
 2.1 MATLAB in Earth Sciences

MATLAB® is a soft ware package developed by Th e MathWorks, Inc.,
founded by Cleve Moler, Jack Little and Steve Bangert in 1984, which has
its headquarters in Natick, Massachusetts (http://www.mathworks.com).
MATLAB was designed to perform mathematical calculations, to analyze
and visualize data, and to facilitate the writing of new soft ware programs.
Th e advantage of this soft ware is that it combines comprehensive math and
graphics functions with a powerful high-level language. Since MATLAB
contains a large library of ready-to-use routines for a wide range of
applications, the user can solve technical computing problems much more
quickly than with traditional programming languages, such as C++ and
FORTRAN. Th e standard library of functions can be signifi cantly expanded
by add-on toolboxes, which are collections of functions for special purposes
such as image processing, creating map displays, performing geospatial data
analysis or solving partial diff erential equations.

During the last few years MATLAB has become an increasingly popular
tool in earth sciences. It has been used for fi nite element modeling,
processing of seismic data, analyzing satellite imagery, and for the generation

 2 Introduction to MATLAB

 Graphical user interface of MATLAB in typical
use. The software comes up with several
window panels. The desktop layout includes
the Current Folder panel, the Command Window,
the Command History panel and the Workspace
panel. When using MATLAB several Figure
Windows and the Editor are displayed.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_2

11

of digital elevation models from satellite data. Th e continuing popularity
of the soft ware is also apparent in published scientifi c literature, and many
conference presentations have also made reference to MATLAB. Universities
and research institutions have recognized the need for MATLAB training for
staff and students, and many earth science departments across the world now
off er MATLAB courses for undergraduates. Th e MathWorks, Inc. provides
classroom kits for teachers at a reasonable price, and it is also possible for
students to purchase a low-cost edition of the soft ware. Th is student version
provides an inexpensive way for students to improve their MATLAB skills.

Th e following sections contain a tutorial-style introduction to MATLAB,
covering the setup on the computer (Section 2.2), the MATLAB syntax
(Sections 2.3 and 2.4), data input and output (Sections 2.5 and 2.6),
programming (Sections 2.7 and 2.8), and visualization (Section 2.9).
Advanced sections are also included on generating M-fi les to recreate
graphics (Section 2.10), on publishing M-fi les (Section 2.11), and on creating
graphical user interfaces (Section 2.12). Th e reader is recommended to
go through the entire chapter in order to obtain a good knowledge of the
soft ware before proceeding to the following chapters of the book. A more
detailed introduction can be found in the MATLAB Primer (MathWorks
2014a) which is available in print form, online and as PDF fi le.

In this book we use MATLAB Version 8 (Release 2014b), the Image
Processing Toolbox Version 9.1, the Mapping Toolbox Version 4.0.2, the
Signal Processing Toolbox Version 6.22, the Statistics Toolbox Version 9.1,
the Wavelet Toolbox Version 4.14, and the Simulink 3D Animation Toolbox
Version 7.2.

 2.2 Getting Started

Th e soft ware package comes with extensive documentation, tutorials and
examples. Th e fi rst three chapters of the book MATLAB Primer (MathWorks
2014a) are directed at beginners. Th e chapters on programming, creating
graphical user interfaces (GUIs) and development environments are aimed
at more advanced users. Since MATLAB Primer provides all the information
required to use the soft ware, this introduction concentrates on the most
relevant soft ware components and tools used in the following chapters of
this book.

Aft er the installation of MATLAB, the soft ware is launched either by
clicking the shortcut icon on the desktop or by typing

matlab

12 2 INTRODUCTION TO MATLAB

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the Current Folder (left
in the fi gure), the Command Window (center), the Workspace (right) panels. Th is book uses
only the Command Window and the built-in Editor, which can be called up by typing edit
aft er the prompt. All information provided by the other panels can also be accessed through
the Command Window.

in the operating system prompt. Th e soft ware then comes up with several
window panels (Fig. 2.1). Th e default desktop layout includes the Current
Folder panel that lists the fi les in the directory currently being used. Th e
Command Window presents the interface between the soft ware and the
user, i.e., it accepts MATLAB commands typed aft er the prompt, >>. Th e
Workspace panel lists the variables in the MATLAB workspace, which is
empty when starting a new soft ware session. In this book we mainly use
the Command Window and the built-in Editor, which can be launched by
typing

edit

By default, the soft ware stores all of your MATLAB-related fi les in the
startup folder named MATLAB. Alternatively, you can create a personal
working directory in which to store your MATLAB-related fi les. You should
then make this new directory the working directory using the Current
Folder panel or the Folder Browser at the top of the MATLAB desktop.
Th e soft ware uses a Search Path to fi nd MATLAB-related fi les, which are

2.2 GETTING STARTED 13

organized in directories on the hard disk. Th e default search path includes
only the MATLAB_R2014b directory that has been created by the installer
in the applications folder and the default working directory MATLAB. To
see which directories are in the search path or to add new directories, select
Set Path from the Home toolstrip of the MATLAB desktop, and use the Set
Path dialog box. Th e modifi ed search path is saved in a fi le pathdef.m on your
hard disk. Th e soft ware will then in future read the contents of this fi le and
direct MATLAB to use your custom path list.

 2.3 The Syntax

Th e name MATLAB stands for matrix laboratory. Th e classic object handled
by MATLAB is a matrix, i.e., a rectangular two-dimensional array of numbers.
A simple 1-by-1 array is a scalar. Arrays with one column or row are vectors,
time series or other one-dimensional data fi elds. An m-by-n array can be
used for a digital elevation model or a grayscale image. Red, green and blue
(RGB) color images are usually stored as three-dimensional arrays, i.e., the
colors red, green and blue are represented by an m-by-n-by-3 array.

Before proceeding, we need to clear the workspace by typing

clear

aft er the prompt in the Command Window. Clearing the workspace is
always recommended before working on a new MATLAB project to avoid
name confl icts with previous projects. We can also go a step further, close
all Figure Windows using close all and clear the content of the Command
Window using clc. It is therefore recommended that a new MATLAB project
should always start with the line

clear, close all, clc

Entering matrices or arrays in MATLAB is easy. To enter an arbitrary matrix,
type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

which fi rst defi nes a variable A, then lists the elements of the array in square
brackets. Th e rows of A are separated by semicolons, whereas the elements
of a row are separated by blank spaces, or alternatively, by commas. Aft er
pressing return, MATLAB displays the array

A =
 2 4 3 7
 9 3 -1 2

14 2 INTRODUCTION TO MATLAB

Movie
2.1

 1 9 3 7
 6 6 3 -2

Displaying the elements of A could be problematic for very large arrays such
as digital elevation models consisting of thousands or millions of elements.
To suppress the display of an array or the result of an operation in general,
the line should be ended with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

Th e array A is now stored in the workspace and we can carry out some basic
operations with it, such as computing the sum of elements,

sum(A)

which results in the display

ans =
 18 22 8 14

Since we did not specify an output variable, such as A for the array entered
above, MATLAB uses a default variable ans, short for answer or most recent
answer, to store the results of the calculation. In general, we should defi ne
variables since the next computation without a new variable name will
overwrite the contents of ans.

Th e above example illustrates an important point about MATLAB: the
soft ware prefers to work with the columns of arrays. Th e four results of
sum(A) are obviously the sums of the elements in each of the four columns of
A. To sum all elements of A and store the result in a scalar b, we simply need
to type

b = sum(sum(A));

which fi rst sums the columns of the array and then the elements of the
resulting vector. We now have two variables, A and b, stored in the workspace.
We can easily check this by typing

whos

which is one the most frequently-used MATLAB commands. Th e soft ware
then lists all variables in the workspace, together with information about
their sizes or dimensions, number of bytes, classes and attributes (see Section
2.5 for details about classes and attributes of objects).

