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Abstract. The expansion of the Web and of our capacity of producing
and storing information have had a profound impact on the way we orga-
nize, manipulate and share data. We have seen an increased specialization
of database back-ends and data models to respond to modern application
needs: text indexing engines organize unstructured data, standards and
models were created to support the Semantic Web, Big Data require-
ments stimulated an explosion of data representation and manipulation
models. This complex and heterogeneous environment demands unified
strategies that enable data integration and, especially, cross-application,
expressive querying.

Here we present a new approach for the integration of structured
and unstructured data within organizations. Our solution is based on
the Complex Data Management System (CDMS), a system being devel-
oped to handle data typical of complex networks. The CDMS enables a
relationship-centric interaction with data that brings many advantages
to the institutional data integration scenario, allowing applications to
rely on common models for data querying and manipulation.

In our framework, diverse data models are integrated in a unifying
RDF graph. A novel query model allows the combination of concepts from
information retrieval, databases, and complex networks into a declarative
query language that extends SPARQL. This query language enables flex-
ible correlation queries over the unified data, enabling support for a wide
range of applications such as CMSs, recommendation systems, social net-
works, etc. We also introduce Mappers, a data management mechanism
that simplifies the integration of heterogeneous data and that is integrated
in the query language for further flexibility. Experimental results from real
data demonstrate the viability of our approach.

Keywords: Query model integration · Data integration · DB/IR
Integration · Graph data models · Graph query languages · Complex
data

1 Introduction

Digital data availability has grown to unprecedented levels and surpassed our
capacity of storage and analysis. This has led to the Big Data and NoSQL
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movements, aiming at tackling the increasing demands for scalability. A parallel
development regards the proportional increase in data complexity. Capturing
and processing greater amounts of data produces information that is correlated
in diverse and intricate ways. Furthermore, recent developments in processing
power, modeling, and algorithms enable the implementation of systems that
better explore the increased complexity of data. All these factors influenced and
enabled the dissemination of social networks and initiatives like the Linked Open
Data1.

Realizing the potential of the relationships inside the interconnected data
and developing the means for their analysis fueled the development of the areas
of complex networks [11] and link mining [14]. Related techniques have been
applied in several scenarios, such as systems biology, neuroscience, communica-
tion, transportation, power grids, and economics [10].

In this article we aim to show how the focus on relationship analysis is impor-
tant for institutional data and applications. Assessing properties of how data
is correlated is the basis for several tasks, such as document retrieval, item
recommendation and entity classification. We, therefore, advocate the vision
that institutional data can be seen as a big complex network and, most impor-
tantly, several modern and commonplace applications can be specified in terms
of link analysis tasks. A unified, relationship-centric framework for data and
applications can enable a new level of integration, encompassing data from
diverse sources (e.g. structured and unstructured) and applications (e.g. informa-
tion retrieval, machine learning, data mining). This application-level integration
allows developers to rely on common models for data interaction, simplifying
development of applications with information needs that span multiple querying
paradigms.

Institutional data and applications have, however, several requirements that
make it hard to apply link mining techniques directly. The size of the data, its
dynamic nature, and heterogeneity are not considered in traditional approaches.
The focus of complex network techniques is typically on homogeneous networks
with a single type of relationship (e.g. social networks), employing off-line algo-
rithms to assess snapshots of the data. Modern applications, on the other hand,
favor online access to subsets of the data, and must handle data heterogeneity
seamlessly.

Here we introduce the Complex Data Management System (CDMS), which
aims at providing query-based interaction for complex data. The proposed query
model allows users to specify information needs related to the topology of the
correlations among data. It also offers management mechanisms that are more
adequate to the increased importance of the relationships in the data.

The increased expressiveness in the new framework provides a better match
to the requirements in the described institutional settings. The online query
mechanism allows the composition of queries that explore diverse aspects of how
data is correlated. This not only allows the same query model to be used in
diverse application scenarios, but also allows queries that encompass concepts

1 http://www.w3.org/standards/semanticweb/data.

http://www.w3.org/standards/semanticweb/data.
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from multiple paradigms and data sources, such as in queries like “retrieve docu-
ments related to the keyword query ‘US elections’ and the topic politics, written
by democrat journalists, ranked by relevance to the keyword query and reputa-
tion of the author”.

To enable this type of interaction, the underlying institutional data must
be integrated. Here we describe how we are fostering web standards to enable
the required integration. Once the data is integrated, the CDMS is used to
provide the proposed querying infrastructure. To tackle the integration of data
models, we employ an RDF graph that interconnects data from diverse sources
and models. The flexibility of graph models allows easy mapping from otherwise
incompatible models (e.g. unstructured text and structured databases). Figure 1
contextualizes the elements in our proposal: several data sources are integrated
in a unifying graph, which allows our framework to enable a more expressive
interaction between users and data.

Fig. 1. Architecture of a CDMS deployed in a data integration scenario

As for integration at the query and application level, we acknowledge the
importance of the Information Retrieval (IR) and Databases (DB) fields – which
dominate data-driven applications in current settings – and describe how our new
query model, which leverages complex network analysis, unifies concepts from
these areas. To enable our query model over the unifying graph, we reinterpret
querying concepts from diverse areas into graph analysis tasks. We implement
this model in a new query language called in* (in star), which is an extension
grammar for existing languages such as SPARQL.
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We also address architectural issues related to the integration process, intro-
ducing the concept of mappers, which aim at simplifying relationship manage-
ment. Mappers are similar to stored procedures in databases, triggered when
nodes are created to carry customized tasks such as adding appropriate rela-
tionships or even other new nodes. Our mappers are integrated in the query
model for further flexibility.

We aim at contributing towards a more unified and expressive interaction
between users and data through this relationship-centric querying and data man-
agement framework. Experiments with real data are presented to demonstrate
the expressiveness and practicability of our framework.

This paper is organized as follows: Section 2 discusses the new challenges
for the current heterogeneous technological landscape. Section 3 introduces the
Complex Data Management System, which is the basis for our integration app-
roach. Section 4 describes the requirements for data access and model integration
in our framework as well as issues related to query model integration, a funda-
mental concept in our proposal. Section 5 details our integrated query model and
discusses usage scenarios. Section 6 introduces related data management issues
and describes our mapper mechanism. Section 7 demonstrates experiments for
our query language and the use of mappers in scenarios based on a large and
interlinked database of movies. Section 8 contextualizes related work in respect
to our proposal. Finally, Sect. 9 concludes the paper.

2 New Challenges for Institutional Data and Application
Integration

The new scenario of overwhelming accumulation of information has a profound
impact on the way we organize and manipulate data. We have seen an increased
specialization of database back-ends and data models to respond to modern
application needs: text indexing engines organize data on the Web, standards and
models were created to support the Semantic Web, Big Data requirements stimu-
lated an explosion of data representation and manipulation models labeled under
the NoSQL umbrella. This complex and heterogeneous environment demands
unified strategies that enable data integration and, more importantly, cross-
application, expressive querying.

