
2 Fundamentals 

The main purpose of this chapter is to introduce notation used throughout this 
book, and review fundamental principles of signal processing, statistical analysis 
and modeling that are used in subsequent chapters. Readers who are familiar e.g. 
with principles of one- and multi-dimensional sampling, random signal analysis, 
linear prediction and linear transforms may browse quickly over these topics. 
 

2.1 Signals and systems 

2.1.1 Elementary signals 
 
A two-dimensional cosine signal defined over continuous coordinates t=[t1 t2]T is 
given as 

T
cos 1 2 1 1 2 2 1 2( , ) cos 2 cos 2  with .Ts t t F t F t F Ff t f  (2.1) 

After applying a coordinate transformation 
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sin cos
tt F

F
tt F
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only a one-dimensional dependency remains as  
2 2 1 2

cos 1 2 1 1 2 2
( , ) cos 2    with   .

cos sin
F Fs t t Ft F F F f       (2.3) 

(2.1) can be interpreted as a sinusoidal wave front with orientation by an angle  
relative to the t1 axis. Sections of this wave front in parallel with one of the two 
axes are observed as sinusoids of frequencies 1F  or 2F , respectively. These corre-
spond to the periods or wavelengths (measured along the coordinate axes, see Fig. 
2.1a) 
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Fig. 2.1.  a Directional orientation and wavelength of a sinusoid in a 2D plane   b spectrum 
 
As another interpretation, consider a cosine of period 1 11/T F  along the t1 orien-
tation, with phase shifted by (t2) depending on the position in t2, 

cos 1 2 1 1 2( , ) cos 2 ( ) .s t t F t t   (2.5) 

With linear dependency 2 2 2( ) 2t F t , this is identical to (2.1). Then, for any 

2 2/t k F  ( k ), 2( ) 2t k . This determines distances where the signal has 
equal amplitude for a fixed t1, i.e. 2 21/T F  is the period length along the t2 ori-
entation. Thus, the 2-dimensional cosine can also be interpreted as a sinusoid over 
one dimension which has a linear phase shift depending on the other dimension. 
This is illustrated in Fig. 2.2. Alternative formulations of the same signal would 
be  

cos 1 2 2 2 1 1 1 1

cos 1 2 1 1 2 2 2 2

( , ) cos 2 ( )   with  ( ) 2   or

( , ) cos 2 ( )   with  ( ) 2 , 

s t t F t t t F t

s t t F t t t F t
  (2.6) 

such that any horizontal or vertical section over the different phase-shifted ver-
sions will also give a sinusoid of period 2T . Whereas T1 and T2 are the periods 
that can be measured w.r.t. to the coordinate axis orientations, the effective period 
of the 2-dimensional sinusoid, measured by the direction of wave front propaga-
tion, can be determined from (2.3) and (2.4) as 

1 2

2 2
1 2

1 .T TT
F T T

 (2.7) 

 
Even though the example given here is based on a cosine function, a similar prin-
ciple can be applied for any sinusoid. Likewise, it can be extended to a one- or 
multidimensional complex periodic exponential function 
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Fig. 2.2.  Interpretation of a two-dimensional sinusoid: Linear phase shift depending on 
vertical position results in vertical wavelength and frequency   
 
For the case =2, (2.1) is the real part of sexp(t). For expression as a one-
dimensional signal as in (2.3),  1 rotations are necessary. If a signal can be 
defined by independent one-dimensional functions (as is the case with (2.8)), it is 
called separable, i.e. 

sep 1 2( ) ( ) ( ) ( ).s s t s t s tt   (2.9) 
Some examples of aperiodic elementary 1D signals (which could be used to con-
struct corresponding separable multi-dimensional signals) are the sinc function1 

sin( )( ) si( )ts t t
t

,  (2.10) 

the rectangular impulse  
1, 1/ 2

rect( )
0, 1/ 2,

t
t

t
  (2.11) 

the unit step function  

                                                           
1 sinc= sinus cardinalis, si(x)=sin(x)/x with si(1)=1. 
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1, 0
( )

0, 0,
t

t
t

  (2.12) 

and the Gaussian impulse 
2

( ) ts t e .  (2.13) 
 

2.1.2 Systems operations 
 

A system generally performs a mapping (transfer) of an input s(t) into an output 
g(t)=Tr{s(t)}. A system is linear, if superposition using a weighted combination 
with constants ai can be applied either at the input or at the output, 

 
!

Tr ( ) Tr ( ) ( ).i i i i i i
i i i

a s t a s t a g t  (2.14) 

Further, the system is time invariant, if for any shift t0 of the input the output is 
shifted equally, 

 0 0Tr ( ) ( ).s t t g t t  (2.15) 
If a system fulfills both (2.14) and (2.15), it is called linear time invariant (LTI). 
The output signal of an LTI system fed by a Dirac impulse (t) as input is the 
impulse response h(t). The transfer between input and output is given by the con-
volution integrals 

 ( ) ( ) ( )d ( ) ( ),s t s t s t t  (2.16) 

 ( ) ( ) ( )d ( ) ( ).g t s h t s t h t  (2.17) 

The most important rules of convolution algebra are 
a) The Dirac impulse is the unity element of convolution, according to (2.16). 
b) Commutative property,  

( ) ( ) ( ) ( ) ( ) d ( ) ( )d ( ) ( ).s t h t g t s t h h s t h t s t  (2.18) 

c) Associative property2, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .f t s t h t f t s t h t f t s t h t  (2.19) 

d) Distributive property, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) .f t s t h t f t s t f t h t  (2.20) 

 
Convolution can straightforwardly be extended to signals with multi-dimensional 
dependencies, e.g. image signals where an amplitude is defined for positions with 
horizontal/vertical coordinates (t1,t2). An example of a two-dimensional convolu-
                                                           
2 For combinations of convolution with other operations, in particular multiplication of 
functions, this is not true; the sequence of processing needs to be observed. 
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tion integral, with both the signal and the impulse response having two-
dimensional dependencies, is defined as 

 1 2 1 2 1 1 2 2 1 2 1 2 1 2( , ) ( , ) ( , )d d ( , ) ( , ).g t t s h t t s t t h t t  (2.21) 

If  dimensions are combined into a vector t=[t1,..., t ]T, same with the variables 
of the convolution integral =[ 1,...., ]T, multi-dimensional convolution is de-
fined by3 

 ( ) ( ) ( )d ( ) ( ).s s st t t t  (2.22) 

 ( ) ( ) ( )d ( ) ( ).g s h s ht t t t  (2.23) 

(2.22) can be interpreted via the sifting property of the Dirac impulse, which con-
tributes only the signal value =t to the result of the integration. The multi-
dimensional Dirac impulse can be described as a separable combination of a series 
of 1D Dirac impulses4, each of which performs sifting in one dimension. There-
fore, 

1 2 1 1 2 2( ) ( ) ( )   with ( )d ( )d ( )d 1t t t t t tt t t  (2.24) 

Properties (2.18)-(2.20) still hold for multi-dimensional convolution.  An interest-
ing class of two- and multi-dimensional LTI5 systems are the separable systems 
with an impulse response that can be written as a multiplication of two or more 
functions, e.g. in the two-dimensional case6 
 1 2 1 1 2 2 1 1 2 1 2 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) .h t t h t h t h t t t h t  (2.25) 
Inserting (2.25) into (2.21) unveils that convolution in case of a 2D separable 
system can be implemented as a concatenation of two 1D convolutions to be per-
formed at any position of the respective other dimension, 

                                                           
3 The bold star symbol ( ) expresses convolution over vector variables, to be performed by 
nested integrations. 
4 A 1D Dirac impulse (t1) in a two- or multi-dimensional coordinate system can be inter-
preted as a line impulse, plane impulse or hyper-plane impulse (depending on the number 
of dimensions). It is zero for any t1 0, but can be interpreted as an infinite-amplitude slice 
positioned at t1=0 with infinite extension over the remaining dimension(s), with volume 
integration over the entire multi-dimensional space giving a value of 1.  
5 For sake of simplicity, the denotation time invariant is not changed, even though typical-
ly at most one of the dependencies in a multi-dimensional system is along the time axis. 
6 In the expression by 2D convolution the line impulses are needed to indicate the presence 
of the impulse response at any position of the other dimension(s).   
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Due to the associative property (2.19), the sequence of processing the dimensions 
is irrelevant in case of separable systems.  

Eigenfunctions have the property that their shape is not changed when they are 
transmitted over an LTI system; the output can be computed by multiplication 
with a complex amplitude factor H, the related eigenvalue. A periodic 1D eigen-
function can be defined as a special case of (2.8), 
 

Tj2 T T
E ( ) e cos 2 jsin 2s f tt f t f t .  (2.27) 

Transmission over an LTI system gives 
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The type of complex periodic eigenfunctions plays an important role in Fourier 
analysis, establishing a relation between signal (t) and Fourier (f) domains. Here-
in, 

  
Tj2( ) ( )e dH h f tf t t  (2.29) 

is the relation of Fourier transform of the impulse response h(t), giving the fre-
quency-dependent Fourier transfer function H(f) of an LTI system. Feeding an 
eigenfunction into a series of two LTI systems with impulse responses hA(t) and 
hB(t) gives the result 
 E A B A E B A B E( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s h h H s h H H st t t f t t f f t  (2.30) 
It can be concluded that the convolution product in the time domain is mapped to 
an algebraic product in the frequency domain. 
 
The Fourier transform is applicable not only for impulse responses h(t), but for 
any signals s(t), g(t) etc. into their corresponding Fourier spectra 

Tj2( ) ( )e d .S s f tf t t  

Two- and multi-dimensional extensions of eigenfunctions are straightforward and 
establish the basis of multi-dimensional Fourier spectra that are discussed in the 



 

subsequent sections. Due to the separable property of the multi-dimensional com-
plex eigenfunctions, the multi-dimensional Fourier transform can be computed 
sequentially over the different dimensions, but the final result still provides an 
interpretation by directional orientation. 

2.2 Signals and Fourier spectra 

2.2.1 Spectra over two- and multi-dimensional coordinates 
 
Rectangular coordinate systems. The amplitude of an image signal is dependent 
on the spatial position in two dimensions t1 and t2 – horizontally and vertically. 
Related frequency axis orientations shall be f1 (horizontally) and f2 (vertically). 
The two-dimensional Fourier transform of a spatially continuous signal is  

1 1 2 2
1 2 1 2 1 2

j2 j2( , ) ( , ) e e d d .f t f tS f f s t t t t  (2.31) 

(2.31) can be extended into a generic definition of -dimensional spectra associat-
ed with a -dimensional signal, where all frequency coordinates f = [ f1 f2 ... f ]T 
and signal coordinates in space and time t = [t1 t2 ... t ]T are expressed as vectors. 
This gives 

Tj2( ) .. ( ) e d .S s f tf t t  (2.32) 

The complex spectrum can be interpreted by magnitude and phase of a contrib-
uting oscillation at a given frequency f, 

    

2 2
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( ) arctan ( )  with  ( )
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k k

S

f f f f f

f f
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f

 (2.33) 

By inverse Fourier transform, the signal can be reconstructed from the Fourier 
spectrum:  

Tj2( ) ... ( ) e d .s S f tt f f  (2.34) 

 
Coordinate system mapping. Rectangular (orthogonal) coordinate systems are 
only a special case for the description of two- and multidimensional signals. They 
allow expressing the multi-dimensional Fourier transform through eigenfunctions 
which are also orthogonal (i.e. independent in terms of signal analysis properties) 
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between the different dimensions. Two unity vectors e1 = [1 0]T and e2 = [0 1]T 
define the orientations of the axes. Any coordinate pair (t1,t2) can then be ex-
pressed as a vector t = t1e1 + t2e2. The relationship with frequency vectors 
f = f1e1 + f2e2 is given by (2.32), using the same orientation. Now, a linear coordi-
nate mapping 1 1 2 2t tt t t Tt  shall be applied to the signal (leaving the coordi-
nate origin unchanged), which can be expressed through the mapping matrix7  
 

  11 12
1 2

21 22

.
t t
t t

T t t  (2.35) 

The vectors t1 und t2 are the basis vectors of this mapping. A complementary 
mapping of frequency coordinates shall exist, expressed similarly as f Ff  by 
using a mapping matrix 

11 12
1 2

21 22

f f
f f

F f f . (2.36) 

Unless the determinants of matrices T or F are zero, the mappings must be re-
versible, such that 1t T t  and 1f F f . The relations are given by bi-
orthogonality (A.25) of T and F [see e.g. OHM 2004], 

T T1 T 1 T 1 1; ; .T F F T F T T F  (2.37) 

The Fourier transform in the mapped coordinate system can then be expressed as 
follows, assuming amplitude invariance of the mapped samples, 

Tj2( ) ( ) e d ( )S s Sf tf t t T f . (2.38) 

 

2.2.2 Spatio-temporal signals 
 

In a video signal, two-dimensional pictures vary over time. The time dependency t 
is mapped into a ‘temporal’ frequency f3, where the Fourier spectrum is 

3 31 1 2 2
1 2 3 1 2 3 1 2 3

j2j2 j2( , , ) ( , , ) e e e d d d .f tf t f tS f f f s t t t t t t  (2.39) 

For the case of sinusoids, the spectral property resulting by temporal changes can 

                                                           
7 It is assumed here that the origin of the coordinate transform is not changed by the map-
ping. A more general form is the mapping t Tt , where  expresses a shift of the 
origin. This is also denoted as affine mapping. Regarding the Fourier spectrum, the addi-
tional translation only effects a linear phase shift 

Tj2e f . 
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be interpreted similarly to Fig. 2.3. In particular, if motion is constant (without 
local variations of shift and without acceleration) and the amplitude of the signal 
is only changing by motion, the behavior of the signal can be expressed by a line-
ar phase shift in t1 and t2, depending on time t3. Consider first the case of zero 
motion, s(t1,t2,t3) = s(t1,t2,0). Then, the three-dimensional Fourier spectrum (2.39) 
is 

 
3 31 1 2 2

3

1 2 3 1 2 1 2 3

1 2 3

j2j2 j2

0

( , , ) ( , ,0) e e d d e d

( , ) ( ).

f tf t f t

t

S f f f s t t t t t

S f f f
  (2.40) 

The Dirac impulse ( f 3) indicates that the 3D spectrum in case of unchanged 
signals is a sampled plane, with non-zero components only at f 3=0:  

31 2 3
1 2

3

0( , ) when 0
( , , )

when 0.0
tS f f f

S f f f
f  (2.41) 
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Fig. 2.3.  Spatial shift caused by translational motion of velocity u 
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Fig. 2.4.  a Shear of the non-zero spectral components by different translational motion 
velocities, shown in an (fi,f3) section (i=1,2) of the 3D frequency domain  b Position of the 
non-zero spectral components in cases of zero and non-zero 2D translational motion 
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Fig. 2.5.  Interpretation of the frequency in f3 for two sinusoids of different spatial frequen-
cies, which are subject to the same translational motion  
 
If constant-velocity translation motion is present in the signal, a spatial shift 
dt1=u1dt3 in horizontal direction and dt2=u2dt3 in vertical direction occurs within 
time interval dt3, which is linearly dependent on the velocity vector u=[u1,u2]T 
(see Fig. 2.3). Taking reference to the signal for t3= 0, this gives 

1 2 3 1 1 3 2 2 3( , , ) ( , ,0)s t t t s t u t t u t  (2.42) 
and 

  3 31 1 2 2
1 2 3 1 1 3 2 2 3 1 2 3

j2j2 j2( , , ) ( , ,0) e e e d d d .f tf t f tS f f f s t u t t u t t t t   

                            (2.43) 
By replacing 3 3d d ,i i i i i i i it u t t t u t , the temporal dependency can 
be separated in the Fourier integration 



 

3 1 1 2 2 31 1 2 2

3

1 2 3 1 2 1 2 3

1 2 3 1 1 2 2
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( , , ) ( , ) e e d d
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Thus,  

   1 2 3 1 1 2 2
1 2 3

3 1 1 2 2

0( , ) when
( , , )

when .0
tS f f f f u f u

S f f f
f f u f u

 (2.45) 

The spectrum S( f1, f2) is now sampled on a plane f 3 = f 1u1+f 2u2 in the 3D frequen-
cy domain. Fig. 2.4a shows positions of non-zero spectrum planes for different 
normalized velocities ui, where the ( f i, f 3) section is shown for f j =0, 

, ( , ) [1, 2]i j i j . Fig. 2.4b shows qualitatively the behavior in the full ( f 1, f 2, f 3) 
space for the zero-motion case and for motion by one constant velocity u > 0, 
where further the spectrum is assumed to be band-limited in f 1 and f 2. 

Fig. 2.4 illustrates that the positions of non-zero spectral values in case of con-
stant velocity are found via a linear relationship between f 3 and the frequencies 
relating to the spatial coordinates. This effect can also be interpreted in the signal 
domain. Fig. 2.5 shows two sinusoids of different frequencies f 1, both moving by 
the same velocity. The phase shift occurring due to the constant-velocity motion 
linearly depends on the given spatial frequency.  

2.3 Sampling of multimedia signals 

Ideal sampling describes the multiplication (modulation) of a signal by a regular 
(equidistant) train of Dirac impulses.  In the 1D case, this gives  

 ( ) ( ) ( ) .
T

n n
s t s t t nT s nT t nT  (2.46) 

An example is shown in Fig. 2.6. 
 

 
 
Fig. 2.6.  Output ( )

T
s t  of an ideal sampling unit  

 

T
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The ideal sampler generates a discrete-time, equidistant series of weighted Dirac 
impulses from the continuous-time signal s(t). The weights are the samples s(nT ). 
The Fourier spectrum of the sampled signal is  

 

( ) ( )

1( ) ( )

T

T

n

n

s t s t t nT

nS f S f f
T T

 (2.47) 

S
T
( f ) is periodic by the sampling rate 1/T, with spectral copies scaled in ampli-

tude, 

 1( ) / .
T

k
S f S f k T

T
 (2.48) 

Fig. 2.7 shows this relation for a real-valued band-limited lowpass signal with 
zero-valued spectrum at any | f |  fc with cut-off frequency fc. 
 

 
Fig. 2.7.  Periodic components in the Fourier spectrum of a sampled signal ( )

T
s t  

 
When sampling is performed using a sampling period 

 
c

1 ,
2

T
f

 (2.49) 

the periodic copies of the spectrum S( f ) in S
T
( f ) are not overlapping, such that 

the original S( f ) can be perfectly reconstructed by suitable lowpass filtering from 
S

T
( f ). This basic idea of sampling is shown in Fig. 2.8. If (2.49) is violated, fre-

quency components from the periodic copies may appear in the baseband after the 
lowpass filtering, which is denoted as aliasing.  
 
The lowpass shall have a transfer function which is flat in the range | f | < fc of the 
pass band and shall perfectly discard frequencies | f | > 1/T  fc from S T( f ). As-
suming that an ideal lowpass is used, the reconstruction of the continuous-time 
signal from the sampled signal can be formulated in the frequency and time do-
mains as (see Fig. 2.8) 

T

c c 
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c
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( ) ( ) rect
2

( ) = ( ) 2 si 2 .

T

T

fS f S f T
f

s t s t f T f t
 (2.50) 

If the largest possible sampling period T=1 /(2fc) is used, (2.50) gives 

 ( ) ( ) si ( )si .
n n

t t nTs t s nT t nT s nT
T T

 (2.51) 

 

 
Fig. 2.8.  Reconstruction of the Fourier spectrum S( f ) from S T( f ) by using an ideal low-
pass filter of cut-off frequency fc  
 
This formulation of the sampling theorem shows, that a real-valued signal which 
is band limited within a given lowpass range limited by fc can be described with-
out any errors by an equidistant series of weighted sinc functions. This is also 
denoted as the cardinal series of s(t). The weights are equal to the samples of the 
signal as extracted with distances T=1 /(2fc) from the signal. Fig 2.9 shows this 
principle. 
 

 
 
Fig. 2.9.  Band limited real-valued lowpass signal s(t) reconstructed by superposition of 
weighted sinc functions with distances T=1/(2fg)  
 
 

T
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c2fc-2f  

cfc-f  
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2.3.1 Separable two-dimensional sampling 
 

Separable two- or multidimensional sampling is independent in the respective 
dimensions. This can be expressed from 1D Dirac impulse trains (refer to (2.47)) 

( ) ( )
i

i

T i i i i
n

t t n T . (2.52) 

By multiplication of two impulse trains, which are separable on a rectangular grid, 
a two-dimensional ideal sampling function is defined as 

1 2 1 2
1 2

, 1 2 1 2 1 1 1 2 2 2( , ) ( ) ( ) ( , )T T T T
n n

t t t t t n T t n T . (2.53) 

Due to separable property, the rectangular impulse grid has a 2D spectrum 

1 2 1 2
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1/ 1 1/ 2 1/ ,1/ 1 2
1 2 1 2

1 1 1 2 2 2
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1 1 1( ) ( ) ( , )

1 ( / , / ).
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k k

f f f f
T T T T

f k T f k T
T T

 (2.54) 

The operation of ideal rectangular-grid sampling of a spatially-continuous 2D 
signal s(t1,t2) is expressed by multiplication with 

1 2, 1 2( , ).T T t t  The sample aspect 
ratio is defined as T1/T2. The discrete signal s(n1,n2) consists of amplitude samples 
s(n1T1,n2T2). Its spectrum is   
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 (2.55) 

It is also possible to compute the periodic spectrum directly from the discrete 
series of samples: 
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 (2.56) 

or by performing normalization by setting T1=T2=1, 
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1 1 2 2

1 2

j2 j2
1 2 1 2( , ) ( , )e e .f n f n

n n
S f f s n n  (2.57) 

2D pulse grid sampling generates periodic copies of the spectrum along both di-
rections. Examples of Fourier amplitude spectra |S( f1, f2) | and |S ( f1, f2) | in case of 
rectangular sampling are shown in Fig. 2.10. 
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Fig. 2.10.  Spectra of 2D image signals:  a Continuous signal  b sampled signal  
   
To allow reconstruction by a 2D lowpass filter, s(t1,t2) has to be band limited 
before sampling. 2D separable sampling allows perfect reconstruction by a low-
pass interpolation filter if 

!

