Chapter 2

Multi-population and Self-adaptive
Genetic Algorithm Based on Simulated
Annealing for Permutation Flow Shop
Scheduling Problem

Huimin Sun, Jingwei Yu and Hailong Wang

Abstract In order to solve the permutation flow shop scheduling problem, a multi-
population and self-adaptive genetic algorithm based on simulated annealing is
proposed in this paper. For the precocity problem of traditional genetic algorithm,
the multi-population coevolution strategy is adopted. We introduce a squared term
to improve traditional self-adaptive genetic operators, which can increase the
searching efficiency and avoid getting into local optimum. A new cooling strategy
is proposed to reinforce the ability of overall searching optimal solution. The
algorithm is used to solve a series of typical Benchmark problems. Moreover, the
results are compared with SGA, IGA, and GASA. The comparison demonstrates
the effectiveness of the algorithm.

Keywords Permutation flow shop scheduling problem - Multi-population -
Self-adaptive - Simulated annealing - Genetic algorithm

2.1 Introduction

Flow Shop Scheduling Problem (FSSP) aims at minimizing the completion time/
makespan (or other criterion) for cases where n jobs are executed through
m machines. It is the simplified model of many modern factory pipeline production
scheduling problems and has extensive application both in the integrated manu-
facturing industry and in the processing industry. The FSSP has been extensively
investigated in the last several decades [1], since first proposed by Johnson [2].

H. Sun (X)) - J. Yu - H. Wang

School of Astronautics Institution, Harbin Institute of Technology,
Aviation University of Air Force, Changchun, 92 West Dazhi Street,
Nan Gang District, Harbin 150001, China

e-mail: sunminggehuimin@163.com

© Springer-Verlag Berlin Heidelberg 2015 11
Z. Deng and H. Li (eds.), Proceedings of the 2015 Chinese Intelligent

Automation Conference, Lecture Notes in Electrical Engineering 338,

DOI 10.1007/978-3-662-46466-3_2

12 H. Sun et al.

Permutation Flow Shop Scheduling Problem (PFSSP), with all machines
processing their jobs following an identical route, is a special case of FSSP. It also
belongs to an extremely complex and difficult combinational optimization problem.
In the existing literature [3], the PESSP has proved to be an NP-hard problem and is
quite difficult to be solved. Therefore, it has important theoretical and practical
significance to develop and study efficient algorithm.

A lot of algorithms have been proposed to solve the PFSSP with some certain
optimum criterion (e.g., makespan). The computational intelligence algorithms
have become a hot research topic such as ant colony algorithm [4], genetic algo-
rithm (GA) [5], etc. All of them have better performance than traditional algorithms
(e.g., dynamic programming, etc.).

In this paper, we propose multi-population and self-adaptive genetic algorithm
based on simulated annealing (MSGASA). We adopt multi-population coevolution
strategy to solve the precocity problem. We introduce a squared term to improve
traditional self-adaptive genetic operators in order to increase the searching efficiency
and avoid getting into local optimum. We proposed a new cooling strategy to reinforce
the ability of overall searching optimal solution. A series of typical benchmark prob-
lems have been solved using the proposed algorithm and the results have been com-
pared with simple GA (SGA), an improved GA (IGA) [6] and GA based on simulated
annealing (GASA) [7]. The comparisons show the effectiveness of proposed algorithm.

2.2 Description of Permutation Flow Shop
Scheduling Problem

2.2.1 Assumptions

In order to establish the mathematical model for PFFSP, the following assumptions
are given at first.

e All jobs are processed by all machines in the same order.

e Each job is processed by each machine once.

e FEach machine can process one job and each job can be processed by one
machine at the same time.

e The processing time for each job in each machine is known in advance.

e There is no breakdown or interruption in the process.

2.2.2 Mathematical Model

There is a set of n jobs (1, 2, ... n) to process in a set of m machines (1, 2, ... m) in
the same order. Let #;; 1=1,2, 3, ... n;j=1,2, 3, ... m) donates the processing time
of job i on machine j. T(i, j) (=1, 2,3, ... n;j= 1,2, 3, ... m) is the completion

2 Multi-population and Self-adaptive Genetic Algorithm ... 13

time of job i on machine j. Therefore, the mathematical model of PFSSP can be
written as

T(lﬂ 1) = lla
T(l,]): (1)+11j; (]':2,3,...}71) (2 1)
TE,1)=T>G—-1,1)+1t1; (i=2,3,...n) '
T(i,j) =max{T(i—1,)),T(i,j — 1) +t;}; (i=2,3,...n;j=2,3,...m)
The total completion time/makespan is Ciax

Ciax = T(n,m) (2.2)

In this paper, the optimization goal is to minimize the makespan Ci,.x.