Although data integration has been an active research topic for many decades,
most proposals depart from environments that do not take into account the
modern diversity of technological infrastructures. Federated databases, for exam-
ple, usually adopt the relational model to integrate data sources, with limited
capabilities when dealing with semi or unstructured data. Similarly, in typical
OLAP implementations, the benefits of integration are restricted by the adopted
query model: data analysts may answer complex questions, but there is no direct
benefit to other applications inside the institution. For example, Web develop-
ers cannot leverage the potential of the integration in their implementations of
recommendation systems because they typically work on very different query
models. Similar issues also appear in other contexts, such as the Semantic Web,
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which brings great benefits for data integration but querying capabilities do not
match the diversity of Web applications.

A level of integration that covers a wide range of data models and, more
importantly, data query models would not only allow applications to incorporate
more relevant information, but would also allow more expressive queries that
combine elements from different querying paradigms. For example, consider the
following queries:

– retrieve documents related to the keyword query “US elections” and the topic
politics, written by democrat journalists, ranked by relevance to the keyword
query and reputation of the author;

– retrieve employees relevant to a given project ranked by their reputation
among peers;

– retrieve profiles of people over 30 years old, ranked by similarity of hobbies on
their profiles to hobbies on my own;

– retrieve products not yet purchased by the client Bob that are relevant to him.

These queries cover a broad range of data models (e.g. unstructured docu-
ments, relational, graph) and applications (CMSs, social networks, recommen-
dation systems). The queries also combine concepts from diverse query models,
such as relational predicates, keywords, ranking, and metrics of relevance and
reputation. These and similar queries show up in many situations in typical
institutions, both for internal, administrative purposes or for Web applications
developed for external use. Answering these queries in current infrastructures
typically demands substantial amount of resources and engineering to design
ad-hoc subsystems.

To provide an overarching approach for querying, data model integration and
query model integration must be tackled simultaneously. Querying is especially
challenging, given the diversity of the data and the complexity of the information
needs. The central observation underlying this article is that these issues can be
mapped into complex network analysis tasks. Several tasks typically associated
with the information retrieval and machine learning fields – including document
retrieval, recommendation, and classification – draw inferences from how infor-
mation pieces are correlated. Even though the correlations are often not explicit,
it is intuitive to consider the data as a graph and notice the importance of the
relationships and the underlying topology for each task. Our hypothesis is that
an expressive query model that can capture topological properties in query time
can be used to integrate these information needs in a single conceptual frame-
work. We aim to show how the CDMS can be used in these scenarios, providing
expressive querying and data management mechanisms that are appropriate to
the heightened importance of relationships in the described scenarios.

3 Complex Data Management

The database framework used in our proposal is being developed to tackle issues
associated with Complex Networks. In a complex network [11], the patterns
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defined by the interconnections are non-trivial, deviating substantially from cases
where connections have the same probability (e.g. lattices or random graphs).
The techniques developed for complex network analysis have become important
resources in diverse fields such as systems biology, neuroscience, communication,
transportation, power grids, and economics [10]. These areas deal with complex
structures that requires specific techniques for analysis. In all cases, relationship
analysis is a major aspect for knowledge acquisition. Typically, these structures
generate emergent behavior, which are determined by the complex interactions
among their simple constituent elements.

As a result of increased capacity of data storage and processing, these scenar-
ios have come forth in other areas, such as enterprise data management, our focus
on this paper. A typical institution nowadays stores and processes many textual
documents alongside traditional structured data, communication and transac-
tion records, and fast changing data about market and competition. These data
are highly interlinked, by design or through intricate (and potentially imprecise)
data analysis procedures such as named entity recognition, sentiment analysis,
and recommendation systems.

Our CDMS is aimed at enabling querying and management of what we define
as complex data. Complex data is characterized when relationships are central
to data analysis. In these cases, the graph formed by data entities (nodes) and
relationships (links) present properties typical of complex networks. The CDMS
is aimed at providing adequate support for handling and querying complex data.
It differs from typical DBMSs in four main aspects: (i) data model, (ii) query
language, (iii) query evaluation, and (iv) data management mechanisms. Each
of these items is described below.

– Data model: The data in target CDMS applications typically do not com-
ply to pre-defined schemas. The high number and diversity of the relation-
ships require a model where relationships are first-class citizens. Graph models
are obvious choices in these settings. Their flexible modeling characteristics
enable easy mapping of most types of data. Nodes with immediate access to
neighbors is also an important feature for the type of computation involved.
The CDMS framework adopts weighted edge-labeled property multigraphs to
encode complex data. In this article, we leverage the RDF model to integrate
institutional data.

– Query language: Our CDMS query language is intended to be flexible
enough to allow correlation of data when little is known about how they are
linked and organized. We developed a declarative query language that extends
existing graph languages by introducing ranking based on a set of flexible
correlation metrics. The ranking metrics proposed are: relevance, connectiv-
ity, reputation, influence, similarity, and context. The proposed language is
designed as an extension for existing graph languages. In this article we show
how SPARQL can be extended to enable the new query model.

– Query evaluation: Our abstractions for query evaluation fully support the
query language while allowing for under-the-hood optimizations. We adopt a
variation of the spreading activation (SA) model as our main abstraction for
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query evaluation. The model allows the specification of the ranking metrics
that are the basis of our query language. The SA mechanism is based on
traversing the network from a initial set of nodes, activating new nodes until
certain stop conditions are reached. By controlling several aspects related to
this activation flow, it is possible to infer and quantify the relationships of the
initial nodes to the reached ones.

– Data management mechanisms: Relationship creation is an important
and defining operation for the described application scenarios. For exam-
ple, several text indexing tasks, such as topic modeling, derive relationships
between the text and more general concepts. In machine learning applications,
elements are associated with features or classification categories, for exam-
ple. In our framework, the creation of relationships is encapsulated in map-
pers. Mappers are very similar to stored procedures. What sets them apart are
(i) their integrated use in our ranking queries, and (ii) how they are hooked in
the databases’s API so that any new data that matches the mapping criterion
is passed through appropriate mappers.

The CDMS offers an architecture where relationships are central elements of the
database. It enables queries to tap into properties derived from topological char-
acteristics of the underlying graph. CDMS’s new query model and management
mechanisms allow for new levels of expressiveness for several tasks, simplifying
integration of data from diverse sources and allowing distinct applications to
employ the same query model over the integrated data.

