Chapter 2
Modified Fourier Series and Rayleigh-Ritz
Method

Although the governing equations and associated boundary equations for laminated
beams, plates and shells presented in Chap. 1 show the possibility of seeking their
exact solutions of vibration, however, it is commonly believed that very few exact
solutions are possible for plate and shell vibration problems. For instance, an exact
solution is available only for rectangular plates which are simply supported along,
at least, one pair of opposite edges, and one has to resort to an approximate solution
for other boundary conditions (Zhang and Li 2009). It is important for engineering
applications to have available approaches that give accurate solutions for cases that
cannot be solved accurately.

In recent decades, many accurate and efficient experimental and computational
methods have been developed for the vibration analysis of laminated beams, plates
and shells, such as the scaled down models and similitude theory, Ritz method,
differential quadrature method (DQM), Galerkin method, wave propagation
approach, multiquadric radial basis function method, meshless method, finite ele-
ment method (FEM), discrete singular convolution approach (DSC), etc. It should
be stressed that most of these methods were applied firstly to isotropic structures,
and were subsequently extended to study the dynamic behaviors of the anisotropic
and laminated composite ones. However, it appears that most of the existing
methods are only suitable for a particular type of boundary conditions which typ-
ically require constant modifications of the solution procedures to adapt to different
boundary cases. Therefore, the use of the existing solution procedures will result in
very tedious calculations and be easily inundated with various boundary conditions
in practical applications due to the fact that the boundary conditions of a beam,
plate or shell may not always be classical in nature, a variety of possible boundary
restraining cases, including classical boundary conditions, elastic restraints and
their combinations can be encountered in practice. For example, even just con-
sidering the four simplest classical boundary conditions (i.e., F, SD, S and C), one
should realize that there can constitute 256 combinations of different boundary
conditions for a thin shell (four edges) or unsymmetrically laminated thin plate.
Furthermore, the possible combinations of classical boundary conditions of a
general thick open shell or unsymmetrically laminated thick plate can be as many as
331,776 types. The finite element method (FEM) has dominated engineering
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computations since its invention and its application has expanded to a variety of
engineering fields. The FEM overcomes the difficulties in dealing with various
boundary conditions, however, there still exist some drawbacks due to its mesh-
based interpolation. For instance, it suffers heavily from mesh distortion in large
deformation and intensive remeshing requirements in dealing with the structures
with complex geometries and discontinuities. In addition, the computational
demands increase with structural and material complexity and with analysis fre-
quency range (Price et al. 1998; Liew et al. 2011). It is necessary and of great
significance to develop a unified, efficient and accurate method which is capable of
universally dealing with laminated beams, plates and shells with general boundary
conditions.

The present chapter deals with a unified modified Fourier series method which is
capable of universally dealing with laminated beams, plates and shells with general
boundary conditions. The accurate modified Fourier series solutions of isotropic,
anisotropic and laminated beams, plates and shells can be obtained by using both
strong and weak form solution procedures as described in the following sections.

2.1 Modified Fourier Series

For vibration problems of beams, plates and shells, the admissible functions are
often expressed in the form of Fourier series expansions because of their orthog-
onality and completeness, as well as their excellent stability in numerical calcula-
tions. Furthermore, vibrations are naturally expressible as waves, which are
normally described by Fourier series (Li 2000). However, the conventional Fourier
series expression will generally has a convergence problem along the boundary
edges except for a few simple boundary conditions, thus limiting the applications of
Fourier series to only a few ideal boundary conditions. Mathematically, when the
displacements of a shell (2D) are periodically extended as standard Fourier series
onto the entire o—f surface, discontinuities potentially exist in original displace-
ments and their derivatives at the edges. In such case, the Fourier series expansions
cannot be differentiated term-by-term, and thus the solution may not converge or
converge slowly. Recognizing the fact that the convergence rate for the Fourier
series expansion of a periodic function is directly related to its smoothness, Li
(2000, 2002) proposed a modified Fourier series method for the vibration analysis
of isotropic Euler Bernoulli beams with general elastic boundary conditions.

In this book, this method is further developed and extended to the vibration
analysis of laminated composite beams, plates and shells with general boundary
conditions and arbitrary lamination schemes, aiming to provide a unified and rea-
sonable accurate alternative to other analytical and numerical techniques. The
method will be briefly explained in this section for the completeness of the book.
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2.1.1 Traditional Fourier Series Solutions

To fully illustrate the basic idea of the modified Fourier series method, we consider
the longitude and transverse vibrations of a classical straight beam with length L,
uniform thickness # and width b as shown in Fig. 2.1. The two-dimensional rect-
angular coordinate system (x, z) is used to describe the geometry dimensions and
deformations of the beam, in which co-ordinates along the axial and thickness
directions are represented by x and z, respectively.

Letting o = x, A = 1, according to Eqgs. (1.7), (1.14) and (1.28), the governing
equations for free vibration of a generally laminated composite beam are obtained
as:

O*u Pw
A“W By, e —w’Iou
y N (2.1a,b)
B u O*w W
11 1l g = —Wiow
ox3 ox*

where @ represent the natural frequencies of the beam. Suppose the classical beam
considered here is made from isotropic materials, therefore, the B, terms become
zero. In such case, the longitude and transverse vibrations of the beam are
decoupled. Subsequently, Eq. (2.1) is rewritten as:
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u
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The solution of Eq. (2.2) is often desired to be expanded in the form of either
Fourier sine series or Fourier cosine series. Take the transverse vibration problem
for example (Eq. 2.2b), mathematically, the displacement w(x) can be expanded as
Fourier series only contains the cosine terms by making the even extension of w
(x) from the interval [0, L] onto the interval [-L, 0], as shown in Fig. 2.2 (Xu 2011):
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Fig. 2.1 Notations of a classical straight beam
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Fig. 2.2 An illustration of the
possible discontinuities of the
displacement at the ends

e
[y

w(x) = ZA,,, cos Apyx 0<x<L (2.3)

m=0

where A,, are the expansion coefficients, 4,, = ma/L. According to Eq. (2.2b), it
is obvious that the transverse displacement w(x) is required to have up to the
fourth-derivative (w'""'(x)). The Fourier cosine series is able to correctly converge to
w(x) at any point over [0, L]. However, its first-derivative w'(x) and third- derivative
w''(x) are odd functions over [—-L, L] leading to a jump at end locations (see
Fig. 2.2). Thus, their Fourier series expansions (sine series) will accordingly have a
convergence problem due to the discontinuity at end points. Moreover, the dis-
placement function w(x) of the beam given in Eq. (2.3) may not be differentiated
term-by-term. The reasons are given below (Tolstov 1976):

Theorem 1 Let fix) be a continuous function defined on [0, L] with an absolutely
integrable derivative, and let f(x) be expanded in Fourier sine series

flx)= iam sin A,x, O0<x<L (Jy =mn/L) (2.4)

m=1

7109 = LEZLO S (2117 0) O] + i ) cos T (29
m=1
Apparently, when f{L) = f(0) = 0,

f/(x) = Z Cyy Ay COS Loy X (26)

m=1

The theorem reveals that a sine series can be differentiated term-by-term only if f

(L) = f(0) = 0.
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Theorem 2 Let f(x) be a continuous function defined on [0, L] with an absolutely
integrable derivative, and let f(x) be expanded in Fourier cosine series

flx) = me cos Ayx, O<x<L (A, =mmn/L) (2.7)
m=0
then
F1X) == by sin Apx (2.8)
m=1

The theorem reveals that a cosine series can always be differentiated term-by-term.

Theorem 3 Let f(x) be a continuous function of period 2L, which has n derivatives,
where n—1 derivatives are continuous and the mth derivative is absolutely inte-
grable (the mth derivative may not exist at certain points). Then, the Fourier series
of all m derivatives can be obtained by term-by-term differentiation of the Fourier
series of fix), where all the series, except possibly the last, converge to the cor-
responding derivatives. Moreover, the Fourier coefficients of the function f{x) sat-
isfy the relations

lim a4, = lim b, =0 (2.9)

n—oo

With these in mind, for the cases when the beam is elastically supported, we have

W) == JnApsindyx, 0<x<L (2.10)

m=1

x (2.11)
+ Z (g [(=1)"w'(L) — w'(0)] —A,Mi) cos Apx, 0<x<L

w”(x) = — i (2 [(—=1)"W' (L) — W' (0)] An Amﬂvfn> sin A,x, O0<x<L (2.12)

o [ 2[(—1Y"w" (L) — w" (0
+Z 7 [(=1)"w"(L) —w"(0)] ) 4 | cosiux, 0<x<L
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and the Fourier coefficient A,, satisfies

lim Ayl =0 (2.14)

Combining Egs. (2.2b) and (2.13) results in

b, W;//(L) ; WW(O) + io: (2211 [(—I)mWW(L) _ WW(O)]) COS Ay

" i(z’j [~ 1)/ (1) = W (O)]2 (215)

m=1

+ (D2 — a)zlo)Am> oS Amx = w1y

Obviously, it is a big challenge to obtain the natural frequencies and determine
the expansion coefficients from Eq. (2.15).

Alternatively, one may prefer to expand the beam displacement w(x) in the form
of Fourier sine series. In such case

w(x) = ZAm sin 4,,x, O0<x<L (2.16)
m=1

N (2.17)
# 3 (FU10) = w0 + A

)cosimx, 0<x<L

(2.19)
%[(_l)mW(L) — W(O)]/l?n _Am;;*n> sinAyx, O<x<L

(2.20)
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and the Fourier coefficient A,, satisfies

lim A, =0 (2.21)

m—0o0

Combining Egs. (2.2b) and (2.20) results in

[(=1)"w"(L) = w"(0)]2m — [(—1)"w(L)
AnL

—wO)4, = 35~ (0’ = DuZ,) (222)
and
___ 2Dum [(=1)"w"(L) = w"(0)]
Ap = Lon/ — o), <_[(_1)mw(L) B W(O)]ﬂf,,m) (2.23)

Mathematically, the natural frequencies are simply obtained by requiring the
determinant of the coefficient matrix to vanish (Wang and Lin 1996). Such a
procedure involves solving a non-linear equation, which may not always be an easy
job numerically (Li 2000).

In conclusion, a beam with simply supported boundary conditions, the Fourier
sine series can be used to determine the vibrations of the beam readily due to the
fact that all the required derivatives of the displacement function can be directly
obtained from the Fourier sine series through term-by-term differentiation. For other
boundary conditions, however, a Fourier series tends to become slow converged, if
it converges at all, and its derivatives may not be so easily obtained (Li 2000). In
order to overcome these difficulties and satisfy the general boundary conditions, a
modified Fourier series method was proposed by Li (2000), in which several
supplementary terms are introduced into the Fourier series expansion to remove any
potential discontinuities of the original displacements and their derivatives
throughout the entire solution domain including the boundaries and then to effec-
tively enhance the convergence of the results. This modified Fourier series method
is briefly illustrated in following section.