Name Size Bytes Class Attributes
A 4x4 128 double

2.3 THE SYNTAX 15

Movie
2.2

ans 1x4 32 double
b 1x1 8 double

Note that by default MATLAB is case sensitive, i.e., A and a can defi ne two
diff erent variables. In this context, it is recommended that capital letters be
used for arrays that have two dimensions or more and lower-case letters
for one-dimensional arrays (or vectors) and for scalars. However, it is
also common to use variables with mixed large and small letters. Th is is
particularly important when using descriptive variable names, i.e., variables
whose names contain information concerning their meaning or purpose,
such as the variable CatchmentSize, rather than a single-character variable a.
We could now delete the contents of the variable ans by typing

clear ans

Next, we will learn how specifi c array elements can be accessed or exchanged.
Typing

A(3,2)

simply yields the array element located in the third row and second column,
which is 9. Th e array indexing therefore follows the rule (row, column). We
can use this to replace single or multiple array elements. As an example we
type

A(3,2) = 30

to replace the element A(3,2) by 30 and to display the entire array.

A =
 2 4 3 7
 9 3 -1 2
 1 30 3 7
 6 6 3 -2

If we wish to replace several elements at one time, we can use the colon
operator. Typing

A(3,1:4) = [1 3 3 5]

or

A(3,:) = [1 3 3 5]

replaces all elements of the third row of the array A. Th e colon operator also
has several other uses in MATLAB, for instance as a shortcut for entering
array elements such as

16 2 INTRODUCTION TO MATLAB

c = 0 : 10

which creates a vector, or a one-dimensional array with a single row,
containing all integers from 0 to 10. Th e resultant MATLAB response is

c =
 0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10
and the zero. A common error when indexing arrays is to ignore the zero
and therefore expect 10 elements instead of 11 in our example. We can check
this from the output of whos.

Name Size Bytes Class Attributes
A 4x4 128 double
ans 1x1 8 double
b 1x1 8 double
c 1x11 88 double

Th e above command creates only integers, i.e., the interval between the
array elements is one unit. However, an arbitrary interval can be defi ned, for
example 0.5 units. Th is is later used to create evenly-spaced time vectors for
time series analysis. Typing

c = 1 : 0.5 : 10

results in the display

c =
 Columns 1 through 6
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
 Columns 7 through 12
 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000
 Columns 13 through 18
 7.0000 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 19
 10.0000

which autowraps the lines that are longer than the width of the Command
Window. Th e display of the values of a variable can be interrupted by pressing
Ctrl+C (Control+C) on the keyboard. Th is interruption aff ects only the
output in the Command Window, whereas the actual command is processed
before displaying the result.

MATLAB provides standard arithmetic operators for addition, +, and
subtraction, -. Th e asterisk, *, denotes matrix multiplication involving inner
products between rows and columns. For instance, we multiply the matrix A
with a new matrix B

2.3 THE SYNTAX 17

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

the matrix multiplication is then

C = A * B'

where ' is the complex conjugate transpose, which turns rows into columns
and columns into rows. Th is generates the output

C =
 69 103 -79 37
 46 94 11 34
 53 76 -64 27
 44 93 12 24

In linear algebra, matrices are used to keep track of the coeffi cients of
linear transformations. Th e multiplication of two matrices represents the
combination of two linear transformations into a single transformation.
Matrix multiplication is not commutative, i.e., A*B' and B*A' yield
diff erent results in most cases. Similarly, MATLAB allows matrix divisions
representing diff erent transformations, with / as the operator for right-hand
matrix division and \ as the operator for left -hand division. Finally, the
soft ware also allows powers of matrices, ^.

In earth sciences, however, matrices are oft en simply used as two-
dimensional arrays of numerical data rather than a matrix sensu stricto
representing a linear transformation. Arithmetic operations on such arrays
are carried out element-by-element. While this does not make any diff erence
in addition and subtraction, it does aff ect multiplicative operations. MATLAB
uses a dot, ., as part of the notation for these operations.

As an example multiplying A and B element-by-element is performed by
typing

C = A .* B

which generates the output

C =
 8 8 18 35
 63 24 -5 12
 2 3 -24 -45
 18 6 6 -6

 2.4 Array Manipulation

MATLAB provides a wide range of functions with which to manipulate
arrays (or matrices). Th is section introduces the most important functions

18 2 INTRODUCTION TO MATLAB

for array manipulation, which are used later in the book. We fi rst clear the
workspace and create two arrays, A and B, by typing

clear

A = [2 4 3; 9 3 -1]
B = [1 9 3; 6 6 3]

which yields

A =
 2 4 3
 9 3 -1

B =
 1 9 3
 6 6 3

When we work with arrays, we sometimes need to concatenate two or more
arrays into a single array. We can use either cat(dim,A,B) with dim=1 to
concatenate the arrays A and B along the fi rst dimension (i.e., along the rows).
Alternatively, we can use the function vertcat to concatenate the arrays A and
B vertically. By typing either

C = cat(1,A,B)

or

C = vertcat(A,B)

we obtain (in both cases)

C =
 2 4 3
 9 3 -1
 1 9 3
 6 6 3

Similarly, we can concatenate arrays horizontally, i.e., concatenate the arrays
along the second dimension (i.e., along the columns) by typing

D = cat(2,A,B)

or using the function horzcat instead

D = horzcat(A,B)

which both yield

D =

2.4 ARRAY MANIPULATION 19

 2 4 3 1 9 3
 9 3 -1 6 6 3

When working with satellite images we oft en concatenate three spectral
bands of satellite images into three-dimensional arrays of the colors red,
green and blue (RGB) (Sections 2.5 and 8.4). We again use cat(dim,A,B) with
dim=3 to concatenate the arrays A and B along the third dimension by typing

E = cat(3,A,B)

which yields

E(:,:,1) =
 2 4 3
 9 3 -1

E(:,:,2) =
 1 9 3
 6 6 3

Typing

whos

yields

 Name Size Bytes Class Attributes

 A 2x3 48 double
 B 2x3 48 double
 C 4x3 96 double
 D 2x6 96 double
 E 2x3x2 96 double

indicating that we have now created a three-dimensional array, as the size
2-by-3-by-2 suggests. Alternatively, we can use

size(E)

which yields

ans =
 2 3 2

to see that the array has 2 rows, 3 columns, and 2 layers in the third dimension.
Using length instead of size,

length(A)

yields

20 2 INTRODUCTION TO MATLAB

ans =
 3

which tells us the dimension of the largest array only. Hence length is
normally used to determine the length of a one-dimensional array (or
vector), such the evenly-spaced time axis c that was created in Section 2.3.

MATLAB uses a matrix-style indexing of arrays with the (1,1) element
being located in the upper-left corner of arrays. Other types of data that are
to be imported into MATLAB may follow a diff erent indexing convention.
As an example, digital terrain models (introduced in Chapter 7.3 to 7.5)
oft en have a diff erent way of indexing and therefore need to be fl ipped in an
up-down direction or, in other words, about a horizontal axis. Alternatively,
we can fl ip arrays in a left -right direction (i.e., about a vertical axis). We can
do this by using flipud for fl ipping in an up-down direction and fliplr for
fl ipping in a left -right direction

F = flipud(A)
F = fliplr(A)

yielding

F =
 9 3 -1
 2 4 3

F =
 3 4 2
 -1 3 9

In more complex examples we can use circshift(A,K,dim) to circularly shift
(i.e., rotate) arrays by K positions along the dimension dim. As an example we
can shift the array A by 1 position along the 2nd dimension (i.e., along the
rows) by typing

G = circshift(A,1,2)

which yields

G =
 3 2 4
 -1 9 3

We can also use reshape(A,[m n]) to completely reshape the array. Th e result
is an m-by-n array H whose elements are taken column-wise from A. As an
example we create a 3-by-2 array from A by typing

H = reshape(A,[3 2])

2.4 ARRAY MANIPULATION 21

which yields

H =
 2 3
 9 3
 4 -1

Another important way to manipulate arrays is to sort their elements. As an
example we can use sort(C,dim,mode) with dim=1 and mode='ascend' to sort
the elements of C in ascending order along the fi rst array dimension (i.e., the
rows). Typing

I = sort(C,1,'ascend')

yields

I =
 1 3 -1
 2 4 3
 6 6 3
 9 9 3

Th e function sortrows(C,column) with column=2 sorts the rows of C according
to the second column. Typing

J = sortrows(C,2)

yields

J =
 9 3 -1
 2 4 3
 6 6 3
 1 9 3

Array manipulation also includes the comparison of arrays, for example
by checking whether elements in A(i,j) are also found in B using ismember.
Typing

A, B

K = ismember(A,B)

yields

A =
 2 4 3
 9 3 -1

B =
 1 9 3
 6 6 3

22 2 INTRODUCTION TO MATLAB

K =
 0 0 1
 1 1 0

Th e array L(i,j) is zero if A(i,j) is not in B, and one if A(i,j) is in B. We can
also locate elements within A for which a statement is true. For example we
can locate elements with values less than zero and replace them with NaNs by
typing

L = A;
L(find(L<0)) = NaN

or, more briefl y

L(L<0) = NaN

which yields

L =
 2 4 3
 9 3 NaN

Th is is very useful when working with digital elevation models, where values
below sea level are not relevant. Alternatively, we can replace data voids other
than NaNs such as -32768, which are oft en used with digital terrain models
(Section 7.3 to 7.5). We can then determine which elements of an array are
NaNs by typing

M = isnan(L)

which yields

M =
 0 0 0
 0 0 1

where NaNs are indicated by ones and non-NaN values are indicated by zeros.
Which of the elements in array A are unique can be determined by typing

N = unique(A)

which yields

N =
 -1
 2
 3
 4
 9

2.4 ARRAY MANIPULATION 23

Th e value of 3 occurs twice in A and the number of elements in N is therefore
one less than in A.