4 Data and Query Model Integration

The level of integration that we aim at requires solutions to three main issues:
(i) unified data access, so that queries have access to all data, (ii) unified data
model, so that queries can reference data from diverse formats; and (iii) unified
query model, so that applications can have a single interface for interaction with
data. This level of integration allows applications to be based on the same under-
lying models to interact with data, what we call application-level integration.

4.1 The Local Unified Graph

Institutions face similar challenges to that of the Web: data produced by diverse
groups in distinct contexts must be integrated to allow for more capable and
outreaching applications. Although several research and products were devel-
oped to address these issues, we argue that revisiting this problem through the
perspective of the new developments in applications and standards of the Web
would allow for a more adequate interaction with modern institutional data.

The Semantic Web initiative has advertised the benefits of treating the
Web as an integrated Giant Global Graph (GGG) [5]. Similar benefits could
be achieved inside institutions by integrating all their data in a Large Local
Graph (LLG). A LLG lacks the diversity and magnitude of the GGG, but it
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allows higher levels of control over data and local processing power, enabling
better semantic integration among distinct data sources and more expressive
querying. Another advantage of creating LLGs is that it facilitates transference
of information to and from the GGG.

The framework proposed here assumes an underlying LLG. Although our
solutions have interesting applications also in the context of the Semantic Web,
we require levels of integration and processing power that are not currently
available for the GGG. We, therefore, focus on institutional data but expect
that in the future technological advances would allow similar interactions in a
broader context.

A LLG is meant to integrate a broad range of data from an institution.
Aggregation of external data from the GGG would also be important in many
scenarios. Integrating data across domains and models is important to allow rich
correlation queries between diverse data elements. The graph model is suiting for
this scenario. Its simplicity and flexibility allows the representation of most of the
popular data models [3,6]. Figure 2 shows a graph containing data derived from
documents and relational databases (more details on the mapping in Sect. 4.2).

Here we employ the RDF(S) model for the LLG for several reasons: it is a
stable and popular model, it implements a flexible graph model, classes facilitate
the mapping of other models (e.g. object, relational), integration with other
standards (e.g. URI, XML), standardized query language (SPARQL), simplified
data sharing, etc.

It is important to emphasize that the strategy to create the unified graph
is environment-specific. Although we provide general guidelines on how data
should be represented as nodes and edges, our framework assumes the data are
converted and interlinked in a coherent graph. What we want to show in this
paper, and our main contribution, is that popular query models can also be
translated into graph concepts, employing graph analysis in query processing.
To take full advantage of the model, users should be aware of the semantics of
the elements composing the graph. In that regard, our strategy is similar to an
OLAP environment, in which the query model assumes data are integrated in a
multidimensional schema – according to whichever strategy is adequate for the
specific environment.

4.2 Data Model Integration

There are several alternatives for mapping a given data model into graphs.
Although our framework works independently of the strategy adopted, we
provide guidelines on basic transformations of typical models.

Here we focus on the integration of text documents and the relational model.
The mapping for other models, such as semi-structured or NoSQL variations,
can be derived by similar approaches. There are several alternatives for map-
ping a relational scheme to an RDF graph [3,6]. There is even a W3C working
group2 to define standards for these mapping languages. Here, to simplify the

2 http://www.w3.org/2001/sw/rdb2rdf/.

http://www.w3.org/2001/sw/rdb2rdf/
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discussion, we assume that (i) table descriptions become RDF classes, (ii) rows
become instances of their respective tables, with their primary keys as identi-
fiers, (iii) columns become properties of the instances, with values corresponding
to literals and foreign keys becoming explicit links to other instances.

Graph representation of documents for IR purposes is also possible. An
inverted index (in the bag of words model) can be readily mapped into a graph
that connects terms and documents. More modern schemes to index documents
such as topic models [8] and explicit semantic analysis [25] also fit nicely into
this strategy, bringing the benefits of reduced dimensionality (i.e. avoiding cre-
ating an unnecessarily large graph containing entire postings list), less semantic
ambiguity, and more cognitive appeal.

In our framework, a keyword query is also represented as a (temporary)
node in the graph. The same indexing strategy used for the stored documents is
applied to generate the relationships of the query node (Fig. 2). This graph rep-
resentation of keyword queries allows them to be expressed alongside structured
predicates in the queries (Sect. 5.3).

To simplify data management in the complex integrated graphs, our frame-
work introduces mappers. Mappers play an important role in data model
integration, being the mechanism that encapsulates the creation of relationships
between elements of the graph.

Fig. 2. Data elements represented as a unified graph

Figure 2 shows a simplified example to illustrate diverse elements represented
as a unified graph. News articles about products are mapped into entities accord-
ing to mappers that implement an indexing/annotation technique (e.g. topic
modeling, named entity recognition, etc.). A keyword query is likewise mapped
into these entities, using the same mapper in query time. Relational data from
tables (Project, Employee) are also mapped into nodes in the graph and also
connected to the entities. More details on the use of mappers to bridge data
models are presented in Sect. 6.
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4.3 Query Model Integration

Data access and model integration brings many benefits to institutions, pro-
viding a unified path for interaction with data. This interaction is, however,
usually constrained by the data model and the query language employed for the
integration. For example, in a typical OLAP setting, data are integrated in a
data warehouse, but no direct benefit is gained by applications such as institu-
tional search engines. The problem is that there is a conceptual gap between the
interaction language in the integration infrastructure (OLAP) and the languages
used by the applications (keyword queries, SQL, etc.).

Our query model, on the other hand, is built on the assumption that inte-
gration should begin at the query or application level. The goal is to specify
a query model that can express concepts from diverse interaction models in a
unified and intuitive way. We focus on the applications related to the areas of
databases, information retrieval, and complex networks (Fig. 3). Our model can
also be used in machine learning tasks, as discussed in [16].

Fig. 3. CDMS in the intersection of multiple areas

The two main groups of models for data driven applications today are those
associated with Information Retrieval and Database Systems. It is natural that
these two areas attained such distinction over the last decades. They together
cover a broad range of the data structuring spectrum – from unstructured data
in documents to structured data in relations. Typical applications in IR include
search engines, recommendation systems, social networks etc. Applications tak-
ing advantage of DBMSs are ubiquitous, being through traditional relational
databases or the more recent models for document databases, XML and semi-
structured databases, graph databases and the NoSQL movement.

Complex networks, which have gained strong momentum in the last decade,
is the third area completing our picture. Complex networks, whose techniques
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are often applied in typical IR and DB tasks, is an important area to cover in
an integration framework. More importantly, we consider complex networks a
fundamental piece to establish the basis of the integrated framework. To specify
a query language that could be used in such a diverse scenario it is important
to unify characteristics of the different interaction models.