2.3 Multi-population and Self-adaptive Genetic Algorithm
Based on Simulated Annealing

In this section, we will introduce the multi-population coevolution strategy,
improved self-adaptive genetic operators, and simulated annealing cooling strategy.

2.3.1 Multi-population Coevolution Algorithm

The traditional GA has a single population searching through the whole search
space. Research shows that multi-population GA has excellent performance with
solving the precocity problem of the GA [8]. In this paper, we adopt the multi-
population coevolution algorithm to take the place of the single population. The
process of multi-population coevolution strategy is shown in Fig. 2.1.

Suppose there are P independent subpopulations and each subpopulation
evolves Q generations independently. Then populations migrate once with the effect
of immigration operator, namely the worst individuals in a population will be
replaced by the best individual in another population. The order of migration can be
expressed as: 1 — 2,2 — 3, ..., P — 1. After migration, we select the best
individual from each subpopulation artificially as the quintessence population.

2.3.2 Self-adaptive Crossover and Mutation Operators

In this paper, the linear order crossover method and multi-point exchange mutation
are adopted respectively. The population crossover and mutate according to their

14

H. Sun et al.

|

Immigration operator Immigration operator --1] Immigration operator
I I S ! .
: ‘ o ‘ aon
1 st 2 st i_) e L_» P st sulé—\ﬁgsglgtloni
subpopulation subpopulation subpopulation generations |
independently :
]]]

| Artificial selection | ’ Atrtificial selection ‘ Atrtificial selection

— l

Quintessence population

Fig. 2.1 Process of multi-population coevolution strategy

corresponding probability P, and P,,. The selected values of crossover and mutation
probabilities will greatly affect the quality of solution of the algorithm and the
convergence rate. In order to improve the searching efficiency and avoid getting
into local optimum, the cosine self-adaptive GA algorithm [9] adopts the following
crossover probability P. and mutation probability P,,.

]_cffavg

P max+Pe min Pemax—Pe min F

P, = yem o (Femegmenn) cos((7 2 m) Jj 2 fave (2.3)
Pcmax f < f;lvg
PumactPunin 4 (Pums —Pamin) cog((Sty) f > f,

P, = 2 2 s —~Fuve = Javg (2.4)

f <ﬁivg

P mmax

Inspired by the idea of Shi Shan, we introduce a squared term to improve self-
adaptive genetic operators in genetic algorithms as shown in Egs. (2.5) and (2.6).

) -
Pemax+Pemin _ . Max__gen Sf—fave ra
e 2 o (PL' max PC mm) (Count_opt+k 1) cos <(fmax *favg)ﬂ: f Z fe‘ivg

P.= (2.5)
C k1 T
Pcmax - (P(max - Pcmin) X (%) f > ﬁivg
2
' max P min M Sty
% - (Pmmax - Pmmin) <Coun£:):-0§?ik2) COS((fﬂﬂ,fig)“) f 2 ﬁlvg
Py = - (26)

Pmmax - (Pmmax - Pmmin) X (%)2 f <f;1vg

where P, i, and P, . are the lower and upper limits of crossover probability respec-
tively;]_‘ is the larger fitness of two crossover individuals; f donates the fitness of
mutating individuals. f,y, is the average fitness of population; fax is the maximum
fitness of population; P,, mi, and P,, nax are the lower and upper limits of mutation
probability; Max_gen donates the generation number of optimal value keeping on;

2 Multi-population and Self-adaptive Genetic Algorithm ... 15

Count_opt is the optimal value counter; k1 and k2 are constant which are less than
Max_gen, which is used to adjust the P, and P,,.

In the initial phase of algorithm, the value of Count_opt is very small. In this
condition: Max_gen > Count_opt + k1(k2). It can be obtained that:

Count__opt+k1(k2)

2
C k1(k2
H, = (OUﬂ;A_aiP_t;n()> <1

Hl — (Max__gen)2 > 1
(2.7)

The H, is strengthening factor and H, is weakening factor. For those individuals
(f, f < fuv), the value of P, and P,, will be larger, and more poor individuals will
involve in crossover and mutation. That will increase the diversity of population.

