
Chapter 2
Extremal Graphs with Respect
to Harary Index

In recent years, characterizing the extremal (maximal or minimal) graphs in a given
set of graphs with respect to some distance-based topological index has become an
important direction in chemical graph theory.

Let us briefly recall the chemical background of this problem as follows. A class of
molecular graphs representing carbon compounds is a class of connected graphs with
maximum degree at most 4. It models the skeletons of hydrocarbons [1], an impor-
tant class of molecules in organic chemistry. The bounds of a molecular descriptor
are important information of a molecular graph in the sense that they establish the
approximate range of the descriptor in terms of molecular structural parameters.
Therefore, it is important to establish the (lower or upper) bounds for topological
indices and to characterize the corresponding extremal graphs at which the lower or
upper bounds are attained.

Alternatively, topological indexof a graph canbe viewed as a graph invariant under
the isomorphism of graphs, that is, for some topological index TI, TI(G) = TI(H) if
G ∼= H . Therefore, the results in this chapter can also be seen as a topic in extremal
graph theory. For some other interesting results in extremal graph theory, see [2].

In this chapter, we determine the upper or lower bounds on the Harary indices of
graphs in various sets of structures, including general graphs, trees and generalized
trees, and characterize the corresponding extremal graphs at which these bounds are
attained. For some recent related results to this topic, see a recent survey [3].

2.1 General Graphs

In this section, we present some extremal results on general graphs with respect to
Harary index.

Denote by G� = (V, E) a graph with diameter d (3 ≤ d ≤ 4 and |V (G�)| ≥
d+2) such that, for any two distinct vertices u ∈ V (G�)\V (Pd+1) and v ∈ V (G�),
dG� (u, v) = 1 or 2 where Pd+1 is a path with d + 1 vertices in G�. Two graphs
depicted in Fig. 2.1 are all of G� type.
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Fig. 2.1 Examples of graphs of G� -type

Theorem 2.1.1 ([4]) Let G be a connected graph of order n and with m edges and
diameter D(G) = d. Set A = H(Pd+1). Then

A + n(n − 1) + 2(m − d)(d − 1)

2d
− d + 1

2
≤ H(G)

≤ A + n(n − 1) + 2m

4
− d(d + 3)

4

with left equality holding if and only if G is a graph with diameter d ≤ 2 or G ∼= Pn,
and right equality holding if and only if G is a graph with diameter d ≤ 2 or G ∼= Pn,
or G is isomorphic to some G�.

A connected graph G is called a cactus if each block of G is either an edge
or a cycle. Denote by C at (n, r) the set of connected cacti possessing n vertices
and r cycles. Let C0(n, r) be the cactus graph obtained from a star Sn by adding r
independent edges between the leaves of Sn .

Theorem 2.1.2 ([5, 6]) Let G be any graph in C at (n, r). Then we have

H(G) ≤ 1

4
(n − 2r − 1)(n − 2r − 2) − r2 + (n − 1)(r + 1)

with equality holding if and only if G ∼= C0(n, r).

Theorem 2.1.3 ([7]) Among all cacti of order 2n and with a perfect matching, the
graph C0(2n, n − 1) is the unique graph having the maximal Harary index.

Let C∗
n,k be a cactus obtained by identifying the vertex of degree n − 4 of C0

(n − 3, n−k−4
2 ) with one vertex of C4. For example, the graph C∗

11,3 is shown in
Fig. 2.2.

Theorem 2.1.4 ([7]) Among all cacti of order n and with k cut edges, the graph
C0(n, n−k−1

2 ) is the unique graph with maximal Harary index when n − k is odd;
and C∗

n,k uniquely has the maximal Harary index if n − k is even.
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Fig. 2.2 The cactus C∗
11,3

Theorem 2.1.5 ([7]) Among all cacti of order n and with k pendant vertices, the
graph C0(n, n−k−1

2 ) is the unique graph with maximal Harary index when n − k is
odd; and C∗

n,k uniquely has the maximal Harary index if n − k is even.

Denote by C†(2n, r) a graph of order 2n obtained by attaching n − r − 1 paths
of length 2 at the vertex of maximum degree in C0(2r + 2, r).

Theorem 2.1.6 ([6]) Let G ∈ C at (2n, r) with a perfect matching. Then we have

H(G) ≤ 1

24
(n − r − 1)(23n + 17r − 2) + 2n + r2 − 1

with equality holding if and only if G ∼= C†(2n, r).

Let 1 ≤ k < n and K Ck
n be the graph obtained by attaching k pendant vertices to

one vertex of the complete graph Kn−k .