1 2 1 2
1 2

1 1( , ) 0 for or
2 2

S f f f f
T T

, (2.58) 

such that 
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T T
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T T

 (2.59) 

 
This method of separable sampling can be straightforwardly extended to an arbi-
trary number of dimensions. 
 

2.3.2 Non-separable two-dimensional sampling 
 

Equidistant one-dimensional sampling and separable multi-dimensional sampling 
have only one degree of freedom (per dimension) in varying the sampling distance 
T. In case of non-separable sampling, sampling positions are still following a 
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regular pattern, but need to be formulated with mutual dependency. Different 
regular grids of 2D sampling are illustrated in Fig. 2.11. Regularity means a sys-
tematic periodicity of a basic structure, which can be expressed by a system of 
basis vectors t1 = [t11 t21]T, t2 = [t12 t22]T. Linear combinations of these vectors, 
when multiplied by the integer vector index n = [n1,n2]T, point to the effective 
positions t(n)=n1t1 + n2t2, which could be interpreted as ‘centers of sampling 
cells’. The basis vectors are the columns of a coordinate transformation matrix T, 
which in this context is also denoted as sampling matrix: 

   1 1 2 11 12 1

2 1 2 21 22 2

( )

( , )
( , )

t n n t t n
t n n t t n

nTt n

. (2.60) 
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Fig. 2.11.  2D sampling grids: a rectangular  b horizontal shear, v=1 c hexagonal   
d quincunx  

For the separable case, the sampling distances T1 in horizontal and T2 in vertical 
direction are independent of each other. The corresponding sampling matrix is 
diagonal, with a frequency matrix according to (2.37), 
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For the case of shear sampling (horizontal or vertical shear alternatively) 

1 1
shear

2 2

| 0
0 |

T v T
v T T

T 1 1
shear

2 2

1 0 |

1| 0

v
T T
v
T T

F , (2.62) 

the effective sampling grid would still appear as rectangular when v is an integer 
value (see Fig. 2.11b). Shear sampling can be interpreted as an alternative ap-
proach of adapting the sampling process by directional signal characteristics, 
where one axis of the coordinate system is tilted by the propagation direction of 
the signal. Such an approach may be useful when in a multidimensional sampling 
process the sampling positions in some dimensions cannot be changed due to 
system restrictions, e.g. when an image is scanned line-wise, or with fixed tem-
poral sampling positions in case of video sampling. 

Two other cases which can be interpreted as special cases of shear sampling 
(using non-integer shear factors v) are the hexagonal sampling scheme (Fig. 
2.11c) and the quincunx sampling scheme (Fig. 2.11d). The basis vectors are tilted 
such that each sample has same distances towards its six or four nearest neigh-
bors, respectively. To achieve this, a common scaling of sampling distance T 
(equal to the vertical distance between lines in these two cases) is used for both 
basis vectors.   

    hex

2 1
3 3

0 1
TT hex

3 01 2
1 1
2

T
F ;   

   quin

2 1
0 1

TT quin

1 01 2
1 1
2

T
F .    (2.63) 

To determine the positions of periodic spectral copies in the case of non-separable 
sampling, a non-separable 2D Dirac impulse grid with sampling positions defined 
by T is mapped by a coordinate transformation into a separable, unity-distance 
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Dirac impulse grid8 ( ) ( ) ( ) ( )I It t f f , with T1=T2=...=1. This gives, 
using (2.38):  

   
T1 1 1( ) ( )  with  T t T F f F T  (2.64) 

It should however be observed, that by applying the coordinate transformation to 
the ‘sheh’ function, the Dirac impulses are scaled reciprocally, following the de-
terminant of the respective coordinate transformation matrix (in both t and f do-
mains). Therefore, explicitly expressed by sums of non-scaled Dirac impulses, 

  1 1( ) ( )   and   ( ) ( ) ,
n k

T t T t Tn T f F f Fk  (2.65) 

and finally 

  

( ) ( )

1( ) ( )  

T F

n k

t f

t Tn f Fk
T

 (2.66) 

The spectrum of a multi-dimensional signal being ideally sampled with the 
scheme defined by the sampling matrix T then is  

  1 1( ) ( ) ( ) ( ) ( ) ( ) ( )s s S S S
T TT F

k
t t t f f f f Fk

T T
, (2.67) 

which gives specifically for the 2-dimensional case 

    1 2 1 1 11 2 12 2 1 21 2 22
1( , ) ( , )

k l
S f f S f k f k f f k f k f

T T
. (2.68) 

(2.67) and (2.68) can be interpreted in a way that each -tuple of integer values in 
k points to one copy of the spectrum by the corresponding linear combination of 
the basis vectors, Fk. Again, direct computation of S (f) as in (2.56) would be 
possible from the series of samples, 

    
T1T j2j2( ) ( ) e ( ) eS s s

T

F f nf Tn

n n
f Tn Tn . (2.69) 

 F-1f in (2.64) could be interpreted as normalized frequency where spectral copies 
are at integer vector positions k, and n=T-1t would describe a discrete signal over 
integer vector indices n, corresponding to a normalization of the t coordinates by 
T. Then, a separable Fourier sum over a normalized frequency could be computed 
directly from the signal samples s(n), regardless of the actual sampling structure, 
as a generalization of (2.57), 

   
Tj2( ) ( ) eS s f n

n
f n .            (2.70) 

                                                           
8 Using the letter ‘sheh‘ from the Russian alphabet as a symbolic expression of a unity 
distance Dirac impulse grid 
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It must however be noted that the normalization assumed in (2.70) may be mis-
leading because reasonable conditions about band limitation, as necessary for 
alias-free sampling and reconstruction, are not fully reflected here. A mapping of 
conditions in (2.58) would unnecessarily restrict the degrees of freedom in defin-
ing band limitation in the non-rectangular sampling case, because the matrix F 
only allows describing a linear coordinate transformation of the baseband bounda-
ries from a square-shaped lowpass. Two examples of such a mapping for the case 
of quincunx sampling (2.63) are shown in Fig. 2.12. The resulting limitation of 
the base band in Fig. 2.12b would be asymmetric, giving different preference to 
orientations. Moreover, other grids with identical sampling points (though differ-
ently indexed in k) can be defined using alternative sampling matrices T. For 
example, two possible definitions of a position-wise identical quincunx grid as in 
(2.63) would be (case II is based on a vertical shear, case III is a rotation of coor-
dinates) 

  quin-II quin-III

1 0 1 1
;

1 2 1 1
T TT T .    (2.71) 

These different definitions would have a significant impact on the band limitation, 
when back-projection from the unity grid (2.64) is used as reference. In the specif-
ic case of quincunx, the rotation would give the somewhat optimum omnidirec-
tional packing as discussed below, but it may not be possible to make such defini-
tion from the sampling matrix for any sampling structure, particularly in higher 
dimensions. 

a bf2
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1/2

f2

f1

1/(2T)

1/(2T)

f2

f

1/(2T)

1/(2T)

c

 
Fig. 2.12.  a Base band and its periodic copies for rectangular-grid sampling in the normal-
ized frequency plane b/c corresponding reverse mapping F-1f for the case of quincunx 
sampling according to (2.63) (b) and version III from (2.71) (c). 

Best omnidirectional lowpass band limitation for non-rectangular sampling can be 
derived from the theory of dense packing of identically shaped cells (areas or 
volumes) in multiple dimensions. For this, the position of the center of the base 
band at the origin of the frequency plane is regarded in relation to the positions of 
centers of directly neighbored spectral copies. In order to make the shapes identi-
cal and symmetric for different directional orientations, the cut-off frequency 
should be at half distance between the zero frequency and the centers of closest 
spectral copies. This can be determined by drawing interconnection lines (called 
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Delaunay lines) from f=0 to those center points. In the 2D case, Voronoi lines 
(which would become planes or hyper planes in higher dimensions) are intersect-
ing at the mid position of the respective Delaunay line with perpendicular orienta-
tion (i.e. the orientation of the Delaunay line could be interpreted as normal vector 
of the Voronoi boundary). The connection of all Voronoi lines closest to frequen-
cy zero establishes the boundary of the base band. For the examples of quincunx 
and hexagonal sampling matrices in (2.63), the shapes of base bands and the peri-
odic copies thereof are illustrated in Fig. 2.13a/b, and conditions are explicitly 
determined in the following paragraphs. In the quincunx case, this becomes in-
deed identical to the mapping of conditions (2.58) by Fquin-III of (2.71); in the hex-
agonal case, no such direct mapping is possible.  

ba cf2
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3/(2T)

1/(2T)

f2

f1

1/(2T)

1/(2T)

f2

f1

1/(2T)

1/T

 
Fig. 2.13.  Positions of base band and spectral copies for different 2D sampling grids.   
a Hexagonal   b Quincunx   c Shear, v = 1  [  Delaunay line  Voronoi line] 
    
Hexagonal sampling. The hexagonal shape of the base band requires piecewise 
definition, but is symmetric over all four quadrants. When 1 3 / 6f T , the 
boundary of the base band is parallel with the f 1 axis, while for higher frequencies 
| f 1|, four lines with slopes a= 3  and intercepts b= 1/T define the boundary. 
This results in sampling conditions (see problem 2.1) 

!
2

1 2 2 1
1 1( , ) 0 for or

2 3 3
f

S f f f f
T T

. (2.72) 

 
Quincunx sampling. The boundary of the base band is described by four lines of 
slopes a 1 and intercepts b 1/(2T). This gives the condition  

!

1 2 1 2
1( , ) 0 for

2
S f f f f

T
. (2.73) 

In quincunx sampling, pure horizontal or vertical sinusoids can be reconstructed 
up to the same frequency as with quadrangular (i.e. rectangular where T=T1=T2) 
sampling, though the number of samples is reduced by a factor of two. For sinus-
oids of diagonal orientation, the maximum allowable frequency is however lower 
by a factor 2 . Quincunx sampling better matches human perception which is 
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less sensitive to fine detail in the diagonal directions. In the Bayer pattern (Fig. 
1.5), a quincunx sampling grid is therefore applied to the G (green) component. 
For interpolation into full resolution, a 2D sinc function rotated by 45o (or an 
approximation thereof) can be applied: 

1 2 1 2
1 2( , ) si si

4 4
t t t t

h t t
T T

. (2.74) 

For any two- and multi-dimensional sampling system, the allowable bandwidth of 
the signal (area or volume covered by the base bands in Fig. 2.13) is identical to 
the determinant of the frequency sampling matrix F. Likewise, the area or volume 
of each ‘sampling cell’ is the determinant of the sampling matrix T. Due to (2.37), 
the density of samples and the alias-free signal bandwidth are mutually reciprocal. 
The definition of the base band allows certain degrees of freedom, in trading the 
resolution ranges between the different dimensions. As an example for this, alias-
free quincunx sampling could also be realized using a separable reconstruction 
filter of horizontal pass-band cut-off 1/(4T), vertical cut-off 1/(2T) or vice ver-
sa. The question whether this makes sense can only be answered by an analysis of 
signal characteristics, and by the actual goal of sampling, e.g. the effective band-
width of signals along each of the dimensions.  

The theory of densest packing as mentioned above can not only be used for 
determining the boundaries of the baseband (respectively the cut-off characteris-
tics of the lowpass interpolation filter), but also to determine the best two- or 
multi-dimensional sampling grid. Assume that a goal would be to represent direc-
tional sinusoids such as (2.1),(2.3) with highest possible frequency F regardless of 
the orientation. From that point of view, the optimum shape of the baseband 
would be a circle, in higher dimensions, it becomes a sphere or hyper sphere. If a 
circle or sphere of given radius r (e.g. r=1/2) is fitted with the minimum baseband 
cut-off, the determinant |F| of the related matrix is a criterion for the necessary 
number of samples per unit to allow a cut-off at f=1/2 at minimum. For example, 
in the case of separable 2D sampling (2.61) (see Fig. 2.12a), dense packing of 
circles with r=1/2 is possible when T1=T2=1, |F|=1. In hexagonal sampling 
(2.63) (see Fig. 2.12c), this is possible using T=1, which gives 

3 / 2 0.866F . This is denoted as sphere packing advantage of the hexago-
nal structure, meaning that sinusoids of arbitrary directional orientation with a 
given maximum frequency can be sampled using less than 87% of the samples 
that would be necessary for the separable case. Alternatively, using the same 
number of samples, the cut-off frequency can be increased by the reciprocal 
square root of that factor. In 2D, the hexagonal scheme provides the best possible 
sampling in that sense.  The quincunx scheme does not provide a sphere packing 
advantage. 

Two- and multi-dimensional sampling structures can also be constructed by 
superimposing different systems of basis vectors. For example, a quincunx 
scheme as in Fig. 2.11c can be interpreted as a superposition of two rectangular 
schemes (see problem 2.2). Similarly, a grid of equal-sized triangle cells can be 
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formed by a superposition of two hexagonal grids of Fig. 2.11c, where the second 
is vertically offset by 2T2/3. However in this case, the cells corresponding to the 
two sub-grids have different orientation, and each point has only three nearest 
neighbors with equal distance, which indicates that the packing would be less 
dense than with a single hexagonal grid.  
 

2.3.3 Sampling of video signals 
 
A video sequence of pictures can be interpreted as a three-dimensional (2D spa-
tial+temporal) signal (see Fig. 2.14). Let the time distance between subsequent 
sampled pictures be T3. An extension of separable sampling (2.60) to the third 
dimension then leads to the following mapping of sampling positions in the spa-
tio-temporal continuum: 

1 1 2 3 1 1 1

2 1 2 3 2 2 prog 2

3 1 2 3 3 3 3

( , , )
( , , )
( , , )

t n n n n T n
t n n n n T n
t n n n n T n

T . (2.75) 

For the example of Fig. 2.14a, samples have identical spatial positions in any 
picture. Such a configuration is denoted as progressive sampling, which is shown 
in Fig. 2.14b over the vertical and temporal directions. The sampling matrix relat-
ed to fully-separable progressive sampling is given as 

1 1

prog 2 prog 2

3 3

0 0 1/ 0 0
0 0 0 1/ 0
0 0 0 0 1/

T T
T T

T T
T F , (2.76) 

however, any sampling that handles the temporal dimension independent of the 
two spatial dimensions could also be entitled as progressive (e.g. quincunx or 
hexagonal only in the two spatial dimensions). In analog video, interlaced sam-
pling was typically used, and interlaced formats still exist in some digital video 
cameras. Even and odd lines are sampled in a time-interleaved fashion, such that 
for each time instance, only half of the lines is sampled and available for subse-
quent processing. The resulting pictures consisting of either even or odd lines are 
called the even and odd fields, respectively (see. Fig. 2.14c). The sampling matrix 
in this case can be defined as9  

                                                           
9 In Fig. 2.14c and in the sampling matrix (2.77) a configuration is shown where the top 
field (lines 0,2,4,..) is the field which is sampled first within the frame. In NTSC TV and 
digital 60 Hz interlaced video derived thereof, the bottom field is sampled first. This is 
however only relevant if field pictures are grouped together as a ‘frame’, e.g. when abso-
lute timing information is assigned. 
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0 0 1/ 0 0
0 2 0 1/ 2 0
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T T
T T T

T T T
T F .   (2.77) 

This could be interpreted as a quincunx sampling grid10 applied to the verti-
cal/temporal continuum in 3D. By this, higher vertical frequencies can be support-
ed only when no significant temporal changes (e.g. caused by motion) are present.  
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Fig. 2.14.  a Progressively sampled image sequence  b/c Video sampling in verti-
cal/temporal directions: Progressive (b) and interlaced (c) schemes.   
 
In progressive sampling – which is the 3D version of separable sampling – the 
conditions of the sampling theorem for avoiding alias can be formulated inde-
pendently in each dimension. In this case the sampling matrix is diagonal, such 
that no interrelationships occur:  

   
!

1 2 3 1 2 3
1 2 3

1 1 1( , , ) 0 when  or  or 
2 2 2

S f f f f f f
T T T

. (2.78) 

In interlaced sampling, only the condition for the first dimension can be separated, 
since the horizontal sampling positions are independent, 

!
2 3

1 2 3 1
1 3 2 2 3

1 1( , , ) 0 when or
2 2

f f
S f f f f

T T T T T
. (2.79) 

In video acquisition, spatial sampling is often assumed to be alias free, as the 
elements of the acquisition system (lenses etc.) naturally have a lowpass effect. As 
was shown in (2.45), the frequency f 3 depends on spatial frequency and the 
strength of motion. Assume that the signal could contain sinusoids of almost the 

                                                           
10 The bottom-right 2x2 sub-matrix in (2.77) is indeed similar to (2.63) except for the fact 
that T2 and T3 actually express different physical units (space and time). Therefore, setting 
T1=T2 (as it was done in the 2D case) is not meaningful here. 
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maximum allowed spatial frequencies (F1  1 /(2T1), F2  1 /(2T2)). Substituting 
the condition for f 3 from (2.78) into (2.45), the following limiting condition must 
then be imposed on the velocity to achieve alias-free sampling: 

! !
3 3 3

1 2 1 2
1 2

1 resp. 1 with i i
i

T T T
u u k k k u

T T T
. (2.80) 

Herein, the ki express the horizontal/vertical displacements in units of samples 
from one picture to the next, if the velocity ui is observed in the continuous signal 
in the respective dimension. The strict limitation, disallowing shifts larger than 
one spatial sample per time unit, appears surprising at first sight, as humans usual-
ly are capable to watch moving pictures of much higher motion without any prob-
lem. However, the limitation in (2.80) assumes that only one sinusoid of close-to-
highest allowable spatial frequency would be sampled. Spectra of natural video 
signals are non-sparse with high energy in low-frequency ranges, which allow 
perceiving the motion reliably and alias-free. Particularly, the observer’s eyes can 
track the motion which compensates alias by projecting the spectrum towards 
frequency f3=0 (or alternatively could be interpreted as using a shear of the recon-
struction filter pass-band).  

To illustrate the effects of alias occurring in the case of progressive sampling, 
Fig. 2.15 shows a vertical/temporal section (f 2,f 3) of the 3D frequency space. A 
spatial sinusoid of close to half vertical sampling frequency is assumed which has 
a spectrum consisting of two Dirac impulses ( ). Centers of periodic spectral 
copies are marked by ‘x’. Fig. 2.15a shows the spectrum of the signal without 
motion. Fig. 2.15b indicates skewing of the position in direction of f 3, when the 
signal is moved by half a special sampling unit per time unit (u2 0.5T2/T3 ) 
upwards, Fig. 2.15c illustrates the case of motion by 1.5 units (u2 1.5T2/T3 ). In 
the latter case, alias components appear in the base band, such that a viewer could 
interpret this as a motion by half a unit downwards (u2 0.5T2/T3 ). The spatial 
frequency of the signal remains unchanged in any case, i.e. aliasing in f 3 only 
causes wrong interpretation of motion in the case of progressive sampling. In 
cinema, this is known as the ‘stage coach effect’, where rotating wheels equipped 
with periodic spokes seem to move slower, stand still or turn backwards, depend-
ing on the combined effect of temporal sampling distance, angular distance be-
tween the spokes and the speed of the wheel.  
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Fig. 2.15.  Effect of alias, vertical motion of a progressively-sampled sinusoid.  
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Fig. 2.16.  Effect of alias, vertical motion of an interlaced-sampled sinusoid.  
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Fig. 2.17.  Avoidance of alias by adaptation of the human visual system; tracking by the 
eyes effects correct reconstruction in sheared sampling.   
 
Fig. 2.16 shows the effect for the case of interlaced sampling of the same signal11. 
First, it is obvious that aliasing already occurs with lower motion than in the pro-
                                                           
11 Note that the temporal sampling distance T3 according to the sampling matrix in (2.77) 
refers to frame units, i.e. the sampling distance between fields is T3/2. Likewise, the verti-
cal sampling distance between the adjacent lines of each field is 2T2 by this definition. 
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gressive sampling case. Second, if alias spectra originate from diagonally-adjacent 
spectral copies and with vertical frequency of the sinusoid as F2, an alias compo-
nent of frequency 2 2 21/ (2 )F T F  appears in the base band. In particular when 
highly-detailed periodic stripes are present in the scene and moving, this can re-
sult in appearance of strange sinusoidal components, typically also having differ-
ent orientations than the original, as the horizontal frequency component F1 would 
not be affected and orientation follows from (2.2).  

As motion causes a tilt of spectra towards positions f3 0, but does not cause a 
spreading of spectra, perfect reconstruction and correct perception would in prin-
ciple be possible when the motion is known to the observer. This can either be 
interpreted to relate to the case of shear sampling (where the spectral shape of the 
reconstruction filter is aligned towards f 3=u1 f1+u2 f2), or as motion compensation 
(where the observer ‘transforms’ the reference coordinate system according to the 
motion). Fig. 2.17 illustrates that a single sinusoid moving by higher velocity can 
still be interpreted correctly; however, from a single sinusoid it is usually not 
possible to determine the actual motion, as the signal is periodic and multiple 
correspondences are detected between the subsequent pictures (a typical observer 
would assume the lowest possible velocity, which means that the displacement 
should not be larger than half a period in any direction). However, for structured 
signals which contain salient points, edges etc., the true motion can be tracked 
accordingly, as all frequency components are identically shifted (consistent linear 
phase shift). Motion-compensated processing in video compression performs a 
similar task, allowing to compress signals based on their actual redundancy along 
the temporal axis, thus avoiding alias components.  

2.4 Discrete signal processing 

2.4.1 LSI systems 
 
The one- or multidimensional operation12 

   ( ) ( ) ( ) ( ) ( )g s h s h
m Z

n m n m n n  (2.81) 

is denoted as discrete convolution. Its properties are similar to the continuous-time 
convolution integral, e.g. the associative, commutative and distributive properties 
apply. The unit impulse 

                                                           
12 The Z-lattice Z  is an infinite set of vectors consisting of all possible integer number 
combinations over  dimensions.  
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1 für  

( )
0 für  ,

n 0
n

n 0
 (2.82) 

also denoted as Kronecker impulse, is the unity element,  

   ( ) ( ) ( ) ( ) ( )s s s
m Z

n n n m n m . (2.83) 

Discrete convolution (2.81) is linear (2.14) and shift invariant, the latter property 
being equivalent with time invariance (2.15). Therefore, a system performing the 
discrete convolution operation is denoted as LSI system, for which (2.81) pro-
vides the unique mapping between input and output, with behaviour fully de-
scribed by the impulse response h(n). The operation of certain classes of LSI 
systems can be interpreted by finite order difference equations, for which a causal 
form13 is 

   
0 0

( ) ( ).b g a s
p q

p q
p q

n p n q
N N

 (2.84) 

This gives the input/output relation ( simplified when normalizing 1b0 ) 

   
0

FIR part IIR part

( ) ( ) ( )   with , .
a b

g a s b g a b
b b

q p

q p
q p q p

q p 0 0

n n q n p
N N

 (2.85) 

The corresponding digital filters consist of an FIR (Finite Impulse Response) part 
taking reference to |Nq+| previous samples of the input, and an IIR (Infinite Im-
pulse Response) part using feedback from |Np+| previously processed output sam-
ples.  
 