In the late period of algorithm, the value of Count_opt will increase gradually.
In this case: Max_gen < Count_opt + k1(k2). We can obtain that:

Count__opt+k1(k2)

2
__ (Count__opt+kl1(k2)
H2 - (Max__gen > 1

H1 — (Max__gen)2 <1
(2.8)

The H, is weakening factor and H, is strengthening factor. For those individuals
(f, f > fuy), the P. and P,, will be larger, more good individuals will involve in
crossover and mutation. That will increase the probability of the best individuals.

2.3.3 Simulated Annealing Cooling Strategy

Simulated Annealing (SA) was proposed by Metropolis et al. [10] and Scott
Kirkpatrick et al. in 1983 [11]. Combined with simulated annealing mechanism, the
genetic algorithm will reinforce the ability of overall searching optimal solution.
In order to improve the ability of the sudden jump, we adopt formula (2.9) as
cooling strategy.

q
__ (Count__opt+p
Tyan = (w) X Tstart (2.9)

Selecting the appropriate p value, we can get that: when (Count_opt + p <
Max_gen), it is a cooling process. When (Count_opt + p<Max_gen), it is heating
process. Formula (2.9) has the ability to dynamically adjust the temperature
changing. To some extent, it improves traditional monotony of sudden jump
probability.

16

Ve

-

~N

Initialize the parameter of algorithm

J

v

Initialize Num_sub sub-populations

e

H. Sun et al.

Count_opt<=Max_gen

Yes

Output optimization result

Calculate objective
function and fitness value

v

Select operation

v

Crossover with probability Pc

v

Mutate with probability Pc

v

Evolve inversion

v

Reinsert operation

Yes

Count_evo < =Num_evo

Population migrate

v

Manually select elite populations

Each sub-populations
evolve Num_evo
generation lonely

No
Yes
Count_opt=Count_opt+1 Count_opt=0
€ T
v

Count_opt + p
Ty = (———————
Max _gen

star

VX T

Fig. 2.2 Flowchart of algorithm

2 Multi-population and Self-adaptive Genetic Algorithm ... 17

2.3.4 Realization of Algorithm

The procedure of the MSGASA for PFFSP is as follows:

Step 1. Initialize the parameter of algorithm.

Step 2. Generate subpopulations; initialize the generation number of optimal
values keeping on; set the optimal value counter.

Step 3. Set the independent evolution generation counter.

Step 4. For each subpopulations, make the following operation (1-7), until
generate Num_sub new population.

(1) Calculate objective function value;

(2) Select L individuals according to Roulette rule;

(3) For L individuals selected in (2.2), make crossover with self-adaptive
crossover probability P, (calculated in formula (2.5));

(4) Make mutate with self-adaptive mutation probability P,,.

(5) Evolve inversion: keep the high fitness value individuals;

(6) Reinsert: choose the optimum individuals from offspring and parent
populations;

(7) If Count_evo < Num_evo, turn to Step 4; if not, turn to Step 5;

Step 5. Populations migrate.

Step 6. Artificially select the quintessence population.

Step 7. Change the annealing temperature in accordance with the formula (2.9).

Step 8. If Count_opt <=Max_gen, return to Step 3; if not, output the optimization
result.

The flowchart of algorithm is shown in Fig. 2.2.

2.4 Experimental Results and Comparisons

To test the performance of MAGASA, some benchmark problems [12] have been
solved. The parameters of MAGASA are set as in Table 2.1.

In order to evaluate the performance of the performance of the MAGASA, the
best relative error (BRE) and average relative error (ARE) are adopted. They are
calculated using the following formulae:

— Cheu=C~
{BRE(%) = St 100 % 2.10)
ARE(%) = —=&— x 100 %

where C* = Lower bound makespan; Cye; = Makespan obtained using algorithm;
Cavg = Average makespan obtained (20 times experiments)
The comparisons of SGA, IGA, GASA, and MAGASA are listed in Table 2.2.