Theorem 2.1.7 ([8]) Among all connected graphs with n vertices and k cut edges,
the graph K Ck

n uniquely has the maximal Harary index.

Note that the kite graph K in,k is obtained by identifying one vertex of Kk with
one pendant vertex of Pn−k+1 and the Turán graph Tn(k) is a complete k-partite
graph of order n in which any two partition sets differ in size by at most one.

Theorem 2.1.8 ([9])Among all connected graphs with n vertices and clique number
k, the Turán graph Tn(k) uniquely has the maximal Harary index, the kite graph K in,k

uniquely has the minimal Harary index.

Moreover, in [10], the authors also determined some extremal bipartite graphs
with respect to Harary index, which are all complete bipartite graphs. Hence, these
results can be viewed as the special cases of Theorem 2.1.8.

Theorem 2.1.9 ([9]) Among all connected graphs with n vertices and chromatic
number k, the Turán graph Tn(k) uniquely has the maximal Harary index, the kite
graph K in,k uniquely has the minimal Harary index.

In graph theory, the well-known Moore graph is a r -regular graph with diameter
k whose order attains the upper bound
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1 + r
k−1∑

i=0

(r − 1)i .

HoffmanandSingleton [11] proved that every r -regularMooregraphG withdiameter
2 must have r ∈ {2, 3, 7, 57}. They pointed out that G ∼= C5 if r = 2, G is just
Petersen graph for r = 3; G is the well-known Hoffman-Singleton graph for r = 7
and while r = 57 we do not know whether such graph G exists or not.

Theorem 2.1.10 ([12]) Let G be a connected triangle- and quadrangle-free graph
with n ≥ 2 vertices and m edges. Then

H(G) ≤ n(n − 1)

4
+ m

2

with equality holding if and only if G is a star or a Moore graph of diameter 2.

In the next theorem, we will characterize the extremal graphs maximizing the
Harary index among all connected graphs with a given matching number. Obviously,
either G = C3 or G = Sn holds for any connected graph G with n ≥ 2 vertices
and matching number β = 1. For the connected graph G with n ≥ 4 vertices and
matching number β ≥ 2, we have

Theorem 2.1.11 ([13]) Let G be a connected graph with n ≥ 4 vertices and match-

ing number β, where 2 ≤ β ≤
⌊n

2

⌋
.

(1) If β =
⌊n

2

⌋
, then H(G) ≤ H(Kn) with equality holding if and only if G ∼= Kn;

(2) If
2n

5
< β ≤

⌊n

2

⌋
−1, then H(G) ≤ H(K1

∨
(K2β−1∪ Kn−2β)) with equality

holding if and only if G ∼= K1
∨

(K2β−1 ∪ Kn−2β);

(3) If 2 ≤ β <
2n

5
, then H(G) ≤ H(Kβ

∨
Kn−β) with equality holding if and

only if G ∼= Kβ

∨
Kn−β ;

(4) If β = 2n

5
, then H(G) ≤ H(Kβ ∨ Kn−β) = H(K1 ∨ (K2β−1 ∪ Kn−2β))

with equality holding if and only if G ∼= Kβ

∨
Kn−β or G ∼= K1

∨
(K2β−1 ∪

Kn−2β).

By the definition of Harary index, one can easily observe that any edge addition
will increase the Harary index. Thus, we have

Proposition 2.1.12 ([9]) Let G be a connected graph with e 	∈ E(G). Then we have
H(G) < H(G + e).
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By Proposition 2.1.12, it easily follows that

Theorem 2.1.13 ([12]) Let G be a connected graph of order n. Then H(G) ≤
H(Kn) with equality holding if and only if G ∼= Kn.

A graph G is called quasi-tree graph if there exists a vertex x ∈ V (G) such
that G − x is a tree. Clearly, any tree is a quasi-tree graph since the deletion of any
pendant vertex will deduce another new tree. So, we call any tree a trivial quasi-
tree graph, and other quasi-tree graphs are called nontrivial quasi-tree graphs. Very
recently in [14] we introduced a new definition of k-generalized quasi-tree graph. A
graph G is called k-generalized quasi-tree graph if there exists a subset Vk ⊆ V (G)

with |Vk | = k such that G − Vk is a tree but, for any subset Vk−1 ⊆ V (G) with
cardinality k − 1, G − Vk−1 is not a tree. For k ≥ 2, we denote byQT (k)(n) the set
of k-generalized quasi-tree graphs of order n. Here, we think nontrivial quasi-tree
graphs and generalized quasi-tree graphs as general graphs because of their more
complicated structure [14] than unicyclic or bicyclic graphs.