2.4.2 Discrete Fourier transform 
 
Similar to (2.47), a spectrum S( f )  shall be represented by samples which have 
distances that are expressed by a separable (diagonal) sampling matrix F on the 
frequency axis14: 

   p ( ) ( ) ( ) ( )S S S
k Z k Z

f Fk f Fk f f Fk . (2.86) 

Applying the inverse Fourier transform gives 

                                                           
13 Herein, N0+ is a finite set of integer index vectors p|q corresponding to a neighbourhood 
of previously available input samples, including the current sample with p|q=0. For exam-
ple, in 1D, the range of values is q=0…Q. Similarly, N+ is excluding the current sample, 
e.g. in 1D, with range of values p=1…P 
14 In principle, the following considerations are extensible to non-separable spectrum 
sampling, which for simplicity is omitted here. 
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Spectrum sampling described by F effects a periodic repetition of the t-domain 
function described by T. If the duration of s(t) fits into one ‘periodic cell’ of T, it 
can be reconstructed from sp(t) by multiplying it with a separable rectangular 
window function that has the shape of the cell, which in the frequency domain 
corresponds to a separable sinc function: 

   
p

p

( ) ( ) rect
 

( ) ( ) si .

s s

S S

t t F Tt

f f Ff
 (2.88) 

From these considerations, periodic signals possess discrete spectra, but also sig-
nals that are time limited to a range that is equivalent to one period of T are com-
pletely represented by spectral samples over F. 

As band-limited signals can be described from a series of samples over time, it 
can further be concluded that a signal which is considered as limited and could 
therefore be equivalently periodic in both time and frequency domains can also be 
perfectly represented by finite series of samples in any of the two domains. A 
signal sd(n) shall be nonzero only in ranges [0;Mi 1] within all of its  dimen-
sions (i=1… ), or equivalently be periodic over Mi  samples. Then, samples of 
the periodic Fourier spectrum taken at distances Fi=1/Mi  are giving a unique 
representation, where in the two subsequent equations F=[M 1]T is a diagonal 
matrix with the Fi  values of the different dimensions as entries (and M similarly 
holding the Mi values). This gives the Discrete Fourier Transform (DFT) over  
dimensions, 

 
1 T
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1 1
j2

a d d
0 0

( ) ( ) ( )e ; 0, , 1,
M M
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S S s k Mn FkFk k n  (2.89) 

with the inverse DFT allowing reconstruction of all |M| samples, 
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1

1 1
j2

d d
0 0
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i i
n n

s S n Mn Fkn k  (2.90) 

 

2.4.3 z transform 
 
A condition for existence of the Fourier sum (2.57) of a discrete-time signal is 
finite absolute summation 

   ( )s
n Z

n . (2.91) 

An exception is established for periodic signals which have Fourier spectra S ( f) 
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containing Dirac impulses. Otherwise, for a larger class of signals that do not 
grow stronger than exponentially on at most one side, convergence can be 
achieved by an exponential weighting 

T
1 1e e en nn  ( i values real), 

   
TT T T j2j2( ) ( )e e ( )e .e s s s f nn n f n

n Z n Z
n n n  (2.92) 

Substituting zi=e( i +j2 fi ) by polar coordinates zi= ie j2 fi  with i=e i   0 ( i >0 
and i real valued, i  0 for i  ) and defining 

   
1

il
i

i
zlz , (2.93) 

the two-sided -dimensional z-transform of the signal s(n) is 

   ( ) ( ) .S s n

n Z
z n z  (2.94) 

Values of z where a solution exists are contained within the region of convergence 
(RoC) of the complex z hyperspace. The z-transform is particularly useful in LSI 
system analysis and synthesis. Convolution in the time domain can again be ex-
pressed by multiplication in the z domain, 

( ) ( ) ( ) ( ) ( ) ( )  
with RoC RoC RoC ,

g s h G S H
G S H

n n n z z z
Z

 (2.95) 

and a delay by k samples can be expressed as 

 ( ) ( ) ( ) ( ) ( ) = ( ) .s s S Sn k

n Z
n k n n k z n k z z z

Z

 (2.96) 

A causal FIR/IIR filter with difference equation (2.84), where the z-transform is 
separately applied to the left and right sides, gives 

0 0
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and therefore     
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 (2.98) 

The FIR part of the filter corresponds to the numerator polynomial and the zero 
locations of the z transform, whereas the IIR part relates to the denominator and 
its singularities (poles). From (2.98) it is straightforward to design an inverse filter 
which performs de-convolution, i.e. reproduces s(n) from g(n),  
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Properties of the multi-dimensional z transform. Properties of the multidimen-
sional z transform are very similar to those of the Fourier transform: 

Linearity:  ( ) ( )
z

i i i i
i i

a s a Sn z  (2.100) 

Shift:   ( ) ( )
z

s Skn k z z  (2.101) 

Convolution: ( ) ( ) ( ) ( ) ( ) ( )
z

g s h G S Hn n n z z z  (2.102) 

Inversion15:  ( )( ) ( )
z

S S In z  (2.103) 

Scaling16:  
1( )( ) ( )

z
s s S U

U n Un z   (2.104) 
Expansion:

 ( )( ),
( ) ( ) ( )

0,  else

zs
s S S U

U U

m n Um
n z z   (2.105) 

Modulation:  j2 j2( ) e ( e )
z

s SFn Fn z . (2.106) 
 
 
2.4.4 Multi-dimensional LSI systems 
 
The set of samples accessed by a two- and multi-dimensional system is entitled as 
‘support region’ or neighborhood N. An interesting class of symmetric 2D sup-
port regions is established by a homogeneous neighborhood, where signal samples 
at positions (m1,m2) belong to the neighborhood of a sample at position n=[n1 n2]T 
according to a maximum distance norm of order P17: 

                                                           
15 z(A) expresses a coordinate mapping in the multi-dimensional z domain such that in the 
ith  dimension  zi(A) = zjaji. With zi =ej2 fi, the equivalent mapping in the Fourier domain is 
Af. 
16 Scaling is a sub-sampling operation with integer values U > 1. The z transform mapping 
as expressed in (2.104) is strictly valid when no information loss occurs, i.e. where only 
samples in s(n1,n2,...) which are at positions niUi were non-zero.  
17 Homogeneous neighbourhood systems are symmetric in terms of shape, but also in terms 
of mutual relationship of samples, which means that the current sample at position (n1,n2) is 
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   ( ) ( ) : 0 PP
C i i

i
m n Cn mN . (2.107) 

The parameter C 0 influences the size of the neighborhood support region, 
whereas P 0 influences the shape. The discrete multi-dimensional convolution of 
a signal s(n) by the impulse response h(n) is then defined as a finite-neighborhood 
operation 

  
( ) ( )

( ) ( ) ( ) ( ) ( )g s h h s
m 0 m 0

n m n m m n m
N N

. (2.108) 

The support region N in (2.108) can specify impulse responses which have either 
finite or infinite extension. 

Filtering along horizontal directionh (n ):1 1 Filtering along vertical directionh (n ):2 2

s(n ,n )1 2 g ( )1 n ,n1 2 g( )n ,n1 2

 
Fig. 2.18. Principle of a separable 2D LSI system with horizontal filter step first 
 
Separable 2D LSI systems can be implemented in a similar fashion as per (2.26). 
Fig. 2.18 shows the principle, where first a horizontal 1D convolution is per-
formed along each row, resulting in g1(n1,n2). In the next step, g(n1,n2) is comput-
ed by convolving each column of  g1(n1,n2). Infinite Impulse Response (IIR) filters 
are not realized by direct implementation of the convolution equation (2.108), but 
use feedback from previous output values g(n1,n2). A given sequence of pro-
cessing has to be obeyed due to the recursive relationship. For a 2D geometry, all 
positions which need to be previously processed to provide the input for the cur-
rent position establish the support region N. Fig. 2.19 shows three different causal 
IIR filter geometries with their respective N geometries: The wedge plane filter, 
the quarter plane filter and the asymmetric half plane filter. For the cases of quar-
ter-plane and wedge-plane filter masks, either row-wise or column-wise recursion 
scans are possible; these filters also allow processing sequences with diagonal 
scans, or computation of all samples positioned on a diagonal in parallel (denoted 
as wavefront processing). For the asymmetric half plane filter, row-wise pro-
cessing (starting at the top left position) is the only possible sequence of recursion. 
On a rectangular grid, only quarter-plane filters can be defined from separable 
causal 1D filters. 

                                                                                                                                     
also a member of the same neighbourhood systems when applied to any of its neighbours 
(m1,m2). The neighbourhood can also be infinitely extended, e.g. for P=0 and C 2. 
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Fig. 2.19. Causal 2D filter masks and geometries of their support regions:  
a Wedge plane  b Quarter plane  c Asymmetric half plane 
 
A recursive 2D quarter-plane filter, where the filter geometry defines the feedback 
from (P1+1)(P2+1) 1 previously filtered samples, generates the output signal 
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In case of separable recursive filtering, lines and columns of a picture can be pro-
cessed sequentially, such that the result of filtering along one of the dimensions is 
input to the filter along the other dimension, e.g. with horizontal processing first 
as 
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 (2.110) 

The actual relation between the recursive coefficients in 1D and 2D can be deter-
mined by the difference equation (2.84) and its modification (2.85), such that 

1 2 1 1 2( , ) ( ) ( )  with (0) 1,  ( ) ( ) for 1i i i i i i ib m m b m b m b b m b m m P . (2.111) 

Pictures are finite, where the output of filtering shall usually have the same size as 
the input e.g. for display purposes. Indices n m in (2.108) can however have 
values less than zero or larger than the maximum coordinates M1 1 or M2 1, 
when samples close to the image boundaries shall be processed. Hence, it is nec-
essary to define a signal extension beyond the boundaries of the input signal to 
consistently compute the convolution. Zero-setting of values is not useful, as 
pictures typically have non-zero mean. Three methods copying samples from the 
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picture beyond the boundary, and therefore applicable for FIR filtering, are shown 
in Figs. 2.20a-c18. 
 

 
N1

N2

a b cN1

N2

N1

N2

 
Fig. 2.20. Boundary extensions of finite image signals. 
a periodic  b symmetric (antiperiodic)  c constant value 
 
 
Fourier transfer functions of multi-dimensional filters. The multi-dimensional 
Fourier transform of the discrete impulse response is 

  
T

1

j2( ) ( ) e
n n

H h f nf n . (2.112) 

If the system has FIR or causal IIR property, the summation limits can be bound-
ed, such that the complex transfer function can directly be determined. For exam-
ple, a 2D FIR system with a symmetric neighborhood of size (Q1+1)(Q2+1) (Q1 
and Q2 even) gives 
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or for the case of a 2D quarter-plane IIR system, the Fourier transfer function is 
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 (2.114) 

The filter types and geometries of (2.113) and (2.114) are often used in the con-
text of spatial prediction and interpolation of pictures. 
 
 

                                                           
18 In case of IIR filters, it is necessary to define start values for the recursion from values 
g(n m) which would be outside of the picture. Usually this should reflect the mean expec-
tation, e.g. zero for audio/speech, mean gray value for pictures. 

s(M1-1,0) 

 s(0,0) 

s(0,M2-1) 

s(M1-1,M2-1) 
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2.5 Statistical analysis 

Statistical analysis is mainly discussed here for sampled multimedia signals s(n), 
however similar properties hold for continuous signals s(t). An ideal assumption 
would be stationarity, i.e. statistical properties not dependent on the position in 
time or space. For multimedia signals this does usually not hold; however, similar 
methods of analysis can be applied on local groups of samples assuming that the 
properties are invariant there, sufficient for giving reliable empirical measure-
ments. To avoid differentiation between such cases, statistical parameters 
throughout this chapter are discussed as if they were independent of measurement 
time and place, and of the data set’s size.  

It should be observed that in the design of multimedia compression technolo-
gy, it is normally necessary to use test data sets that exhibit all possible variety. It 
is even useful to augment test sets by more ‘untypical’ data which put challenges 
to the compression algorithm. Even though in adaptive methods usually local 
statistical properties are exploited, it is still necessary to allow possible adaptation 
states which give support to the whole variety of data that are expected to be fed 
into a coder. 

 
 

2.5.1 Sample statistics 
 

Statistical properties of samples from signals can be characterized by the Proba-
bility Density Function (PDF) ps(x), interpreting observed signal amplitudes as 
instantiations of a random variable x of an underlying random process s(n). For 
the case of continuous amplitudes, the PDF provides information about expected 
occurrences of certain ranges of amplitude. The probability of a value observation 
s(n) x is given by the Cumulative Distribution Function (CDF) 

( ) Pr ( ) ( )d
x

s sP x s x pn . (2.115) 

The CDF is monotonically increasing and has a value in the range Ps( ) = 0  
Ps(x)  1 = Ps( ). The probability of a signal amplitude to be within an interval 
range [xa ;xb] is therefore 

b

a

a b b aPr ( ) ( )d ( ) ( ) 0
x

s s s
x

x s x p P x P xn . (2.116) 
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Furthermore, 

( )d ( ) ( ) 1s s sp x x P P . (2.117) 

The expected value E{f [x]} is the mean over a set of signal observations with a 
function f [x] applied to the samples; it is related to the PDF by19 

1( ) lim ( ) ( ) ( )dsN
f s f s f x p x x

N n
n nE . (2.118) 

From these definitions, the following important parameters are defined describing 
sample statistics: 

 f(x)=x: Mean value ( )d ( )s sm x p x x s nE                                 (2.119) 

 f(x)=x2: Quadratic mean (power) 2 2( )d ( )s sQ x p x x s nE         (2.120) 

 Variance 2 2 2 2( ) ( )d ( ( ) )s s s s s sx m p x x s m Q mnE        (2.121) 

For numeric (digital) processing, signal samples are quantized, which means they 
are mapped into a set of discrete amplitudes (see section 4.1). The mapping func-
tion is the quantization characteristic, which is a staircase function (see Fig. 2.21 
for a case of uniform quantization of a finite positive amplitude range using a step 
size ). The value of the discrete probability mass function (PMF) of the quan-
tized process can then be determined from the areas under the PDF of the un-
quantized process within the respective quantization intervals j with lower bound-
ary xj, upper boundary xj+1 and reconstruction20 yj, 

1

Q
( ) ( )d

j

j

x

j s
x

sp y p x x . (2.122) 

 

                                                           
19 The terminology ‘expected value’ is used here both for cases of finite and infinite data 
sets. Only the latter is mathematically precise. If a finite set of N measurements is used, the 
expected value is empirical, but could be regarded as reliable if it is not significantly 
changing when N would be further increased. 
20 Typically in uniform quantization of step size , the reconstruction value is placed at the 
center of the interval, i.e. x j =y j /2  and  x j + 1 =y j + /2  (see section 4.1). Note that in the 
context of quantization we will typically assume that representation (encoding) by a finite 
alphabet is possible. In general, a PMF can also consist of an infinite number of discrete 
values. This is of no harm if the probability of values converges towards zero at both ends 
of the amplitude range. 
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Fig. 2.21.  Quantization characteristic and mapping of the PDF ps(x) of the continuous-
amplitude signal to the probability mass function psQ(yj) of the quantized (discrete-
amplitude) signal.  

The PMF expresses the probability of the quantized (discrete) amplitude values yj. 
The related PDF consists of a weighted sum of Dirac impulses21 

Q, ( ) ( ) ( )j j
j

ssp x p y x y  (2.123) 

where further from (2.117), 

   
Q

( ) 1j
j

sp y . (2.124) 

and 

Q QQ ( ) ( ) ( ) ( )d ( ) ( )j j j j
j j

s sf s f x p y x y x p y f ynE . (2.125) 

PDF models are useful to characterize the statistical behavior of a random process. 
For example, mean value and variance could be measured and used as parameters 

                                                           
21 In the sequel, the subscript ‘Q’ is usually omitted, as the fact that the signal has been 
quantized is obvious from the context. Discrete probability functions (PMF) are written as 
ps(yj). In the case of finite alphabets, this can also be expressed as Pr(Sj), where Sj is one 
discrete state with index j (without explicitly expressing an amplitude value).    
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under the assumption that a certain PDF shape is given. For multimedia signals, 
the generalized Gaussian distribution is often useful to express sample statistics22: 

3
1( ) e with and  

1 12

s

s

b x m
s

bp x a a b . (2.126) 

For  = 2, (2.126) gives the Gaussian normal PDF 
2
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( )
21( ) e
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s

s
s

s

x m

p x , (2.127) 

for which many optimization problems can be solved analytically. The normal 
PDF plays an important role, as according to the central limit theorem, it is the 
result of the superposition of a large number of statistically independent random 
signals.  For  = 1, (2.126) gives the Laplacian PDF:  

2

2
1( ) e

2

s

s
s

s

x m

p x . (2.128) 

x

p (x)s

a
b

c

ms  
Fig. 2.22.  Generalized Gaussian PDF for different values of  :  

=2, Gaussian (a); =1, Laplacian (b); =0.5 (c)  

Both, Gaussian and Laplacian cases are shown in Fig. 2.22, as well as a more 
narrow case (  = 0.5). The Laplacian PDF has been reported to be a suitable mod-
                                                           

22 The function ( ) which influences the shape of the PDF via the parameter , is defined 

as 1

0

e dx uu x x . 
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el for the probability distribution of DCT block transform coefficients extracted 
from still images [REININGER, GIBSON 1983] [LAM, GOODMAN 2000], and from motion 
compensated residual signals [BELLIFEMINE ET AL. 1992] as used in video coding. 
Finally, for   , (2.126) also expresses a uniform distribution (see problem 
2.4), 

2 2

1( ) rect
12 12

s
s

s s

x m
p x . (2.129) 

Models for discrete PMFs can be derived from analytic PDF models by applying 
an appropriate quantization in (2.122). Direct sampling of a PDF might give simi-
lar results in the case of small quantization step size , but would typically lead to 
violation of (2.124) which would require re-normalization of the values. Another 
approach is representation of a continuous PDF by a mixture distribution – mix-
tures of Gaussians are often used for this purpose, 
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The parameters msi, si and the weights wi of the different contributing Gaussian 
hulls, as well as the number of hulls have to be estimated. This can be achieved by 
initially identifying local peaks in the PDF to be described, analyze the slopes 
around the peaks, and then refine the match by algorithms such as expectation 
maximization or kernel density estimation (see MCA, CH. 5). 

Models of PMFs can also be formulated directly in a finite discrete number 
space. As an example, the Bernoulli or binomial PMF defines probabilities of J 
discrete values, such that the jth value state occurs by probability 

11
Pr( ) (1 ) ; 1

1
j J j

j

J
S p p j J

j
. (2.131) 

Alternatively, the probability values of the Bernoulli distribution in the J discrete 
states can be obtained by convolutions involving J 1 subsequent [p 1 p] FIR 
filter kernels. The symmetric case of the Bernoulli distribution (p=0.5) with in-
creasing J can also be interpreted as discrete counterpart of the Gaussian normal 
PDF, which would be approached by iterative convolution of narrow continuous 
rectangular pulses.  
 

2.5.2 Joint statistical properties 
 

Joint probability functions (CDF, PDF or PMF) are used to express statistics 
about joint observations of two or multiple random values. Herein, the values can 
either stem from the same or from different signals, and/or from same or different 
locations in time and space. Therefore, joint probability functions express depend-
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encies that exist either between the samples of only one or of different random 
signals. Joint probability functions have a K-dimensional dependency when K 
values are observed jointly. For the following paragraphs, the case K=2 is dis-
cussed, assuming s1(n) and s2(n+k) are two observations with a relative shift of k 
samples. The concepts straightforwardly extend to higher K when additional ob-
servations are made. 

The joint PDF ps1s2(x1,x2;k) is a 2-dimensional function (for one value of k). 
The basic rules which are given in this section are applicable likewise to the dis-
crete PMF or other discrete joint probability functions. Firstly, the joint functions 
are symmetric,  

1 2 2 11 2 2 1( , ; ) ( , ; )s s s sp x x p x xk k . (2.132) 

In the hypothetical case that the observed samples were generally identical, 

1 2 1 21 2 1 2 1 2 1 2( , ; ) ( ) ( ) ( ) ( )s s s sp x x p x x x p x x xk , (2.133) 

whereas for statistical independence,  

1 2 1 21 2 1 2( , ; ) ( ) ( )s s s sp x x p x p xk . (2.134) 

Conditional probabilities allow to express an expectation about the probability of 
random variables x1 for the first observation, if it is already known that the other 
observation came as x2, expressing the ‘probability of x1 given x2’. No uncertainty 
about the conditioning event exists, such that the conditional probabilities can be 
gained from the joint probability, normalized by the probability of the condition, 

1 2 1 2
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( ) ( )
s s s s

s s s s
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p x p x
k k

k k .  (2.135) 

For statistically independent processes, (2.134) and (2.135) give 
ps1s2(x1|x2;k)=ps1(x1)   and ps2s1(x2|x1;k)=ps2(x2), i.e. the given condition does not 
help to decrease uncertainty.  

