and so G = AE =
A(E ∩ T ). Hence T ≤ E and E/H = T H/H is a minimal supplement of A/H

in G/H . On the other hand, if H ≤ T and E/H is a subgroup of T/H such
that G/H = (AH/H )(E/H ), then G = AE and so E/H = T/H is a minimal
supplement of AH/H in G/H.

(2) Let E/H be a Hall π -subgroup of T H/H and M/H be any maximal subgroup of
E/H . We prove that AH/H is XH/H -permutable with M/H . We first note that
E = E ∩ T H = H (E ∩ T ), M = M ∩ T H = H (M ∩ T ) and so |T : E ∩ T |
is a π ′-integer. Therefore, if H is a π -group, then E is also a π -group and so
E ∩ T is a Hall π -subgroup of T . On the other hand, if (|H |, |T |) = 1, then
H ∩E ∩ T = 1 and so in this case E ∩ T is also a Hall π -subgroup of T . Now
we show that M ∩ T is a maximal subgroup of E ∩ T . Clearly M ∩ T �= E ∩ T .
Assume that for some subgroup D of G we have M ∩ T ≤ D ≤ E ∩ T . Then
M = H (M ∩ T ) ≤ HD ≤ H (E ∩ T ) = E and hence or M = DH or DH =
E. If M = DH , then

D = D ∩H (M ∩ T ) = (M ∩ T )(D ∩H ) = M ∩ T .

If DH = E, then,

D = D ∩E ≤ (E ∩ T )∩H (E ∩ T ) ≤ (E ∩ T )(E ∩ T ∩H ) = E ∩ T .

Therefore, M ∩ T is maximal in E ∩ T and so by the hypothesis A is X-permutable
with M ∩ T . It follows from Lemma 1.5(4) that AH/H is XH/H -permutable with
M/H = (M ∩ T )H/H .

Finally, let either T be soluble or H be a p-group where p ∈ π ′. Then for some
Hall π -subgroup Tπ of T , we have Tπ ≤ E ∩ T . Indeed, the result is evident if T

is soluble. For the second case, by using |E : H | = |(E ∩ T )H : H | = |E ∩ T :
(E ∩ T ) ∩ H | and the well known Schur-Zassenhaus Theorem, we see that E ∩ T

has a Hall π -subgroup Tπ . Since |T : E ∩ T | is a π ′-integer, Tπ is a Hall subgroup
of T . Hence TπH/H = E/H = H (E ∩ Tπ )/H and M/H = H (M ∩ Tπ )/H . As
above, we may prove that M ∩ Tπ is a maximal subgroup of E ∩ Tπ and so again
AH/H is XH/H -permutable with M/H . The Lemma is proved.

Lemma 1.15 Let A and X be subgroups of G, H � G. Suppose that T ∈ Xm(A)
and either H ≤ A or H ≤ T . Suppose also that or H is an abelian minimal normal
subgroup of G or (|H |, |T |) = 1 or T is soluble. Then T H/H ∈ (XH/H )m(AH/H ).

Proof This Lemma is a direct consequence of Lemma 1.14.
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2.2 Criterions of Existence and Conjugacy of Hall Subgroups

A group G is said to be π -separable if G has a normal series

1 = G0 ≤ G1 ≤ . . . ≤ Gt−1 ≤ Gt = G, (2.1)

where each index |Gi : Gi−1| is either a π -number or a π ′-number.
A group G is said to be:

(I) Eπ -group provided G has a Hall π -subgroup;
(II) Cπ -group provided G is a Eπ -group and every two Hall π -subgroups of G are

conjugate;
(III) Dπ -group provided G is a Cπ -group and every π -subgroup of G contained in

some Hall π -subgroup of G.

The famous Schur-Zassenhaus Theorem asserts that: If G has a normal Hall π -
subgroup A, then G is an Eπ ′ -group. Moreover, if either A or G/A is soluble, then
A is a Cπ ′ -subgroup.

In 1928, Hall [228] proved that: A soluble group is a Dπ -group for any nonempty
set π of primes.

The most important result of the theory of π -separable groups is the following
generalization of the above Hall result.