LetCk((n−k)1) be a graph obtained by attaching a path of length n−k to any one
vertex of Ck . We denote by Cn−5

3,3 (see Fig. 2.3) a graph obtained by connecting two
vertex-disjoint triangles by a path of length n − 5. Extremal graphs with respect to
Harary index are characterized, respectively, in the following three theorems among
all nontrivial quasi-tree graphs of order n ≥ 4 and k-generalized graphs of order
n ≥ 6 (including theminimal case for k = 2 and themaximal case for all values of k).

Theorem 2.1.14 ([14]) Let G be a nontrivial quasi-tree graph of order n ≥ 4. Then
we have

3 + n
n−2∑

k=2

1

k
≤ H(G) ≤ (n − 2)(n + 5)

4
+ 1

with left equality holding if and only if G ∼= C3((n − 3)1), and right equality holding
if and only if G ∼= K2

∨
Kn−2.

Theorem 2.1.15 ([14]) Let G be a 2-generalized quasi-tree graph of order n ≥ 6.
Then we have

H(G) ≥ 5 + n
n−3∑

k=2

1

k
+ 1

n − 3

with equality holding if and only if G ∼= Cn−5
3,3 .

Fig. 2.3 The graph Cn−5
3,3
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Theorem 2.1.16 ([14]) For any graph G ∈ QT (k)(n) with n ≥ 6, we have

H(G) ≤ n(n − 1)

4
+ (k + 1)(n − k − 1)

2
+ (k + 1)k

4

with equality holding if and only if G ∼= Kk+1
∨

Kn−k−1.

For a connected graph G, the kth power Gk (see Ref. [15]) is a new graph with
vertex set V (Gk) = V (G) such that two vertices are adjacent in Gk if and only if
they are at distance at most k in G. The bounds on Harary index have been presented
in the following theorem among all kth power of trees. Moreover the corresponding
extremal graphs were also characterized implicitly with respect to Harary index.

Theorem 2.1.17 ([15]) For any tree T of order n, we have

H(Pk
n ) ≤ H(T k) ≤ H(Sk

n )

with left equality holding if and only if T k ∼= Pk
n and right equality holding if and

only if T k ∼= Sk
n .

From Proposition 2.1.12, the corollary below can be easily obtained.

Corollary 2.1.18 ([15]) Let G be a connected graph of order n. Then we have
H(Pk

n ) ≤ H(Gk).

In the several theorems below, we present some extremal results with respect to
Harary index on disconnected graphs. First, we define

f (n, k) =

⎧
⎪⎪⎨

⎪⎪⎩

k + n
r−1∑

l=2

1

l
+ s(r + 1)

r
if k ≤ n

2
;

n − k if k >
n

2
,

where r, s are integers with n = rk + s and 0 ≤ s < k.

Theorem 2.1.19 ([16]) Let G be a graph of order n and with k components where
1 ≤ k ≤ n. Then we have

f (n, k) ≤ H(G) ≤ (n − k + 1)(n − k)

2

with left equality holding if and only if G ∼= (k − s)Pr ∪ s Pr+1 and right equality
holding if and only if G ∼= (k − 1)K1 ∪ Kn−k+1.

Theorem 2.1.20 ([16]) Let G be a graph of order n and with m edges and k com-
ponents G1, G2, . . . , Gk where |V (Gi )| = ni for i = 1, 2, . . . , k. Then we have

k∑

i=1

H(Pni ) + m − n + k

2
≤ H(G) ≤

∑k
i=1 n2

i

4
− n

4
+ m

2
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with left equality holding if and only if Gi ∼= Pni or K3 for i = 1, 2, . . . , k and right
equality holding if and only if Gi has diameter at most 2 for i = 1, 2, . . . , k.

Theorem 2.1.21 ([16]) Let G be a graph of order n and with m edges and k com-
ponents where 1 ≤ k ≤ n. Then we have

f (n, k) + m − n + k

2
≤ H(G) ≤ (n − k + 1)(n − k)

4
+ m

2

with left equality holding if and only if G ∼= (k − s)Pr ∪ s Pr+1 and right equality
holding if and only if G ∼= (k−1)K1∪ Kn−k+1, where r, s are integers with n = rk+s
and 0 ≤ s < k.

2.2 Trees

When we study some property of graphs, a tree is generally viewed as the simplest
graph to consider first as a starting point. In this section, we report some extremal
results on trees with respect to Harary index.