 2.5 Data Structures and Classes of Objects

Th e default data type or class in MATLAB is double precision or double, which
stores data in a 64-bit array of fl oating-point numbers. Such fl oating-point
numbers are approximations of real numbers that allow a maximum range
of values in a limited numbers of bits. A double-precision array allows the
sign of a number to be stored (bit 63), together with the exponent (bits 62 to
52), and roughly 16 signifi cant decimal digits (bits 51 to 0). Typing

clear

realmin('double')
realmax('double')

yields the smallest and largest positive fl oating-point number in double
precision

ans =
 2.2251e-308

ans =
 1.7977e+308

Th e actual number of fl oating point numbers is therefore limited by the
number of bits available, in contrast to real numbers. Th e diff erence between
1.0 and the next largest double-precision number can be calculated using the
fl oating-point relative accuracy eps by typing

eps(1.0)

which yields

ans =
 2.2204e-16

Th e round-off error depends on the value of the real number; it is, for
example, diff erent for 5.0, as we can see by typing

eps(5.0)

which yields

ans =
 8.8818e-16

24 2 INTRODUCTION TO MATLAB

For real numbers there is, by defi nition, no such gap between consecutive
numbers. Th e use of a fi nite number of fl oating-point numbers is limited
by the number of available bits due to the fi nite precision arithmetic of a
computer. Th ere are countless examples available with which to demonstrate
this, but we will restrict ourselves to the simple example of the sine of π.
Typing

sin(pi)

yields

ans =
 1.2246e-16

and not, as would be expected, zero. Since pi is only the nearest fl oating-
point value to π, the sine of pi is not exactly zero but a value very close to
zero.

Let us now look at some examples of arrays in order to familiarize
ourselves with the diff erent data types in MATLAB. For the fi rst example we
create a 3-by-4 array of random numbers with double precision by typing

clear

rng(0)
A = rand(3,4)

We use the function rand that generates uniformly distributed pseudorandom
numbers within the open interval [0,1]. To obtain identical data values, we
use rng(0) to reset the random number generator by using the integer 0 as
seed (see Chapter 3 for more details on random number generators and types
of distributions). Since we did not use a semicolon here we get the output

A =
 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

By default, the output is in a scaled fi xed point format with 5 digits, e.g.,
0.8147 for the (1,1) element of A. Typing

format long

switches to a fi xed point format with 16 digits for double precision. Recalling
A by typing

A

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 25

yields the output

A =
 Columns 1 through 2
 0.814723686393179 0.913375856139019
 0.905791937075619 0.632359246225410
 0.126986816293506 0.097540404999410

 Columns 3 through 4
 0.278498218867048 0.964888535199277
 0.546881519204984 0.157613081677548
 0.957506835434298 0.970592781760616

which autowraps those lines that are longer than the width of the Command
Window. Th e command format does not aff ect how the computations are
carried out, i.e., the precision of the computation results remains unchanged.
Th e precision is, however, aff ected by converting the data type from double
to 32-bit single precision. Typing

B = single(A)

yields

B =
 0.8147237 0.9133759 0.2784982 0.9648885
 0.9057919 0.6323593 0.5468815 0.1576131
 0.1269868 0.0975404 0.9575068 0.9705928

Although we have switched to format long, only 8 digits are displayed. Th e
command whos lists the variables A and B with information on their sizes or
dimensions, number of bytes, and classes

Name Size Bytes Class Attributes
A 3x4 96 double
B 3x4 48 single

Th e default class double is used in all MATLAB operations in which the
physical memory of the computer is not a limiting factor, whereas single
is used when working with large data sets. Th e double-precision variable A,
whose size is 3-by-4 elements, requires 3·4·64=768 bits or 768/8=96 bytes
of memory, whereas B requires only 48 bytes and so has half the memory
requirement of A. Introducing at least one complex number to A doubles
the memory requirement since both real and imaginary parts are double
precision, by default. Switching back to format short and typing

format short
A(1,3) = 4i + 3

yields

26 2 INTRODUCTION TO MATLAB

A =
 Columns 1 through 2
 0.8147 + 0.0000i 0.9134 + 0.0000i
 0.9058 + 0.0000i 0.6324 + 0.0000i
 0.1270 + 0.0000i 0.0975 + 0.0000i

 Columns 3 through 4
 3.0000 + 4.0000i 0.9649 + 0.0000i
 0.5469 + 0.0000i 0.1576 + 0.0000i
 0.9575 + 0.0000i 0.9706 + 0.0000i

and the variable listing is now

Name Size Bytes Class Attributes
A 3x4 192 double complex
B 3x4 48 single

indicating the class double and the attribute complex.
MATLAB also works with even smaller data types such as 1-bit, 8-bit

and 16-bit data, in order to save memory. Th ese data types are used to store
digital elevation models or images (see Chapters 7 and 8). For example
m-by-n pixel RGB true color images are usually stored as three-dimensional
arrays, i.e., the three colors are represented by an m-by-n-by-3 array (see
Chapter 8 for more details on RGB composites and true color images). Such
multi-dimensional arrays can be generated by concatenating three two-
dimensional arrays representing the m-by-n pixels of an image. First, we
generate a 100-by-100 array of uniformly distributed random numbers in
the range [0,1]. We then multiply the random numbers by 255 to get values
between 0 and 255.

clear

rng(0)
I1 = 255 * rand(100,100);
I2 = 255 * rand(100,100);
I3 = 255 * rand(100,100);

Th e command cat concatenates the three two-dimensional arrays (8 bits
each) into a three-dimensional array (3·8 bits=24 bits).

I = cat(3,I1,I2,I3);

Since RGB images are represented by integer values between 0 and 255 for
each color, we convert the 64-bit double-precision values to unsigned 8-bit
integers using uint8 (Section 8.2). Th e function uint8 rounds the values in
I to the nearest integer. Any values that are outside the range [0,255] are
assigned to the nearest endpoint (0 or 255).

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 27

I = uint8(I);

Typing whos then yields

Name Size Bytes Class Attributes
I 100x100x3 30000 uint8
I1 100x100 80000 double
I2 100x100 80000 double
I3 100x100 80000 double

Since 8 bits can be used to store 256 diff erent values, this data type can be
used to store integer values between 0 and 255, whereas using int8 to create
signed 8-bit integers generates values between –128 and +127. Th e value of
zero requires one bit and there is therefore no space left in which to store
+128. Finally, imshow can be used to display the three-dimensional array as a
true color image.

imshow(I)

We next introduce structure arrays as a MATLAB data type. Structure
arrays are multi-dimensional arrays with elements accessed by textual fi eld
designators. Th ese arrays are data containers that are particularly helpful in
storing any kind of information about a sample in a single variable. As an
example we can generate a structure array sample_1 that includes the image
array I defi ned in the previous example as well as other types of information
about a sample, such as the name of the sampling location, the date of
sampling, and geochemical measurements, stored in a 10-by-10 array.

sample_1.location = 'Plougasnou';
sample_1.date = date;
sample_1.image = I;
sample_1.geochemistry = rand(10,10);

Th e fi rst layer of the structure array sample_1 contains a character array, i.e.,
a two-dimensional array of the data type char containing a character string.
We can create such an array by typing

location = 'Plougasnou';