Keyword queries and ranking are important concepts from IR, as other inte-
gration approaches have identified [2,9,33]. Significant research efforts have been
dedicated to enable efficient ranking and keyword queries in a wider range of data
models (e.g. relational, XML). In databases, declarative languages offer effective
means for online interaction with data. Furthermore, the declarative approach
offers opportunities for transparent query optimization. Complex networks offer
a range of techniques to assess important characteristics of the data based on
the underlying connections. These techniques are employed in diverse scenarios,
such as the use of relevance metrics (e.g. HITS, PageRank) for IR purposes.

Here we defined a query model that embodies characteristics from all the
discussed areas, providing a declarative query language that can express struc-
tured predicates, keyword queries, network topology-aware metrics, and compose
results (optionally) as ranked lists. The challenge is to enable all these features
over the unified graph model (LLG) presented.

Declarative querying and traditional database concepts like selections, pro-
jections and aggregations are already provided by RDF query languages such as
SPARQL. The remaining issues are related to enabling IR-like ranking
metrics that now have to be reinterpreted in an RDF graph setting. To enable
this extended querying mechanism, we reinterpret this topology-aware metric in
a common graph processing model that we call Targeted Spreading Activation
(TSA), described in the following section.

5 Ranking Metrics and Language Integration

Correlating data is an important and defining characteristic for many of the
applications we want to cover. To enable a high level of flexibility for correla-
tions, we specify a set of ranking metrics which are influenced by information
retrieval applications and complex networks concepts. The selection of the spe-
cific metrics aims at covering a wide range of applications while also being simple
to use and understand. In the process of defining these metrics, we started with
some popular metrics used in IR and then expanded the set according to the
applications we wanted to cover. The set of metrics we define can be organized
in the taxonomy presented in Fig. 4.

The basis of our taxonomy is the concept of comparison. Our metrics are
meant to compare elements in the graph and generate a score that represents
the strength of the association. The peculiar aspect about our metrics is that the
scores are generated based on analysis of the topology of the graph, in contrast
to most ranking approaches that are based on attributes of the elements.

There are two main groups of comparisons. Set comparisons corresponds to
comparisons among elements from a finite set. Reputation and Influence are the
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Fig. 4. Taxonomy for the adopted ranking metrics

metrics in this category. They assess, using different strategies, how well a node
performs as a hub for information. The definitions of the metrics, as well as
details on their interpretation, are presented in the next section.

Pair comparisons are applied to individual pairs of nodes. They assess prop-
erties of the topology surrounding or connecting the two nodes. The similarity
and context metrics, classified under contextual comparison, assess the common-
alities in respect to elements (nodes or relationships) surrounding the compar-
ing nodes. Relevance and connectivity, classified under reachability comparison,
assess properties of the paths interconnecting the comparing nodes.

As far as we know, this is the first time that these metrics are considered and
defined under the same conceptual framework. These metrics express cognitive
processes or patterns that we use to assess correlation of entities in the real
world, and which are the basis of many data-driven applications, as we intend
to portray along the text. We now describe our metrics and define them from a
graph analysis perspective.

5.1 Graph Interpretation of the Metrics

The translation of the ranking metrics to the unified graph strategy is a chal-
lenging task. Here we adopt a Spreading Activation (SA) [12] model for our novel
interpretation of the metrics.

The Targeted Spreading Activation Model: Spreading Activation (SA)
processes [12] were developed to infer relationships among nodes in associative
networks. The mechanism is based on traversing the network from an initial
set of nodes, activating new nodes until certain stop conditions are reached. By
controlling several aspects related to this activation flow, it is possible to infer
and quantify the relationships of the initial nodes to the reached ones.
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This simple model has the fundamental requirements for the type of corre-
lations we want to provide for complex data:

(i) it can derive correlations among any two sets of initial nodes and destination
nodes; This is important to enable modeling of several correlation metrics,
as described in Sect. 5.1.

(ii) the final value of the correlations decreases as the length of the contributing
paths grows; This reflects the intuitive perception that closer elements are
more correlated. The model allows tuning of this characteristic through a
parameter for potential degradation.

(iii) the degradation of the potential imposes boundaries to query processing;
(iv) it can be implemented as graph traversal patterns [27]; The processing of

these patterns are centered in origin nodes, resulting in localized processing.
The computation of these patterns requires less memory than global ranking
metrics such as PageRank and HITS. This type of computation is supported
by several graph database systems3.

We tweak the basic SA model by adding mechanisms to (i) adapt the process to
the labeled graph model used, (ii) consider relationship weights, (iii) add a more
strict and predictable termination condition, and (iv) make the process aware
of the target elements. The last point is key to the semantics of the SA process
for querying complex data and also to improve optimization opportunities. We
named the proposed SA variation as Targeted Spreading Activation (TSA).

The TSA model used here is defined by the parameters G, N , I, O, a, t, d, c,
l, and dir described, alongside other definitions, in Table 1. A TSA process starts
with origin nodes initially activated with potential a. Output potentials for each
subsequent node are calculated by the function O. The output potential is spread
through all relationships whose labels are in l that follow directions in dir. The
potential for the reached nodes is calculated by function I. For the next iteration,
the potential is spread to subsequent nodes, restarting the process, as long as
the potential for reached nodes is higher than t and the number of iterations is
lower than c.

Although simple in its definition, this is a very expressive model to build
flexible correlation metrics. By specifying appropriate parameters and combining
subsequent executions of TSAs, it is possible to define metrics that encompass
concepts like relevance, reputation and similarity (Sect. 5.1). These metrics can
be integrated in a declarative language with applications to a wide range of
modern querying scenarios (Sect. 5.3).

Being the core of the querying process mechanism, the TSA process becomes
the main target for query optimization strategies. Like with any other data or
processing model, the practicability of TSA-based querying depends on architec-
tural mechanisms to support data access optimizations and heuristics to provide
approximate answers. Optimization issues were addressed in [15].

3 A good overview of applications and systems can be found in http://markorodriguez.
com/2013/01/09/on-graph-computing/.

http://markorodriguez.com/2013/01/09/on-graph-computing/
http://markorodriguez.com/2013/01/09/on-graph-computing/
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Table 1. Notation used in the definitions

Notation Description

SA(N) a set of activated nodes after the execution of the spread activation
process

SA(M)n value for the potential of node n after the execution of the spread
activation with initial activated nodes M

a, t, d, c respectively, initial activation potential, firing threshold, decay factor,
maximum number of iterations (depth)

l set of labels that determine valid nodes for traversal

dir dir ⊂ {inbound, outbound}; set of directions for traversal

dir dir ∩ {inbound, outbound}; reversed directions of dir

SA(m)n same as SA(m)n with reversed directions, i.e. dir ← dir

I(n) function that calculates the input potential of a node.