These concepts can likewise be extended to joint statistics of more than two 
signals or more than two samples from one signal. If e.g. K values from one or 
several continuous-amplitude signal(s) are combined into a vector s = [s1,s2, ... , 
sK]T, the joint probability density becomes also K-dimensional and is denoted as 
vector PDF23 

1 2 1 2...( ) ( , ,..., )
K Ks s sp p x x xs x , (2.136) 

where specifically for the case of statistical independency of the vector elements  

                                                           
23 For simplicity, it is not explicitly expressed here that the samples of the vector can stem 
from various locations; in principle, individual shift parameters k would optionally need to 
be specified for the elements of the vector. 
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1 21 2( ) ( ) ( ) ... ( )
K Ks s sp p x p x p xs x . (2.137) 

The conditional PDF of a sample s(n), provided that a conditioning vector s is 
given (which shall not include the sample itself), is defined as 
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which for each given x is a one-dimensional PDF over variable x. In the context 
of joint analysis, also the definition of the joint expected value has to be extended 
to functions over several variables which are taken from distant positions in the 
signal, such as  
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The joint PDF ps1s2(x1,x2;k) expresses the probability of a constellation where one 
random sample s1(n) has a value x1, while the other sample s2(n+k) has a value x2. 
From this, linear statistical dependencies between the two samples are expressed 
by the correlation function24: 
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     (2.140) 

For the case s1=s2=s (samples for correlation calculation taken from the same 
signal s(n)), (2.140) is an autocorrelation function (ACF), otherwise a cross cor-
relation function (CCF). The covariance function is similarly computed by sepa-
rating the mean values: 

1 2 1 2 1 2 1 21 2( ) ( ) ( ) ( ) .s s s s s s s ss m s m m mk n n k kE  (2.141) 

The autocorrelation (2.140) and autocovariance (2.141) for k=0 give the power 
(2.120) and the variance (2.121), respectively. These are the maximum values of 
these functions. When normalized by their respective maxima, the resulting 
standardized autocorrelation and autocovariance functions have values between 

1 and +1: 

                                                           
24 For quantized signals, the expected value can be computed from the PMF by applying 
(2.125) analogously, which is used here.  
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A similar normalization by the cross power and cross variance (values for k=0) is 
applicable to the cross correlation and covariance functions,  

   1 2 1 2
1 2 1 2

1 21 2

( ) ( )
( ) ; ( )s s s s

s s s s
s ss sQ Q

k k
k k . (2.143) 

Correlation and covariance functions analyze linear statistical dependencies. If 
two signals are uncorrelated, s1s2(k)=ms1ms2 and s1s2(k)=0 over all k. Unless 
periodic components are present in a signal, the following conditions hold for the 
ACF and covariance if |k| grows large25: 

2lim ( ) ; lim ( ) 0ss s ssm
k k

k k . (2.144) 

It should be observed that ‘uncorrelated’ signals or signal samples are not neces-
sarily statistically independent. More general nonlinear dependencies cannot be 
identified by correlation functions. Cases of such nonlinear dependencies are real-
valued signals that are similar by amplitude but have random sign, or complex-
valued signals that are similar in amplitude but have random phase properties 
compared to each other. 

Two correlated or uncorrelated, zero-mean stationary Gaussian processes s1(n) 
and s2(n) shall be given. After normalizing their amplitudes by the standard devia-
tions, a sum process and a difference process are established as follows: 

  
1 2 1 2

1 2 1 2( ) ( ) ( ) ( )
( , ) ; ( , ) .

s s s s

s s s sn n k n n k
n k n k     (2.145) 

Sum and difference processes are zero-mean Gaussian as well, having the follow-
ing variances: 

  
1 2

1 2

2

2 1 2( ) ( )( ) 2[1 ( )],s s
s s

s sn n k kE     (2.146) 

and similarly 

  
1 2

1 2

2

2 1 2( ) ( )( ) 2[1 ( )],s s
s s

s sn n k kE     (2.147) 

where s1s2( ) is the standardized cross covariance following the principle of 
(2.142). The correlation between the sum and difference processes is 

                                                           
25 In case of multi-dimensional correlation functions It is sufficient when one of the values 
in the vector k grows large. 
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Due to Gaussian property, the uncorrelated sum and difference processes are 
furthermore statistically independent. The joint PDF therefore is 
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 (2.149) 

Reverse mapping from y1 and y2 to the random variables x1 and x2 of the original 
processes s1(n) and s2(n) gives 
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such that 
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Generalization to the case of non-zero mean processes further gives  
1 2 1 22 1 1 2 1 2 1 2 1 2
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A more compact expression of (2.152) is possible by the following matrix nota-
tion using a covariance matrix Cs1s2,  
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The transformation (2.145) into sum and difference processes can be interpreted 
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as a coordinate transformation from a Cartesian (x1,x2) coordinate space into the 
rotated (y1,y2) coordinate space, where the axes y1 and y2 are still orthogonal. 
Equal values of the PDF, according to the exponent in (2.149), can be found on 
ellipses with principal axes along the y1 and y2 axes26, scaled by 

1 2
1 ( )s s k  and 

1 2
1 ( )s s k , respectively. 
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Fig. 2.23.  Joint 2D Gaussian PDF ps1s2(x,y)  a for case of statistically independent signals   
b modification of the shape by different variances   c modification of the shape by different 
co-variances 

Fig. 2.23a shows the shape of the 2D Gaussian PDF for the case of statistically 
independent signals. Figs. 2.23b/c illustrate the influence of variance and covari-
ance. For the case of negative covariance, the longer axis (higher variance) of the 
ellipse would follow the y2 axis of the difference process. 

(2.153) straightforwardly extends to the general case where the correlation 
properties between measurements of K random values combined in a vector nota-
tion (2.136) are formulated in a covariance matrix 

T T .
i ji j s ss s m mss s sC ss m mE E   (2.154) 

using the vector of linear mean values 

                                                           
26 Note that the axes y1 and y2 are defined after normalization of the x and y axes by the 
standard deviations of the respective processes. The ellipse’s orientation therefore is 45 
degrees relative to the normalized x and y axes.  
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 with 1is i Ksm sE E .  (2.155) 
The joint PDF in this case can be expressed as vector Gaussian PDF  
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 (2.156) 

Again, to show its properties, it would be necessary to find an alternative repre-
sentation by applying a linear transformation to the normalized combination of 
random samples (as in the case above by the sum and difference operations). After 
this, K statistically independent output processes are available, which in case of 
Gaussian processes means they are uncorrelated. In (2.279)-(2.282) it will be 
shown that this is possible by computing the set of eigenvectors of the covariance 
matrix, which establish a new orthogonal coordinate system, on which the ampli-
tudes of random vectors s are projected. In case of a Gaussian PDF, equal values 
are then found on the hull of a K-dimensional hyper-ellipsoid, with principal axes 
having same orientations as the corresponding eigenvectors, and widths of the 
ellipsoid axes proportional to the square roots of the related eigenvalues.  
 

 

2

(0) (1) (2) ... ( 1)
(1) (0) (1)
(2) (1) (0)

(1)
( 1) ... (1) (0)

1 (1) (2) ... ( 1)
(1) 1 (1)
(2) (1) 1

(1)
( 1) ...

ss ss ss ss

ss ss ss

ss ss ss

ss

ss ss ss

ss ss ss

ss ss

s ss ss

ss

ss

K

K

K

K

ssC

,

(1) 1ss

 (2.157) 

A special case applies, if the observations combined in the vector s are K samples 
from one single stationary Gaussian process, which are taken at equidistant time 
positions. In this case, the covariance matrix becomes an autocovariance matrix 
which has the following Toeplitz structure of (2.157)27, where the mean vector is 
filled by a constant mean value, 

 T
s s s sm m m msm 1  (2.158) 

 

 

                                                           
27 In case of stationarity, variance and covariance values only depend on the distance, i.e. 
E{s(0)s(1)}=E{s(1)s(2)}=…, which leads to this structure.  
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2.5.3 Spectral properties of random signals 

The Fourier transform of the correlation function gives the power density spec-
trum28 

 2
,( ) ( ) ( ) ( ) ( )ss sss s Sk n n k f fE E  (2.159) 

The relationship between the power (quadratic mean) value and the power density 
spectrum is expressed by Parseval’s theorem,  

1/ 2 1/2

,
1/2 1/ 2

( ) ( )ds ss ssQ 0 f f . (2.160) 

If a random process is zero-mean, its autocorrelation and autocovariance functions 
are identical. Otherwise, the autocorrelation is increased by ms

2. Likewise, for 
non-zero mean processes, a Dirac impulse is contained in the power density spec-
trum at f=0 (and at all periodic copies) with a weight ms

2, corresponding to the 
power of the mean value (DC component). With presence of periodic compo-
nents, Dirac impulses would be contained in the power density spectrum at the 
corresponding frequency locations.  

Estimation of power spectra is often done via the DFT (2.89), i.e. a sampled 
frequency axis is used in computing the expected value in the right part of 
(2.159). For this purpose, blocks of M samples ( Mi samples for two- and multi-
dimensional finite signals) are transformed into instantaneous DFT energy spectra 
|Sd(k)|2. To minimize the effect of the inherent periodic continuation of the DFT, 
window functions can be used to let the signal decay towards zero at the bounda-
ries of the analysis block. An alternative way to estimate power density spectra 
can be achieved via autoregressive (AR) modeling (see section 2.6.1). Both DFT-
based spectral estimation, as well as AR modeling can be applied locally over a 
finite number of samples e.g. with the goal to adapt a compression algorithm by 
instantaneous (local) signal properties, or globally by computing expected values 
(power density spectrum or ACF) over a sufficiently large number of samples of a 
random process, which could be used to tune the general properties of a compres-
sion algorithm by the typical statistics of the given class of multimedia signals. 

 

2.5.4 Markov chain models 

 
The state change behavior of random processes with rather discrete appearance 
needs to be modeled for binary signals b(n)  {0,1} (e.g. two-tone images), bit 
streams, or for features on a more abstract level, e.g. segment transitions in space 
or time, where a segment relates to a semantic unit (spoken word, video scene, 
                                                           
28 Note that the power spectrum of sampled random signals is periodic. Furthermore, in the 
formulation of the expected value over spectra from random signals in (2.159), a normali-
zation by the time span of the Fourier transform must be performed to get an expression 
about the average spectral power density within a given frequency range. 
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region in an image). A simple model to define finite states of signals with memory 
is the Markov chain, in simplest case a 2-state (binary) model as shown in Fig. 
2.24a29. As b(n) has only two states S0=‘0’ and S1=‘1’, the model is fully defined 
by transition probabilities of its temporal sequence30 Pr(S0|S1) (S0 follows S1), and 
Pr(S1|S0) (S1 follows S0). The remaining probabilities Pr(S0|S0) and Pr(S1|S1), which 
express occurrence of sequences with two equal values, can in case of the two-
state chain be derived as 

   Pr( | ) 1 Pr( | )i i j iS S S S . (2.161) 
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Fig.  2.24.  Binary sequences modeled by Markov chain of  a two states  b four states 
giving dependency on two previous binary states  
 
The ‘Markov property’ of the model process shall fulfill two conditions:  
 The probability to be in a state is only dependent on the transition probabili-

ties leading to this state, coupled with the respective probability of the state 
from which the transition is made; 

 The model shall be stationary, the probability of states shall be independent 
of time or location of observation. 

This can be formulated as follows for the two-state model, based on a state transi-
tion matrix P:  

 0 0 0 10 0

1 0 1 11 1

Pr( | ) Pr( | )Pr( ) Pr( )
Pr( | ) Pr( | )Pr( ) Pr( )

S S S SS S
S S S SS S

P

. (2.162) 

From this, the global probabilities of two states can be determined as 

                                                           
29 The problem will be discussed here mainly for binary sequences b(n), but it can formal-
ly be extended to any sequences of discrete events s(n)  {Sj; j=1,…,J}. Extensions to 
continuous-amplitude signals s(n) are also made by Markov Random Fields (cf. Sec. 6.6.2). 
30 For simple notation, Pr(Si|Sj) Prob[b(n)=Si|b(n 1)=Sj]. 
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Once a state is given, the probability of ‘0’- or ‘1’-sequences of remaining length l 
can be determined by concatenating the probabilities that the model rests in the 
state for another l 1 cycles and then changes, 
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b n S S S S
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 (2.164) 

These probabilities decay exponentially by increasing length l. Successive binary 
samples would be statistically independent for the case where Pr(S0|S1)=Pr(S0) 
and Pr(S1|S0)=Pr(S1). Markov chains with more than two states can be defined 
accordingly, where again the full set of transition probabilities between all states 
suffices to define the model. This general formulation of the Markov chain transi-
tions for a model of J states can be written as an extension of (2.162) 
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Due to the Markov property, the probability of transition into a state only depends 
on one previous state, such that for the binary 2-state model 

  
Prob ( ) | ( 1) , ( 2) , ( 3) ,...

Pr | , , ,... Pr | .

i j k l

i j k l i j

b n S b n S b n S b n S

S S S S S S
 (2.166) 

If a binary sequence b(n) shall be defined where the state of a sample depends on 
two previous samples, the transition probabilities have to be expressed as 
Pr(S i | (S j , Sk) ). It is then necessary to define a Markov chain with four states, 
relating to the four configurations of [ b(n 1)=Sj, b(n 2)=Sk ]. As however the 
current [b(n), b(n 1)] will become [b(n 1), b(n 2)] in the follow-up state, cer-
tain state transitions are impossible, which can be implemented by assigning zero 
as transition probability. A state diagram related to this given case is shown in 
Fig. 2.24b. This model straightforwardly extends to the case where a sample b(n) 
is conditioned by a K-dimensional vector b of previous values, which can be es-
tablished from a one- or multi-dimensional neighborhood context C (n) of K 
members, not including the current position. The model will then be based on 2K 
different states, and is fully described by 2K+1 state transitions 
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   Pr ( ) | ; ( ) | ( ); ; 0,1b bn b b i i n i nC . (2.167) 

However, only 2K state transitions are freely selectable, as in the example above, 
if the current sample would become member of b in the next step. 

   Pr ( ) 0 | 1 Pr ( ) 1 |b bn b n b . (2.168) 

The follow-up state can also be constrained by zero-probability transitions, as in 
the example above, ruled by the fact that certain values are not independent.  

Even though in the cases discussed so far the number of states is finite, the com-
plete sequences b(n) or b(n) can be regarded as infinite. If a Markov chain model 
allows a transition with a non-zero probability from any state to any other state 
within a finite number of steps, it is said to be irreducible. This would not be the 
case for chains where one or several states Si exist with all outgoing transition 
probabilities Pr(Sj|Si) = 0, but at least one incoming transition probability 
Pr(Si|Sj) > 0. This Si will be a terminating state which once reached can never 
again be left. Such models can be useful in cases where finite sequences with 
expected termination shall be modeled.  

 

2.5.5 Statistical foundation of information theory 
 

Considerations about certainty and uncertainty of an information establish the 
foundations of information theory. In general, sending an information intends 
reducing the uncertainty about an event, a letter from a text, the state of a signal 
etc. Assume a discrete set S is given, characterizing J possible states Sj of an 
event. Each state shall have a probability Pr(Sj). The goal is to define a measure 
for the information I(Sj) which is related to the knowledge that the event would be 
in state Sj. Consequently, the mean of information over all states will be 
H(S )= Pr(Sj) I(Sj)=E{I(Sj)}. Availability of complete information means that 
any uncertainty is removed about the state of the event. The function H(S ) shall 
retain its consistency if the amount of certainty is varied, e.g. if it stays uncertain 
whether the state is S0 or S1, while it is already certain that the state will not be 
S2 … SJ 1. Assuming that the I(Sj) shall be related to the probabilities of the states, 
the following condition must be observed: 
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 (2.169) 

If (2.169) is valid, an arbitrary separation of the information into certainty and 
uncertainty about any of the states of the event is possible. It can be shown that 
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the only function fulfilling (2.169) is the self information of a discrete event of 
state Sj from the set S defined as31  

2 2
1( ) log log Pr( )

Pr( )j j
j

I S S
S

. (2.170) 

The mean value of the self information over all possible states is denoted as the 
entropy 
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j j
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H S SS . (2.171) 

If two distinct events defined over sets S1 and S2 occur, their joint information and 
joint entropy can be defined via the joint probability 
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The joint entropy is lower and upper bounded by 

   1 2 1 2 1 2max ( ), ( ) ( , ) ( ) ( )H H H H HS S S S S S , (2.173) 

where the upper bound is valid in the case of statistical independence of the two 
events, and the lower bound applies if they always come with identical joint oc-
currence of states. The concept of conditional probability defines the probability 
of an event in S2 to be in state Sj2, provided that the state Sj1 of the other event in 
S1 is given. This allows reflecting the statistical dependency of state Sj2 from Sj1 in 
terms of the remaining uncertainty in the conditional information 

  1 2

2 1 2 1

1

2 2

Pr( , )
( ) log Pr( ) log

Pr( )
j j

j j j j
j

S S
I S S S S

S
. (2.174) 

For statistically independent events, due to (2.134) and (2.135) Pr(Sj2|Sj1)=Pr(Sj2), 
which makes the conditional information identical to the self information I(Sj2). 
The difference between the self information and the conditional information is the 
mutual information. It signifies the amount of information in state Sj2, which was 
already provided by the state Sj1. Likewise, this can be interpreted as the amount 
of information which could possibly be saved (e.g. needs not to be encoded or 
transmitted) when the statistical dependency is exploited: 

                                                           
31 In (2.170), any base of the logarithm can be selected, where the unit of information is 
‘bit’ in case of base 2 (counting the amount of binary digits). A probability P(Sj)=0 would 
lead to an infinite self information; in the subsequent definitions of entropy this is not a 

problem, as 
0

1lim log 0
x

x
x

. 
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Combining (2.170) and (2.174) into (2.175), further considering (2.135) gives
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                        (2.176) 
This shows the symmetry property of mutual information. If two events are statis-
tically independent, the mutual information becomes zero in all states. This is an 
ultimate condition for statistical independency, which even allows to test for pres-
ence or absence of nonlinear dependencies, being a more rigid criterion than the 
cross correlation. The mean of conditional information over all state combinations 
Sj1 and Sj2 is the conditional entropy32,  
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 (2.177) 

The mean of mutual information can also be expressed from (2.175) and (2.176) 
as follows33: 
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The general relationships between entropy, conditional entropy and mean of mu-
tual information are shown in Fig. 2.25a by a diagram of information flow. In 
principle, the whole schema is invertible, i.e. the states Sj1 and Sj2 can change their 
roles, while the mutual information will not change. In addition, Fig. 2.25b shows 
an interpretation borrowed from set algebra, where the circles indicate the total 
amount of information from the events defined by S1 and S2. The intersection is 
the mean of mutual information which is shared, such that at least some statistical 
dependency between the two events must be in effect. 

Entropy, conditional entropy and mutual information can be used to express 
the problem of encoding information by discrete alphabets. Typical examples of 

                                                           
32 If H(S2|S1) < H(S2) and the state of S1 is known at the decoder, it is usually possible to 
reduce the data rate by utilizing this prior information. This is the basis of predictive cod-
ing (see Sec. 5.2) and context-dependent entropy coding (see Sec. 4.4.5).   
33 (2.178) also is often by itself denoted as mutual information. Consequently, it should be 
called mutual entropy, but this is hardly established. 
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discrete alphabets are finite sets of alphanumeric letters, or sets of reconstruction 
values in case of signal quantization. Let a source alphabet A  be defined, which 
contains all distinct letters that a discrete source could ever produce. Further, a 
reconstruction alphabet B  is given. Both alphabets need not necessarily be identi-
cal (however only if A is identical with B  or a subset thereof, it is possible at all 
to perform lossless coding and decoding). The mapping of values from A  into 
values from B  is defined by a code C. Then, 
  ( ; ) ( ) ( | )H H H

C C
A B A A B  (2.179) 
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Fig. 2.25.  Graphical interpretation of information-theoretic statistical parameters:   
a in terms of information flow  b in terms of set algebra  
 

As the mutual information cannot become negative,  

  0 ( | ) ( )H H
C

A B A , (2.180) 

where for ( | ) 0H
C

A B  it is possible to perform lossless decoding, while for 

( | ) ( )H H
C

A B A  nothing is known after decoding about the state of the source. 

For any values of ( | )H
C

A B  between these extremes, lossy decoding will be in 
effect, such that distortion occurs. Let CD define the set of all codes, which are 
capable to perform the mapping from A  onto B  by effecting a given value of 
distortion D34. The best possible code among all CD is the one which needs lowest 
rate for its representation, which is the code requiring least mutual information 
when the mapping from A  into B  is performed with that distortion. The lowest 
bound for the rate by a given distortion D will then be 

                                                           
34 At this point, D shall be introduced in a quite abstract way, more concrete definitions 
will be used in Ch. 4. 
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  ( ) min ( ; )
D

R D H
CC C

A B . (2.181) 

This definition, however, does not indicate a direct method to design codes, only 
allows judging their performance. R(D) is the rate distortion function (RDF), 
which defines an interrelationship between rate R and distortion D. In this abstract 
form, the definition is valid for arbitrary source alphabets and arbitrary definitions 
of distortion. From (2.179)-(2.181) and the related reasoning, the following con-
clusions can be drawn: 

 Lossless coding of a source generating letters from a discrete source alphabet 
A, can only be achieved by investing a minimum rate Rmin = H(A ).  

 The minimum rate is zero, where at the decoder nothing would be known 
about the state of the source. In this case, a maximum distortion Dmax occurs 
which should never be superseded at any positive rate. 

 If the source has continuous amplitude, the number of letters in the source 
alphabet A  would grow towards infinity. Hence, it is not possible to achieve 
zero distortion (lossless encoding) using a finite rate. If the reconstruction al-
phabet B  is sufficiently large, the distortion may however become negligibly 
small.  

Qualitative graphs of rate distortion functions for both cases of continuous-
amplitude and discrete-amplitude sources are shown in Fig. 2.2635. Typically, the 
rate distortion function is convex and continuously decreasing until the maximum 
distortion (for rate zero) is reached.  
 