Theorem 2.2.1 ([17, 18]) Let T be a tree of order n. Then we have

H(Pn) ≤ H(T ) ≤ H(Sn)

with left equality holding if and only if T ∼= Pn, and right equality holding if and
only if T ∼= Sn.

By Proposition 2.1.12, among all connected graphs, the extremal graph with the
minimal Harary index must be a tree. Thus, by Theorem 2.2.1, we have

Corollary 2.2.2 ([12]) Let G be a connected graph of order n. Then we have
H(G) ≥ H(Pn) with equality holding if and only if G ∼= Pn.

Although by now, in chemical graph theory, the measure of branching cannot be
formally defined [19], there are several properties that any proposed measure has
to satisfy [20, 21]. Basically, a topological index (TI) acceptable as a measure of
branching must satisfy the inequalities

TI(Sn) < TI(T ) < TI(Pn) or TI(Pn) < TI(T ) < TI(Sn)

for any tree T of order n ≥ 5 different from Sn and Pn . From Theorem 2.2.1, we
find that Harary index (H ) satisfies the basic requirement to be a branching index.

Taking Theorem 2.2.1 into consideration, we naturally ask: Which trees have the
extremal Harary indices among the trees of order n different from Sn and Pn? The
next two theorems will give an answer to this question, in which the ordering of trees
will be extended with respect to Harary index.
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Before stating these two theorems, we first introduce some necessary notations
and definitions. A vertex v of a tree T is called a branching point if dT (v) ≥ 3. Let
Tn(n1, n2, . . . , nm) be a starlike tree of order n obtained by inserting n1 − 1, . . . ,
nm − 1 vertices into m edges of the star Sm+1, respectively, where n1 + · · · + nm =
n − 1. Note that any tree with exactly one branching point is a starlike tree. Assume
that T is a tree of order n with exactly two branching points v1 and v2 with dT (v1) = r
and dT (v2) = t . The orders of r − 1 components, which are paths, of T − v1 are
p1, . . . , pr−1, the order of the component which is not a path of T − v1 is pr =
n − p1−· · ·− pr−1−1. The orders of t −1 components, which are paths, of T − v2
are q1, . . . , qt−1, the order of the component which is not a path of T − v2 is qt =
n −q1−· · ·−qt−1−1.We denote this tree by T = Tn(p1, . . . , pr−1; q1, . . . , qt−1),
where r ≤ t , p1 ≥ · · · ≥ pr−1 and q1 ≥ · · · ≥ qt−1.

For convenience, when considering the trees Tn(n1, n2, . . . , nk, . . . , nm) or
Tn(p1, . . . , pk, . . . , pr−1;q1, . . . , qk, . . . , qt−1), we use the symbolsnlk

k or plk
k (resp.

qlk
k ) to indicate that the number of nk or pk (resp. qk) is lk > 1 in the following. For
example, T16(2, 2, 3, 3, 5) will be written as T16(22, 32, 51). Let T2, T3, . . . , T8 be
the trees of order n ≥ 14 as shown in Fig. 2.4.

Theorem 2.2.3 ([18]) Suppose that T is a tree of order n ≥ 16. Then we have

H(Pn) < H(Tn(n − 3, 12)) < H(Tn(n − 4, 2, 1)) < H(Tn(12; 12))
< H(Tn(n − 5, 3, 1)) < H(Tn(12; 2, 1)) < H(Tn(n − 4, 13)) < H(T ).

Theorem 2.2.4 ([18]) Suppose that T is a tree of order n ≥ 16. Then we have

H(T ) < H(T8) < H(T7) < H(T6) < H(T5)

< H(T4) < H(T3) < H(T2) < H(Sn).

In the theorem below, we assume that n − 1 = kq + r with 0 ≤ r < k, that is,

q =
⌊n

k

⌋
. Obviously, we have n − 1 = k

⌊n

k

⌋
+ r = (k − r)

⌊n

k

⌋
+ r

⌈n

k

⌉
.

Fig. 2.4 The trees T2, T3, . . . , T8 encountered in Theorem 2.2.4
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Theorem 2.2.5 ([22]) Let T be a tree with n vertices and k pendant vertices, where
2 ≤ k ≤ n − 2. Then

H(T ) ≤ H

(
Tn

(⌈n

k

⌉r
,
⌊n

k

⌋k−r
))

with equality holding if and only if T ∼= Tn(
⌈n

k

⌉r
,
⌊n

k

⌋k−r
).