I(n) =
∑

m∈ant(n)

O(i) in the default case

O(n) function that calculates the output potential of a node.
O(n) = I(n) ∗ d in the default case

ant(n) set of antecedent nodes, i.e. nodes linked to n through relationships in
l that follow the directions in dir

sub(n) set of subsequent nodes, i.e. nodes linked to n through relationships in
l that follow the directions in dir

p(SA(N)) set of activation paths (for each node in SA(N))

|S| number of elements in set S

IR Metrics According to the TSA Model: In the TSA model, to assess the
rank of the relationship of nodes according to a metric, an activation potential is
placed at the target elements defined in the query. The potential is spread across
the topology of the graph, losing or gaining strength based on the IR metric,
length of the path, or properties of the traversed elements. The metric-specific
definitions of the TSA processes are presented below.

Definition 1. relevance(m,n) = SA({m})n,

with O(n) = I(n) ∗ d
|sub(n)|

Relevance between two nodes is a measure that encompasses correlation and
specificity. Correlation is proportional to the number of paths linking the two
nodes and inversely proportional to the length of the paths. Specificity favors
more discriminative paths (i.e. paths with fewer ramifications. It is easy to
observe that this definition resembles the definition of relevance between queries
and documents in a information retrieval setting. Traditional tf or idf term
weighting can be readily emulated in our scheme when terms, queries and doc-
uments become nodes of a graph. Our definition is, however, a generalization of
the concept that can be applied to any type of graph data and with any number
or type of relationships in between m and n.
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Definition 2. rrelevance(m,n) = SA({m})n + SA({n})m,

with O(n) = I(n) ∗ d
|sub(n)|

Reciprocal Relevance (RRelevance) between two nodes aggregates the
relevance in both directions. In an information retrieval setting, it would be
equivalent to aggregating tf and idf in the same metric.

Definition 3. connectivity(m,n) = SA({m})n

Connectivity between two nodes is a measure that assesses how interconnected
two nodes are. The score is proportional to the number of paths linking the
nodes in the network activated by the SA algorithm.

Definition 4. reputation(n,N) = SA(N)n

Reputation of a node measures how effective it is as a hub for information
flow. Here the nodes of interest are activated at the beginning and the rank-
ing scheme favors nodes that are revisited in the sequence of the SA process.
This is a simple but convenient interpretations in scenarios where the reputa-
tion cannot be pre-calculated due to high update rates, variability in the types
of relationships used for the queries, or need to bias the scores based on a set of
initial nodes (as in [34]).

Definition 5. influence(n) = |(SA({n}))|
Influence is a specialization of reputation where the only concern is the number
of nodes reached from the origin. The topology of the graph – in/outdegree or
cycles – do not influence the metric.

Definition 6. similarity(m,n) = |p(SA({n})) ∩ p(SA({m}))|
|p(SA({n})) ∪ p(SA({m}))|

Similarity measures the ratio of common relationships (same edge label linking
common nodes) between two nodes.

Definition 7. context(m,n) = |SA({n}) ∩ SA({m})|
|SA({n}) ∪ SA({m})|

Context is a specialization of similarity where edge labels do not matter.

5.2 Semantics of Ranking Metrics in Queries

Having the ranking metrics interpreted as graph analysis tasks, there is now the
need of integrating these metrics in a declarative language. As opposed to cre-
ating an entirely new query language, we decided to leverage existing languages
by defining an extension language that can be integrated into other languages.
To that extent, we first define the semantics of the intended integration.

In our model, the proposed ranking metrics are intended to be used with
graph query languages that offer: (i) means to reference individual nodes in the
graph, (ii) selection of match variables, and (iii) query results as a set of tuples
(or a graph representation of). These are basic components of graph languages
like SPARQL and Cypher. A ranking metric can refer to:
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– a single match variable (set of vertices), e.g.“rank papers from EDBT 2013
according to first author reputation”, where first author is the match variable
in question (e.g. “SELECT ?firstAuthor ...” in SPARQL);

– a given vertex4 and a match variable, e.g. “rank papers according to relevance
of their first author (match variable) to the topic data integration (vertex)”;

– two match variables, e.g.“rank papers according to relevance of the first author
to the topic in the first keyword of the paper”.

Conceptually, the ranking metrics are applied to query results, generating a
ranking value for each returned tuple. In practice, to speed up query processing,
results would be approximate and the rank would be generated for some of the
nodes based on access pattern heuristics.

5.3 Extending Declarative Queries

Having the ranking metrics interpreted as graph analysis tasks, it is possible
to integrate them in a declarative query language. As opposed to creating an
entirely new query language, we decided to leverage existing languages by defin-
ing an extension language.

A convenient way to integrate the ranking metrics into existing query lan-
guages is to add a “RANK BY” clause. The clause should enable an arbitrary
combination of metrics that expresses the global ranking condition defined by
the user. We encode the clause in the extension query language that we denom-
inated in* (or in star). in* can be used to extend other languages, for example,
extended SPARQL becomes inSPARQL by convention. More details about the
language and its design principles can be found in [17].

Fig. 5. Simplified BNF grammar for the proposed extension (terminators omitted)

4 as defined previously, a keyword query would also be a node in the graph.
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Note that the extension causes query semantics and result interpretation to
change, therefore, any extended language would be more adequately described
as new language based on the syntax of the original language. This suggests an
incidental meaning for an acronym like inSPARQL: recursively, “inSPARQL is
Not SPARQL”.

Figure 5 shows a simplified BNF grammar of the proposed extension. A rank-
ing can be specified as mix of weighted ranking metrics (lines 2 and 3). Weights
capture the relative importance of each metric. The scores generated by the
metrics are normalized before the calculation of the final weighted score.

Ranking metrics are unary or binary. Unary ranking metrics are applied to
a single match variable (lines 4 and 5). Binary ranking metrics can be applied
to a match variable and a named vertex or between two match variables.

The language allows for modifiers (lines 10 to 14) to be applied to the ranking
definitions. These modifiers define the parameters for the execution of the SA
algorithm. FOLLOW specifies valid edges for the algorithm to traverse. DEPTH
defines the maximum length for the traversal paths. DIRECTION sets the direc-
tion of traversal as outbound, inbound or both (default) edges. WEIGHTED
makes edge weights influence the degradation of the activation potential (the
potential is multiplied by the weight).

The combination of the IR-inspired metrics in a declarative querying set-
ting enables a high level of flexibility and expressiveness for the applications to
explore. In the next section we show and discuss some examples of queries that
can be used for practical applications.

5.4 Applications

This section presents examples of queries in the extended SPARQL language.
These queries are meant to demonstrate the expressiveness of the approach in a
wide range of applications.