2.1.2 One-Dimensional Modified Fourier Series Solutions

Unlike in the traditional Fourier methods, the transverse displacement w(x) of the
beam is expanded into a standard Fourier cosine series plus an sufficiently smooth
auxiliary polynomial function defined over [0, L] as:

w(x) = W(x) + P(x), and W(x) = A, cosinx (2.24)
m=0
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where A,, are the expansion coefficients, 4,, = mn/L. The sufficiently smooth auxiliary
polynomial function P(x) is selected to remove all the discontinuities potentially
associated with the first-order and third-order derivatives at the boundaries. By setting

P'(0)
P,// (0)

'(0) =<1
"(0) =g P(L) =w"(L) =y

: (2.25)

Such requirements can be readily satisfied by choosing simple polynomials as
follows (Zhang and Li 2009; Du 2009):

Py(x) S10
P> (x) S
P(x) = 2.26a
(x) P3(x) S30 ( )
Py(x) S31
and
Pi(x) Esin(B) — ﬁsm(%)3
Py(x) | —5005(2—) ~ Ton 0s(37) 2 96b
Py | = | Bsin(E) © L sin() (2:260)
3()6) Pl sin 2L 3n3 2L
P4(x) —Licos(B) — L cos(3)

It should be pointed out that in actual calculation, the boundary values i, (i1,
{30 and {3, can be treated as undetermined coefficient associated with the auxiliary
polynomial function and solved in a strong form solution procedures or a weak
form one such as Ritz method. It is easy to verify that

(177 0] 01" w0
0 1
ro=|o| | Po=1] |
G30 30
0 c 0 C
P Lo (2.27)
0 ST)) 0 c10
P///(O) _ 0 C11 /// 0 C11
1 G30 0 G30
LO] L 1 G31
so that
w'(0)=w(L)=0 W"0)=W"L)=0 (2.28)

Essentially, W(x) represents a residual beam displacement which is continuous
over [0, L] and has zero-slopes at the both ends as shown in Fig. 2.3. Apparently,
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Fig. 2.3 An illustration of the
modified Fourier method
(Xu 2010)

the cosine series representation of W(x) is able to converge correctly to the function
itself and its first derivative at every point (including the boundaries) on the beam.
Analogously, discontinuities potentially associated with the third-order derivative
can be removed as well. In addition, the residual beam displacement W(x) has at
least three continuous derivatives, then all the required differentiations can be
simply carried out term-by-term basically. In such case, we have

w(x) = — f: oA $i0 Apx + P'(x) (2.29)
=l
w'(x) = — iAm)fn 08 Ayx + P (x) (2.30)
m=1
w” (x) = zoo:Ami?n sin A,,x + P" (x) (2.31)
=1
w" (x) = iAm/li cos Ayx + P (x) (2.32)

m=1
and the Fourier coefficient A,, satisfies

lim A7, =0 (2.33)

Comparing Eq. (2.33) with (2.21), it can be found that the modified Fourier
series solution converges at a much faster speed. It should be stressed that the form
of auxiliary polynomial function given in Eq. (2.26a, b) should be understood as a
continuous function that satisfies Eq. (2.25), its form is not a concern with respect to
the convergence of the series solution (Li 2004). Actually, any function satisfies
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Eq. (2.25) such as polynomials and trigonometric functions can be used. Com-
bining Eqgs. (2.2b) and (2.32) obtains

Dy

00 2 0
ZAmifn 08 Apx + P"(x) = ol (Z A,y COS A + P(x)) (2.34)

m=1 m=0

In order to derive the constraint equations for the unknown Fourier coefficients,
the auxiliary polynomial function P(x) and its four-order derivative P""(x) in
Eq. (2.32) are expanded into Fourier cosine series, namely

(x) = Z B, €08 Jpyx

(2.35)
P"( Z C,, COS Apyx
where
fo ) €OS Ayxdx
" €OS Apx) dx
f” y (2.36)
c f P""(x) cos Ayxdx
" fo (cos Apx)*dx
Substituting Eq. (2.35) into Eq. (2.34), we have
Co+ Z /14 + C cos AmX = Z pr m + Bm) €OS Jpyx (2.37)
m=0
where pp = Io/D1;, Therefore
Co — pp®*(Ag +By) =0
0 = pp (Ao + Bo) (2.38)

Al + Cp— pp@* (A +By) =0 m=1,2,...

According to Eq. (1.29), the general boundary conditions for the beam can be
written as

kow(0) = Dyw”'(0)  kyw(L) = —Dyw" (L)

KXV:)W/(O) = D“WN(0> KWIW (L) — _DUWN(L) (239)
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Substituting Eq. (2.24) into Eq. (2.39) the boundary conditions of the beam can be
rewritten as

kY (iAm + P(O)) =D P"(0)

m=0

k;bl (i (*1)’"Am + P(L)) = ,D“P///(L)
m=0

N (2.40)
K%P'(0) = Dy, (Z 22 A+ P”(O))

m=0

K"P'(L) = —Dy, (Z (=" 22 A, + P”(L))

m=0

The natural frequencies and mode shapes of the beam can now be easily
determined by solving Eq. (2.38) with boundary condition equations Eq. (2.40), the
more detail solution procedure will be given in Sect. 2.2.

Alternatively, the transverse displacement of the beam can also be expanded into
a modified Fourier sine series. In that case, the auxiliary polynomial function P(x) is
selected to remove all the discontinuities potentially associated with the original
displacement and its second-order derivative at the boundaries. Namely, the
transverse displacement w(x) of the beam should be expanded into a standard
Fourier sine series plus a sufficiently smooth auxiliary polynomial function defined
over [0, L] as:

w(x) = W(x) + P(x), where W(x)=> A, sini,x (2.41)
m=0
and
P 0 = 0 = C, P L = L =

”( ) W” ) = oo /(/ )=w N) ot (2.42)

P0) =w"(0) = ¢ P'(L)=w'(L) =cy

Similarly, Eqs. (2.17)-(2.20) can be rewritten as

w(x) = ZAm/Im 08 Apx + P'(x) (2.43)

m=1

m

w'(x) = = Aplasin dyx + P (x) (2.44)

m=1
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w"(x) = = Anip, 08 Jyx + P"(x) (2.45)
m=1
w" (x) =) Awdiy sin Zx + P (x) (2.46)
m=1

The solution procedure is the same as those of the modified Fourier cosine series.