R(D)

10
0

H(S)
a

b

D/   2

 
 
 
Fig. 2.26.  Examples of R(D) for sampled continuous (a) and discrete (b) sources  
 
Example: Entropy of a Markov process. A Markov chain of J states is defined by 
the transition probability definitions in (2.165). Due to the property that the prob-
abilities of next-state transitions are independent of history, the entropy of each 

                                                           
35 Here, the distortion is expressed in terms of squared error, i.e. Euclidean distance, and 
normalized by Dmax = s

2, which occurs in case of zero reconstruction. 
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state can first be defined independently by the respective probabilities of the next-
state transitions 

   
1

2
0

( ) Pr( | ) log Pr( | ) ; 0,..., 1
J

j i j i j
i

H S S S S S j J . (2.182) 

The overall entropy of the Markov process can then be computed as the probabil-
ity-weighted average over all states, 

   
1

2
0 1 1

( ) Pr( ) ( ) Pr , log Pr |
J J J

j j i j i j
j i j

H S H S S S S SS . (2.183) 

 
Differential entropy and entropy of Gaussian processes. The concept of entropy 
can be extended in relation to the PDF of continuous-amplitude sources. Howev-
er, in principle the number of bits necessary to represent a continuous source (and 
therefore its entropy) would be infinite. With uniform quantization using intervals 
( 1/ 2) ;( 1/ 2)i i , the PMF  ps(i) is according to (2.122) 

  
( 1/ 2)

( 1/ 2)

( ) ( )d ( )
i

s s s
i

p i p x x p i . (2.184) 

 The entropy of the discrete distribution for 0 becomes 

  

0 0

0

0

lim ( ) log ( ) lim ( ) log ( )

lim ( ) log ( ) ( ) log

( ) log ( )d lim log( ).

s s s s s
i i

s s s
i i

s s

H p i p i p i p i

p i p i p i

p x p x x

 (2.185) 

Whereas the term –log( ) converges towards infinity for 0 and is independent 
of the PDF, the left term is denoted as the differential entropy36,  

  ( ) log ( )ds s sH p x p x x . (2.186) 

(2.186) cannot be used as an information-theoretic criterion about the quantitative 
amount of information contained in a source, and the value could even become 
negative. It is however useful for comparing properties of PDFs or in optimiza-
tion. All other variants such as joint, vector and conditional entropies can be de-
fined similarly.  
Specifically taking the natural logarithm (base e), the differential entropy of a 
zero-mean Gaussian process is (using the unit ‘nat’ which refers to a symbol 
count based on Euler’s number instead of the binary number system) 

                                                           
36 Note that Hs as defined in (2.186) cannot quantitatively be compared against (2.171). 
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2
2

2

2
2 2

2

( ) log 2 d
2

1 1log 2 log 2 e [nats]
2 22

s s s
s

s s
s

xH p x x

x
E

. (2.187) 

Similarly, the extension to a K-dimensional vector Gaussian process gives  

  1 log 2 e [nats]
2

K
sH KHs ssC , (2.188) 

which provides a quantitative expectation that the entropy for the correlated 
source will be lower than the K-fold entropy of single samples. 

2.6 Linear prediction 

2.6.1 Autoregressive models 
 
Algorithms of multimedia signal processing often require a model about the statis-
tical properties of sources for analytic optimization (cf. Sec. 3.4). If statistical 
assumptions are made which go beyond sample statistics, modeling of statistical 
dependencies between samples is required. The autocovariance is usually suffi-
cient to optimize linear systems for a given purpose, as it characterizes linear 
statistical dependencies between samples. 

A random signal of an autoregressive (AR) process (Fig. 2.27) is generated by 
a recursive filter with z transfer function B(z)=1/(1 H (z) )  from a stationary 
white Gaussian noise process v(n) as input. The process s(n) at the filter output 
possesses spectral distribution properties which are only determined by the ampli-
tude transfer function of the filter. The PDF of this stationary process is also 
Gaussian.  

The property of stationarity does not usually apply to multimedia sources. 
Moreover, a high degree of variation is observed in the local properties of image, 
speech and audio signals, such that a local adaptation of model parameters is typi-
cally necessary. Even then, the AR model helps to simplify problems of optimiza-
tion due to its simple analytic properties. If the AR model generates a stationary 
Gaussian process, it is indeed fully described by a covariance matrix. In this case, 
an AR process would perfectly follow the vector Gaussian PDF (2.156).   

The autoregressive model of first order [AR(1)] is often used to model the 
global statistics of image signals. For the 1D case, a Gaussian zero-mean white-
noise process v(n) (innovation) of variance v

2 is fed into a recursive filter with z 
transfer function 
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  1

1( )
1

B z
z

. (2.189) 

The computation of the output is 

  ( ) ( 1) ( )s n s n v n . (2.190) 

The AR(1) process has an autocovariance function37 

  
2

2 2
2( ) ;

1
k v

ss s sk , (2.191) 

and a power density spectrum  

  
2 2

2 2
2

(1 )
( )

1 2 cos 2
k j fk s

ss s
k

f e
f

. (2.192) 

Filter
h( )n

b( )n

s( )nv( )n
+
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Fig. 2.27. System for generating samples from an autoregressive process  
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Fig. 2.28. a Power density spectra of AR(1) processes with s 2 =1 , for two different values 
of (1) b Effect of decreasing sampling resolution by factors U=2 and U=4. 
 
With zero-mean input, also the autoregressive output of the filter has zero-mean 
property38. Obviously, the AR(1) model is fully characterized by the filter param-
eter , which is identical to the standardized autocovariance coefficient ss(1), and 
one of the variances, v

2 or s
2. Typical values of (1) for natural images are 

between .85 and .99, which exhibit extreme concentration of spectral power 

                                                           
37 For a proof on (2.191) and (2.192), see Problem 2.9. 
38 Optionally, a mean value can be added either at the input or at the output, with 

( )s vm m B
z 1

z . 
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around the zero frequency. Examples with lower values of (1)=.75 and .5 are 
shown in Fig. 2.28a. It should be observed that the measurement of the correlation 
parameter  which is used to adapt an AR(1) process also depends on the sample 
density (resolution of the signal). If possible alias effects are ignored, downsam-
pling the ACF by a factor of U leads to a modification into U (1)= (U)= (1)U. 
The effect of increasing high-frequency components in the power density spec-
trum is illustrated in Fig. 2.28b. 
 
For simple extensions of the AR(1) model into two and multiple dimensions, 
expression by separate standardized autocovariance coefficients 1  1(1) and 

2  2(1) for horizontal and vertical directions can be used. Properties of three 2D 
methods are illustrated in Fig. 2.29, showing lines of constant autocovariance in 
the (m1,m2) plane (only positive values of  are assumed here). 

k1

a b c

c1

1 2c c
ss 1 2(k ,k )

k2

c2

k1

c1

1 2c c
ss 1 2 1 2(k ,k )

k2

c2

k1

c1

1 2c c
ss 1 2 1 2(k ,k )

k2

c2

 
Fig. 2.29. Lines of constant autocovariance in 2D AR(1) models.  
a isotropic  b separable  c elliptic  
 
The isotropic model has an autocovariance function  

 
2 2

1 22
1 2( , ) m m

ss sm m , (2.193) 

expressing circular-symmetric values independent of the direction, 1 = 2 is in-
herently assumed. Constant values appear on circles of radius 2 2

1 2m mm  
(see Fig. 2.29a). The two-dimensional power density spectrum of the isotropic 
model is then also circular-symmetric39, 

 
2 2

1 2
2 2 2

1 2

(1 )
( , )

1 2 cos 2
s

ss f f
f f

. (2.194) 

For the remaining models, autocovariance values are defined differently for the 
horizontal and vertical directions. In natural images, it can be observed that auto-
covariance statistics sometimes differ per orientation. It is often found that the 

                                                           
39 Note that this is not fully precise due to the fact that the nearest periodic copies of the 
spectrum are only present at some angular orientations. The best coincidence would be 
found for the case of hexagonal sampling, or for 1. 
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covariance along the vertical axis is lower than along the horizontal axis. The 
separable model with autocovariance function 

 1 2

2
2 2

1 2 1 2 2 2
1 2

( , ) ;
(1 )(1 )

m m v
ss s sm m , (2.195) 

shows straight lines of constant autocovariance40. These lines intersect with axes 

m1 and m2 at positions m1' and m2' where 1 2

1 2

m m
 (see Fig. 2.29b). The gen-

eration of the discrete 2D signal can be implemented by a separable recursive 
filter, whose output is expressed by the equation 

  1 2 1 1 2 2 1 2 1 2 1 2 1 2( , ) ( 1, ) ( , 1) ( 1, 1) ( , )s n n s n n s n n s n n v n n . (2.196) 

The related power density spectrum is  

 
2 2

2 1 2
1 2 2 2

1 1 1 2 2 2

1 1( , )
1 2 cos 2 1 2 cos 2ss sf f

f f
. (2.197) 

The elliptic model has an autocovariance function (for 0< i<1)  
2 2

1 1 2 2( ) ( )2
1 2( , ) e with lnm m

ss s i im m .  (2.198) 

It shows constant autocovariance values on elliptic shapes due to the ellipse equa-
tion in the exponent (Fig. 2.29c). This model can also be interpreted as an exten-
sion of the isotropic model, which would be a special case 1 = 2. Intersections of 
constant autocovariance graphs with the coordinate axes are identical to the case 
of the separable model. All models introduced so far can be interpreted as special 
cases of a generalized 2D AR(1) model with autocovariance41 

 
1 2

1

1 22
1 2( , )ss s

m m
m m e . (2.199) 

For the isotropic and for the elliptic model, =2; for the separable model =1. 
When >1, lines of constant autocovariance are convex over all the four quad-
rants of mi coordinates. The intersections with the axes remain identical as in the 
case of separable and elliptic models, irrespective of . The relation of factors i  
with the horizontal/vertical autocovariance coefficients is equal to (2.198).  

Autoregressive models of higher order (more than one autocovariance value 
per dimension) are frequently applied in speech analysis and for texture analysis 
of images. As those signals typically do not have the property of stationarity, the 
                                                           
40 If the two exponential expressions in (2.195) are modified for a common basis, a line 
equation over absolute values appears in the exponent, see (2.199) with =1. 
41 This model is, like the elliptic model, only applicable for positive 1 and 2 values. In 
both cases, a precise analytic expression of the power density spectrum is difficult to define 
due to the directional dependent alias effect. 
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autocovariance function needs to be estimated over segments (finite time windows 
or 2D regions) of samples. A generic synthesis equation expressing AR filtering 
over a finite causal neighborhood pN is42 

 ( ) ( ) ( ) ( )s a s v
pp

n p n p n
N

. (2.200) 

With white noise input, the output process has a power density spectrum  

 
T
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2

2

( )

1 ( ) e

v
ss

ja
p

f p

p

f

p
N

. (2.201) 

Next, a causal model shall be optimized under the assumption that the white-noise 
signal v(n) which is to be fed into the AR synthesis filter shall have lowest possi-
ble variance: 

2

2 2

2
!
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( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( ) ( ) ( ) min .

v v s a s

s s a s a s

p

p p

p

p p

n n p p

n n p n p p n p
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N N

E E

E E E

  (2.202) 

The minimization is achieved by computing partial derivatives over each filter 
coefficient: 

  
2 !

0 ( ) ( ) ( ) ( ) ( ) .
( )

v s s a s s
a

pp

n n k p n p n k
k N

E E  (2.203) 

This the linear Wiener-Hopf equation system, where the optimum filter coeffi-
cients fulfill the condition 

( ) ( ) ( )ss ssa
pp

k p k p
N

, (2.204) 

or specifically for the 1D case with order P: 

                                                           
42 Observe that the definitions (2.201) and (2.202) do not implicitly postulate the causality 
of the AR synthesis filters. In fact, all following deductions can likewise be made for non-
causal filter sets without any limitation. Non-causal recursive filtering is indeed practically 
applicable for signals of finite extension, e.g. image signals. Only the current position n 
must be excluded, which means that a(0)=0. For more detail on non-causal AR modeling of 
images, see e.g. [JAIN 1989].  
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1

( ) ( ) ( ) ; 1
P

ss ss
p

k a p k p k P . (2.205) 

Due to the symmetry of the autocovariance, ss(k p )= ss(p k) , the problem can 
be simplified in a more regular matrix structure, and the Wiener-Hopf equation 
can be written as follows, where Css is the autocovariance matrix (2.157):  

(1) (0) (1) ( 1) (1)
(2) (1) (0) (1) ( 2) (2)

(1) (0)
(1)

( ) ( 1) ( 2) (1) (0)

ss ss ss ss

ss ss ss ss ss

ss ss

ss

ss ss ss ss ss

ss ss

P a
P a

P P P

c C

( )a P

a

. (2.206) 

The solution is obtained when the vector css and the matrix Css are filled by the 
autocovariance estimates (computed either locally from a given signal or globally 
from an ensemble)43, and then the matrix is inverted: 

  1ˆ ˆss ssa C c . (2.207) 

In the 1D case, Css has a Toeplitz structure, which means that it is diagonally 
symmetric (identical to its transpose), and values on each one of the diagonals 
(main diagonal and its off-diagonals) are identical. Even though the matrix is not 
sparse, it is highly regular, such that the problem of matrix inversion is simplified. 
This is mainly due to the fact that the lower and upper triangular matrices, as well 
as many sub-matrices are identical, such that sub-matrix inversions need to be 
computed only once. Furthermore, the matrix has full rank and is positive-definite 
(except for degenerate cases). Therefore, Cholesky decomposition or Levinson-
Durbin recursion can be used for computationally more efficient solutions. Fur-
thermore, the latter can be used to map the predictor into a ladder structure of 
subsequent first-order filters, where PARCOR (partial correlation) coefficients are 
determined step by step, guaranteeing stability of the synthesis filter under the 
simple rule that the absolute value of each coefficient in the structure must be 
smaller than one (see [RABINER, SCHAFER 1978] as reference for more detail on these 
approaches).  

                                                           
43 When computing an autocovariance estimate for a finite segment, boundary conditions 
need to be observed. When using samples from the previous segment (as far as they are 
used to predict the samples from the current segment), this may lead to better prediction 
results, but also may cause instability of the resulting synthesis filter (see [RABINER, 
SCHAFER 1978], [MARAGOS, SCHAFER 1984] and the notes about positive-definiteness of 
autocovariance matrices under (2.210)). 
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The variance of the innovation signal for the case of a 1D AR(P) model is44 
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This leads to an alternative formulation of the Wiener-Hopf equation, where the 
computation of the innovation signal variance is included by the first row of the 
matrix: 
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. (2.209) 

Furthermore, it can be concluded that 

 2 T T
v ss ssa c a C a , (2.210) 

which means that the autocovariance matrix with Toeplitz structure has to be 
positive-definite, or at least positive semi-definite for the degenerate case of  

2 0v . This is guaranteed by the property (0) ( )ss ss k , which will also 
guarantee stability of the filter. When samples from a finite window are used to 
estimate the autocovariance values, the property of positive-definiteness would by 
guarantee be fulfilled if either a periodic extension of the window is used, or if 
zero values are padded outside of the window. 

For a separable two- or multi-dimensional model, filter coefficients can be op-
timized independently by solving 1D Wiener-Hopf equations, using 1D auto-
covariance measurements over the different coordinate axes. However, separable 
models do not allow optimum adaptation for all properties of multidimensional 
signals. For example, in the two-dimensional case, characteristic diagonal orienta-
tions of autocovariance cannot be considered explicitly. When non-separable 
autocovariance functions are used, non-separable IIR filters must also be defined 
                                                           
44 This is a generalization of (2.191) and also covers the AR(1) case. 
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as AR generator (or predictor) filters. Using the 2D autocovariance function, a 2D 
Wiener-Hopf equation can be defined as an extension of (2.209). For the case of a 
quarter-plane 2D filter, optimization gives  

1 2

1 2

1 2

2
1 2 1 2 1 2 1 1 2 2

0 0
( , ) (0,0)

( , ) ( , ) ( , ) ( , )
P P

v ss ss
p p

p p

k k k k a p p k p k p , (2.211) 

which can again be written as css = Cssa. Css here is a block Toeplitz matrix 
[DUDGEON/MERSEREAU 1984] 
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with associated sub-matrices  
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ss ss ss
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.  (2.213) 

The vector of coefficients is arranged by row-wise order 

  T
1 1 21, (1,0),.., ( ,0), (0,1),.., ( , )a a P a a P Pa , (2.214) 

and the ‘autocovariance vector’ on the left side is 

  
T2 ,0,0,...,0ss vc . (2.215) 

The lengths of the vectors and the row/column lengths of the quadratic matrix are 
(P1+1)(P2+1). The task is to determine the (P1+1)(P2+1) 1 unknown coefficients 
in a. This is achieved as in (2.208), inverting the autocovariance matrix Css. The 
full matrix of the 2D formulation does however no longer have a Toeplitz struc-
ture, because the sub-matrices (2.213) are not diagonally symmetric, since 

ss(k ,p ) ss( k ,p ) . As a consequence, the inversion cannot use the same effi-
cient decomposition as in the 1D case, and also the number of covariance values 
to be used in the optimization is larger than the number of filter coefficients to be 
determined; therefore, a unique revertible mapping between model parameters and 
autocovariance does not longer exist. If positive-definiteness is violated, this may 
also lead to unstable synthesis filters. As an alternative, a 2D PARCOR structure 
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was proposed in [MARZETTA 1980]. However, it is reported that in the non-separable 
2D case this does not guarantee stability, either. 
 

2.6.2 Linear prediction 
 
Autoregressive modeling of signals is closely related to linear prediction, where a 
predictor filter computes an estimate ˆ( )s n  for the signal value s(n). The differ-
ence is the prediction error 

  ˆ( ) ( ) ( )e s sn n n . (2.216) 

The signal can be reconstructed by using the prediction error and the estimate, 

  
!

ˆ( ) ( ) ( ) ( )s s e sn n n n . (2.217) 

If estimates ˆ( )s n  are exclusively computed by past values of the signal, the pre-
diction error e(n) also is a unique equivalent of s(n)45. The prediction is typically 
performed by an FIR filter with transfer function H(z) (Fig. 2.30a); the prediction 
error filter (Fig. 2.30b), performing the operation described in (2.216), has a 
transfer function 

  )(1)( zz HA . (2.218) 
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Fig. 2.30. System elements in linear prediction:  a Predictor filter h(n)  b Prediction error 
filter (analysis filter) a(n)  c inverse prediction error filter (synthesis filter) b(n)  
 
The inverse prediction error filter (synthesis filter, Fig. 2.30c) performs the opera-
tion (2.217). It is a recursive filter with transfer function  

  1 1( )
( ) 1 ( )

B
A H

z
z z

. (2.219) 

The filter (2.219) can be regarded equivalent to the synthesis filter of an AR mod-
el. Therefore, the prediction error signal would actually be Gaussian white noise if 
an AR process is optimally predicted (i.e. using a predictor which inverts the 
synthesis filter by which the process was generated). In the context of linear pre-
                                                           
45 In practical implementations, the equivalence may not be up to mathematical precision, 
when rounding errors occur. This can be avoided by performing systematic rounding as 
part of the prediction, which however would introduce a nonlinear element that can no 
longer be described as an LSI operation. 



2.6  Linear prediction       83 
 

diction, the ratio of signal variance and prediction error variance is denoted as the 
prediction gain 

  
2

2
s

e

G , (2.220) 

which can be determined from (2.208) for the case of an AR model. 

Backward-adaptive prediction. Whereas the solution of the Wiener-Hopf equa-
tion assumes that autocovariance statistics either globally or of the current local 
segment is known, backward-adaptive methods of predictor filter adaptation use 
analysis of past samples under the assumption that the statistical properties are 
only slowly changing. The least mean squares algorithm (LMS) is often applied 
in this context [ALEXANDER, RAJALA 1985]. Predictor filter coefficients an(p) shall be 
used at the current position n in the prediction equation 

   ˆ ˆ( ) ( ) ( )    and   ( ) ( ) ( )s a s e s sn
p

n p n p n n n . (2.221) 

After computing the prediction error, it is evaluated how each filter coefficient 
would need to be modified to achieve a lower prediction error. The partial deriva-
tive of e2(n) over an(p) is 

  
2 ( ) 2 ( ) ( )
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e e s
an

n n n p
p

, (2.222) 

such that an LMS update of coefficients to be used at the next position46 reduces 
the prediction error by optimizing with regard to its negative gradient, 

   1( ) ( ) ( ) ( ).a p a e sn n p n n p  (2.223) 
The step size factor  influences the adaptation speed.  
 
Two-dimensional prediction. The prediction equation in the case of a 2D quar-
ter-plane predictor filter of order (P1+1)(P2+1) 1 is 
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The z transfer function of this filter is 
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46 The ‘next’ position at which the updated coefficient is used in 2D and multi-dimensional 
can be determined from the prediction direction, e.g. vertical down for a coefficient that 
performs vertical prediction from the sample above. 
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For the case of 2D signals, 2D prediction can be expected to better minimize the 
variance of the prediction error signal, as compared to 1D (horizontal or vertical) 
prediction.  

a 

   
b

   

c

   
d

 

  

e

  

Fig. 2.31. Original image (a) and prediction error images:  b-c 1D prediction row-wise, 
P1=1, 1=0.95 (b) 1D column-wise, P2=1, 2=0.95 (c)  d 2D separable, fixed coefficients 
P1=P2=1, 1= 2=0.95, e 2D non-separable with local adaptation, quarter-plane P1=P2=2 
 
Assume that 2D prediction is applied to a separable 2D AR(1) model, where the 
same prediction filter H(z1,z2) is used as in the recursive loop of the model genera-
tor. Hence, the prediction error filter A(z1,z2) = 1  H(z1,z2) will exactly reproduce 
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the Gaussian white noise fed into the generator of the AR process. For the 2D 
separable AR(1) model, the optimum predictor filter is constructed from the two 
(horizontal and vertical) 1D filters as follows: 
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 (2.226) 

Fig. 2.31 shows an original image (a), prediction error images obtained by hori-
zontal (b) and vertical (c) 1D prediction, and by separable 2D prediction (d). 
While the horizontal prediction is not capable to predict vertical edges, the verti-
cal filter fails at horizontal edges, but the 2D prediction performs reasonably well 
in both cases. Specifically in areas showing regular textured structures (e.g. grass, 
water, hairs, etc.), the usage of higher-order 2D predictors can be advantageous, if 
adapted properly to the signal (Fig. 2.31e). In the given example, the adaptation 
block size was 16x16 samples, quarter-plane prediction filters of size 3x3 were 
optimized by solving the Wiener-Hopf equation system (2.211).  
 