Recall that Tn(2β−1, 1n−2β+1) is a tree defined as above. Clearly, the matching
number of Tn(2β−1, 1n−2β+1) is β, and there is exactly one tree with n vertices and
matchingnumberβ = 1,which is just the star Sn . Recently, themaximalHarary index
in the class of trees with n vertices and matching number β ≥ 2 were determined in
the following theorem.

Theorem 2.2.6 ([22, 23]) Let T be a tree with n vertices and matching number

2 ≤ β ≤
⌊n

2

⌋
. Then

H(T ) ≤ H(Tn(2β−1, 1n−2β+1))

where the equality holds if and only if T ∼= Tn(2β−1, 1n−2β+1).

It is well-known that α + β = n for a bipartite graph G of order n and with
matching number β and independence number α (see, e.g., [24]). Therefore, the
following corollary can be easily obtained from Theorem 2.2.6.

Corollary 2.2.7 ([22, 23]) Let T be a tree with n vertices and independence number
α. Then

H(T ) ≤ H(Tn(2n−α−1, 12α−n+1))

with equality holding if and only if T ∼= Tn(2n−α−1, 12α−n+1).

For 2 ≤ � ≤ n − 1, the Volkmann tree Vn,� is defined as follows [25, 26]:
If n = � + 1, then Vn,� is just a star of order n;
For n > � + 1, define ni as ni = 1 + ∑i

j=1 �(� − 1) j for i = 1, 2, . . ., and
choose k such that nk−1 < n ≤ nk .

Then calculate the parameters m and h by m = n − nk−1

� − 1
and h = n − nk−1 −

(� − 1)m.
The vertices of Vn,� are arranged into k + 1 levels. In level 0, there is only one

vertex labeled as v0,1. In level i for i = 1, 2, . . . , k − 1, there are �(�− 1)i vertices
labeled as vi,1, vi,2, . . . , vi,�(�−1)i . These are connected (in that order) to the vertices
in level i , so that � − 1 vertices from level i are adjacent to each vertex from level
i −1. At level k there are n −nk−1 vertices, labeled as vk,1, vk,2, . . . , vk,n−nk−1 . They
are connected (in that order) to the vertices in level k −1, so that�−1 vertices from
level k are adjacent to vertices vk−1,1, vk−1,2, . . . , vk−1,m . The remaining h vertices
at level k (if any) are connected to the vertex vk−1,m+1 in level k − 1. To illustrate
the structure of Vn,�, we give an example in Fig. 2.5 for n = 22 and � = 4.
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Fig. 2.5 The Volkmann tree V22,4 with its vertices labeled

Theorem 2.2.8 ([15, 22, 27, 28]) Let T be a tree with n vertices and maximum
degree � ≥ 3. Then we have

H(Tn(n − �, 1�−1)) ≤ H(T ) ≤ H(Vn,�)

with left equality holding if and only if T ∼= Tn(n − �, 1�−1) and right equality
holding if and only if T ∼= Vn,�.

In view of Proposition 2.1.12 and Theorem 2.2.8, the following result can be
easily obtained.

Corollary 2.2.9 ([27]) Let G be a connected graph of order n and with maximum
degree �. Then we have

H(G) ≥ H(Tn(n − �, 1�−1))

with equality holding if and only if T ∼= Tn(n − �, 1�−1).

In the next theorem, the extremal tree maximizing the Harary index is character-
ized completely among all trees of order n and with diameter d.

Theorem 2.2.10 ([22, 27]) Let T be a tree with n vertices and diameter d, where
3 ≤ d ≤ n − 2. Then

H(T ) ≤ H

(
Tn

(⌈d

2

⌉
,
⌊d

2

⌋
, 1n−d−1

))

with equality holding if and only if T ∼= Tn(
⌈d

2

⌉
,
⌊d

2

⌋
, 1n−d−1).
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2.3 Generalized Trees

A unicyclic graph is a connected graph of order n and with n edges, which can be
obtained by adding a new edge into a tree. Similarly, a bicyclic graph is a connected
graph of order n and with n + 1 edges, which can be obtained by adding two new
edges into a tree, i.e., by adding a new edge into a unicyclic graph. Therefore these
two classes of graphs can be viewed as generalized trees. In this section we will
determine some extremal results with respect to Harary index on these two classes
of generalized trees.