We can list the size, class and attributes of a single variable such as location
by typing

whos location

and learn from

Name Size Bytes Class Attributes
location 1x10 20 char

28 2 INTRODUCTION TO MATLAB

that the size of this character array location corresponds to the number of
characters in the word Plougasnou. Character arrays are 16-bit arrays, i.e.,
216=65,536 diff erent characters can be stored in such arrays. Th e character
string location therefore requires 10·16=160 bits or 160/8=20 bytes of
memory. In addition, the second layer datum in the structure array sample_1
contains a character string generated by date that yields a string containing
the current date in dd-mm-yyyy format. We access this particular layer in
sample_1 by typing

sample_1.date

which yields

ans =
 27-Jun-2014

as an example. Th e third layer of sample_1 contains the image created in
the previous example, while the fourth layer contains a 10-by-10 array of
uniformly-distributed pseudorandom numbers. All layers of sample_1 can
be listed by typing

sample_1

resulting in the output

sample_1 =
 location: 'Plougasnou'
 date: '06-Oct-2009'
 image: [100x100x3 uint8]
 geochemistry: [10x10 double]

Th is represents a list of the layers location, date, image and geochemistry
within the structure array sample_1. Some variables are listed in full, whereas
larger data arrays are only represented by their size. In the list of the layers
within the structure array sample_1, the array image is characterized by its size
100x100x3 and the class uint8. Th e variable geochemistry in the last layer of
the structure array contains a 10-by-10 array of double-precision numbers.
Th e command

whos sample_1

does not list the layers in sample_1 but the name of the variable, the bytes and
the class struct of the variable.

 Name Size Bytes Class Attributes
 sample_1 1x1 31546 struct

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 29

MATLAB also has cell arrays as an alternative to structure arrays. Both
classes or data types are very similar and are containers of diff erent types
and sizes of data. Th e most important diff erence between the two is that the
containers of a structure array are named fi elds, whereas a cell array uses
numerically-indexed cells. Structure arrays are oft en used in applications
where the organization of the data is particularly important. Cell arrays
are oft en used when processing large data sets in count-controlled loops
(Section 2.7).

As an example of cell arrays we use the same data collection as in structure
arrays, with the layers of the structure array as the cells in the cell array. Th e
cell array is created by enclosing the location name Plougasnou, the date,
the image I and the 10-by-10 array of uniformly-distributed pseudorandom
numbers in curly brackets.

C = {'Plougasnou' date I rand(10,10)}

Typing

C

lists the contents of the cell array

C =
 Columns 1 through 2
 'Plougasnou' '27-Jun-2014'
 Columns 3 through 4
 [100x100x3 uint8] [10x10 double]

which contains the location name and date. Th e image and the array of
random numbers are too large to be displayed in the Command Window,
but the dimensions and class of the data are displayed instead. We access a
particular cell in C, e.g., the cell 2, by typing

C{2}

which yields

ans =
27-Jun-2014

We can also access the other cells of the cell array in a similar manner.

 2.6 Data Storage and Handling

Th is section deals with how to store, import, and export data with MATLAB.
Many of the data formats typically used in earth sciences have to be converted

30 2 INTRODUCTION TO MATLAB

before being analyzed with MATLAB. Alternatively, the soft ware provides
several import routines to read many binary data formats in earth sciences,
such as those used to store digital elevation models and satellite data.

A computer generally stores data as binary digits or bits. A bit is analogous
to a two-way switch with two states, on = 1 and off = 0. Th e bits are joined
together to form larger groups, such as bytes consisting of 8 bits, in order
to store more complex types of data. Such groups of bits are then used to
encode data, e.g., numbers or characters. Unfortunately, diff erent computer
systems and soft ware use diff erent schemes for encoding data. For instance,
the characters in the widely-used text processing soft ware Microsoft Word
diff er from those in Apple Pages. Exchanging binary data is therefore diffi cult
if the various users use diff erent computer platforms and soft ware. Binary
data can be stored in relatively small fi les if both partners are using similar
systems of data exchange. Th e transfer rate for binary data is generally faster
than that for the exchange of other fi le formats.

Various formats for exchanging data have been developed during recent
decades. Th e classic example for the establishment of a data format that can
be used with diff erent computer platforms and soft ware is the American
Standard Code for Information Interchange (ASCII) that was fi rst published
in 1963 by the American Standards Association (ASA). As a 7-bit code,
ASCII consists of 27=128 characters (codes 0 to 127). Whereas ASCII-1963
was lacking lower-case letters, in the ASCII-1967 update lower-case letters
as well as various control characters such as escape and line feed, and various
symbols such as brackets and mathematical operators, were also included.
Since then, a number of variants appeared in order to facilitate the exchange
of text written in non-English languages, such as the expanded ASCII
containing 255 codes, e.g., the Latin-1 encoding.

Th e simplest way to exchange data between a certain piece of soft ware
and MATLAB is using the ASCII format. Although the newer versions of
MATLAB provide various import routines for fi le types such as Microsoft
Excel binaries, most data arrive in the form of ASCII fi les. Consider a simple
data set stored in a table such as

SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 -999
106 0.501 -999

Th e fi rst row contains the names of the variables and the columns provide
the percentages of carbon and sulfur in each sample. Th e absurd value -999

2.6 DATA STORAGE AND HANDLING 31

indicates missing data in the data set. Two things have to be changed to
convert this table into MATLAB format. First, MATLAB uses NaN as the
representation for Not-a-Number that can be used to mark missing data or
gaps. Second, a percent sign, %, should be added at the beginning of the fi rst
line. Th e percent sign is used to indicate nonexecutable text within the body
of a program. Th is text is normally used to include comments in the code.

%SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.501 NaN

MATLAB will ignore any text appearing aft er the percent sign and continue
processing on the next line. Aft er editing this table in a text editor, such as
the MATLAB Editor, it can be saved as ASCII text fi le geochem.txt in the
current working directory (Fig. 2.2). Th e MATLAB workspace should fi rst
be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the
data from this fi le with the load command.

load geochem.txt

MATLAB then loads the contents of the fi le and assigns the array to a variable
geochem specifi ed by the fi lename geochem.txt. Typing

whos

yields

Name Size Bytes Class Attributes
geochem 6x3 144 double

Th e command save now allows workspace variables to be stored in a binary
format.

save geochem_new.mat

MAT-fi les are double-precision binary fi les using .mat as extension. Th e
advantage of these binary MAT-fi les is that they are independent of the
computer platforms running diff erent fl oating-point formats. Th e command

save geochem_new.mat geochem

32 2 INTRODUCTION TO MATLAB

Movie
2.3

Fig. 2.2 Screenshot of MATLAB Editor showing the content of the fi le geochem.txt. Th e fi rst
line of the text needs to be commented by a percent sign at the beginning of the line, followed
by the actual data array. Th e -999 values need to be replaced by NaNs.

saves only the variable geochem instead of the entire workspace. Th e option
-ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.txt
in a fl oating-point format with 8 digits:

 1.0100000e+02 3.6570000e-01 6.3600000e-02
 1.0200000e+02 2.2080000e-01 1.1350000e-01
 1.0300000e+02 5.3530000e-01 5.1910000e-01
 1.0400000e+02 5.0090000e-01 5.2160000e-01
 1.0500000e+02 5.4150000e-01 NaN
 1.0600000e+02 5.0100000e-01 NaN

In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be viewed
and edited using the MATLAB Editor or any other text editor.