Motion compensated prediction. When temporal prediction from previous pic-
ture(s) of a video signal shall be performed, an autoregressive model cannot rea-
sonably capture the temporal changes occurring by object or camera motion, as it 
is not efficiently considering the sparseness of a moving video signal’s spectrum 
from (2.44). In motion compensated prediction, predictor adaptation is rather 
performed by motion estimation. Samples in picture n3 shall be predicted, and the 
best-matching position in a prediction reference picture (e.g. the previous picture 
n3 1) is found to be displaced by k1 samples horizontally and k2 samples vertical-
ly. Then, the prediction equation is  

  1 2 3 1 2 3 1 2 3

1 2 3 1 1 2 2 3

ˆ( , , ) ( , , ) ( , , ) 
ˆwith ( , , ) ( , , 1).

e n n n s n n n s n n n
s n n n s n k n k n

 (2.227) 

This motion compensated predictor filter can be characterized by the 3D z transfer 
function47 

   1
1 2 3 1 2 3( , , ) k lH z z z z z z , (2.228) 

which describes a multi-dimensional shift (or delay); motion-compensated predic-
tion therefore is a specific type of linear prediction. This simple type of filter uses 
a copy of samples from one previous picture and shifts them by an integer number 
of sample positions to generate the estimate. If the brightness of the signal chang-
es, it could be more appropriate to multiply the amplitude by an additional factor, 
or shift it by an offset; in a more generalized approach, values from different ref-
                                                           
47 Basically, a random motion shift could also be included in an AR synthesis filter to 
obtain a reasonable video model. 
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erence pictures can be superimposed for prediction: Each of them may be 
weighted individually by a weighting factor a(p3), an offset c can optionally be 
added. If prediction shall further support sub-sample displacements, a spatial 
interpolation filter with impulse response hint(n) has to be included, with coeffi-
cients a(p1,p2) in the convolution equation pending on the sub-sample phase d1|2. 
The estimate is then computed by using up to P3 reference pictures48  

3

3

1 2
1 3 2 3

1 1 2 2

1 2 3 1 2 3 3
1

/ 2 1 / 2 1
[ ( ), ( )]

int 1 2 1 1 3 1 2 2 3 2 3 3 3
/ 2 /2

ˆ( , , ) ( , , ) ( )

( , ) ( ) , ( ) , ( ) .

P

p

Q Q
d p d p

p Q p Q

s n n n c n n n a p

a p p s n k p p n k p p n k p

 (2.229) 

With an offset c(n)=0, the z transfer function of the entire predictor filter can be 
described by  
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Fig. 2.32. Bilinear interpolation  

 

The simplest approach of 2D interpolation is bilinear interpolation, which is sepa-
rable, h(t1,t2)= (t1) (t2) with (t)=rect(t) rect(t). The principle is illustrated in 
Fig. 2.32. The value to be estimated at position (t1,t2) is computed from samples of 

                                                           
48 2D FIR interpolators with even impulse response lengths Q1 and Q2 are assumed for the 
horizontal and vertical sub-sample interpolations. As sample and sub-sample shifts can be 
different for each reference picture used in the prediction, the interpolation filter and sam-
ple motion shifts ki are defined depending on the reference index p3. Practically, displace-
ments vary locally, such that the predictor filter is also a shift-variant system and the a, c 
and ki parameters may also depend on n1,n2. In video coding, the reference pictures do not 
necessarily need to be ordered by their temporally sequence (see Sec. 7.2.4). This is ex-
pressed by the index n3+k3(p3) which defines an arbitrary list mapping. 
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four neighboring positions, which are weighted depending on the horizontal and 
vertical sub-sample phases d1 and d2 (0 d i<1): 

  1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

ˆ( , ) ( , )(1 )(1 ) ( 1, ) (1 )
( , 1)(1 ) ( 1, 1) .

s t t s n n d d s n n d d
s n n d d s n n d d

      (2.231) 

However, bilinear interpolation has a relatively strong lowpass effect, and also 
does not provide good alias suppression49. Therefore, in practice, higher-order 
interpolation filters are used for better performance in motion compensated pre-
diction with sub-sample accuracy (cf. Sec. 7.2.5). 

In video coding, block matching is often used for motion estimation. Let  ex-
press a partition, for which a common horizontal/vertical displacement shift vector 
k+d = [k1+d1, k2+d2] shall be determined for a given reference picture with dis-
tance k3 from the current picture n3.  describes a set of candidate displacement 
shifts. Cost functions based on minimization of difference criteria of norm Q are 
often used for this purpose50, 
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Fig. 2.33.  Block matching motion estimation.  a Definition of matching partition, search 
range and step size in the current picture  b Possible overlaps of best-matching blocks in 
the reference picture 

                                                           
49 Due to the triangular impulse response of the underlying 1D filter, its spectral transfer 
function is sinc2, which has its first zero at | f | =1 /2 , the first two side lobe in the first alias 
band 1 /2 | f | 3 /2 , and further side lobes in higher-frequency alias bands. 
50 Q=1 for sum of absolute difference (SAD), Q=2 for sum of squared difference (SSD). 
Sub-sample accurate shift parameters li = ki + di are used here, which means that for the 
case di  0 it is necessary to compute ŝ  by interpolation filtering, cf. (2.229)/(2.230). 
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Fig. 2.33 illustrates the method. In Fig. 2.33a, all samples of a given partition in 
the current picture are subject to the same horizontal/vertical shift, and the sample 
pattern of the partition is compared against patterns from the set of candidate 
positions in the given reference picture. As a result, the displacement vector corre-
sponding to the best pattern match is selected. Fig. 2.33b indicates an inconsisten-
cy of rigid block partitioning, as this may cause unreasonable overlaps or gaps 
between adjacent blocks in the reference picture, at positions where the motion is 
discontinuous (e.g. at object boundaries). Generally, the partitions may either be 
of equal size (as shown in the figure) or of variable size. As an example, with full 
search, scanning over all possible shift positions within a 2D search window, the 
total number of positions to be compared is growing linearly with the area of the 
search window and with the density (reciprocal squared value of step size , 
which is the distance between adjacent shifted candidate positions).  
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c 

   

d 

  
Fig. 2.34. a Picture (with MVs) from a video sequence, and prediction error pictures:  
b without motion compensation  c with motion compensation, full-sample shift accuracy   
d with motion compensation, half-sample shift accuracy (both motion compensated exam-
ples with constant block grid of size 16x16, half-sample shift by bilinear interpolation) 
 
Fig. 2.34 shows results of a picture predicted without and with motion compensa-
tion, the latter case also with bilinear interpolation filtering for half-sample accu-
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racy (all with block grid of size 16x16). Fig. 2.35 shows corresponding results 
with quarter-sample accuracy, with bilinear and higher-quality (8-tap filter) inter-
polation, the latter as well with reduced sizes of the block grid, 8x8 and 4x4 sam-
ples (contrast enhanced 1.5x in residual pictures for better visibility). 
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c 

   

d 

  
 
Fig. 2.35. Examples with quarter-sample accuracy in motion compensation: a bilinear 
interpolation, 16x16 block grid, and further examples with 8-tap interpolation filter:   
b 16x16 block grid  c 8x8 block grid  d 4x4 block grid 
 
The true motion shift between two pictures will typically be by sub-sample units. 
It is however not useful to test all possible sub-sample positions over the entire 
search window range, as it can be expected that the cost criterion in (2.232) varies 
smoothly over k. Therefore, strategies for fast search are used which start by larg-
er  values and refine the estimated motion vector into sample or sub-sample 
accuracy only by the last few steps.  

Fast search algorithms do not test all possible candidates and therefore may no 
longer guarantee that the global optimum over the k+d parameter space is 
reached. However, with same complexity, fast algorithms can often achieve even 
better results compared to exhaustive (full search) approaches, since they avoid 
testing unreasonable candidates and can instead investigate an extended parameter 
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space. In one or the other way, fast motion estimation algorithms inherently ex-
ploit 
– the smoothness of cost functions in dependency of k+d, due to the fact that 

the sample patterns at adjacent candidate positions in the reference picture are 
almost identical when the step size  is small; this allows optimizing the re-
sult by iterative steps; 

– the smoothness of displacement vector fields, both over the spatial coordinate 
(e.g. consistent motion of larger objects) and the temporal coordinate (along 
the motion trajectory), which allows predicting initial candidates from previ-
ous estimates; 

– The joint scaling property of picture and motion vector field, where for spa-
tially downsampled signals the number of sample-wise operations, as well as 
the size of the search range can be reduced51. 

Furthermore, it is possible to apply early termination of the search, when a suffi-
ciently good displacement (in terms of cost function) has already been found. All 
previously mentioned approaches for search speedup are complementary and can 
be combined.  
 
Multi-step search. Two principles of fast motion estimation algorithms are 
shown in Fig. 2.36a/b. Both are based on testing only a subset of search positions 
out of the entire set of parameters, where the favorable direction of changing k is 
traced for optimization of the cost criterion. In Fig. 2.36a/b, all positions tested in 
the particular steps are drawn as black dots, the steps are referenced by numbers, 
and the optimum as found in the respective step is marked by a circle. In both 
examples, the motion vector is finally found as k 1= 5, k 2=2. These two algo-
rithms are typical representatives for a variety of similar approaches, one of the 
first was suggested in [KOGA ET AL 1981].  

In the method of Fig. 2.36a, originally denoted as three-step search in 
[MUSMANN ET AL. 1985], only a small set of 9 candidate positions is evaluated in each 
step. Simultaneously, the search step size is decreased gradually ( =3, 2, 1 sam-
ple width for the three iterations in the example shown). The center of the search 
range in iteration step r is selected from the best-matching position of the previous 
iteration r 1, such that cost criteria need to be computed only for 8 new positions 
in iterations 2 and 3. In the example shown, a total of 9+8+8=25 candidate posi-

                                                           
51 The scaling property also imposes an interesting relationship between the picture size 
and the complexity of motion estimation. If the picture size is doubled horizontally and 
vertically, the density of samples is increased likewise. However, the size of the search 
range has also to be doubled horizontally and vertically, as now the related displacement 
maps into a motion vector k of double length. Considering exhaustive search, this leads to a 
complexity increase by a factor of 16 when doubling the picture size. It could be argued 
that when downsampling the step size  should be decreased (e.g. going from half sample 
to quarter sample precision of motion compensation), which would diminish this benefit. 
This is however not the case, if proper lowpass filtering is applied in the context of 
downsampling, which loses spatial detail to some extent. 
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tions are compared in the three iterations; the maximum range in the given exam-
ple is k 1,max=k 2,max= 6 samples. A full search with same range would require 
testing of 132=169 positions. The factor of reducing computational complexity 
increases with larger search range (more iteration steps). Typically, a complexity 
dependency on kmax or log(kmax) (instead of kmax

2 for full search) can be achieved. 
In the search method shown in Fig. 2.36b, 5 different positions in N1 ar-

rangement are compared in the first iteration step. In the example, a step size =2 
is used. After finding the best match among these, only three more positions adja-
cent to the previous optimum need to be compared in any remaining step. This 
process is continued until the best-match position remains unchanged, which 
indicates that a local minimum over the cost function has been approached. Then, 
in a final step, all 8 shift positions around this optimum, or additional sub-sample 
positions, are checked as candidates. In the example shown, only 5+2 3+8=19 
candidate positions have to be tested in total. 
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Fig. 2.36.  Multi-step block-matching estimation methods – examples of    
a ‘three-step search’  b ‘logarithmic search’ 
 
These concepts will approach the globally-optimum result (as in full search), if the 
cost function is truly convex and therefore improving over the motion parameter 
space towards the optimum position. If local extremes of the cost function exist, it 
is possible to get stuck in such a position. This can be the case when several simi-
lar structures (e.g. periodicities) are present. 
 
Displacement vector predictors. As continuity of the motion vector field can be 
assumed, reasonable predictions for correct displacement vectors are often availa-
ble from previous estimates in the spatial or temporal neighborhood. Fig. 2.37 
shows possible candidate vectors from adjacent partitions (here: blocks), which 
can be used to predict the displacement for the current partition. The temporal 
predictor can be selected from the ‘collocated’ position in the reference picture, or 
as a vector which points from a location in the reference picture into the current 
block partition52. 

                                                           
52 It may be necessary to scale the candidate vectors based on the time distance between 
the current picture and the reference picture in comparison to the time distance that is in 
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Different approaches are possible to determine the final estimate for the dis-
placement vector of the current partition: 
 The mean or median from a set of previously-estimated vectors (candidates) 

is computed as starting point, and the new value is optimized by testing can-
didates within an additional search range around this initial hypothesis53; 

 The search range is determined from the range between minimum and maxi-
mum displacement values found in the set of predictor candidates; 

 Different search ranges are tested around the values of several predictor can-
didate’s displacement vectors (if they are not identical). 

In this context, it is also common practice to terminate the estimation without 
further refinement when one of the initial candidates already provides a good 
estimate, which further speeds up the search on average [DE HAAN ET AL. 1993].  
 

reference picture

temporal
predictor

spatial
predictors

current picture

block (partition) for
which the vector is
estimated

 
Fig. 2.37. Examples of temporally and spatially adjacent displacement candidates in pre-
dictive motion estimation for block matching   
 
Multi-resolution motion estimation. Multi-resolution estimation determines 
candidates from downsampled pictures. For the same content, the displacement 
shift is down-scaled as well with the picture size/resolution; therefore, the search 
range can be down-scaled as well, whereas the motion is still captured [NAM ET AL. 
1995]. In subsequent steps, the picture resolution is increased, but the estimation 
starts from the result of the previous step, which can be expected to be already 
close to the true motion, such that the search range can again be small. Further-
more, also the size of the partitions for which a common motion displacement is 
estimated can be decreased, in which case the spatial resolution of available dis-
placement vectors (i.e. the density of the vector field) also increases with the pic-
ture resolution. In terms of the hierarchical representation of the pictures, such an 
approach can be interpreted as a Gaussian pyramid (Sec. 2.8); with decreased 

                                                                                                                                     
effect in the motion compensation where they are used. The number of candidates can also 
be variable, depending on the local variation of motion. 
53 The median value can be computed separately for the horizontal and vertical displace-
ments, or jointly for both, depending on the vector length; this may however generate a 
combined displacement which effectively does not exist. 
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partition sizes, also a pyramid of motion vector fields with both increasing resolu-
tion and precision is generated.  

In full-search motion estimation, the size of the search range per direction 
ki,max has the most important effect on complexity. With this regard, multi-
resolution estimation has a similar benefit as multi-step search54, but due to the 
additional subsampling of the pictures reduces the complexity even further and is 
eventually more stable due to the lowpass characteristics of downsampled pic-
tures. 

When up-scaled displacement vectors from a lower resolution level are used as 
starting points for estimating in several adjacent partitions in the next higher reso-
lution level, and the differences between them are small due to using small search 
ranges around the candidate, hierarchical estimation implicitly can generate spa-
tially more continuous motion vector fields. The relationships between matching 
areas and estimated motion vectors at two different levels are illustrated in Fig. 
2.38.

resolution in step 1

resolution in step 2

up-scaled result
 from step 1

estimation in step 1

estimation in step 2

a b

result from step 2

reference picture

current picture

sizes of matching areas
in steps 2, 1

estimated motion vectors
in steps  2, 1

 
Fig. 2.38. Hierarchical motion estimation over two steps  a Interpretation at full resolution  
b Principle of reduced resolution in the first step, and up-scaling of the resulting displace-
ment vector   

Variable block-size estimation. Displacement vector fields representing motion 
shifts are continuous (with only small amount of changes) within areas of back-
ground or larger moving objects, but discontinuous at object boundaries. Both 
properties can best be reflected when variable-size partitions are used for regions 
that are assigned to a common displacement vector. Typical strategies in optimiz-
ing displacement estimation for variable block sizes start from larger partitions 
and performs splitting into smaller partitions in cases where this has advantages 
w.r.t. the cost function. However, it should be observed that generally for areas 
with less detail estimated vectors could be ambiguous (this is denoted as aperture 
problem, see [JÄHNE 2005]). Therefore, splitting should be justified by a significant 
benefit in the cost function, and eventually large deviations in the displacements 
                                                           
54 Both multi-step and multi-resolution methods are sometimes entitled as hierarchical 
motion estimation. 
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of adjacent split partitions may be inhibited by additional constraints (e.g. 
smoothness criteria, see subsequent section). Beyond the splitting strategy, anoth-
er approach would be to start with smaller partitions and merge them, if the same 
displacement can be applied without significant disadvantage to the cost function. 
Again here, a smoothness constraint can be used as part of the cost function. 

Constrained estimation. Additional constraints are often introduced in block 
matching, where the cost function of a given estimate is modified by a penalty 
term P  e.g.  
 establishing interrelationships between motion vectors estimated in adjacent 

blocks by a smoothness constraint that takes into account motion vector dif-
ferences, 

 regularizing estimates in low-detail regions where no unique motion vector 
can be determined, by aligning them with the displacement of adjacent high-
er-detail regions, 

 taking into account the rate that would be required to encode the displacement 
vector [GIROD 1994].  

An example for a constrained optimization criterion in analogy with (2.232) is 

opt
1arg min ( ) ( ) Ps s

k n

k n n k kP  (2.233) 

State of the art fast motion estimation algorithms used in video coding are often 
using combinations of the aforementioned approaches.  

2.7 Linear block transforms 

2.7.1 Orthogonal basis functions 
 
The Discrete Fourier Transform (DFT) (2.89) is computed by multiplying M sam-
ples from a signal by an orthogonal set of complex basis functions. In general, two 
finite discrete 1D (real or complex) functions ti(n) and tj(n), each of length M, are 
orthogonal, if their linear combination gives zero, 
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If the functions tk (n) are interpreted as impulse responses of linear filters, and if 
the operations ck (n )=s (n ) tk (n )  are performed over all n, it can be shown that 
the cross correlation between any two resulting outputs cicj(0)=0 for i j. There-
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fore, the usage of orthogonal basis functions can provide a de-correlated repre-
sentation of a signal55.     
For an orthogonal set of basis functions, each member of the set is orthogonal 
with any other. The computation of the transform coefficient ck = sTtk is a mapping 
from the signal domain into a transformed domain (which could be interpreted as 
a sampled frequency domain, provided that the basis functions have an appropri-
ately ordered frequency transfer behaviour). If reconstruction of the signal sam-
ples is possible, the discrete set of transform coefficients establishes an equivalent 
representation. For processing of longer-duration signals, local or short-time 
transforms are often applied, in simplest case processing non-overlapping block 
segments (vectors) s of length M from the signal in a block transform. In the fol-
lowing, this problem will first be discussed for the case of one-dimensional trans-
forms, from which two- and multidimensional transforms can straightforwardly be 
constructed by separable processing over the different coordinate axes. A segment 
from the signal s(n), consisting of M subsequent samples and starting at position 
mM, shall be mapped into a set of U transform coefficients  
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0
( ) ( ) ( ) ; 0

M

k k
n

c m s mM n t n k U . (2.235) 

It shall be possible to reconstruct this segment of the signal by a complementary 
set of synthesis functions (inverse transform), such that 
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Substituting (2.236) into (2.235) gives 
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This condition can only hold for all k, if the factor cl / ck is zero for l  k, such that 
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In the special case of an orthogonal set {tk}56, this is fulfilled by choosing the 
matching analysis and synthesis bases tk and rk as complex conjugates, by which 

                                                           
55 If however the sequences ck (n ) are subsampled, as often applied in the context of trans-
form coding to avoid an overcomplete representation, correlation may occur partially due 
to aliasing. 
56 Observe that the fulfillment of (2.238) does not necessarily require that the analysis 
basis functions tk  or synthesis basis functions rl  by themselves establish orthogonal sets; it 
is only necessary that function k from one set is orthogonal with function l k from the other 
set. This joint property of two sets is called bi-orthogonality; the choice of an orthogonal 
set {tk } and {rk }={tk

*} is a special case thereof. 
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tk is implicitly orthogonal with any other synthesis basis rl. The further constraint 
tk

Trk=1 can be avoided by the generalization 

  T
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By combining (2.238) and (2.239), a more general orthogonality condition for the 
set {tk} is   
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For the example of the DFT (2.89) and IDFT (2.90), t k (n )=e j 2 n k / M , 
r k (n )=e j 2 n k / M /M  and Ak = M fulfills these conditions. A general transform from 
M signal values into U coefficients can also be formulated by the matrix notation  
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where the signal vector s consists of M samples, the transform matrix T has size 
M xU  with rows establishing basis vectors and the result c includes U transform 
coefficients ck. As a minimum condition for reconstruction, the transformed repre-
sentation {c(m)} over all blocks shall have the same number of samples as the 
signal s(n). This can be achieved when the starting positions of subsequent vectors 
s(m) are N=U  samples apart, where N0 is an optional constant offset. In simplest 
case of a non-overlapping block transform, N=M=U  and M0 =0. Then, since the 
rows of T=[t0 t1 … tU-1]T are the basis functions from an orthogonal set, they are 
linearly independent, T is a square matrix, will have full rank and is invertible. 
Following (2.241), the values of s(n) in s(m) can uniquely be reconstructed from 
the coefficients ck  in c(m), 
  1( ) ( )m ms T c . (2.242) 

The transform is orthonormal, if Ak = 1 in (2.240). Analysis and synthesis vectors 
in (2.239) are identical for a real-valued orthonormal transform basis. More gen-
erally, for a complex orthonormal transform from (A.26)57 

   
T1 HT T T . (2.243) 

The synthesis functions rl from (2.238) are the columns of TH; in combination 

                                                           
57 TH is the Hermitian matrix (conjugate transpose) of T. 
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with (2.243), this gives TT 1 = I. In orthonormal linear transforms, the quadratic 
norm (energy) of signal vectors can directly be computed without any normaliza-
tion from the coefficient vectors,  

   TT T H *s s s T Ts c c
I

 or 2 2s c .                         (2.244) 

Otherwise, if basis vector norms are different from unity, an equivalence is still 
found when the values in ||c||2 are scaled by the individual Ak values. 

The series of transform vectors c(m) is computed from signal vectors s(m) 
with starting positions n0(m)=mN+N0. With hop size N > U , reconstruction cannot 
be guaranteed, with N < U , the result of the transform would be over-complete. 
For the purpose of coding, N = U  is most appropriate. In case of block-
overlapping transforms (Sec. 2.7.4), the vectors s are longer than vectors c, i.e. 
M > U . In this case, though a single c(m) can uniquely be computed from the 
corresponding s(m), reconstruction may require involvement of other vectors c(m) 
that also depend on samples in s(m), which can be achieved by a weighted over-
lap-and-add procedure as a secondary step. In the remaining part of the current 
section, N=U=M  is assumed. 

