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Robust Control for Constant Thrust
Rendezvous

Yongqiang Qi and Minghui Ou

Abstract In this paper, a robust orbit design approach under constant thrust is
proposed based on the relative motion dynamic model. First, the design problem is
cast into a convex optimization problem by introducing a Lyapunov function
subject to linear matrix inequalities. Next, the robust controllers satisfying the
requirements can be designed by solving this optimization problem. At last, the
proposed method has the advantage of saving fuel is proved and the actual constant
thrust switch control laws are obtained through the isochronous interpolation
method, an illustrative example is provided to show the effectiveness of the pro-
posed control design method.
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2.1 Introduction

New challenges arise from the International Space Station (ISS) and the numerous
formation flight projects [1, 2]. The close range rendezvous phase is usually divided
into two subphases: a preparatory phase leading to the final approach corridor and a
final approach phase leading to the mating conditions. The objectives of the close
range rendezvous phase are the reduction of the range to the target and the
achievement of conditions allowing the acquisition of the final approach corridor
[3]. This means that at the end of this phase the chaser is, concerning position,
velocity, attitude, and angular rates, ready to start the final approach on the proper
approach axis within the constraints of the safety corridor [4, 5].

The rendezvous problem has been extensively studied as an optimal control
problem [3, 6]. Both impulsive thrust and the continuous thrust assumptions have
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been exploited through the Pontryagin’s maximum principle, respectively. In actual
practice, maneuver during rendezvous and docking operations cannot normally be
considered as continuous thrust or impulsive maneuver. In our previous study,
constant thrust fuel-optimal control for spacecraft rendezvous was studied
according to the C-W equations and the analytical solutions. But the traditional
open-loop control method used in our previous studies is not applicable while they
are often utilized during the long-distance navigation process. To overcome this
problem, a robust closed-loop control law for constant thrust rendezvous to enhance
the orbital control accuracy is proposed in this paper. And the fuel consumption of
constant thrust is less than that of the continuous thrust by using the method
proposed in this paper.

2.2 Multiobjective Robust Controller Design

The relative motion coordinate system can be established as follows: first, the target
spacecraft is assumed as a rigid body and in a circular orbit, and the relative motion
can be described by Clohessy-Wiltshire equations. Then, the centroid of the target
spacecraft OT is selected as the origin of coordinate, the x-axis is opposite to the
target spacecraft motion, the y-axis is from the center of the earth to the target
spacecraft, and the z-axis is determined by the right-handed rule.

€x� 2x _y ¼ Fx þ gx
m

€yþ 2x _x� 3x2y ¼ Fy þ gy
m

€zþ x2z ¼ Fz þ gz
m

8><
>: ð2:1Þ

where x represents the angular velocity. Fx;Fy;Fz represent the vacuum thrust of
the chaser, gx; gy; gz represent the sum of the perturbation and nonlinear factors in
the three axes, respectively. m represents the mass of the chaser at the beginning of

the rendezvous. Suppose that the maximum thrusts are F
_

x;F
_

y;F
_

z and the theoretical
thrusts are F�

x ;F
�
y ;F

�
z . The range of the thrust angle in the x-axis hx is defined as

shown in Fig. 2.1.
The goal of the rendezvous maneuver is to design a proper controller for the

chaser, such that the chaser can be asymptotically maneuvered to the target posi-
tion. Define the state error vector xeðtÞ ¼ xðtÞ � xtðtÞ, and its state equation can be
obtained as

_xeðtÞ ¼ ðA1 þ DAÞxeðtÞ þ ðB1 þ DBÞuðtÞ
uðtÞ ¼ KxeðtÞ

�
ð2:2Þ
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Lyapunov function is defined as follows:

V ¼ xTe ðtÞPxeðtÞ ð2:3Þ

where P is a positive definite symmetric matrix. According to the system stability
theory, the necessary and sufficient conditions for robust stability of the system
(2.3) are as follow:

ATPþ PA\0 ð2:4Þ

Then a multiobjective controller design strategy is proposed by translating a
multiobjective controller design problem into a convex optimization problem. And
the control input constraints can be met simultaneously. Assuming the initial
conditions satisfy the following inequality, where q is a given positive constant.

xTð0ÞPxð0Þ\q ð2:5Þ

Theorem 2.1 If there exist a corresponding dimension of the matrix L, a symmetric
positive definite matrix X, and two parameters e1 [ 0; e2 [ 0, then the sufficient
condition for robust stability is there exist a state feedback controller K which can
meet the following conditions simultaneously.

R X L
X �e1 0
LT 0 �e2

0
@

1
A\ 0; qI xTð0Þ

xð0Þ X

� �
\ 0; ð2:6Þ

where R ¼ XAT
0 þ A0X þ LTB0 þ B0Lþ e1a2I þ e2b

2I, then the theoretical state
feedback controller K can be calculated as follows:

Fig. 2.1 Variable thrust
angle thrusters
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K ¼ LX�1 ¼ K11 K12 K13 K14

K21 K22 K23 K24

� �
ð2:7Þ

Then the following results can be obtained.

Lx
Nx

F̂x cos hx þ Ly
Ny

F̂y sin hy ¼ k11xeðtÞ þ k12yeðtÞ þ k13DVx þ k14DVy

Lx
Nx

F̂x sin hx þ Ly
Ny

F̂y cos hy ¼ k21xeðtÞ þ k22yeðtÞ þ k23DVx þ k24DVy

8>><
>>: ð2:8Þ

Then the thrust angle control lows hx; hy which satisfy the robust stability of the in
plane motion can be obtained from Eq. (2.8).