Search engines/CMSs: Figure 6a shows a possible implementation for a doc-
ument retrieval query using topic modeling. The keyword query is expressed
by the function KWQUERY5 and the relevance is assessed as if the query was
a node in the graph. The query also takes into account the reputation of the
authors and the relevance of documents to the topic :Politics (assessed based on
the connections between the query node and documents that are created by a
Topic Modeling algorithm such as LDA). Data management aspects discussed
in the next section would be interesting matches to implement novel CMS archi-
tectures like in Ngomo et al. [26]. Our metrics would also allow query answering
based on the context of the user or a context defined by the user, implementing
a query model such as the one proposed by [28]. Graph-based term weighting [7]
could also be simulated in our query model.

Recommendation systems: Figure 6b shows a product recommendation query
that finds products that the client Bob (with uri :bob) has not purchased.
5 KWQUERY is a syntactical shortcut that represents an underlying mapper as in

Sect. 6.1.
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The query traverses Bob’s friendship network to find products purchased by
his friends that might be relevant to him. The spreading activation interpreta-
tion of this query evaluation also implies that products purchased by Bob, even
though they do not appear in the results, will be traversed on the way to cus-
tomers that have co-purchased these products, which in turn will activate other
products from these customers.

Social Networks: Figure 6c shows a query that could be used for friend sug-
gestion on a social network application. It ranks the top 5 persons over a given
age based on the similarity of hobbies and movie preferences of user Alice.

Collaborative filtering: Figure 6d shows a query that filters posts from pages
that friends of user Carol follow. The posts are ranked based on their influence
in the network.

Decision support: Figure 6e shows a query that can be used to prospect for
employees that would be good candidates to replace a manager (Charlie) in his
post. The query favors employees strongly related to a (presumably important)

Fig. 6. Examples of extended SPARQL queries (namespaces have been omitted)
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product (yPhone) and also those that have professional contexts similar to the
current manager.

Other applications: Similar queries could be used in several other scenarios,
especially the ones with richly interconnected data and that require complex
analysis of the correlations. Some examples are Semantic Web inference appli-
cations, were assessing correlations between classes and candidate instances can
be complex [1]. The scientific domain is another interesting application field. For
example, in a database with food network relationships, a query could identify
relevant species or areas for conservation efforts.

6 Relationship Management in the CDMS

We have so far discussed our data and query models, with little focus on implemen-
tation or architectural aspects. The proposed query model implies new require-
ments for user interaction, query processing and data management. The CDMS
is responsible for encompassing all these aspects in a coherent architecture.

The querying mechanism presented so far is based on the observation that
relationship analysis is central to several applications and the basis for evaluat-
ing the metrics introduced here. Besides providing a query language that enables
expressive correlation clauses, it is important to provide the CDMS with mech-
anisms to manage diverse aspects of relationship life cycle. Here we show how
such mechanisms could provide better support for data integration tasks and
increase the expressiveness of the query language.

6.1 Mappers

Relationship creation is an important and defining operation for the described
application scenarios. For example, several text indexing tasks, such as topic
modeling, derive relationships between the text and more general concepts. To
support these types of task, an integrated framework must provide mechanisms
to facilitate the creation of these relationships in the unified graph. The same
type of mapping between source data and the unified graph is required for other
types of data such as relational or semi-structured.

In our framework, the creation of relationships is encapsulated in MAP state-
ments. Figure 7 shows an example (detailed in the experiments section) of such
DML (Data Manipulation Language) query. The MAP statement (that triggers
a mapper) is also encoded as an extension of a graph query language (SPARQL,
in this case). The query selects all nodes of type ‘film’ and their respective labels.
The selected elements are used to call the mapper TokenMapper.

Mappers are very similar to stored procedures. What sets them apart are
(i) their integrated use in our ranking queries, and (ii) how they are hooked in
the databases’s API so that any new data that matches the mapping criterion
is passed through appropriate mappers. Point (ii) is not yet supported by our
framework. (i) is discussed in the experiment section.
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Fig. 7. MAP statement applying mapper TokenMapper to movies and their labels

Mappers are the mechanism that underlie the creation of the LLG. In a wider
perspective, mappings are however not restricted to model transformations, but
also allow transformations of data already in the unified graph, for example,
to infer new relationships based on correlations between nodes. These ad hoc
mappings are especially important for querying and analyzing data, enabling
users to manipulate the underlying data at query time without the obligation to
materialize the new relationships. For this reason, our approach addresses query
and mapping as an interdependent and symbiotic process of data analysis and
exploration.

A mapping process stores metadata related to the creation of the relation-
ships, which can be explored at query time. Since relationships are associated
with their mappers, multiple mappers can be used for the same type of relation-
ship. For example, multiple text indexing strategies can be used simultaneously,
then queries can specify the strategy that best fits the information need or simply
take advantage of the multiple connections created by the diverse mappers.

Metadata about creation time and usage statistics of the relationships can
also be used in a more expressive version of the extended query language pre-
sented here. Query modifiers could refer to this metadata to favor novelty or
popularity (also important concepts in IR) of the relationships.

7 Experiments

We now show experiments that aim at demonstrating what we envision as a
typical usage scenario for our framework. The database used in the experiments
is the Linked Movie Data Base (LinkedMDB) [19], which we think is a good rep-
resentative for the type of unified graph we aim at. The database integrates data
from several sources (FreeBase, OMDB, DBpedia, Geonames, etc.). The process
used to semantically integrate the distinct sources is similar to what is done
in a typical Data Warehouse and precisely what we envision to be the work-
flow for the usage scenarios of our framework (i.e. integration of institutional
data). The database contains 3,579,616 triples. The dataset has other important
characteristics: (i) it encompasses the bulk of the production in an important
area of human activity, (ii) data elements have clear semantics, (iii) data ele-
ments are organized based on several characteristics (type, genre, subject, etc.)
and correlated in a complex graph topology. These characteristics support the
applicability of our framework in real scenarios.

We implemented a basic mapper (TokenMapper) that maps input nodes into
tokens present in their labels. The tokens are themselves stored as nodes in the
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Fig. 8. Query that ranks movies according to relevance to a preferences text and to
the subject “Virtual Reality” (film subject/461)

graph database. The mapper receives as arguments the source node for the map-
pings and the text content to be mapped. This mapping uses a standard query
analyzer (from Lucene’s library) that simply lowercases, removes stop words, and
tokenizes the text. We are using this strategy for its simplicity and didacticism.
In a real scenario, more modern techniques such as NER (Named Entity Recog-
nition), LSA (Latent Semantic Analysis) or ESA (Explicit Semantics Analysis)
would provide more efficient and meaningful mappings.