2.1.3 Two-Dimensional Modified Fourier Series Solutions

Using the modified Fourier series technique, in the manner similar to that described
earlier, two-dimensional modified Fourier series solutions for laminated plates and
shells are presented in this section. For the sake of completeness, we consider the
free vibration analysis of a moderately thick. Generally laminated rectangular plate
(where a and b denote its length and width) with general boundary conditions (see
Fig. 2.4), the solution procedure is given step-by-step as follows.

Substituting & = x, f# =y, A=B =1 and R, = Rz = 00 into Eq. (1.59), the
governing equations of the plate are written as:

3612’: n aéV;X = —o*(Iou+1,,)

a;\;cy N ‘98Nyy =~ (v + L ¢,)

5 a% 38_% e (2.47a—)
%\zx 32?% — 0= — *(hhu+ L))

oM,  OM,

ox oy 9T @ (v + L)

Fig. 2.4 A generally
laminated moderately thick
rectangular plate



http://dx.doi.org/10.1007/978-3-662-46364-2_1

2.1

Modified Fourier Series

49

Similarly, substituting & = x, =y, A= B =1 and R, = Rz = ©0 into Egs. (1.34),
(1.46) and (1.47) and then substituting these three equations into Eq. (2.47) yields

Ly
Ly
L3,
Ly
Ls;

Lo
L
L3,
Ly
Ls;

Lz
Lo
L33
Ly
Ls3

L14 L|5 M]l 0 0 M14 0 u 0
Ly Lps 0 My O 0 Mps v 0
Ly Lss| —0*|0 0  Mp 0 0 w | =10
Ly Lys My O 0 My O o, 0
Lsy Lss 0 Ms; 0 0 Mss oy 0

(2.48)

where the coefficients of the linear operator L(L; = L;;, M;; = Mj;) are given below:

? ? ?
L;=A 2A A
11 1182+ 1688+66y
2 2 9
Lp,=A + (A A A=
12 652 + (A2 + 66)8a+ 266))2
Li3=0 Ly3=0
0 0 I
Ly =Biu+3 2 +2B168 Ty +B668y2
82 2 82
Lis =Bis=—+ (B B, By —
15 = 1682+(12+ 66)aa+ 268y2
2 2 9
Ly = A66a 2+2A268 dy +A2287y2
62 2 62
=Bis=—+ (B B B
Loy 168x2+( 12+ 66)68 + 2 552
82 2 82
Lys =B 2B B,
25 6682+ 2668"1‘ 226y2
0* 0? o?
Ly3 = —Ass = g —2A45 - Oy A448_yz
L —Ass —— A 2
= Ass 5 5 5y
0
L35 = —A — Ay —
35 57 “ 3y
0? ? o?
Ly =Dy ) + 2D o + DﬁﬁaT)z Ass
9 9 0
L Dig=—+ (D D¢s) =—=—+D —A
45 1652+ (D12 + Des) axdy + Dae FER
0* 8 0?
Lss = Dgg == + 2D Dy——A
55 56 52 + 2Dx 0 + Dy P 44

(2.49)
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and the general boundary conditions of the plate are:

N, = kiyu Ny = —kiju
Ny = kyv Ny = —kjv
x=0:{ Ov=kgw x=a:{ Ov=—kyw
My = Kb, M, = —K3, ¢,
M,y = K,fo‘by M,y = _K}:l ¢y (2 50)
Ny, = k;‘ou Ny, = —k;‘,lu ’
N, = k)‘,’ov N, = —ky”'lv
y=0: Q) = kyw y=b: Q) = —kjyw
My, = K;O@bx My, = _K;Cl by
M, = %‘rﬁy M, = *K51 by

Taking the plate displacement component u(x, y) for example, it can be
expanded into a standard double Fourier cosine series plus two sufficiently smooth
auxiliary polynomial functions defined over [0, a] x [0, b] as

M()C,y) = U(xay) + Px()@y) + Py(xyy) (2513)
and
Ux,y) = Z ZA’"” COS JpX COS A,y (2.51b)
m=0 n=0

where A,,, are the expansion coefficients. 4, = mn/a and 4,, = nn/b. P\(x, y) and P,(x, y)
denote the auxiliary polynomial functions introduced to ensure and accelerate the
convergence of the series expansion of the displacement u(x, y). According
to Eq. (2.49), it is obvious that each of the displacements and rotation components of
the plate is required to have up to the second derivatives. Therefore, the auxiliary
polynomial functions P,(x, y) and P,(x, y) are selected to remove all the disconti-
nuities potentially associated with the first-order derivatives at the boundaries.
By setting

OP(0,y) _ 9u(0,y)

Ox Ox = Gx0 (y)
a X b a b
e _vie
0P, (x.0) _ du(x0) _, (2.52)
ay - 8)) — 50 (X)

OPy(x,b)  Ou(x,b)
ay = ay = Gyl (X)
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where &0(y), &), &o(x) and & (x) are the unknown boundary derivatives at

boundaries x =0, x = a, y = 0 and y = b, respectively. They can be expanded in the
form of Fourier cosine series as

Eo(y) =) aincos iy
n=0

&a(y) =Y ancos iy

=0 (2.53)
Eolx) = Z bipm COS Apx

m=0

00
évl (x) = Z by €OS Jx
m=0

where ay,, as,, by, and b,,, are the expansion coefficients. The requirements of
Eq. (2.52) can be readily satisfied by choosing the auxiliary polynomial functions
P(x, y) and Py(x, y) as follows (Du 2009):