Such data fi les, especially those that are produced by electronic instruments,
can look much more complicated than the example fi le geochem.txt with a
single header line. In Chapters 7 and 8 we will read some of these complicated
and extensive fi les, which are either binary or text fi les and usually have long
headers describing the contents of the fi les. At this point, let us have a look at
a variant of text fi les that contains not only one or more header lines but also
unusual data types such as date and time, in a non-decimal format. We use

2.6 DATA STORAGE AND HANDLING 33

the function textscan to perform this task. Th e MATLAB workspace should
fi rst be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the
data from the fi le geochem.txt using the textscan command.

fid = fopen('geochem.txt');
C = textscan(fid,'%u %f %f','Headerlines',1,'CollectOutput',1);
fclose(fid);

Th is script opens the fi le geochem.txt for read only access using fopen and
defi nes the fi le identifi er fid, which is then used to read the text from the
fi le using textscan and to write it into the cell array C. Th e character string %u
%f %f defi nes the conversion specifi ers enclosed in single quotation marks,
where %u stands for the 32-bit unsigned integer output class and %f stands for
a 64-bit double-precision fl ointing-point number. Th e parameter Headerlines
is set to 1, which means that a single header line is ignored while reading the
fi le. If the parameter CollectOutput is 1 (i.e., is true), textscan concatenates
output cells with the same data type into a single array. Th e function fclose
closes the fi le defi ned by fid. Th e array C is a cell array, which is a data type
with indexed containers called cells (see Section 2.5). Th e advantage of this
data type is that it can store data of various types and sizes, such as character
strings, double-precision numbers, and images in a single variable such as
C. Typing

C

yields

C =
 [6x1 uint32] [6x2 double]

indicating that C contains a 6-by-1 32-bit unsigned integer array, which is
the sample ID, and a 6-by-1 double-precision array, which represents the
percentages of carbon and sulfur in each sample. We can access the contents
of the cells in C by typing

data1 = C{1}
data2 = C{2}

which yields

data1 =
 101
 102

34 2 INTRODUCTION TO MATLAB

 103
 104
 105
 106

data2 =
 0.3657 0.0636
 0.2208 0.1135
 0.5353 0.5191
 0.5009 0.5216
 0.5415 NaN
 0.5010 NaN

We now concatenate the two cells into one double-precision array data. First,
we have to change the class of C{1} into double or the class of the entire array
data will be uint32. Typing

data(:,1) = double(C{1})
data(:,2:3) = C{2}

yields

 101.0000 0.3657 0.0636
 102.0000 0.2208 0.1135
 103.0000 0.5353 0.5191
 104.0000 0.5009 0.5216
 105.0000 0.5415 NaN
 106.0000 0.5010 NaN

Th e format of the data is as expected.
Th e next examples demonstrate how to read the fi le geophys.txt, which

contains a single header line but also the date (in an MM/DD/YY format)
and time (in an HH:MM:SS.SS format). We again use textscan to read the
fi le,

clear

fid = fopen('geophys.txt');
data = textscan(fid,'%u %f %f %f %s %s','Headerlines',1);
fclose(fid);

where we skip the header, read the fi rst column (the sample ID) as a 32-bit
unsigned integer (uint32) with specifi er %u, the next three columns X, Y, and
Z as 64-bit double-precision fl oating-point numbers (double) with specifi er
%f, and then the date and time as character strings with specifi er %s. We then
convert the date and time to serial numbers, where a serial date number of 1
corresponds to Jan-1-0000. Th e year 0000 is merely a reference point and is
not intended to be interpreted as a real year.

2.6 DATA STORAGE AND HANDLING 35

data_date_serial = datenum(data{5});
data_time_serial = datenum(data{6});

Finally, we can convert the date and time serial numbers into a data and time
array by typing

data_date = datevec(data_date_serial)
data_time = datevec(data_time_serial)

which yields

data_date =
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0

data_time =
 1.0e+03 *
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0091
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0102
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0504
 2.0130 0.0010 0.0010 0.0100 0.0240 0.0051
 2.0130 0.0010 0.0010 0.0100 0.0240 0.0233

Th e fi rst three columns of the array data_date contain the year, month and
day. Th e fourth to sixth columns of the array data_time contain the hour,
minute and second.

We can also write data to a formatted text fi le using fprintf. As an example
we again load the data from geochem.txt aft er we have commented out the
fi rst line and have replaced -999 with NaN. Instead of using load geochem.txt,
we can type

clear

data = load('geochem.txt');

to load the contents of the text fi le into a double-precision array data. We
write the data to a new text fi le geochem_formatted.txt using fprintf. Since
the function fprintf writes all elements of the array data to the fi le in column
order we need to transpose the data before we save it.

data = data';

We fi rst open the fi le using the permission w for writing, and discard the
existing contents. We then write data to this fi le using the formatting
operators %u for unsigned integers and %6.4f for fi xed-point numbers with
a fi eld width of six characters and four digits aft er the decimal point. Th e

36 2 INTRODUCTION TO MATLAB

control character \n denotes a new line aft er each line of three numbers.

fid = fopen('geochem_formatted.txt','w');
fprintf(fid,'%u %6.4f %6.4f\n',data);
fclose(fid);

We can view the contents of the fi le by typing

edit geochem_formatted.txt

which opens the fi le geochem_formatted.txt

101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.5010 NaN

in the MATLAB Editor. Th e format of the data is as expected.

 2.7 Control Flow

Control fl ow in computer science helps to control the order in which computer
code is evaluated. Th e most important kinds of control fl ow statements are
count-controlled loops such as for loops and conditional statements such as
if-then constructs. Since in this book we do not deal with the programming
capabilities of MATLAB in any depth, the following introduction to the
basics of control fl ow is rather brief and omits certain important aspects of
effi cient programming, such as the pre-allocation of memory prior to using
for loops, and instructions on how the use of for loops can be avoided by
vectorization of the MATLAB code. Th is introduction is instead limited to
the two most important kinds of control fl ow statements: the aforementioned
for loops and the if-then constructs. Readers interested in MATLAB as a
programming environment are advised to read the more detailed chapters
on control fl ow in the MATLAB documentation (MathWorks 2014a and c).

Th e for loops, as the fi rst example of a MATLAB language statement,
execute a series of commands between for and end a specifi ed number of
times. As an example we use such a loop to multiply the elements of an array
A by 10, round the result to the nearest integer, and store the result in B.

clear

rng(0)
A = rand(10,1)
for i = 1 : 10
 B(i,1) = round(10 * A(i));

2.7 CONTROL FLOW 37

end
B

which yields

A =
 0.8147
 0.9058
 0.1270
 0.9134
 0.6324
 0.0975
 0.2785
 0.5469
 0.9575
 0.9649

B =
 8
 9
 1
 9
 6
 1
 3
 5
 10
 10

Th e result is as expected. We can expand the experiment by using a nested
for loop to create a 2D array B.

rng(0)
A = rand(10,3)
for i = 1 : 10
 for j = 1 : 3
 B(i,j) = round(10 * A(i,j));
 end
end
B

which yields

A =
 0.8147 0.1576 0.6557
 0.9058 0.9706 0.0357
 0.1270 0.9572 0.8491
 0.9134 0.4854 0.9340
 0.6324 0.8003 0.6787
 0.0975 0.1419 0.7577
 0.2785 0.4218 0.7431
 0.5469 0.9157 0.3922
 0.9575 0.7922 0.6555
 0.9649 0.9595 0.1712

38 2 INTRODUCTION TO MATLAB

B =
 8 2 7
 9 10 0
 1 10 8
 9 5 9
 6 8 7
 1 1 8
 3 4 7
 5 9 4
 10 8 7
 10 10 2

Th is book tries to make all of the recipes independent of the actual
dimensions of the data. Th is is achieved by the consistent use of size and
length to determine the size of the data instead of using fi xed numbers such
as the 30 and 3 in the above example (Section 2.4).

rng(0)
A = rand(10,3)
for i = 1 : size(A,1)
 for j = 1 : size(A,2)
 B(i,j) = round(10 * A(i,j));
 end
end
B

When working with larger data sets with many variables one might
occasionally wish to automate array manipulations such as those described
in Section 2.4. Let us assume, for example, that we want to replace all NaNs
in all variables in the memory with -999. We fi rst create a collection of four
variables, each of which contains a single NaN.

clear

rng(0)
A = rand(3,3); A(2,1) = NaN
BC = rand(2,4); BC(2,2) = NaN
DE = rand(1,2); DE(1,1) = NaN
FG = rand(3,2); FG(2,2) = NaN

We list the variables in the workspace using whos and store this list in variables.

variables = who;

We then use a for loop to store the content of each variable in v using eval
and then locate the NaNs in v using isnan (Section 2.4) and replace them with
-999. Th e function eval executes a MATLAB expression stored in a text string.
We assign the value of v to the variable in the base workspace and then clear
the variables i, v and variables, which are no longer needed.

2.7 CONTROL FLOW 39

for i = 1 : size(variables,1)
 v = eval(variables{i});
 v(isnan(v)==1) = -999;
 assignin('base',variables{i},v);
 eval(variables{i})
end

clear i v variables

Comparing the variables before and aft er the replacement of the NaNs
with -999 reveals that the script works well and that we have successfully
manipulated our data.