A separable two-dimensional transform can be expressed as concatenation of 
two matrix multiplications using a horizontal transform Th and a vertical trans-
form Tv,  

1 2

21

22 2 22 2 1 2

v

(0) (1) ( 1)0,0 1,0 1,1 0 0 0

(0) (1) ( 1)0,1 1,1 1,1 1 1 1

(0) (1) ( 1)1 1 10, 1 1, 1 1, 1

MU

MU

MU U UU U U U

c c c t t t
c c c t t t

t t tc c c
TC

 (2.245) 
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1 1

2 2 1 2 1 1 11

T
h

(0) (0) (0)(0, 0) (1, 0) ( 1, 0) 0 1 1

(1) (1) (1)(0, 1) (1, 1) ( 1, 1) 0 1 1

(0, 1) (1, 1) ( 1, 1) ( 1) ( 1) ( 1)0 1 1

M U

M U

M M M M M M MU

t t ts s s
t t ts s s

s s s t t t
S

T

.  

In a first step, all columns (length M2) of the image matrix S are transformed sepa-
rately giving Cv =TvS, the result of the vertical transform applied separately over 
all columns. The subsequent horizontal transform of Cv is performed by using the 
transposed transform matrix Th

T rather than transposing the matrix Cv58. The 

                                                           
58 Alternatively, the second step could be C=[ThCvT]T, however the above formulation 
gives the output in correct (not transposed) order right away. It is of course also possible to 
perform the horizontal transform first, where mathematically the final result is identical. 
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matrix equations for the separable 2D transform and the related inverse transform 
are as follows59: 

   
TT 1 1

v h v h

v

C T S T S T C T
C

. (2.246) 

The basis functions relating to U1U2 coefficients of the separable 2D transform are  

   
1 2 1 2 1 2 1 2

T
, 1 2 1 2 ,( , ) ( ) ( ) ; 0 ;k k k k i i k k k kt n n t n t n k U T t t . (2.247) 

The 2D basis matrices Tk1,k2 are also denoted as basis images. A two- or multi-
dimensional expression can generally be written as tk(n) and Tk, where the related 
(scalar) transform coefficient can be expressed as the Frobenius product (A.10) of 
matrices or tensors, 

  :ck kT S . (2.248) 

 

2.7.2 Types of orthogonal transforms 
 
In this section, basis functions of some important transforms are introduced most-
ly by their one-dimensional versions. They extend to the case of two-dimensional 
separable transforms according to (2.246). 
 

T
0
T

1

Haar

T
7

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0
1 0 0 0 0 2 2 2 2(8)

2 2 2 2 0 0 0 0 0 0
0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2

t
t

T

t

. (2.249) 

 Rectangular basis functions. The analysis block lengths M of the following 
rectangular basis function transforms are typically dyadic (M=2 l , l ). Typical-
ly (except for scaling necessary to achieve orthonormality), these transforms can 
be computed without multiplications. The Haar transform uses basis functions of 
non-constant length60, where identical elementary functions (performing differ-
ence analysis over neighbored samples) are re-used at different positions of the 

                                                           
59 In case of orthonormality, S=TvHCTh*. 
60 A more systematic construction of the Haar and Walsh transforms can be found in the 
formulation of Problem 2.13. The Haar transform can also be defined as a discrete wavelet 
transform (see Sec. 2.8.4) from the filter basis (2.312). 
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block. As an example, the transform matrix of an orthonormal Haar transform 
with U=M=8 is shown in (2.249). For the orthonormal transform, the scaling 
factors for the different basis types vary. Basis functions for the case M=8 are 
shown in Fig. 2.39a. The Walsh basis consists of U=M  basis functions, the set for 
the case M=8 is shown in Fig. 2.39b. The corresponding transform matrix is 

  

T
0
T

1

Walsh

T
7

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11(8) .
1 1 1 1 1 1 1 12 2
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

t
t

T

t

 (2.250) 

The Walsh transform can be interpreted to be analyzing ‘frequency’ (based on 
toggling rectangles rather than oscillating sinusoids), as the number of zero cross-
ings is steadily increasing with index k. 

The Hadamard transform has the same set of functions as the Walsh basis, 
however the ordering (index numbering of basis functions) is different, not allow-
ing interpretation by ‘increasing frequency’. The rule for recursive construction 
implicitly guarantees orthogonality. Starting from a 1x1 identity matrix with 
M ’=1, the recursion doubles the block length by each step, 
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Had Had
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Had Had

(1) 1 ,

( ) ( )1(2 ) for 1, 2,4, , / 2.
( ) ( )2
M M

M M M
M M

T

T T
T

T T
 (2.251) 

The Hadamard transform matrix for the case M=8 then is (see also Fig. 2.39c): 
T

0
T

1

Had

T
7

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11(8) .
1 1 1 1 1 1 1 12 2
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

t
t

T

t

    (2.252) 
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Fig. 2.39. Rectangular basis function systems  a Haar  b Walsh  c Hadamard  
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Sinusoidal basis functions. The Discrete Fourier Transform (DFT) is defined as 
21 1 j

0 0
( )  ( )  with e

M M
mk mk M

k M k M M
n k

c s n W s n c W W .     (2.254) 
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The complex exponential basis can be interpreted as harmonic sinusoids of specif-
ic frequency and phase. The transform matrix of the DFT is shown in (2.253). 
Note that this version of the DFT is not orthonormal. From (2.240), Ak = M for a 
1D transform and Ak1k2 = M1M2 for a separable 2D transform61. Further, the DFT 
implicitly interprets a series of samples as periodic, even if they only represent a 
segment from a longer signal. Therefore, occasional amplitude differences be-
tween the left and right boundaries of the analysis segment are interpreted as dis-
continuity (see Fig. 2.40a), and spectral energy appears over broad frequency 
ranges. Further, when the signal is locally periodic, but the wave length (or a 
multiple thereof) does not match with M, energy is also spread over a certain 
range of the spectrum. Therefore, the DFT possesses undesirable properties with 
the threat of producing artifacts both in picture/video and audio compression. One 
approach of avoiding this is usage of window functions with roll-off towards the 
ends, typically used with overlap of adjacent blocks. 

The amplitude discontinuity can also be avoided, if a (mirror) symmetric ex-
tension of the signal is constructed, which leads to an even symmetry and a real-
valued DFT spectrum. In a first approach, even symmetry can be implemented 
around the points n=0 and n=M 1, with a period length of 2M 2 (from M inde-
pendent samples), as shown in Fig. 2.40b. Computing a DFT  

  
2 j2

2 2

1
( ) e with ( ) ( ) for 0

knM
M

k
n M

c s n s n s n n , (2.255) 

gives real-valued coefficients as 
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c s s M s n

s s M s n nk
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 (2.256) 

The values ck are periodic over k with 2M 2, and are again even symmetric 
around k=0 and k=M 1. Therefore, the inverse transform is identical, except for 
a normalization factor 1/(2M 2)62. This real-valued transform is entitled as DCT 
type-I (for a detailed description of the different types and their implementation, 
see [BRITANAK ET AL. 2010] [CHEN, SMITH, FRALICK 1977]). 

For applications in data compression, the DCT-I is however not best suitable 
due to the property that all basis functions have a maximum amplitude value at 
n=0, which can lead to high errors at the left block edge when transform coeffi-

                                                           
61 For an orthonormal version of the 1D DFT, normalization by a factor 1/ M  has to be 
applied both in the analysis and synthesis (IDFT). Likewise, for a 2D transform, the nor-
malization must use a factor 1 21/ M M . 
62 Alternatively, forward and inverse transform are identical in case of orthonormality, 
where a normalization 1/ 1/ (2 2)M  is applied in (2.256). 
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cients are discarded or heavily quantized. Second, the basis functions do not have 
symmetry properties themselves due to the misalignment between the length of M 
samples and the cosine which is periodic over M 1 or a multiple thereof. Third, 
the lowest frequency is representing approximately a full cosine period over the 
length of the basis function, such that signals with a slower increasing amplitude 
are not efficiently presented (which are often observed particularly in image sig-
nals). 
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n=0
n=M-1n=-M+1

M samples M samples

a bn=0
n=M-1

e

n=0
n=M-1

n=-1
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M samples

c

2M samples n=0
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4M samples
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M samples

d

4M samples

n=M

 
Fig. 2.40. Extension of the signal at boundaries of a finite analysis segment of length M  
a periodic (DFT case)  b DCT type I  c DCT type II  d DCT type III  e DCT type IV  

 
To overcome these problems, the points of even symmetry could also be put at 
n  ½ and n  M ½, such that these two points are duplicated as well, and the 
even Fourier transform has to be computed over a length of 2M, where now exact-
ly half of the samples is redundant (see Fig. 2.40c). This can be realized by a 
modification of the DFT basis function, through a shift by half a sample in the 
complex exponent. Then,  

  
11 j2

2 2( ) e with ( ) ( 1) for 0
kM n
M

k
n M

c s n s n s n n , (2.257) 

which can be re-written as DCT type II: 

 
1 11 1j2 1 j2

2 2 2 2
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1( ) e e 2 ( )cos
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k
n n

c s n s n k n
M

.  (2.258) 



2.7  Linear block transforms       103 
 

In the coefficient domain, the following observations are made: Coefficients cM 
and c M are zero; otherwise, the following symmetries apply:  

2 for  0 ;   for  2k k k M kc c k M c c M k M . (2.259) 

This means that the series of coefficients has an odd symmetry around k= M, and 
is periodic in k over a length of 4M, where however still only M independent 
coefficients exist, all other are redundant. This can be explained by the fact that by 
introducing the shift by half a sample virtually the sampling rate is doubled and 
the block length of the DCT would also be 4M, where however each second sam-
ple is implicitly zero. Therefore, alias spectra appear within the spectrum period 
(cf. Sec. 2.8.1). In terms of the inverse DCT, the following computation is neces-
sary (formally, the sum should run over 4M samples with normalization by 
1/(4M), but the coefficients for |k|  M with corresponding complex exponentials 
would give exactly the same contribution and can therefore be omitted): 

1 11 1j2 j2
2 2 2 2

0 1
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1
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2

1 1cos .
2 2

k kM n n
M M

k k k k
k k M

M

k
k

s n c c c c
M

c c k n
M M

 (2.260) 

The transform of (2.260), when applied to a signal, is also entitled as DCT type 
III. Its symmetry properties (even around n=0 and odd around n=M) are shown in 
Fig. 2.40d. The corresponding inverse transform is the DCT-II. 

Due to the shift by half a sample and usage of symmetric basis functions, the 
combination of DCT-II and DCT-III can also be used for linear interpolation 
(upsampling) of signals. In case of upsampling by a factor of 2, this can be 
achieved replacing the sign-inverted coefficients at positions k=M+1…2M 1 
by zero values63, and extending the inverse transform to the full length of 4M 
samples, such that 2M samples are generated by the inverse transform. Similarly, 
filling more zeroes and extending the block length of the inverse transform allows 
higher upsampling ratios. 

Both DCT-II (2.258) and DCT-III (2.260) have orthogonal basis vectors, but 
do not fulfill (2.240), as the norm of t0 is different. By the following modification, 
orthonormality is achieved, and the basis vectors of the DCT-II can be written as 

   

DCT-II
0

0 0

2 1( ) cos   for 0 { , }
2

1         with    for 0 ; 1 for 0.
2

kt n C k n n k M
M M

C k C k
 (2.261) 

Another concept is the DCT type IV, which somewhat combines the properties of 
DCT-II and DCT-III by using even symmetry around n  ½ and odd symmetry 
                                                           
63 This is equivalent to suppression of alias spectra in interpolation filtering, cf. Sec. 2.8.1. 
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around n  M ½ (see Fig. 2.40e). The period over n is 4M (again with only M 
independent samples), where however now the contributions of the values beyond 
the odd symmetry point contribute differently. Since s(n) is even, values for n<0 
would contribute as complex conjugate such that the DFT over length 4M gives  

  
12 1 j2

2 2

0
2Re ( )e with ( ) (2 1) for

kM n
M

k
n

c s n s n s M n n M , (2.262) 

which can be re-written as 
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The result is zero for even values of k. Replacing k 2k+1 for considering only 
the non-zero coefficients at odd positions finally gives 

1

0

1 14 ( )cos
2 2

M

k
n

c s n k n
M

. (2.264) 

In the DCT-IV, n and k have identical influences on the basis function. Further-
more, it can be concluded that virtual zero samples should exist both over n and k; 
including the frequency zero which would be at k  ½ in (2.264). Due to the 
symmetry of the coefficient series which is even around k  ½ and odd around 
k  M ½, the inverse transform is identical to (2.264), except the need for am-
plitude scaling by 1/(8M)64. The lowest discrete frequency comes with the basis 
function t0 which is a cosine with one full period over 4M (or a quarter of a period 
over M). 

Due to these properties, the DCT-IV is most suitable for compression of zero-
mean signals, such as audio. It is also used as a basis for block-overlapping trans-
forms (see Sec. 2.7.4), where typically the length of the basis function is extended 
to an equivalent of 2M but multiplied by a window function that decays towards 
the tails and completely chops off the negative mirrored parts. By this, any unde-
sirable effects of the odd symmetry at n  (M ½) are avoided, which is denoted 
as ‘time domain alias cancellation’ [PRINCEN, BRADLEY 1986]. 

As further variants of symmetric extensions with extended DFT basis func-
tions, it is also possible to apply an odd symmetry around n=0 or n= ½. In this 
case, the real part of the DFT will be zero, but the values of the imaginary part can 
be used as if they were real valued coefficients. It should however be considered 
that odd symmetry requires the symmetry point itself to be zero, which has to 

                                                           
64 8M is the actual period over k when the zero coefficients would be included. Alterna-
tively, both forward and inverse transforms can be scaled by 2 / M . 



2.7  Linear block transforms       105 
 

apply whenever n=0 or n= M are used as symmetry points. When there are M 
non-zero values, nevertheless the extended DFT length needs to include the zero 
values. Since odd signal components relate to the (imaginary) sine component of 
the DFT’s complex exponential, this class of transforms is categorized as Discrete 
Sine Transform (DST). Similar to the discussion above, there are mainly four 
types: 
 DST type I: Odd symmetries both at n=0 and n= M, effective DFT period 

(including two zero samples) 2M+2; it has symmetric basis functions. 
 DST type II: Odd symmetries both at n= ½ and n=M ½, no zero samples, 

effective DFT period 2M; 
 DST type III: Odd symmetry at n=0, even symmetry at n= M, effective DFT 

period (including two zero samples at n=0 and n= 2M) 4M; 
 DST type IV: Odd symmetries at n= ½, even symmetry at n=M ½, no zero 

samples, effective DFT period 4M; 
Again, DST-II and DST-III are inverses of each other, whereas DST-I and DST-
IV are identical with their inverse transforms. Relevant in terms of data compres-
sion are DST-I and DST-IV, which match the properties of boundary prediction 
problems, where a set of M subsequent samples is predicted from the same 
boundary sample, such that the prediction error increases with larger distance 
from the boundary (see section 5.2.4) – in case of an AR(1) process, the DST in 
an optimum way removes correlation from the prediction error, specifically 
 The DST-I is best suitable in case of two-sided prediction (block of M sam-

ples predicted from boundary samples at both ends) [JAIN 1976]. The first basis 
function from the following set of length M is a half sine wave with maxi-
mum in the center of the block; this matches the properties of the prediction 
error which can be expected to be maximum around position M/2 (farthest 
from the boundary samples used for prediction) 

  DST-I 2( ) sin ( 1)( 1) ; 0 { , }
1 1kt n k n n k M

M M
; (2.265) 

 The DST-IV is best suitable for one-sided prediction (block of M samples 
predicted from boundary samples at the beginning); The first basis function 
from the following set of length M is a quarter sine wave with maximum by 
the end of the block, 

  DST-IV 2 1 1( ) sin ; 0 { , }
2 2kt n k n n k M

M M
. (2.266) 

The two-dimensional DCT is widely used in image and video compression (e.g. in 
standards like MPEG, JPEG, H.261/2/3). Mathematically precise formulations of 
the 2D DCT-II and its inverse 2D DCT-III over a rectangular signal block of size 
M1M2 are (with factors C0 defined separately for the two dimensions, following 
(2.261)) 
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Fig. 2.41 shows basis images of different separable 2D transforms, as defined by 
(2.247). 
 

a 

   

b 

  
c 

  

Fig. 2.41. 2D basis images of transforms. a DCT  b Walsh  c Haar 
 
Integer transforms. Rectangular (binary) basis transforms allow to be computed 
without multiplications. Rectangular-basis transforms also guarantee perfect re-
construction of signals from a transform coefficient representation of finite bit 
precision65. Furthermore, the basis functions of rectangular transforms allow 

                                                           
65 However, it should be observed that the necessary bit precision for lossless representa-
tion increases by log2M bits compared to the original signal representation, even in the case 
of Haar and Walsh transforms 
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efficient representation of discontinuities such as sharp edges, whereas they give 
only a poor representation of smoothly increasing amplitudes or smooth periodic 
structures. Sinusoidal transforms are better capable to approximate the latter types 
of signals by minimum error, but the trigonometric functions cannot be imple-
mented up to full mathematical precision; rounding errors may occur, which could 
even affect the property of orthogonality. As a compromise, (non-binary) integer 
transform bases can be designed, which capture smoothly varying signal behavior 
better than rectangular basis functions, and retain orthogonality properties even 
with low word length integer arithmetic. One example for this class is the follow-
ing transform of length M = 4, which is used in the Advanced Video Coding 
standard (cf. Sec. 7.8) [MALVAR ET AL. 2003],  

   int

1 1 1 1
2 1 1 2

(4)
1 1 1 1
1 2 2 1

T . (2.269) 

Different normalization factors 1 2,1 10 ,1 2,1 10  have to be applied for 
orthonormality of the respective basis vectors of (2.269), but the necessary scaling 
can be combined with quantization (if used for compression). A truly orthonor-
mal/identical-norm integer transform (the square root scaling factor could be 
transferred to the inverse transform), approximating a length-4 DCT is defined by 
the following matrix   

int

13 13 13 13
17 7 7 171(4)
13 13 13 13676
7 17 17 7

T .            (2.270) 

    int

13 13 13 13 13 13 13 13
19 15 9 3 3 9 15 19
17 7 7 17 17 7 7 17

9 3 19 15 15 19 3 91(8)
13 13 13 13 13 13 13 131352
15 19 3 9 9 3 19 15
7 17 17 7 7 17 17 7
3 9 15 19 19 15 9 3

T . (2.271) 

A truly orthonormal integer transform of block length M = 8, with a similar con-
struction as (2.270) proposed in [WIEN 2003], is defined by the transform matrix in 
(2.271). Herein, some of the basis functions can be constructed as mirror-
symmetric extensions of the transform (2.270) with M = 4, or the latter can be 
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generated by using first halves of each second basis function in (2.271), as indi-
cated by the boxes. 

Similar constructions of ‘nested’ sets of transform basis functions for different 
transform block sizes have not been found yet beyond M=8, if the property of 
strict orthogonality shall be retained, However, if the orthogonality constraint is 
slightly released, such that 0 ti

Ttj << ti
Tti for i j, similar constructions are possi-

ble. The HEVC standard contains the definition of integer approximations of the 
DCT for block sizes M=4,8 ,16,32,  where the different-length basis functions are 
nested exactly the same way as above; also the norms of the basis vectors are 
almost equal and consistent over the various transform block sizes, such that no 
specific quantization needs to be employed. As an example, the transform matrix 
for M=16 is shown here, and the nested DCT functions for M=8 are highlighted 
in the leftmost eight columns [BUDAGAVI ET AL. 2013]: 

int

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
90 87 80 70 57 43 25 9 9 25 43 57 70 80 87 90
89 75 50 18 18 50 75 89 89 75 50 18 18 50 75 89
87 57 9 43 80 90 70 25 25 70 90 80 43 9 57 87
83 36 36 83 83 36 36 83 83 36 36 83 83 36 36 83
8

 (16) T

0 9 70 87 25 57 90 43 43 90 57 25 87 70 9 80
75 18 89 50 50 89 18 75 75 18 89 50 50 89 18 75
70 43 87 9 90 25 80 57 57 80 25 90 9 87 43 70
64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
57 80 25 90 9 87 43 70 70 43 87 9 90 25 80 57
50 89 18 75 75 18 89 50 50 89 18 75 75 18 89 50
43 90 57 25 87 70 9 80 80 9 70 87 25 57 90 43
36 83 83 36 36 83 83 36 36 83 83 36 36 83 83 36
25 70 90 80 43 9 57 87 87 57 9 43 80 90 70 25
18 50 75 89 89 75 50 18 18 50 75 89 89 75 50 18
9 25 43 57 70 80 87 90 90 87 80 70 57 43 25 9

  

                            (2.272) 
From the matrix (2.272) and the construction of the nested shorter transforms, it 
can be recognized that the basis functions of the DCT alternate as even and odd 
symmetric functions with amplitude-identical coefficients at both sides (as can be 
expected from the type-II construction, see above). Only the even functions are 
useful for the construction of the shorter DCT transforms, as they again give an 
alternating even/odd set of functions. Likewise, the even functions of the next 
larger transform can be constructed by symmetric extension of all functions.  

Another example for an almost orthogonal transform based on integer coeffi-
cients of basis functions is the approximation of the type-IV DST (2.266) which is 
used as alternative transform for this purpose with block length M=4 in the 
HEVC standard, 
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   int

29 55 74 84
74 74 0 74

(4)
84 29 74 55
55 84 74 29

T . (2.273) 

 
An optimum transform – KLT. Linear transforms for multimedia signal com-
pression should approximate a signal as accurate as possible, using lowest possi-
ble number of transform coefficients. Often, the energy of the reconstruction error 
is used as criterion for optimality. Assuming that only T out of U coefficients shall 
be retained to represent the signal, the reconstruction error of a 1D transform is 

   
1

0

*1( ) ( ) ( )
T

k k
k

e n s n c t n
A

. (2.274) 

This gives an energy of the error over the complete block  

    

1
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 (2.275) 

Substituting in (2.275) under the condition that s(n) is real-valued 

    
1 1 1

0 0 0

* * *
*1 1 1( ) ( ) ( ) ( )
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 (2.276) 

gives 

    
21 1 1 1

2 2
2

0 0 0 0

* * *2 1( ) ( ) ( ) ( )
M U T T

k k l l k k
n l k k

s n c t n c t n c t n
AA

e , (2.277) 

by which, using the orthogonality condition (2.240), 

   
1 1

2 22

0 0

1( )
M T

k
n k

s n c
A

e . (2.278) 

(2.278) shows that for T = U = M, ||e||2 = 0, such that again the energy of the signal 
over M values can be determined from the coefficients of the linear orthogonal 
transform. This corresponds to the condition (2.244), however it is more general 
now as it shows that by omitting transform coefficients, the error energy in the 
reconstruction is exactly the energy of these coefficients, scaled by the normaliza-
tion factor A. 