R P S P e e A B
and

- (30 23] (2]~ ] oo

It is easy to verify that

OP.(0,y) _ [117[00)]
ax 0 L éxl (y) i
OP.(a,y) _ 0 T-fxo()’)-
Ox L] [Ea(y)] (2.55)
oP,(5,0)  [117[&0(x)] '
ay B 0_ L éyl (X) d
oP,(x,b)  [077[&0(0)]
ay |1 L &1 (X) |
so that
9U(0,y) _ 0U(ay) _
Ox Ox
OU(x,0) _U(x,b) _ (2.56)

dy Jy
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Essentially, U(x, y) represents a residual plate displacement which is continuous
over [0, a] x [0, b] and has zero-slopes at the four boundaries. Apparently, the
cosine series representation of U(x, y) is able to converge correctly to the function
itself and its first derivative at every point on the plate. Moreover, all the required
differentiations of the residual plate displacement U(x, y) can be simply carried out
term-by-term. Thus, the plate displacement function of component u(x, y) can be
rewritten as

oo 00 2
= Z ZA’"" COS ApX €OS A,y + Z Z anPi(x) cos 2,y
m n=0

=0 n=0 =1 n= (257)

2 00
+ Z bimPi(y) cos Apx
I=1 m=

(=]

Similarly, the other displacements and rotation components of the plate can be
expanded as the two-dimensional modified Fourier series as

00 o0 2
v(x,y) = Z Z By €08 Apx €OS A,y + Z
=0

o0

cimPi(x) cos A,y
=0

m=0 n=0 n
)
+ Z Z dimPi(y) cos Ayx
=0 m=0
o0 o0
w(x,y) = Z Z Cun COS Ay €OS A,y + Z Z e Pi(x) cos A,y
m=0 n=0 =0 n=
2 00
+ Z ZﬁmPl (y) cos Apx
=0 m=0 (2.58)
Z Dy COS AyX COS Ay + Z Z gimPi(x) cos A,y
m=0 n=0 =0 n=
2 00
+ Z Z i Pi(y) cos Ayx
=0 m=0
o0 0 2 oo
qﬁy X,Y) Z Z E, . cOS Jypx cOS 2,y + Z Z i Py (x) cos A,y
m=0 n=0 =0 n=0

2
+ Z ZjlmP,(y) COS ApX
=0 m=0

where B,,.,., C,.., D, and E,,,,, are the standard Fourier series expansion coefficients.
Cins Aims €ins fim &ins Mum» 11, and jy,, are the corresponding supplement coefficients.
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2.2 Strong Form Solution Procedure

With the modified Fourier series, vibration of isotropic, anisotropic and laminated
beams, plates and shells can be obtained by using the strong form solution pro-
cedures as described below. Taking the previously studied laminated rectangular
plate for example, the solution procedure is given step-by-step as follows.

In the actual calculations, all the five infinite modified Fourier series expressions
given in Egs. (2.57) and (2.58) need to be truncated as finite series to obtain the
results with acceptable accuracy due to the limited speed, the capacity and the
numerical accuracy of computers. Unless otherwise stressed, the involving terms in
all the plate displacements and rotation components are uniformly taken as m € [0,
M] and n € [0, N]. Thus, the modified Fourier series expressions presented in
Egs. (2.57) and (2.58) can be rewritten in the matrix form as:

u(x,y) = HyA + Hya+ H,b
v(x,y) = H,B + Hyc + H,d
w(x,y) = H,,C + Hye + H,f (2.59)
¢x(x7y) = HmD + H,g + Hyh
¢y(x7y) = HX}'E + Hxi + Hyj
where
H,, = [cos Agx cos Agy, . .., COS ApX COS ZpY, .. ., COS AyX COS AnY]
H, = [P (x) cos gy, . . ., Pi(x) cos 4.y, . . ., P2(x) cos AyY] (2.60)

H, = [Pi(y) cos Aox, . . ., P(y) €08 Apx, . . ., P2(y) cos Apx]
and

= [A00s - - -y Apny - - .,AMN]T a=ap,...,dp,.. .,azN]T
= [b10, - - o Bimy - - -, bont]”
]T c:[clo,...,cln,...,cm]r
= [do, -, dim, - - - dom]"

A

b=

B = [Boo, - s Buny - - -» Bun

d=|

C=1[Co0s--sComy -, Conv]" €= €10, 0, ..., em]"
f

D

h

E

T (2.61)
= [f107 .- ~aﬁmv .- waM}

[D007 .. -aDmm .. '7DMN]T g= [g107 - 8lny - - 'agZN]T
= [hl()a .- '7hlm7 . '7h2M]T
= [EOOa"')EmrH"-aEMN]T i= [i107"'7ilna"')i2N]T

j = [j107 .. 'aj[m7 .. '7j2M]T
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Superscript T represents the transposition operator. Substituting Eq. (2.59) into
Eq. (2.48) results in

LTy + L, + LTy — 0 (M Ly + M, + M,I,) =0 (2.62)
where
LiH; LpH; LisH; LisH; LisH;
LyH; LpH; LpH; LyH; LsH;
L=|LyH; LpH;, LyH;, LyuH: LssH |, (i=xy,x,y) (2.63)
LyH; LpH; LgH; LyH;  LysH;
Ls1H; Ls)H; LssH; LssH;  LssH;
MH; 0 0 M4H; 0
0 MyH; 0 0 M>sH;
M=|0 0 M3:H; 0 0 . (i=2xy,x,y) (2.64)
MuyH; 0 0 MyuH; 0
0 M52Hi 0 0 MSSHi
A a b
B c d
r,=|c|, r=|e|, r=|f (2.65)
D g h
E i j