Th e second important statements to control the fl ow of a script (apart
from for loops) are if-then constructs, which evaluate an expression and
then execute a group of instructions if the expression is true. As an example
we compare the value of two scalars A and B.

clear

A = 1
B = 2
if A < B
 disp('A is less than B')
end

which yields

A is less than B

Th e script fi rst evaluates whether A is less than B and, if it is, displays the
message A is less than B in the Command Window. We can expand the if-
then construct by introducing else, which provides an alternative statement
if the expression is not true.

A = 1
B = 2
if A < B
 disp('A is less than B')
else
 disp('A is not less than B')
end

which yields

A is less than B

Alternatively, we can use elseif to introduce a second expression to be
evaluated.

A = 1

40 2 INTRODUCTION TO MATLAB

B = 2
if A < B
 disp('A is less than B')
elseif A >= B
 disp('A is not less than B')
end

Th e for loops and if-then constructs are extensively used in the following
chapters of the book. For other aspects of programming, please refer to the
MATLAB documentation (MathWorks 2014a and c).

 2.8 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing
MATLAB code use .m as an extension and are therefore called M-fi les.
Th ese fi les contain ASCII text and can be edited using a standard text editor.
However, the built-in Editor color-highlights various syntax elements such
as comments in green, keywords such as if, for and end in blue, and character
strings in pink. Th is syntax highlighting facilitates MATLAB coding.

MATLAB uses two types of M-fi les: scripts and functions. Whereas scripts
are a series of commands that operate on data in the workspace, functions
are true algorithms with input and output variables. Th e advantages and
disadvantages of both types of M-fi le will now be illustrated by an example.
We fi rst start the Editor by typing

edit

Th is opens a new window named untitled. Next, we generate a simple
MATLAB script by typing a series of commands to calculate the average of
the elements of a data array x.

[m,n] = size(x);
if m == 1
 m = n;
end
sum(x)/m

Th e fi rst line of the if-then construct yields the dimensions of the variable x
using the command size. In our example x should be either a column vector,
i.e., an array with a single column and dimensions (m,1), or a row vector, i.e.
an array with a single row and dimensions (1,n). Th e if statement evaluates
a logical expression and executes a group of commands if this expression
is true. Th e end keyword terminates the last group of commands. In the
example the if-then construct picks either m or n depending on whether m==1
is false or true. Here, the double equal sign '==' makes element by element

2.8 SCRIPTS AND FUNCTIONS 41

comparisons between the variables (or numbers) to the left and right of the
equal signs and returns an array of the same size, made up of elements set to
logical 1 where the relationship is true and to logical 0 where it is not true. In
our example m==1 returns 1 if m equals 1 and 0 if m equals any other value. Th e
last line of the if-then construct computes the average by dividing the sum
of elements by m or n. We do not use a semicolon here in order to allow the
output of the result. We can now save our new M-fi le as average.m and type

clear

x = [3 6 2 -3 8];

in the Command Window to defi ne an example array x. We then type

average

without the extension .m to run our script and obtain the average of the
elements of the array x as output.

ans =
 3.2000

Aft er typing

whos

we see that the workspace now contains

Name Size Bytes Class Attributes
ans 1x1 8 double
m 1x1 8 double
n 1x1 8 double
x 1x5 40 double

Th e listed variables are the example array x and the output of the function
size, m and n. Th e result of the operation is stored in the variable ans. Since
the default variable ans might be overwritten during one of the succeeding
operations, we need to defi ne a diff erent variable. Typing

a = average

however, results in the error message

??? Attempt to execute SCRIPT average as a function.

We can obviously not assign a variable to the output of a script. Moreover,
all variables defi ned and used in the script appear in the workspace; in
our example these are the variables m and n. Scripts contain sequences of

42 2 INTRODUCTION TO MATLAB

Fig. 2.3 Screenshot of the MATLAB Editor showing the function average. Th e function
starts with a line containing the keyword function, the name of the function average, the
input variable x, and the output variable y. Th e subsequent lines contain the output for help
average, the copyright and version information, and also the actual MATLAB code for
computing the average using this function.

commands that are applied to variables in the workspace. MATLAB functions,
however, allow inputs and outputs to be defi ned. Th ey do not automatically
import variables from the workspace. To convert the above script into a
function we need to introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the array X.

% By Martin Trauth, June 27, 2014

[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

Th e fi rst line now contains the keyword function, the function name
average, the input x and the output y. Th e next two lines contain comments,
as indicated by the percent sign, separated by an empty line. Th e second
comment line contains the author’s name and the version of the M-fi le. Th e
rest of the fi le contains the actual operations. Th e last line now defi nes the
value of the output variable y, and this line is terminated by a semicolon to
suppress the display of the result in the Command Window. Next we type

2.8 SCRIPTS AND FUNCTIONS 43

Movie
2.4

help average

which displays the fi rst block of contiguous comment lines. Th e fi rst
executable statement (or blank line in our example) eff ectively ends the help
section and therefore the output of help. Now we are independent of the
variable names used in our function. Th e workspace can now be cleared and
a new data vector defi ned.

clear

data = [3 6 2 -3 8];

Our function can then be run by the statement

result = average(data);

Th is clearly illustrates the advantages of functions compared to scripts.
Typing

whos

results in

Name Size Bytes Class Attributes
data 1x5 40 double
result 1x1 8 double

revealing that all variables used in the function do not appear in the
workspace. Only the input and output as defi ned by the user are stored in
the workspace. Th e M-fi les can therefore be applied to data as if they were
real functions, whereas scripts contain sequences of commands that are
applied to the variables in the workspace. If we want variables such as m and
n to also appear in the memory they must be defi ned as global variables in
both the function and the workspace, otherwise they are considered to be
local variables. We therefore add one line to the function average with the
command global:

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the array X.

% By Martin Trauth, June 27, 2014

global m n
[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

44 2 INTRODUCTION TO MATLAB

We now type

global m n

in the Command Window. Aft er running the function as described in the
previous example we fi nd the two variables m and n in the workspace. We
have therefore transferred the variables m and n between the function average
and the workspace.

 2.9 Basic Visualization Tools

MATLAB provides numerous routines for displaying data as graphics. Th is
section introduces the most important graphics functions. Th e graphics can
be modifi ed, printed and exported to be edited with graphics soft ware other
than MATLAB. Th e simplest function producing a graph of a variable y
versus another variable x is plot. First, we defi ne two one-dimensional arrays
x and y, where y is the sine of x. Th e array x contains values between 0 and 2π
with π/10 increments, whereas y is the element-by-element sine of x.

clear

x = 0 : pi/10 : 2*pi;
y = sin(x);

Th ese two commands result in two one-dimensional arrays with 21 elements
each, i.e., two 1-by-21 arrays. Since the two arrays x and y have the same
length, we can use plot to produce a linear 2D graph of y against x.

plot(x,y)

Th is command opens a Figure Window named Figure 1 with a gray
background, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1
and a blue line. We may wish to plot two diff erent curves in a single plot, for
example the sine and the cosine of x in diff erent colors. Th e command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'--',x,y2,'-')

creates a dashed blue line displaying the sine of x and a solid red line
representing the cosine of this array (Fig. 2.4). If we create another plot, the
window Figure 1 will be cleared and a new graph displayed. Th e command
figure, however, can be used to create a new fi gure object in a new window.

2.9 BASIC VISUALIZATION TOOLS 45

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in diff erent colors and
line types. Th e Figure Window allows editing of all elements of the graph aft er selecting Edit
Plot from the Tools menu. Double clicking on the graphics elements opens an options window
for modifying the appearance of the graphics. Th e graphics can be exported using Save as
from the File menu. Th e command Generate Code from the File menu creates MATLAB code
from an edited graph.

plot(x,y1,'--')
figure
plot(x,y2,'-')

Instead of plotting both lines in one graph simultaneously, we can also plot
the sine wave, hold the graph and then plot the second curve. Th e command
hold is particularly important for displaying data while using diff erent plot
functions, for example if we wish to display the sine of x as a line plot and the
cosine of x as a bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

Th is command plots y1 versus x as a dashed red line using 'r--', whereas y2
versus x is shown as a group of blue vertical bars. Alternatively, we can plot
both graphics in the same Figure Window but in diff erent plots using subplot.
Th e syntax subplot(m,n,p) divides the Figure Window into an m-by-n array
of display regions and makes the pth display region active.