Table 2. Top-15 ranked results for the first query

top 15 name

0.67 Avatar

0.67 Avatar

0.55 The Matrix

0.53 The Matrix Revolutions

0.53 The Matrix Reloaded

0.33 The Thirteenth Floor

0.33 EXistenZ

0.33 Lawnmower Man 2: Beyond Cyberspace

0.33 Storm Watch (aka Code Hunter)

0.33 Strange Days

0.33 The Lawnmower Man

0.33 Welcome to Blood City

0.21 The Favorite

0.19 The Matrix Online

0.19 The Matrix Revisited
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The DML query used for our mapping is shown in Fig. 7. We are mapping
the label of movies to tokens. Executing the query triggers the mapping of each
selected movie, generating the appropriate nodes for the tokens when needed.
This same mapper can be used in the ranking clause, as will be shown below.

We now present analysis of queries to demonstrate the use of the metrics
and mappers. At this point of development of our framework, we are focusing on
the relevance and connectivity metrics, which we regard as having widespread
applications and presenting the biggest challenges for query processing.

The first query (Fig. 8) retrieves and ranks movies relevant to a text stating
movie preferences and that are also relevant to the subject ‘Virtual Reality’.
This type of query can be derived from user’s profiles, for example. The query
also selects elements based on structured predicates, specifying that returned
movies should have a home page relationship and have been released after 1990.

The evaluation of this query can be divided in two phases: (i) graph matching
and structured selection, and (ii) ranking based on topological properties. This
separation in two distinct phases is only conceptual however. A query processor
is free to combine the phases in any fashion to optimize the evaluation.

In the graph matching and selection phase, the triple pattern is matched
against the data graph, the results are filtered according to the structured pred-
icates. In the second phase, the multiple ranking criteria are evaluated.

The first ranking criterion is relevance to the text. To assess the scores for this
metric, the query processor creates a temporary node and appropriate mappings
are made using the specified mapper (TokenMapper). The spreading activation
process is then executed to assess the correlation between each movie and the
temporary node. The process is set to follow the relationships created by the
mapper (hasToken). This is a typical mechanism for a keyword query type of
interaction in our framework. A system-wide default keyword query mapper can
be set so that queries can use the reserved KWQuery element, so that the parser
automatically assigns the appropriate mapper and relationships to follow (as in
Fig. 6a).

The second ranking criterion assesses correlation between movies and the
subject “Virtual Reality”. The resulting scores from each criterion are normal-
ized and aggregated, according to the specified weights, to generate the final
score. The results (Table 2) show contributions from both ranking criteria. The
movie Avatar is not directly related to the subject “Virtual Reality”, owing its
high ranking to the high tf*idf value of its name (note that tf*idfs are not calcu-
lated, this is an emergent property of the relevance metric which is not restricted
to text-based rankings)6. All movies from the Matrix franchise have scores com-
bining both criteria. Lower ranking results also provide insight into the interplay
between the rankings for this query (e.g. ‘The Favorite’ matches the keyword
query with a lower tf*idf-like score).

The second query (Fig. 9) uses the connectivity metric to discover films
correlated to ‘The Silence of the Lambs’. The query specifies that the analysis

6 The second Avatar record refers to a lesser known Singaporean film (introducing a
reputation metric in the query would certainly lower its score).
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Fig. 9. Query that retrieves films correlated to ‘The Silence of the Lambs’ (film:38145)

Table 3. Top-10 ranked results for the second query

top 10 name

1.0 The Silence of the Lambs

0.81 Man Bites Dog

0.80 Natural Born Killers

0.80 Butterfly Kiss

0.80 Freeway

0.79 Seven

0.79 Aileen Wuornos: The Selling of a Serial Killer

0.79 Serial Mom

0.79 Copycat

0.79 The Young Poisoner’s Handbook

Table 4. Top-10 ranked results for the first query

top 10 name

1.0 The Silence of the Lambs

0.34 Philadelphia

0.34 Cousin Bobby

0.25 Man Bites Dog

0.25 Natural Born Killers

0.25 Butterfly Kiss

0.24 Freeway

0.23 Seven

0.23 Aileen Wuornos: The Selling of a Serial Killer

0.23 Serial Mom
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should consider only the relationships ‘movie:director’ and ‘skos:subject’. It is
interesting to note that setting the modifier depth to 4 means that indirect cor-
relations are also considered. For example, a film could receive a positive score
even though it does not share a subject with ‘The Silence of the Lambs’, as long
as it is correlated with a film that does share a subject.

The results for the query are shown in Table 3. The output is strongly biased
towards scores generated by correlations through common subjects (which tend
to form tighter clusters). If the user wants to increase the importance of the
‘director’ relationship to retrieve more movies correlated to the director of ‘The
Silence of the Lambs’, the user can separate the relationships into two rank-
ing criteria. This type of user interactivity is another important advantage our
declarative querying scheme. The results of splitting the rankings in such a way
are presented in Table 4. The results are for a version of the query that used a
3:1 weight division favoring the director relationship.

8 Related Work

We now discuss related work on data integration in various levels: from data
access integration, through syntactic/semantic integration, and up to application
or query model integration. Integration at any level is highly dependent on the
lower levels.

8.1 Data Access Integration

The first level of integration must provide a unique access point for the data.
This can be accomplished by basically two approaches: centralizing the data
or connecting the data sources in an infrastructure that simulates a central-
ized repository. Centralized integration of institutional data is typically related
to the deployment of data warehouses or data marts [21]. Data centralization
approaches have also been proposed in the context of the Semantic Web [19],
and the DBpedia project7 is a notable example of this type of approach.

The research on Federated Databases aims at providing a unified view of the
data while maintaining the autonomy of the data sources [32]. In the context
of the Semantic Web, Schwarte et al. [31] have proposed a federation layer for
Linked Open Data. Schenk and Staab [30] have proposed a mechanism for the
specification of views over Linked Data, enabling declarative federation of data
sources.

Our framework is independent of the specific strategy chosen for data access
integration. The requirement is that all interaction is done as if the data was
integrated in a unified graph. Whether this integration is done through feder-
ation or physically integrating the data is an architectural decision based on
expectations of performance and requirements for preserving the autonomy of
data sources.

7 http://dbpedia.org/.

http://dbpedia.org/
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8.2 Data Model Integration

Data integration requires enabling data manipulation under a unified model.
Federated databases frequently employ the relational model (common among
data sources) for the integration. Data minig, which has application-specific
requirements, favors the multidimensional model [22].

In the Semantic Web, the adopted unifying model is the RDF graph. The
Resource Description Framework (RDF)8 is a general-purpose language created
for representing information about resources in the Web. The basic unit of infor-
mation is a statement triple, which contains a subject, a predicate, and an object.
All elements in a triple are identified by URIs (except for objects that can also be
literal values). Triples can refer to each other, forming a graph. The advantage
of the RDF model comes from its simplicity, enabling the representation of data
from a wide range of domains.