In the same way, substituting Eq. (2.59) into Eq. (2.50), the general boundary
conditions of the plate can be rewritten as

x=0: LIy + LT, + LT, = 0

' ) ) (2.66a)
x:a:Liyrx_y—FLj FX—FL’y‘ ry=0
y=0:LTy + LT, + LT, =0 (2.66b)
y=b:L)Ty+ LT, +L'T, =0 '
in which
L{lHi L{2H,- L{3Hl~ L{4H,~ L{SH,-
| LyH LpH; LpH LyH; LyH; = xy,x,y
L/ = |LH; LLH; LLH; LiH, LiH; |, | J=x0xl, (2.67)
LyH; LypH: LypH LyH; LisH; y0,y1
LyH; LH: LgH; LyH: L5H,
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the coefficients of the linear operator in Eq. (2.67) are given below:

and

e :All(%-f-Alé%—kfo’
L = Ly = L3 =0,
L :Blz%+316%>
Ly =A265%+A66%*k¥0»
L3 =316%+3665%7
L3 :A45%+A55%—kﬁ)7
L :Blz(%-f—Bm%,
)5t :DIZ;%“FDlé@%v
Lﬁ=D16%+Déea%,

) :A160%+A66%_ ko,
L3 =L = Lj; =0,
L= Bzéa%ﬂLBee%,

L§3 :Azzg%-i-Azé%— ko
Lﬁ‘i 2312%4—326(%,

Ly = A44%+A45%— k3o,
Lﬁg = BZ6%+B66(%7

Ly :D26%+D66%7

ng =D120%+D263%,

And for j = x1 and j = y1, we have:

Ly =L, (i # ));

L} = An 5+ A 5+ kY,
L3y = Ao & + Aco &% + k.
L3y = Ass 5+ Ass k3,
Ly :Dll%+Dl6%+K;€17
L3y = Dag &+ Des & + K3

Ly :A12%+A16%
Ly} = Bu g+ Bis g = Lj]
Iy :A16%+A663%
LR = 1 =13 =0
oy :BZ6%+B%%:L§2
LY = Ass, L2 = Aus
L =Duf+Dish— Ky
Ly 2316%“"3663%
V£ =D26%+D66%*K;§o

Ly :A26%+A66%

Ly = Bio & + Bos = Ll
LE? :A12%+A260%
D=0 =05=0

L3 =Bnf + B f = L
Ly =Ass, L =Au

Ly = Dis .+ Des 3, — Ky
LY = Bia i+ Bas &

L§(§ = D22(%+D26%_I(§0

Ly =Ly, (i #))

L} = Ats e+ Ass 5+ kY
L;; :A22%+A263%+k;1
2 — A+ A
LX}; :D16%+D66%+K;‘1

L= Dy + Das £+ K,
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(2.68)

(2.69)

(2.70)

In order to derive the constraint equations for the unknown Fourier coefficients,

all the sine terms, the auxiliary polynomial functions and their derivatives in
Egs. (2.62) and (2.66a, b) will be expanded into Fourier cosine series. Letting

C,, = [cos Agx co8 Aoy, . .
C, = [cos Aox, .

C, = [cos Agy, . .

T
.+, COS AyX, . . ., COS AprX]

] s AT
., COS AyX, . . ., COS AyY]

., €08 Apx cos Ay, . .

., €OS Ayx oS Ayy

]T

(2.71)



56 2 Modified Fourier Series and Rayleigh-Ritz Method

Multiplying Eq. (2.62) with C,, in the left side and integrating it from O to a and
0 to b separately with respect to x and y obtains

y y

L0yt (L L] {H _o? (erw (M, M,] HD —0 (27

where

ll

o =[5 L CyLgdydx, My = [i' [¥ CyM,dydx
X foa f(i) nyLxdydx7 Mx = foa fé) nydeydx (273)
Y f(;l f: CyLydydx, M, = f(;l f: CyM,dydx

=
[l

Similarly, multiplying Eq. (2.66a) with C, in the left side then integrating it from
0 to b with respect to y, and multiplying Eq. (2.66b) with C, in the left side then
integrating it from O to a with respect to x, we have

x=0:LyTy + LT, + LT, =0

—xl —x1 —x1 (2743)
x=a:nyl"Xy+Lx l"x+Ly ry=0
=)0 =0 =0
y=0:L Ly +L T, +LT,=0 (2.74b)
y=b:L Ly +L'T,+L'T, =0
where
=—x0 b —x1 b
L.:y = CyLﬁdy ) L;y =Jo C,Lf,)l,dy
=—x0 +—x1
L;O S8 L L)jl = [Pc, LM dy (2.75a)
X b T b X
Ly = [y CGLYdy, L = [JC,L'dy
L) = [ Ly, L)) = ¢ CLildx
L’ = [fclx T = [fCL)dx (2.75a)
L' = [fcLlar, L' = [ CLd
Thus, Eq. (2.74a, b) can be rewritten as
0 =01 ! F—
L’ .’ L,
T, A T L
== 0 2 Ty 2.76
{D} 17D vl BN D vl (2.76)
=yl =yl 1
L L L,

Finally, combine Eqgs. (2.72) and (2.76) results in
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(K—o*™M)T,, =0 (2.77)

where K is the stiffness matrix for the plate, and M is the mass matrix. They are
defined as

_ —0A —1
17 ol I I i
Exl fixl tx‘l
K=L,—-[L, L,|_ 2 _ S 2.78a
) [ )] Li() L;O Li? ( )
Tyl Tyl Tyl
L, Ly ny

LYl Ly LxI

o . . rr Exl Lx
M=M, - [M, M| S| |2 (2.78b)

L, L'y L’Xy

L' L

Mathematically, Eq. (2.77) represents a generalized eigenvalue problem from
which all the natural frequencies and modes of the plate can be determined easily by
solving the standard characteristic equation. Once the coefficient eigenvector Iy, is
determined for a given frequency, the corresponding supplement coefficient
eigenvectors I', and I', can be obtained. Then the displacements and rotation com-
ponents of the plate can be determined by substituting these coefficients into
Egs. (2.57) and (2.58). Thus, the corresponding mode shape of the plate can be
directly constructed from the determined displacement functions. Although
Eq. (2.77) represents the free vibration of laminated rectangular plates, by summing
the loading vector F on the right side of Eq. (2.77), thus, the characteristic equation for
the forced vibration is readily obtained. Similarly, the present formulation can be
readily applied to static analysis of laminated plates with general boundary conditions
by letting @ = 0 and summing the loading vector F on the right side of Eq. (2.77).