46 2 INTRODUCTION TO MATLAB

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

For example the Figure Window is divided into two rows and one column.
Th e 2D linear plot is displayed in the upper half of the Figure Window and
the bar plot appears in the lower half. It is recommended that all Figure
Windows be closed before proceeding to the next example. Subsequent plots
would replace the graph in the lower display region only, or in other words,
the last generated graph in a Figure Window. Alternatively, the command

clf

clears the current fi gure. Th is command can be used in larger MATLAB
scripts aft er using the function subplot for multiple plots in a Figure Window.

An important modifi cation to graphics is the scaling of the axis. By default,
MATLAB uses axis limits close to the minima and maxima of the data.
Using the command axis, however, allows the scale settings to be changed.
Th e syntax for this command is simply axis([xmin xmax ymin ymax]). Th e
command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π, whereas the limits of the y-axis are set
to the default values –1 and +1. Important options of axis are

plot(x,y1,'r--')
axis square

which makes the x-axis and y-axis the same length, and

plot(x,y1,'r--')
axis equal

which makes the individual tick mark increments on the x-axis and y-axis
the same length. Th e function grid adds a grid to the current plot, whereas
the functions title, xlabel and ylabel allow a title to be defi ned and labels to
be applied to the x- and y-axes.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

Th ese are a few examples how MATLAB functions can be used to edit the
plot in the Command Window. More graphics functions will be introduced

2.9 BASIC VISUALIZATION TOOLS 47

in the following chapters of this book.

 2.10 Generating Code to Recreate Graphics

MATLAB supports various ways of editing all objects in a graph interactively
using a computer mouse. First, the Edit Plot mode of the Figure Window
needs to be activated by clicking on the arrow icon or by selecting Edit Plot
from the Tools menu. Th e Figure Window also contains some other options,
such as Rotate 3D, Zoom or Insert Legend. Th e various objects in a graph,
however, are selected by double-clicking on the specifi c component, which
opens the Property Editor. Th e Property Editor allows changes to be made
to many features (or properties) of the graph such as axes, lines, patches and
text objects.

Th e Generate Code option enables us to automatically generate the
MATLAB code of a fi gure to recreate a similar graph with diff erent data. We
use a simple plot to illustrate the use of the Property Editor and the Generate
Code option to recreate a graph.

clear

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)

Th e default layout of the graph is that of Figure 2.4. Clicking on the arrow
icon in the Figure Toolbar enables the Edit Plot mode. Th e selection handles
of the graph appear, identifying the objects that are activated. Double-
clicking an object in a graph opens the Property Editor.

As an example we can use the Property Editor to change various
properties of the graph. Double-clicking the gray background of the Figure
Window gives access to properties such as Figure Name, the Colormap used
in the fi gure, and the Figure Color. We can change this color to light blue
represented by the light blue square in the 4th row and 8rd column of the
color chart. Moving the mouse over this square displays the RGB color code
[0.68 0.92 1] (see Chapter 8 for more details on RGB colors). Activating the
blue line in the graph allows us to change the line thickness to 2.0 and select
a 15-point square marker. We can deactivate the Edit Plot mode of the Figure
Window by clicking on the arrow icon in the Figure Toolbar.

Aft er having made all necessary changes to the graph, the corresponding
commands can even be exported by selecting Generate Code from the File
menu of the Figure Window. Th e generated code displays in the MATLAB
Editor.

48 2 INTRODUCTION TO MATLAB

Movie
2.5

function createfigure(X1, Y1)
%CREATEFIGURE(X1, Y1)
% X1: vector of x data
% Y1: vector of y data

% Auto-generated by MATLAB on 27-Jun-2014 13:28:13

% Create figure
figure1 = figure('Color',[0.68 0.92 1]);

% Create axes
axes1 = axes('Parent',figure1,'ColorOrderIndex',2);
box(axes1,'on');
hold(axes1,'on');

% Create plot
plot(X1,Y1,'MarkerSize',15,'Marker','square','LineWidth',2);

We can then rename the function createfigure to mygraph and save the fi le
as mygraph.m.

function mygraph(X1, Y1)
%MYGRAPH(X1,Y1)
% X1: vector of x data
% Y1: vector of y data
(cont'd)

Th e automatically-generated graphics function illustrates how graphics are
organized in MATLAB. Th e function figure fi rst opens a Figure Window.
Using axes then establishes a coordinate system, and using plot draws the
actual line object. Th e Figure section in the function reminds us that the
light-blue background color of the Figure Window is represented by the
RGB color coding [0.68 0.92 1]. Th e Plot section reveals the square marker
symbol used and the line width of 2 points.

Th e newly-created function mygraph can now be used to plot a diff erent
data set. We use the above example and

clear

x = 0 : pi/10 : 2*pi;
y2 = cos(x);
mygraph(x,y2)

Th e fi gure shows a new plot with the same layout as the previous plot.
Th e Generate Code function of MATLAB can therefore be used to create
templates for graphics that can be used to generate plots of multiple data sets
using the same layout.

Even though MATLAB provides abundant editing facilities and the
Generate Code function even allows the generation of complex templates

2.10 GENERATING CODE TO RECREATE GRAPHICS 49

for graphics, a more practical way to modify a graph for presentations or
publications is to export the fi gure and import it into a diff erent soft ware
such as CorelDraw or Adobe Illustrator. MATLAB graphics are exported by
selecting the command Save as from the File menu or by using the command
print. Th is function exports the graphics, either as a raster image (e.g., JPEG
or GIF) or as a vector fi le (e.g., EPS or PDF), into the working directory
(see Chapter 8 for more details on graphic fi le formats). In practice, the
user should check the various combinations of export fi le formats and the
graphics soft ware used for fi nal editing of the graphics. Readers interested in
advanced visualization techniques with MATLAB are directed to the sister
book MATLAB and Design Recipes for Earth Sciences (Trauth and Sillmann
2012).

 2.11 Publishing M-Files

Another useful feature of the soft ware is the option to publish reports on
MATLAB projects in various fi le formats such as HTML, XML, LaTeX and
many others. Th is feature enables you to share your results with colleagues
who may or may not have the MATLAB soft ware. Th e published code
includes formatted commentary on the code, the actual MATLAB code,
and all results of running the code including the output to the Command
Window and all graphics created or modifi ed by the code. To illustrate the
use of the publishing feature we create a simple example of a commented
MATLAB code to compute the sine and cosine of a time vector and display
the results as two separate fi gures.

We start the Editor by typing edit in the Command Window, which
opens a new window named untitled. An M-fi le to be published starts
with a document title at the top of the fi le, followed by some comments that
describe the contents and the version of the script. Th e subsequent contents
of the fi le include sections of MATLAB code and comments, separated by
the double percent signs %%. Whereas single percent signs % are known (from
Section 2.8) to initiate comments in MATLAB, we now use double percent
signs %% that indicate the start of new code sections in the Editor. Th e code
sections feature, previously also known as code cells or cell mode, is a feature
in MATLAB that enables you to evaluate blocks of commands called sections
by using the buttons Run, Run and Advance, Run Section, Advance, and Run
and Time on the Editor Toolstrip to evaluate either the entire script or parts
of the script.

%% Example for Publishing M-Files
% This M-file illustrates the use of the publishing
% feature of MATLAB.

50 2 INTRODUCTION TO MATLAB

Movie
2.6

% By Martin Trauth, June 27, 2014

%% Sine Wave
% We define a time vector t and compute the sine y1 of t.
% The results are displayed as linear 2D graph y1 against x.
x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%% Cosine Wave
% Now we compute the cosine y2 of the same time vector and
% display the results.
y2 = sin(x);
plot(x,y2)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%%
% The last comment is separated by the double percent sign
% without text. This creates a comment in a separate cell
% without a subheader.

We save the M-fi le as myproject.m and click the Publish button in the Publish
Toolstrip. Th e entire script is now evaluated and the Figure Windows pop
up while the script is running. Finally, a window opens up that shows
the contents of the published M-fi le. Th e document title and subheaders
are shown in a red font whereas the comments are in black fonts. Th e fi le
includes a list of contents with jump links to proceed to the chapters of the
fi le. Th e MATLAB commands are displayed on gray backgrounds but the
graphics are embedded in the fi le without the gray default background of
Figure Windows. Th e resulting HTML fi le can be easily included on a course
or project webpage. Alternatively, the HTML fi le and included graphics can
be saved as a PDF-fi le and shared with students or colleagues.