Before presenting our main results, we first introduce some necessary notations.
Denote by Ck(n

l1
1 , nl2

2 , . . . , nlm
m ) the unicyclic graph obtained by attaching l1 paths of

lengthn1, l2 paths of lengthn2, . . . , lm paths of lengthnm , respectively, to onevertices
of Ck , where n1 > n2 > · · · > nm . Note that the graph Ck(l1) defined in Sect. 2.1
is a special graph of Ck(n

l1
1 , nl2

2 , . . . , nlm
m ). For example, the graph C5(41, 32, 22) is

shown in Fig. 2.6. There are exactly two unicyclic graphs C4 and C3(11) of order 4
with H(C4) = H(C3(11)). So we assume that n ≥ 5 in the following theorem.

Theorem 2.3.1 ([29]) Let G be a unicyclic graph of order n ≥ 5. Then we have

H(C3((n − 3)1)) ≤ H(G) ≤ H(C3(1
n−3))

where the left equality holds if and only if G ∼= C3((n − 3)1), and the right equality
holds if and only if G ∼= C3(1n−3) for n ≥ 6 and G ∼= C3(1n−3) or G ∼= C5 for
n = 5.

There is exactly one unicyclic graph C3 with n vertices and matching number 1.
For n = 5 and β = 2, we can easily check [29] that only two graphs Cn and C3(12)
have the maximal Harary index among all unicyclic graphs of order n and with
matching number 2. We find that [30] the unique graph C3(1n−3) has the maximal
Harary index among these unicyclic graphs of order n and with matching number 2.
Next, we present the extremal unicyclic graphs with maximal Harary index among
all the unicyclic graphs with n vertices and matching number β ≥ 3.

Theorem 2.3.2 ([31]) Let G be a unicyclic graph with n ≥ 9 vertices and matching
number β ≥ 3. Then

H(G) ≤ H(C3(2
β−2, 1n−2β+1))

with equality holding if and only if G ∼= C3(2β−2, 1n−2β+1).

Fig. 2.6 The graph
C5(41, 32, 22)
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Fig. 2.7 The base graphs of type (I), (II), and (III)

Fig. 2.8 The bicyclic graphs B(1)
n and B(2)

n

In the next step,we turn to the determination of extremalHarary indices of bicyclic
graphs. For any bicyclic graph G, the structure of cycles in G can be divided into the
following three cases (see [32]):

(I) The two cycles C p and Cq in G have only one common vertex v;
(II) The two cycles C p and Cq in G are linked by a path of length l > 0;
(III) The two cycles Cl+k and Cl+m in G have a common path of length l > 0.

As shown in Fig. 2.7, the bicyclic graphs C p,q , C p,l,q and θk,l,m (where 1 ≤ l ≤
min{k, m}) corresponding to the above three cases are called the base subgraphs of
bicyclic graph G of type (I), (II) and (III), respectively. For n ≥ 5, let B(1)

n and B(2)
n

be the bicyclic graphs as shown in Fig. 2.8.
For n ≥ 5, let B(0)

n be a graph obtained by attaching a path of length n − 4 to one
vertex of degree 2 pertaining to θ2,1,2 (see Fig. 2.9). In [33], the extremal graph with
maximal Harary index has been determined among all bicyclic graphs of order n and
with exactly two cycles. In the following two theorems, we characterize completely
the extremal bicyclic graphs with respect to Harary index in the class of bicyclic
graphs of order n ≥ 5.

Theorem 2.3.3 ([29]) Let G be a bicyclic graph of order n ≥ 5 and i ∈ {1, 2}. Then
we have

H(G) ≤ H(B(i)
n )
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Fig. 2.9 The graph B(0)
n

with equality holding if and only if G ∼= B(i)
n for n ≥ 7 and G ∼= B(i)

n or G ∼= θ2,2,3

for n = 6 and G ∼= B(i)
n or G ∼= θ2,1,3 or G ∼= K2,3 for n = 5.

Theorem 2.3.4 ([29]) Let G be a bicyclic graph of order n ≥ 5. Then we have

H(B(0)
n ) ≤ H(G)

where the equality holds if and only if G ∼= B(0)
n .

Although the extremal graphs with respect to Harary index have been completely
determined among all unicyclic or bicyclic graphs of order n, there are still some
interesting and challenging problems on this topic, such as determining the extremal
graphs with respect to Harary index among all graph in some classes of unicyclic
or bicyclic graphs, dealing with some extremal results among all connected graphs
of order n and m ≥ n + 2 edges. These problems seem to be attractive to many
mathematical researchers.
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21. Gutman I, Randić M (1977) Algebraic characterization of skeletal branching. Chem Phys Lett

47:15–19
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