Although the modified Fourier series solution procedure derived herein is focused
on rectangular plates, it can readily be used for other laminated structures, such as
beams, cylindrical shells, conical shells, spherical shells and shallow shell, etc. The
method described in this section is believed to include two main advantages: first, itis a
general method which can be used to determinate the static, bending, free and forced
vibration behaviors of laminated pates with arbitrary boundary conditions accurately;
second, the proposed method offers an easy analysis operation for the entire restraining
conditions and the change of boundary conditions from one case to another is as easy
as changing structure parameters without the need of making any change to the
solution procedure or modifying the basic functions as often required in other methods.

Instead of seeking a solution in strong form solution procedure as described in
the previous paragraphs, all the expansion coefficients can be treated equally and
independently as the generalized coordinates and solved directly from the weak
form solution procedure such as Rayleigh—Ritz technique, which is the focus of the
next section.
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2.3 Rayleigh-Ritz Method (Weak Form Solution
Procedure)

In a variety of vibration problems, exact solutions always unable to be obtained, in
such cases, one has to employ approximate method. In this regard, many methods
exist. Among them, the minimization of energy approaches such as the Rayleigh-
Ritz method, the variational integral method and the Galerkin method are widely
used in the vibration analysis of continuous systems due to the reliability of their
results and efficiency in modeling and solution procedure. In this section, we focus
on the Rayleigh-Ritz method. The modified Fourier series version of Rayleigh-Ritz
method is presented as follows.

In the Rayleigh-Ritz method, a displacement field associated with undetermined
coefficients is assumed firstly. The displacement field is then substituted into the
Lagrangian energy functional (i.e., Il = T — U + W). Then the undetermined
coefficients in the displacement field are determined by finding the stationary value
of the energy functional, namely, minimizing the total expression of the Lagrangian
energy function by taking its derivatives with respect to the undetermined coeffi-
cients and making them equal to zero. Finally, a series of equations related to
corresponding coefficients can be achieved and summed up in matrix form as a
standard characteristic equation. And the desired frequencies and modes of the
structure can be determined easily by solving the standard characteristic equation
(Qatu 2004; Reddy 2002).

The constructing of appropriate admissible displacement field is of crucial
importance in the Rayleigh—Ritz procedure because the accuracy of the solution
will usually depend upon how well the actual displacement can be faithfully rep-
resented by it. For vibration analysis of laminated beams, plates and shells, the
admissible displacement field is often expressed in terms of beam functions under
the same boundary conditions. Thus, a specially customized set of beam functions
is required for each type of boundary conditions. As a result, the use of the existing
solution procedures will result in very tedious calculations and be easily inundated
with various boundary conditions because even only considering the classical
(homogeneous) cases, one will have a total of hundreds of different combinations.
Instead of the beam functions, one may also use other forms of admissible functions
such as orthogonal polynomials. However, the higher order polynomials tend to
become numerically unstable due to the computer round-off errors. This numerical
difficulty can be avoided by expressing the displacement functions in the form of a
Fourier series expansion because Fourier functions constitute a complete set and
exhibit an excellent numerical stability. However, the conventional Fourier series
expression will generally have a convergence problem along the boundary edges
and cannot be differentiated term-by-term except for a few simple boundary con-
ditions (see Sect. 2.1.1). These difficulties can be overcame by using the modified
Fourier series. A weak form solution procedure which combining the modified
Fourier series and the Rayleigh-Ritz method is given below step-by-step.
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Taking the previous studied moderately thick laminated rectangular plate
(Fig. 2.4) for example, letting

G'=[A, a, b]"
G'=[B, ¢, d]’
G"=[C, e f]
G'=[D, g h]

Gy _ E, ., T

E. 1] (2.79)

H = [Hy, H,, H,|

where H,,, H,, H,, A to E and a to j are presented in Egs. (2.60) and (2.61).

Therefore, the displacement expressions of the plate can be rewritten in the vector
form as:

u(x,y) = HG"

v(x,y) = HG"

w(x,y) = HG" (2.80)
¢.(x,y) = HG*
¢,(x,y) = HG’

For free vibration analysis, the Lagrangian energy functional (L) of the plate can
be simplified and written in terms of the strain energy and kinetic energy functions
as:

L=T-U,—U, (2.81)

According to Egs. (1.50), (1.51) and (1.54). The kinetic energy and strain energy
functions of the laminated plate are:

’ Iou® + 2Lue, + Lp?
=7 y p dxd 2.82
2 /x /y { +Ipv* + 2o, + 124)5 T Igw? } xdy ( )

U - 1 /b [Kigu® + kjgv® + kigw” + Kby + K}r()(bi]x:o
sp— ) +[
a

K 4 kv + Rw? + K5 7 + K¢l

0
: (2.83)
l/ { [k;‘ouz + k;ovz + k;vowz + K;O‘]ﬁ + K,ioqb_%]yzo }
0

+ '
2 "‘[k;{l“z + &y, v +kyW1W2 + K3, o2 +K;1¢§]y:b


http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
http://dx.doi.org/10.1007/978-3-662-46364-2_1
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ox 'y