2.3 Compare Fuel Consumption and Calculate
the Control Law

Constant thrust fitting is proposed by using the impulse compensation method as
follow. Suppose that the thrusters in the z-axis can provide different sizes of con-
stant thrust to meet different thrust requirements. If the theoretical working time of
z-axis thruster in the ith thrust arc t�z ¼ DT\Ti and t�z can be any one of Mi shortest
switching time interval in the ith thrust arc. Without loss of generality, suppose that
t�z is the first shortest switching time interval and the impulse error in the z-axis in
the ith thrust arc DIzi can be calculated as follows:

There are Nz þ 1 thrust levels that can be selected and the level of the constant
thrust can be calculated as follows:

Lz ¼
Nz
R TiþDT
Ti

F�
z ðtÞ

�� ��dt
F̂zDT

" #
ð2:9Þ

Calculate the impulse error.

DIzi ¼ sgnðF�
z ðtÞÞ

ZTiiþDT

Ti

F�
x ðtÞ

�� ��dt � LzF̂zDT
Nz

�������
������� ð2:10Þ

Determine the value of the impulse compensation threshold. Suppose that the
value of the impulse compensation threshold is a positive constant c[ 0, if the
impulse error DIzi satisfies the following condition,
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ZTiiþDT

Ti

F�
x tð Þ�� ��dt � F̂zDT

Nz

Nz
R TiþDT
Ti

F�
z tð Þ�� ��

F̂zDT

" #�������
�������� c ð2:11Þ

the actual constant thrust of the chaser in the z-axis can be calculated as follows:

Fz ¼ sgnðF�
z ðtÞÞ

F̂zDT
Nz

Nz
R TþDTi
Ti

F̂�
z ðtÞ

�� ��dt
F̂zDT

" #
ð2:12Þ

then the chaser will not carry out impulse compensation. The fuel savings in the x-
axis in the ith thrust arc can be calculated as follows:

DPzi ¼
XM1

j¼0

ZTiþðjþ1ÞDT

TiþjDT

p0Nz F�
z ðtÞ

�� ��
F̂z

� sgnðF�
z ðtÞÞp0

Nz
R Tþðjþ1ÞDT
TiþjDT F̂�

z ðtÞ
�� ��dt

F̂zDT

" #( )
dt

ð2:13Þ

Then the total number of the accelerating time intervals and the decelerating time
intervals is M1 � m1 and the number of zero-thrust time intervals is M1 �M1 þ m1.
The position of the three types of time intervals is decided by the curve of the
theoretical continuous thrust.

At last, the switch control laws for the rendezvous maneuver can be given in
three axes. For convenience, let us take the time intervals in the ith thrust arc in the
x-axis for example:

Szi ¼ Ti þ jDT ; sgnðF�
z ðtÞÞ

F̂zDT
Nz

Nz
R Tþðjþ1ÞDT
TiþjDT F̂�

z ðtÞ
�� ��dt

F̂zDT

" # !( )
ð2:14Þ

2.4 Simulation Example

The height of target spacecraft is assumed to be 356 km in a circular orbit, then the
mean angular velocity is x ¼ 0:0654� 10�3 rad/s and the uncertainty parameters
is assumed as Dx ¼ �1� 10�3 rad/s. The initial mass of the chaser is assumed to
be 300 kg at the beginning of rendezvouse maneuver. The size of thrusts are
assumed to be �3,000 N in three axes and the shortest switching time is DT ¼ 1 s.
The initial position and velocity of the chaser are assumed to be (2000, 100,
−500 m) and (−20, 10, 5 m/s). Suppose that the thrusters in three axes can provide
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10 different sizes of constant thrust. Suppose that the value of the impulse com-
pensation threshold is a positive constant c ¼ 300 Ns.

Figure 2.2 shows the change of x, y, and z during rendezvous maneuver.
The results in Fig. 2.3 show the change of Vx;Vy;Vz during rendezvous

maneuver.
The results in Fig. 2.4 show the change of Fx;Fy;Fz during rendezvouse

maneuver.
The results in Fig. 2.5 show the change of Fz during rendezvous maneuver.

Fig. 2.2 The change of
position during rendezvous
maneuver

Fig. 2.3 The change of
velocity during rendezvous
maneuver

Fig. 2.4 The change of thrust
during rendezvous maneuver
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The result in Fig. 2.6 shows the trajectory of chaser during rendezvous
maneuver. It shows that with the switch control control, the chaser can get to the 27
target positions smoothly. The solid lines represent the curves caused by theoretical
thrust and the dotted lines represent the curves caused by constant thrust.

The fuel savings in the x-axis in the ith thrust arc can be calculated as follows:

DPzi ¼
X27
i¼1

X3
j¼1

ZTiþj

Ti

F�
z ðtÞ

�� ��
30

� 10sgnðF�
z ðtÞÞ

Nz
RTþj

Ti

F̂�
z ðtÞ

�� ��dt
300

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
dt ¼ 19:9158g

ð2:15Þ

At last, the switch control laws for the ith thrust arc in the z-axis for example:

Szi ¼ f1;000 m;�10 m/s; ð1 s; 1;800 NÞ; . . .ð77 s;�300 NÞ; . . .g ð2:16Þ
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Fig. 2.5 The constant thrust fitting of Fx during rendezvous maneuver

Fig. 2.6 The trajectory of the chaser during rendezvouse maneuver
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