Theorem 2.1 (P. Hall [233], C̆unihin [77]). If G is a π -separable group, then G is
a Dπ -group.

It is well known that the above Schur-Zassenhaus theorem, Hall theorem and
Hall–C̆unihin’s theorem are truly fundamental results of group theory. In connection
with these important results, the following two problems have naturally arisen:

Problem 2.2 Can we weaken the condition of normality for the Hall subgroup A of
G so that the conclusion of the Schur-Zassenhaus Theorem is still true?

Problem 2.3 Whether we can replace the condition of normality for the members of
series (2.1) by some weaker condition, for example, by permutability of the members
of series (2.1) with some systems of subgroups of G.

In this section we give positive answers to the above two Problems.

A generalization of the Schur-Zassenhaus theorem.

Lemma 2.4 Let N be a normal Cπ -subgroup of G.

(i) If G/N is a Cπ -group, then G is a Cπ -group (C̆unihin [78]).
(ii) If G/N is an Eπ -group, then G is an Eπ -group (C̆unihin [78]).

(iii) If G has a nilpotent Hall π -subgroup, then G is a Dπ -group [445].
(iv) If G has a Hall π -subgroup with cyclic Sylow subgroups, then G is a Dπ -group

(S. A. Rusakov [339]).
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Lemma 2.5 Let N be a normal Cπ -subgroup of G and Nπ a Hall π -subgroup of N .

(i) If G is a Cπ -group, then G/N is a Cπ -group ([233]).
(ii) If every Sylow subgroup of Nπ is cyclic and G/N is a Dπ -group, then G is a

Dπ -group (Shemetkov [356] or [359, IV, Theorem 18.17]).
(iii) G is a Dπ -group if and only if G/N and N are Dπ -groups (See [334]).

Lemma 2.6 (Kegel [262]). Let A and B, be the subgroups of G such that G �= AB

and ABx = BxA, for all x ∈ G. Then G has a proper normal subgroup N such that
either A ≤ N or B ≤ N .

The following lemma is obvious.

Lemma 2.7 If N is normal in G and T is a minimal supplement of N in G, then
N ∩ T ≤ �(T ).

Lemma 2.8 (Knyagina, Monakhov [266]). If H , K , and N be pairwise permutable
subgroups of G and H is a Hall subgroup of G, then

N ∩HK = (N ∩H )(N ∩K).

Now we prove the following generalization of the Schur-Zassenhaus theorem.

Theorem 2.9 (Guo, Skiba [202]). Let X be a normal Cπ -subgroup of G and A

a subgroup of G such that |G : A| is a π -number. Suppose that A has a Hall π -
subgroup A0 such that either A0 is nilpotent or every Sylow subgroup of A0 is cyclic.
Suppose that A X-permutes with every Sylow p-subgroup of G for all primes p ∈ π

or for all primes p ∈ π \ {q} for some prime q dividing |G : A|. Then G is a
Cπ -group.

Proof Assume that this proposition is false and let G be a counterexample of minimal
order. Then |π ∩ π (G)| > 1.

(1) G/R is a Cπ -group for any nonidentity normal subgroup R of G.
In order to prove this assertion, in view of the choice of G, it is enough to
show that the hypothesis is still true for (G/R, AR/R, XR/R). First note that
|G/R : AR/R| = |G : AR| is a π -number, and A0R/R is a Hall π -subgroup
of AR/R since

|AR/R : A0R/R| = |AR : A0R| = |A : A ∩ A0R| = |A : A0(A ∩ R)|.
On the other hand, XR/R 
 X/X ∩ R is a Cπ -group by Lemma 2.5(i), and
either A0R/R 
 A0/R ∩ A0 is nilpotent or every Sylow subgroup of A0R/R

is cyclic. Finally, let P/R be a Sylow p-subgroup of G/R, where p ∈ π \ q.
Then for some Sylow p-subgroup Gp we have GpR/R = P/R. Hence AR/R

XR/R-permutes with P/R by Lemma 1.5(3). Therefore the hypothesis holds
for (G/R, AR/R, XR/R).

(2) X = 1.
Indeed, if X �= 1, then G/X is a Cπ -group by (1). Hence G is Cπ -group by
Lemma 2.4(i), a contradiction.
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