N2
A (a“) +A2 (f)—v) +Ags (0" + ()J>

v vy Ou) (Ou

()u
U 1 /a /b +2A12 (('))> + 2456 (z)r + 0») (O_X)
: 0 0 (

2 dydx

2o (3 3) (3) +au (0, + %)’
()w) +2) 4 Ass (¢, +0u)
N S
/ / ()(p ) ( + 2Dy (d¢ + j:) dydx
(22) - ou (3 +22) (3)
0 (3)(8) )0
[ e
- /0 /0 +Bzz( f )( ) +Bzﬁ( b 42 )(dv) dydx (2.84)
+Ble(d¢ ) (()x +¢ ) + B (ﬁd) ) (()X + 3’:)
+Boo (5 + 52) (2 + )
Substituting the displacement expressions of the plate (Eqgs. 2.57 and 2.58) into
the Lagrangian energy functional (Eq. 2.81) and minimizing the total expression of

the Lagrangian energy functional by taking its derivatives with respect to each of
the undetermined coefficients and making them equal to zero

+2A45( ¢

. Z==A,B,C,D,E
OL ) By ey M
g, = O and{m:O,l,...M; n=0,1,...N
Y =a,ceg,i
i— 777g7
o, = 0; m%zzhz n=0,1,..N (2.:85)

. Y =b.d.f,h,j
oL 2y ¥ 0 T
v, =0, a“d{z: 1,2, m=0,1,...M

a total of 5*(M + 1)*(N + 1) + 10¥(M + N + 2) equations can be obtained. They are
summed up in a matrix form as:

(K—™M)G =0 (2.86)

where K is the stiffness matrix of the plate, and M is the mass matrix. Both of them
are symmetric matrices and they can be expressed as

Ku Ko Kiu Kip Kuy
KT K, K, K Kvy

K= Ki-w K\T;w wa wa Kwy (2873)
uy vy wy Xy VY
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M, 0 0 M, 0
0 M, 0 0o M,
M={0 0 M, 0 0
M0 o0 M, 0
0 M 0 0o M,
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(2.87b)

The superscript T represents the transposition operator. The explicit forms of
submatrices in the stiffness matrix K and mass matrix M are listed as follows

// BHT0H+A OHTOH+A al{TaH+
uu ll 0x ()X 16 0 Oy 16 0{ 0

OHT OH
66— oy Oy }dvdx

“
+ / {KHT ]|, + K HTH],_, }dy + / {koH™ M, + K HTH,, fax
Jo Jo .

" dx dy Ox Ox “ dy oy © dy ox [
Ky =0
OH" OH OH OH OH' oH OH' OH
u\—/ / { T x+ 165" B\JerTyEJrB“ 3y 6y}dy(bc
K. — b{B aHTOH OHT OH OH' 9H OH' OH v
& /U /0 1275 gy B oy T B gy T ey Bx} ydx
o b OH" OH OH" OH OH" OH OHT OH
KW:/O /o {AZZW(‘Ty % x ay + Ay 70l+ 66 ox 3X}dydx

b
+ / {klgHH|,—o + k), H"H|,—, }dy + / {ki'oH’Hl.v:
MG

o+ K HTH],, s

K, =0
ar oH" OH 8H7 oH oH' oH OH" OH

Ky = /0 /0 {BIZ oy ox B0y + mWEJr 66 Ww}d‘dx
“rt OH" OH OH' OH OH' oH OH' OH

K, = 4 /0 {BZZWJE+B2GT}’§+ Z(’Wﬁier 6 ox Ox }dyi‘(
“rt OH" OH OH" OH oH" oH OH' OH

K., = ./0 /0 {AMT\)F}/ +A45W5+A45W5+A55 % Ox }d‘/d*

s
| KB B + KB /0 {koRT M, + K HTH,, fax

n
ar oH" oH"
K = Ais—H+A dydx
/0 /} { 45 ay + Ass —— o }}
“r oH" oH"
Kw,»:/ / {A44 R H+A;s—— o }dydx
o Jo

oH' oH oH' 9H oH' oH

D %5 + Dis e oy + Dis Gy Jy Ox

K. = ; dydx
o Jo +Dee‘%% +AssH'H

b a
+ / {K\HTH|, o+ KB H,_ by + / { KoM |, + K3 HTH], bax
Jo 0 °

oH” ()H OH" OH OH” OH

“ P DG+ Die 55 + Das 5y

K, = dydx
0 +Des d‘{ o +AsH'H

ra b [ Dy %Gl 4 Dy :L/erDzeﬂ‘@
K, — / / ox dy ox dydx
0 Jo | +Des 01-1{ My AuHTH

b a
+ / {KH H|,— + K, H"H| ., }dy + / {KQ‘(,H"HL.,U K, H"H‘r,,}dx
JO 0

a rb
M, =M, =M,, = / / ToH Hydx
0 0

a b
M, =M,, = / / I H Hdydx
0 Jo

a b
M, =M, = / / LH"Hdydx
Jo Jo

(2.88)
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G is a column vector which contains, in an appropriate order, the unknown
expansion coefficients that appear in the series expansions, namely:

G = [G",G",G",G", " (2.89)

where G”, G*, G, G* and G’ are given in Eq. (2.79). Obviously, the natural
frequencies and eigenvectors can be easily obtained by solving a standard matrix
eigenproblem. Once the coefficient eigenvector G is determined for a given fre-
quency, the displacements of the plate can be determined by substituting the
coefficients into Egs. (2.57) and (2.58).

The modified Fourier series solution procedure derived herein is focused on
rectangular plates, it can readily be used for other laminated structures, such as
beams, cylindrical shells, conical shells, spherical shells and shallow shell, see
Chaps. 3-8.
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