 2.12 Creating Graphical User Interfaces

Almost all the methods of data analysis presented in this book are in the
form of MATLAB scripts, i.e., series of commands that operate on data
in the workspace (Section 2.8). Only in a few cases are the algorithms
implemented in functions such as canc for adaptive fi ltering (Section 6.8) or
minput for digitizing from the screen (Section 8.7). Th e MATLAB commands
provided by Th e MathWorks, Inc., however, are mostly functions, i.e.,
algorithms with input and output variables. Th e most convenient variants

2.12 CREATING GRAPHICAL USER INTERFACES 51

of these functions are those with a graphical user interface (GUI). A GUI in
MATLAB is a graphical display in one or more windows containing controls
(or components) that enable the user to perform interactive tasks without
typing commands in the Command Window or writing a script in the Editor.
Th ese components include pull-down menus, push buttons, sliders, text input
fi elds and more. Th e GUI can read and write data fi les as well as performing
many types of computation and displaying the results in graphics.

Th e manual entitled MATLAB Creating Graphical User Interfaces
(MathWorks 2014b) provides a comprehensive guide to the creation of
GUIs with MATLAB. Within this manual, however, the section on Create
a Simple GUIDE GUI demonstrates a rather complex example with many
interactive elements instead of providing the simplest possible example of a
GUI. Th e following text therefore provides a very simple example of a GUI
that computes and displays a Gaussian function for a mean and a standard
deviation that can be defi ned by the user. Creating such a simple GUI with
MATLAB requires two steps: the fi rst step involves designing the layout of
the GUI, and the second step involves adding functions to the components
of the GUI. Th e best way to create a graphical user interface with MATLAB
is using the GUI Design Environment (GUIDE). We start GUIDE by typing

guide

in the Command Window. Calling GUIDE opens the GUIDE Quick Start
dialog where we can choose to open a previously created GUI or create a new
one from a template. From the dialog we choose the GUIDE template Blank
GUI (Default) and click OK, aft er which the GUIDE Layout Editor starts.
First, we enable Show names in component palette in the GUIDE Preferences
under the File menu and click OK. Second, we select Grid and Rulers from
the Tools menu and enable Show rulers. Th e GUIDE Layout Editor displays
an empty layout with dimensions of 670-by-388 pixels. We resize the layout
to 500-by-300 pixels by clicking and dragging the lower right corner of the
GUI.

Next, we place components such as static text, edit text, and axes onto the
GUI by choosing the corresponding controls from the component palette. In
our example we place two Edit Text areas on the left side of the GUI, along
with a Static Text area containing the title Mean, with Standard Deviation
above it. Double clicking the static text areas, the Property Inspector comes
up in which we can modify the properties of the components. We change the
String of the static text areas to Mean and Standard Deviation. We can also
change other properties, such as the FontName, FontSize, BackgroundColor,
and HorizontalAlignment of the text. Instead of the default Edit Text content

52 2 INTRODUCTION TO MATLAB

Movie
2.7

of the edit text areas we choose 0 for the mean and 1 for the standard
deviation text area. We then place an axis with dimensions of 250-by-200
pixels to the right of the GUI. Next, we save and activate the GUI by selecting
Run from the Tools menu. GUIDE displays a dialog box with the question
Activating will save changes ...?, where we click Yes. In the following Save As
dialog box, we defi ne a FIG-fi le name such as gaussiantool.fi g.

GUIDE then saves this fi gure fi le together with the corresponding
MATLAB code in a second fi le named gaussiantool.m. Furthermore, the
MATLAB code is opened in the Editor and the default GUI is opened in a
Figure Window with no menu or toolbar (Fig. 2.5). As we can see, GUIDE
has automatically programmed the code of our GUI layout, including an
initialization code at the beginning of the fi le that we should not edit. Th is
code is included in the main routine named gaussiantool. Th e fi le also
contains other functions called by gaussiantool, for instance the function
gaussiantool_Opening_Fcn (executed before gaussiantool is made visible),
gaussiantool_OutputFnc (sending output to the command line, not used
here), edit1_CreateFcn and edit2_CreateFcn (initializing the edit text areas
when they are created), and edit1_Callback and edit2_Callback (accepting
text input and returning this input either as text or as a double-precision
number).

We now add code to our GUI gaussiantool. First, we add initial values
for the global variables mmean and mstd in the opening function gaussiantool_
Opening_Fcn by adding the following lines aft er the last comment line marked
by % in the fi rst column:

global mmean mstd
mmean = 0;
mstd = 1;

Th e two variables must be global because they are used in the callbacks that
we edit next (as in Section 2.8). Th e fi rst of these callbacks edit1_Callback
gets three more lines of code aft er the last comment line:

global mmean
mmean = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Th e fi rst line defi nes the global variable mmean, which is then obtained by
converting the text input into double precision with str2double in the second
line. Th e function edit1_Callback then calls the function calculating_gaussian,
which is a new function at the end of the fi le. Th is function computes and
displays the Gaussian function with a mean value of mmean and a standard
deviation of mstd.

2.12 CREATING GRAPHICAL USER INTERFACES 53

Fig. 2.5 Screenshot of the graphical user interface (GUI) gaussiantool for plotting a
Gaussian function with a given mean and standard deviation. Th e GUI allows the values of
the mean and standard deviation to be changed in order to update the graphics on the right.
Th e GUI has been created using the MATLAB GUI Design Environment (GUIDE).

function calculating_gaussian(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
global mmean mstd
x = -10 : 0.1 : 10;
y = normpdf(x, mmean, mstd);
plot(x,y)

Th e second callback edit2_Callback picks the value of the standard deviation
mstd from the second Edit Text area, which is then also used by the function
calculating_gaussian.

global mstd
mstd = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Aft er saving the fi le gaussiantool.m we can run the new GUI by typing

gaussiantool

in the Command Window. Th e GUI starts where we can change the values of
the mean and the standard deviation, then press return. Th e plot on the right
is updated with each press of the return key. Using

edit gaussiantool
guide gaussiantool

54 2 INTRODUCTION TO MATLAB

we can open the GUI code and Figure Window for further edits. Such GUIs
allow a very direct and intuitive handling of functions in MATLAB that can
also include animations such as the one used in canctool (Section 6.8), and
the display of an audio-video signal. On the other hand, however, GUIs
always require an interaction with the user who needs to click push buttons,
move sliders and edit text input fi elds while the data is being analyzed. Th e
automatic processing of large quantities of data is therefore usually carried
out using scripts and functions with no graphical user interface.

 Recommended Reading

Attaway S (2013) MATLAB: A Practical Introduction to Programming and Problem Solving.
Elsevier, New York

Etter DM, Kuncicky DC, Moore H (2014) Introduction to MATLAB. Prentice Hall, New
Jersey

Gilat A (2010) MATLAB: An Introduction with Applications. John Wiley & Sons, New York
Hanselman DC, Littlefi eld BL (2012) Mastering MATLAB 8. Prentice Hall, New Jersey
MathWorks (2014a) MATLAB Primer. Th e MathWorks, Inc., Natick, MA
MathWorks (2014b) MATLAB Creating Graphical User Interfaces. Th e MathWorks, Inc.,

Natick, MA
MathWorks (2014c) MATLAB Programming Fundamentals. Th e MathWorks, Inc., Natick,

MA
Palm WJ (2010) Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York
Quarteroni A, Saleri F, Gervasio P (2014) Scientifi c Computing with MATLAB and Octave

– 4th Edition. Springer, Berlin Heidelberg New York
Trauth MH, Sillmann E (2012) MATLAB and Design Recipes for Earth Sciences. Springer,

Berlin Heidelberg New York

RECOMMENDED READING 55

http://www.springer.com/978-3-662-46243-0

	2 Introduction to MATLAB
	2.1 MATLAB in Earth Sciences
	2.2 Getting Started
	2.3 The Syntax
	2.4 Array Manipulation
	2.5 Data Structures and Classes of Objects
	2.6 Data Storage and Handling
	2.7 Control Flow
	2.8 Scripts and Functions
	2.9 Basic Visualization Tools
	2.10 Generating Code to Recreate Graphics
	2.11 Publishing M-Files
	2.12 Creating Graphical User Interfaces
	Recommended Reading