There has been a substantial amount of research in mapping other data mod-
els into RDF [3,6]. The W3C RDB2RDF Working Group9 is defining languages
and standards for mapping relational databases into RDF.

Besides having the data in a unified representation model, it is important to
correlate data from the diverse sources into unified concepts. In the relational
world, this process is know as record deduplication or linkage and is part of
the ETL (Extraction Transformation Loading) workflow [18]. In the Semantic
Web, the usual way to represent these correlations is the creation of sameAs
relationships between entities. These relationships can be created manually or
by automated processes. Hassanzadeh and Consens [19] employ several string
matching techniques to correlate Linked Open Data from diverse sources to
create an interlinked version of a movies database.

In this proposal, we assume that the institutional data is integrated in an
RDF graph. This allows us to take advantage of other standardized technologies
developed in the context of the WWW and the Semantic Web, such as universal
identification through URIs, semantic integration through sameAs relationships,
and the SPARQL query language.

8.3 Query Model Integration

Once data is integrated, it becomes possible to pose queries that could not
be answered before, producing more valuable information for institutions and
the public. The integration approaches, however, typically focus on integrating
data under a specific query model, such as the relational or OLAP. This usually
constrains the range of data models that can be integrate and, foremost, restricts
direct querying of the integrated data from applications that use other query
models.

Recently, there has been initiatives aimed at tackling integration at the appli-
cation/query level. The research community has identified the interplay between

8 http://www.w3.org/RDF/.
9 http://www.w3.org/2001/sw/rdb2rdf/.

http://www.w3.org/RDF/
http://www.w3.org/2001/sw/rdb2rdf/
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the fields of Databases (DB) and Information Retrieval (IR) as a means to
improve data integration and query expressiveness across applications [2,9]. The
drive to integrate the areas stems from the fact that they represent the bulk
of data stored and processed across institutions. Furthermore, either field has
been very successful by their own but still faces challenges when dealing with
interactions typical to the other field.

The integration of the IR and DB areas has been an important topic in the
agenda of the research community for many years. Following the initial identifica-
tion of challenges and applications, several successful approaches were proposed
and implemented [33]. Most prominent research focuses on keyword queries over
structured data and documents, top-k ranking strategies and extraction of struc-
tured information from documents.

Keyword query research draws from the simple yet effective keyword query
model to allow integrated querying over documents and structured data. Most
of the frameworks match keywords to documents, schema and data integrated
in a graph structure. The connected matches form trees that are ranked based
on variations of IR metrics such as tf*idf and PageRank. Some of the research
focus on optimizing the top-k query processing [23] while others implement more
effective variations of the ranking metrics [24].

Keyword queries over structured data are intended for tasks where the schema
is unknown to the user. The techniques are effective for data exploration, but there
is no support for more principled interactions. There are conceptual and struc-
tural mismatches among queries, data and results that make returned matches
hard to predict and interpret. Furthermore, the queries can only express relevance
between the provided keywords and database elements. Our query model can rep-
resent many more correlation criteria that can be combined arbitrarily in user-
defined expressions. More importantly, the queries can correlated any type of data
in the graph database.

The research on Top-k queries focus on enabling efficient processing of ranked
queries on structured and semi-structured data. Ranking is based on scores derived
from multiple predicates specified in the query. The main challenge is to compute
results avoiding full computation of the expensive joins. The proposals vary on
adopted query model, data access methods, implementation strategy, and assump-
tions on data and scoring functions (see [20] for a contextualized survey).

Scoring functions enable ranking based on properties of data elements. There
is, however, no simple means to rank results based on the context of elements
or how they are correlated, typical requirements for IR-like applications and a
defining characteristic of our SA-based ranking scheme.

This type of contextual ranking could only be implemented in an ad-hoc
fashion through complex scoring functions. Since the query processor would be
unaware of the semantics of the queries and the topology of the relationships,
there would be no opportunity for the optimizer to make sensible execution plans.
Furthermore, the relational model assumed in most research has no means to
reference individual data elements, an important requirement for effective data
correlation. Our focus is on offering predicates that allows ranking based on
contextual metrics not readily available as attributes. The proposal described
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here is complementary to regular top-k querying. It is important to support
both types of ranking, since they are recurrent to many applications.

Information Extraction refers to the automatic extraction from unstructured
sources of structured information such as entities, relationships between entities,
and attributes describing entities [29]. Information Extraction systems employ
two main techniques to harvest relationships (or facts) from text: extrapolating
extraction pattens based on example seeds [13] and employing linguistic patterns
to discover as many types of relationships as possible, task known as Open Infor-
mation Extraction [4]. Loading the extracted facts on a DBMS allows declarative
querying over the data. This is a one-way, data-centric type of integration of DB
and IR. The integration proposed here focuses on unified querying and data mod-
els. The framework proposed allows easy integration of Information Extraction
system’s output, maximizing the benefits of both approaches.

We argue that the mentioned approaches tend to focus on infrastructure
issues related to extremes of enabling the type interaction present in one area
over the data model of the other. In this paper we take a top-down approach to
modeling the integration, questioning what are the main and defining properties
of each area, and how to offer a unified, non-modal interaction over data and
query models.

9 Conclusion

We showed how modern standards and technologies developed to solve integra-
tion issues on the Web can be applied in a unifying framework for institutional
data. Representing the integrated data as a graph is a good strategy for data
model integration. Our main contribution is on extending this type of integration
to a higher level of abstraction, tackling integration of query models.

In our approach, the key to achieve more expressiveness at the query level
is the combination of flexible metrics in a declarative model. Our query model
redefines several metrics that rank entities based on the topology of their corre-
lations. To the best of our knowledge, this is the first time the metrics presented
are considered and formalized under the same model. Similarly, we are not aware
of other ranking strategies that enable the level of expressiveness offered by the
combination of our metrics and a declarative language. This combination allows
data correlation queries that cover a wide range of applications. The introduced
mappers play an important role as a data management mechanism to support
this high level of integration.

As suggested by the query examples presented (Fig. 6), it is possible to repre-
sent information needs that would require a level of data analysis that is beyond
current implementations of typical DB or IR systems. In fact, answering the type
of queries introduced here in a typical technological environment nowadays would
require substantial engineering for the implementation of ad-hoc solutions. The
expressiveness of the queries allowed by the extended languages sometimes blurs
the line between declarative queries and data analysis. Given the computational
requirements of such settings, it is important to introduce optimization mecha-
nisms and heuristics to compute approximate answers. Our declarative querying
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scenario opens many opportunities for query optimization. Details about the
mechanisms we are currently adopting are described in [15].

We expect query-level integration to become increasingly important as our
technological landscape continues to diversify. We showed how our model can
cover a broad range of models and applications. Our experiments indicate the
practicability of our approach, especially regarding the use of mappers to simplify
data integration and enable more expressive querying.
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