18 H. Sun et al.

Table 2.1 Parameters of MAGASA

Parameter Value Parameter Value

P, ax 0.9 Num_ind 100

P min 0.6 k1 10

Py max 0.2 k2 10

P, min 0.05 p 12

Num_sub 4 Tstart 1000

Max_gen 30 q 0.8

Num_evo 20

Table 2.2 Comparisons of SGA, IGA, GASA, and MAGASA

Problem ,,+,, SGA IGA GASA MAGASA
BRE ARE BRE ARE BRE ARE BRE ARE

Carl 11#5 0 0 0 0 0 0 0 0

Car2 13*4 0 0 0 0 0 0 0 0

Car3 12%5 0 0 0 0 0 0 0 0

Car4 14*4 0 0 0 0 0 0 0 0

Car5 10*6 0 0 0 0 0 0 0 0

Car6 8%9 0 0 0 0 0 0 0 0

Car7 7*7 0 0 0 0 0 0 0 0

Car8 8%8 0 0 0 0 0 0 0 0

Rec3 20%5 0 0.01 0 0 0 0.1 0 0

Rec7 20*10 0 0.4 0 0.34 0 0.27 0 0.06

Recl3 20*15 0.52 1.39 0.41 0.87 0.31 0.67 0 0.16

Recl19 30*10 0.91 1.7 0.67 1.09 0.38 1.07 0.14 0.34

Rec25 30*15 1.91 3.45 1.03 2.28 0.84 1.28 0.4 0.57

It can be observed that: with the problem of Car class (Carl—Car8), all the four
algorithms have excellent performance in global searching and stability. With the
problem of Rec class (RecO1-Rec25), the BRE and ARE obtained by MAGASA
are less than those obtained by SGA, IGA, and GASA.

2.5 Conclusions

In this work, for the permutation flow shop scheduling problem, we proposed a
multi-population and self-adaptive genetic algorithm based on simulated annealing.
We improve traditional self-adaptive genetic operators by introducing the squared
term. We propose a new cooling strategy to reinforce the ability of overall searching
optimal solution. Experimental results show that the proposed algorithm has better
performance compared with other existing heuristics.

2 Multi-population and Self-adaptive Genetic Algorithm ... 19

References

10.

11.

12.

. Ribas I, Leisten R, Framifian JM (2010) Review and classification of hybrid flow shop

scheduling problems from a production system and a solutions procedure perspective. Comput
Oper Res 37(8):1439-1454

. Johnson SM (1954) Optimal two-and three-stage production schedules with set up times

included. Naval Res Logist Q 1:61-68

. Brucker P (2007) Scheduling algorithm, 5th edn. Springer, Berlin
. Fardin A (2012) A new ant colony algorithm for makespan minimization in permutation flow

shops. Comput Ind Eng 63(2):355-361

. Zhang Y, Liao XP, Wang Q (2009) Hybrid genetic algorithm for permutation flowshop

scheduling problems with total flowtime minimization. Eur J Oper Res 196(3):869-876

. Rajkumar R, Shahabudeen P (2009) An improved genetic algorithm for the flowshop

scheduling problem. Int J Prod Res 47(1):233-249

. Wang L (2003) Intelligent optimization algorithm and application. Tsinghua University Press,

Beijing

. Huang M, Liu P, Xu L (2010) An improved multi-population genetic algorithm for job shop

scheduling problem. In: Proceedings of the 2010 IEEE international conference on progress in
informatics and computing, PIC 2010, vol 1, pp 272-275

. Shi S, Li Q, Wang X (2002) Design optimization of brushless direct current motor based on

adaptive genetic algorithm. J Xi’an Jiaotong Univ 36(12):1215-1218

Metropolis N, Rosenbluth A et al (1953) Equation of state calculations by fast computing
machines. J Chem Phys 56(21):1087-1092

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(11):650-671

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(N.2):
278-285

2 Springer
http://www.springer.com/978-3-662-46465-6

Proceedings of the 2015 Chinese Intelligent
Automation Conference

Intelligent Technology and Systems

Deng, Z.; Li, H. (Eds.)

2015, X, 599 p. 218 illus., Hardcowver

ISEN: 978-3-662-46465-6

	2 Multi-population and Self-adaptive Genetic Algorithm Based on Simulated Annealing for Permutation Flow Shop Scheduling Problem
	Abstract
	2.1 Introduction
	2.2 Description of Permutation Flow Shop Scheduling Problem
	2.2.1 Assumptions
	2.2.2 Mathematical Model

	2.3 Multi-population and Self-adaptive Genetic Algorithm Based on Simulated Annealing
	2.3.1 Multi-population Coevolution Algorithm
	2.3.2 Self-adaptive Crossover and Mutation Operators
	2.3.3 Simulated Annealing Cooling Strategy
	2.3.4 Realization of Algorithm

	2.4 Experimental Results and Comparisons
	2.5 Conclusions
	References