Consequently, the optimum transform can be derived under the condition that 
the energy of the error shall be minimized if reconstruction from a finite number 
of coefficients is performed. This is equivalent to maximizing the energy over the 
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first T coefficients. Now assume that samples from a stationary random process 
shall be transformed, expected squared values are taken of the first T coefficients, 
such that the following condition can be formulated (for simplicity, the orthonor-
mal case is considered): 

  

1 1 1 1 1
2

0 0 0 0 0

1 1 1

0 0 0

1 1 1

0 0 0

* *

*

*

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) .

T T T M M

k k k k k
k k k n m

T M M

k k
k m n

T M M

ss k k
k m n

c c c s n t n s m t m

s n s m t n t m

m n t n t m

E E E

E  (2.279) 

The maximum of this expression is approached if the innermost parenthesis ful-
fills the condition 

   
1

0
( ) ( ) ( )

M

ss k k k
n

m n t n t m , (2.280) 

which is achieved by establishing the transform basis as the set of eigenvectors of 
the discrete autocovariance sequence. Substituting (2.280) into (2.279) further 
gives 

   
1 1 1

2

0 0 0

1

*( ) ( )
T T M

k k k k
k k m

c t m t mE , (2.281) 

which shows that the related eigenvalue k represents the power of coefficient ck. 
The basis functions of this Karhunen-Loève transform (KLT) need specific adap-
tation by the autocovariance statistics of a given signal, and would be globally 
optimum for Gaussian (e.g. autoregressive) stationary processes. Formulating 
(2.280) for the entire set of basis functions, these can be computed as eigenvectors 

k of the autocovariance matrix (2.157)66, which must then be constructed as an 
MxM matrix containing the covariance function samples ss(0) ... ss(M 1):  

   T    with   (0) (1) ( 1) ; 0 .
ss k k k

k k k k M k U

C
 (2.282) 

Alternatively, the conjugates67 of the eigenvectors k* can be defined to establish 
the rows of transform matrix TKLT 68 

                                                           
66 We have assumed zero-mean property here and in the subsequent equations; however, 
the power component related to the mean would typically concentrate in coefficient c0, 
such that the basic proof for the optimality of the KLT does not change. 
67 Definition by conjugates of eigenvectors makes the KLT consistent with the DFT defini-
tion and with correlation analysis; actually, the DFT is the optimum transform for perfect 



2.7  Linear block transforms       111 
 

T T* T *
k ss k kC . (2.283) 

 (2.283) can be written in matrix notation 
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Multiplying both sides of (2.284) by the inverse transform matrix retains the diag-
onal matrix  on the right side, which is populated by the eigenvalues k: 

1 1H 2KLT KLT 2

0 0
Diag tr ( )

U M

ss k k
k n

c s nT C T E E . (2.285) 

 in (2.285) can also be regarded as the ‘optimum transform’ of the autocovari-
ance matrix, whereby a statistical representation of the discrete spectral samples ck 
is generated. While the correlation inherent in the signal is indicated by the fact 
that Css is not a diagonal matrix, the diagonal shape of  indicates that no corre-
lation is present anymore between the spectral samples.  

 

2.7.3 Efficiency of transforms 
 
An important criterion for judging the efficiency of a transform is concentration of 
as much signal energy as possible in as few transform coefficients as possible 
[CLARKE 1985]. The related energy packing efficiency e is the normalized ratio of 
energy, contained within the first T out of U transform coefficients: 

                                                                                                                                     
cyclic signals, such as signals composed from sinusoids, each with a period being an exact 
fraction of the analysis block length. 
68 This provides consistency with transform basis definitions used so far, which could be 
interpreted as a correlation test between the signal samples and the respective basis func-
tion. In case of a complex basis, it is necessary to test against the complex conjugate. 
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The KLT maximizes the energy packing efficiency, as it is optimized using this 
criterion, see (2.279). Another aspect is the decorrelation efficiency c, deter-
mined from the autocovariance matrix Css and its transform69, 

   HH T H H .cc ssC cc Ts Ts T ss T TC TE E E  (2.287) 

The decorrelation efficiency is then defined as70 

   

1 1
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( )

( , )

1
( , )

U U

cc
k l

k l
c M M

ss
k l

k l
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. (2.288) 

For the case of the KLT, Ccc is the eigenvalue matrix  in (2.285) where all en-
tries with k l are zero, hence c has a maximum of 1. This means that the KLT 
achieves optimum decorrelation when optimized for a signal that posesses certain 
autocovariance statistics. For other transforms than the KLT, also linear statistical 
dependencies (non-zero correlation) between coefficients of the discrete transform 
representation may be present. 

 

2.7.4 Transforms with block overlap 
 
A linear transform can be interpreted as a convolution of the signal, using impulse 
responses which are the time reversed and complex conjugate basis functions. 
Unlike conventional convolution, the computation of transform coefficients needs 
only to be performed at each M th position in the case of transforms without block 
overlap, which can also be interpreted as subsampling of the convolution output. 
In the spectral domain, the generation of the transform coefficient can therefore be 
interpreted as multiplication of the signal spectrum by the Fourier transfer func-
tions of the respective basis vectors. The transform coefficients are carrying in-
formation related to all frequencies which are passing through their respective 
Fourier-domain transfer functions. Fig. 2.42 shows the Amplitude transfer func-

                                                           
69 When the number of basis functions equals the number of samples, the square matrices 
Css and Ccc are both of same size. 
70 An exception is the case of zero-correlation (white noise), where a 0/0 division would 
happen. Formally, the decorrelation efficiency would be 0 in that case. 
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tions computed from several basis vectors of the DCT, block length M = 8. Be-
neath a pass-band, each of the functions has significant side lobes, indicating that 
the frequency separation property of the DCT in this case is rather poor.  
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|F{ }|t0

0 1/4 1/2f

|F{ }|t2

0 1/4 1/2f

|F{ }|t4

0 1/4 1/2f

|F{ }|t6

 
 
Fig. 2.42. Fourier amplitude spectra of DCT basis vectors t0, t2, t4, t6 
 
Longer impulse responses (or basis functions) can improve the spectral cut-off 
and stop-band suppression. Windowing enforces the basis functions to roll off 
smoothly towards the tails and provides spectra with less energy in the side lobes 
compared to hard truncated functions. To prevent loss of information which is 
close to the tails of the window, basis functions of neighbored blocks need to 
overlap, such that synthesis can be performed by an overlap-add approach. The 
hop size between the start positions of two subsequent windows must not be larg-
er than the number of transform coefficients U, such that the number of samples in 
the signal is not larger than the number of transform coefficients. With a hop size 
smaller than U, the transform would be over-complete; therefore, typically hop 
size U is used. This principle of block-overlapping transforms can still establish 
an orthogonal system of basis functions. Real-valued cosine-modulated functions 
combined with an appropriate weighting window are e.g. used in the lapped or-
thogonal transform (LOT) [MALVAR, STAELIN 1989] and in the TDAC transform (time 
domain aliasing cancellation) [PRINCEN, BRADLEY 1986]; more generally, this family 
of transforms is denoted as cosine modulated filter banks or modified DCT; a 
prominent application domain is audio signal compression (cf. Sec. 8.2.1). 

Block m-2 Block m+2

......

Block m

M/2=U
M

Window function

Block m-1 Block m+1

Overlap

 
Fig. 2.43. Positions of analysis blocks with their overlapping window functions in a block-
overlapping transform, M=2U 
 
Example: TDAC transform [PRINCEN, BRADLEY 1986]. Here, decomposition is per-
formed into U=M/2 frequency bands, the basis functions are based on an or-
thonormal version of the type-IV DCT (2.264), have a length M=2U and are 
defined as71 

                                                           
71 Other overlap factors are possible, as long as the condition (2.290) holds. 
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   4 2( ) ( )cos ( 0.5)( 0.5 / 2) .kt n w n k n U
M M

 (2.289) 

The orthonormality of the underlying DCT is not changed when multiplying the 
even or odd symmetric basis functions with an even-symmetric window function 
w(n), and therefore the synthesis again uses the same set of basis functions. By 
this, the corresponding value of the window function is multiplied twice to a sam-
ple position in the overall signal flow. Therefore, when the entire sequence of 
window functions from all blocks is superimposed, their squared values must sum 
up to unity to achieve perfect reconstruction (see example from Fig. 2.44). As-
suming a window function which is nonzero for 0 n<M 1, this is fulfilled when 
the following conditions hold true in cases M 2U72 and transition width M U: 

2 2( ) ( ) 1 for 0   and  ( ) 1  for  w n w n U n M U w n M U n U . (2.290) 

This also guarantees that the cosine basis functions are still orthonormal when 
considered jointly across all blocks, 

  
/ 1

/ 0

1, 
( ) ( )

0,  .

M U M

k l
m M U n

k l
t n mU t n mU

k l
 (2.291) 

Typically, symmetric windows w(n) are used, where w(n)=w(M 1+n)73. An ex-
ample fulfilling (2.290) for the case U=M/2 (even M) is the sine window 

   ( ) sin ( 0,5)w m m
M

. (2.292) 

Fig. 2.43 shows the Fourier-domain amplitudes of different TDAC basis functions 
using the sine window in case U=8, M=16. The side lobes of the spectra are 
largely reduced as compared to the DCT case in Fig 2.42, whereas the main lobes 
have become broader, which effects spectral overlap to occur mainly between 
directly neighbored frequency bands. 

In the time domain, the block overlap causes smooth transitions between adja-
cent blocks instead of discontinuities in case of non-overlapping transforms, when 
coarse quantization or discarding of coefficients occurs during coding. This is 
particularly beneficial in case of periodic signals extending over block boundaries 

                                                           
72 For M > 2U, the hop size would be so small that more than two blocks overlap; in that 
case, the sum of squares from all window functions has to be constant.   
73 This symmetry is reasonable when the same window function is used over all transform 
blocks. This is however not necessary; moreover, orthonormality is still achieved whenever 
the entire time sequence over all squared window functions sums up to one. Furthermore, it 
is also possible to apply the squared window function only during analysis or only during 
synthesis, and apply a flat weighting (rectangular window with same overlap) at the other 
end. These properties allow adaptive switching of window lengths depending on signal 
properties, as often used in audio compression, or adaptive switching between overlapping 
and non-overlapping transforms, as used for image compression in the JPEG-XR standard. 



 

(where phase discontinuities are avoided) and for signals with constant or smooth-
ly increasing amplitude (avoiding unnatural amplitude discontinuities). On the 
other hand, the block overlap can be disadvantageous when the signal has discon-
tinuities of the amplitude. 
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Fig. 2.44. Fourier amplitude spectra of TDAC basis vectors t0, t2, t4, t6  
 
In principle, the transition shape of the window at the left and right block bounda-
ry can also be different, still achieving perfect reconstruction under the condition 
that the complementary shape (squares summing up to unity) is used in the corre-
sponding adjacent block. This enables switching between windows/transforms of 
different length M or overlapping and non-overlapping transform basis functions 
locally, still retaining perfect reconstruction. 

2.8 Filterbank transforms 

The general principle of a filterbank transform, with linear block and overlapping 
transforms as special cases, is shown in Fig. 2.45. Interpretation of a linear trans-
form analysis as parallel convolution operation with sub-sampling was given in 
Sec. 2.7.4; the inverse transform (synthesis) can be interpreted in a similar way. 
Generalizing this principle without explicit consideration of block segmentation 
and analysis hop sizes allows to formulate properties of the basis functions (filter 
impulse responses) with even more flexibility.  

The frequency analysis is performed using U parallel filters. Direct usage of 
the filter output samples would give a representation which is over-complete by a 
factor of U. Therefore, the output signals of the different frequency bands are sub-
sampled (decimated) and those retained are used as transform coefficients. The 
maximum (critical) decimation factor providing a complete representation of an 
arbitrary signal and thus enabling perfect reconstruction is equal to the number of 
subbands (U:1), such that the total number of coefficients equals the number of 
samples in s(n). During synthesis, the signal is reconstructed by interpolation of 
the different subband signals and subsequent superposition of all components.  

When comparing the DCT and its overlapping variants in Sec. 2.7.4, the as-
pect of spectral separation properties was discussed. With a set of ideal equal-
bandwidth filters, U non-overlapping frequency bands cover a bandwidth of 
f  = 1/(2U) each, such that alias-free critical sub-sampling and reconstruction 
could be applied according to sampling theory. This is however not possible if 
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causal filters or filters with finite impulse response shall be used. With non-ideal 
filters and critical sub-sampling, overlaps of frequency bands occur, as schemati-
cally shown in Fig. 2.46. Fig. 2.46a shows the amplitude transfer function of a 
lowpass filter74, which is shifted in frequency to provide the transfer functions of 
modulated bandpass and highpass filters. The corresponding layout of the spec-
trum (up to half sampling rate of the original signal) is shown in Fig. 2.46b. 
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Fig. 2.45. Subband analysis and synthesis system, U frequency bands 
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Fig. 2.46. a Lowpass filter  b overlapping modulated bandpass filters 
 
 

2.8.1 Decimation and interpolation 
 
In case of discrete-time signals, scaling of the time axis has to be combined with 
downsampling (decimation) or upsampling (interpolation). The generation of a 
discrete signal sU (n), which is decimated by a factor U compared to the sampling 
of s(n), is performed by discarding samples. The first step can be described as a 
multiplication by a train of Kronecker impulses 

                                                           
74 This lowpass filter can actually be interpreted as a superposition of two complex-
conjugate bandpass filter transfer functions at centre frequencies 1/(4U). This allows to 
define bands of equal width in the range 0 | f |<1/2. If the positive and negative parts of the 
spectra were regarded separately, the corresponding impulse responses would be complex.  
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 ( ) ( ) ( ). 
U

m
s n s n n mU  (2.293) 

Subsequently, only each U th value (i.e. one of the non-zero values) is retained 
without further information loss, 
  .( ) ( ) ( )

UUs m s mU s mU  (2.294) 

The signals, s(n),  ( )
U

s n and sU (m) are shown for the case U=2 in Fig. 2.47 left. 
The Fourier spectrum of the discrete Kronecker impulse sequence is a periodic 
sequence of Dirac impulses, 
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| |m k

kn mU f
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 (2.295) 
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Fig. 2.47. Signals s(n),  ( ),
U

s n sU (m) and their spectra for the case U=2  
 
The spectrum of the signal  ( )

U
s n , which is sampled by rate 1/U, can be ex-

pressed via the spectrum S (f) of the signal s(n), that was sampled from s(t) with 
spectrum S( f ) with normalized rate f = 1, as    
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 (2.296) 

An identical spectrum ( )
U

S f  would show when the signal had originally been 
sampled by a rate 1/U (relative to f=1). If the signal was band limited to a maxi-
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mum frequency fc = 1/(2U) before subsampling, no alias occurs. Computation of 
the spectrum is also possible directly from the subsampled signal,   
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 (2.297) 

and therefore 

,
1( ) .

| |U
k

f kS f S
U U

 (2.298) 

In (2.297) and (2.298), the frequency is re-normalized by the new sampling rate 
1/U which means that the frequency axis of , ( )US f  is scaled by a factor U com-
pared to the frequency axis of  ( )

U
S f . Fig. 2.47 shows the respective spectra 

next to the corresponding signals.  
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Fig. 2.48. Signals s(m),

1/
( ,)

U
s n s1/U (n) and their spectra, example of upsampling by U=2 

In interpolation, the increase of sampling rate by a factor U is achieved by insert-
ing U 1 zero values between the available samples (Fig. 2.48): 

1/

  for
( )

0 else.
U

n ns m
s n U U  (2.299) 

The related spectrum is scaled by a factor 1/U compared to the original spectrum 
S ( f ),  
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or alternatively 
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When the sampling rate is re-normalized to f=1, U spectral copies (including the 
original baseband) appear in the range 1/2  f < 1/2. Lowpass filtering with cut-
off frequency fc=1/(2U) has to be applied to eliminate the U 1 alias copies and to 
generate the interpolated signal s1/U (n). Amplitude scaling by a factor of U is 
further necessary,  

1/1/ , a a( ) ( ) ( )  with  ( ) rect( ) ( ) .
UU

k
S f S f H f H f U Uf f k  (2.302) 

In the time domain, the impulse response of the lowpass filter (in ideal case a 
discrete-time sinc function) interpolates the missing values, leaving the originally 
available sampling positions m from (2.299) unchanged: 

( s . ) i nh n
U

 (2.303) 

The spectrum of the interpolated signal s1/U (n) is 

1/ , ( ) | | ( ) | | ( ) ( ) , U
k k

S f U S f k U U S Uf f k  (2.304) 

being identical to the spectrum of a signal that would have been originally sam-
pled with a rate which is higher by a factor U, 

  
1/ 1/ 1/( ) ( ) ( )  with  ( ) . 

U U U
n n

n n ns t s t t s n t s n s
U c U

 (2.305) 

The operations of decimation and interpolation described so far are only applica-
ble with integer factors U. By combinations it is however possible to implement 
down- and upsampling by any rational factors, e.g. sampling rate conversion by a 
factor U1/U2 can be achieved by performing interpolation by a factor of U1 fol-
lowed by decimation by a factor U2.  

Interpolation in discrete time can be interpreted similar to continuous-time in-
terpolation (2.51), it is however only performed at pre-defined positions. Before 
decimation, it is usually necessary to perform lowpass filtering to avoid alias, 
unless the signal is already appropriately band limited for the new sampling rate. 

In case of re-sampling with rational factors, it is only necessary to compute 
those samples which would be retained after the second (decimation) step. This 
can be achieved by defining a set of interpolation filters typically having a target 
cut-off frequency 
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where the filters in the set have to be designed to support all phase shifts that can 
occur between the existing sampling positions. The number of filters to be defined 
for the non-existing re-sampling phase positions is NPh=max{U1 1,U2 1}. How-
ever, due to the fact that in case of rational re-sampling factors always two of the 
phase positions are mirror symmetric relative to the original sampling grid (e.g. 
1/4 and 3/4=1 1/4), it is usually only necessary to design NPh/2 +1 different 
filters and re-use them with mirrored impulse response for the corresponding 
other position (an example with the interpolation filters of HEVC can be found in 
Tab. 7.1).  

1½-½

H (f)0 H (f)0H (f)0 H (f)1 H (f)1

1½-½

S (f)1

0-1 1
f

S (f)

0-1 1
f

1½-½ 0-1 1
f

S (f)0

1½-½

C (f)1

0-1 1
f

1½-½ 0-1 1
f

C (f)0

S (f)

0-1 1
f

a

b

c

  
Fig. 2.49. Decomposition of a signal into decimated lowpass and highpass components   
a Signal spectrum  b Spectra after lowpass/highpass filtering and multiplication by Kron-
ecker impulse train   c Spectra after sub-sampling 
 
Further, the processes of decimation and interpolation are not restricted to lowpass 
signals as discussed so far, but can be applied to any appropriately band limited 
signals (e.g. bandpass outputs from the filter bank), such that no spectral overlaps 
occur. Fig. 2.49 illustrates decimation with U=2 applied in parallel to the low and 
high frequency bands, separated under assumption of ideal filters here. Fig. 2.49a 
shows the spectrum of the original signal, Fig. 2.49b the results after filtering and 
multiplication by the discrete sampling function (2.293), denoted as 
Sk( f )=S ( f )Hk( f ), k=0 and k=1 for low and high components, respectively. By 
discarding the zero samples (Fig. 2.49c), the spectra Ck ( f ) are expanded by the 
factor U=2. Observe that after sub-sampling the highpass spectra C1( f ) appear 
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over an inverted frequency axis around frequency zero, i.e. spectral components 
which originally were close to f =1/2 now appear around f = 0, whereas compo-
nents which were originally around f =1/4 are mapped into proximity of f =1/2 
after sub-sampling. This phenomenon of frequency inversion likewise occurs in 
case of multiple-band filter banks within each odd-indexed band75 
In the following sub-sections, it will be shown that perfect reconstruction can 
indeed be achieved even if the sub-sampling of the particular bands cannot be 
performed alias-free, i.e. different from the concept of Fig. 2.49, non-ideal filters 
are used for the separation. It is however then necessary to design the filter banks 
for the analysis and synthesis stages jointly, such that alias components are elimi-
nated when the interpolated signals are superimposed; standalone alias-free inter-
polation of the different frequency band signals is no longer possible. 
 

2.8.2 Properties of subband filters 
 

s(n)s(n)

Analysis Synthesis

H (z)0 2:1

H (z)1 2:1

c (m)0

c (m)1

G (z)0

G (z)1

1:2

1:2

 
Fig. 2.50. Subband analysis system with U=2 frequency bands  
 
Frequency transfer functions of the analysis filters from a critically-sampled fil-
terbank overlap in case of non-ideal filters with finite impulse responses, such that 
alias can occurs by sub-sampling. Let Hk (z) express the z-domain transfer func-
tions of the analysis filters, Gk (z) those of synthesis (interpolation) filters. For the 
case of U = 2, which applies to the subband system in Fig. 2.50, only one lowpass 
band (k=0) and one highpass band (k=1) are generated. Hence, from (2.296), only 
one additional spectrum appears at f  1/2 or z  1 due to subsampling after the 
filter operations Hk (z)S(z). Over the complete system chain, the following spec-
trum appears after synthesis:    

 0 0 1 1 0 0 1 1

baseband components alias components

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
2 2

S z H z G z H z G z S z H z G z H z G z S z   

(2.307) 
                                                           
75 This gives ground for yet another interpretation about the correlations between pairs of 
even-indexed or odd-indexed coefficients that can often be observed in block transforms. 
The bands overlap in frequency, which is one of the causes for correlation between formal-
ly orthogonal components after sub-sampling. On the other hand, as even and odd bands 
appear by original and reversed frequency order, linear relations are lost, such that the 
correlation is cancelled out again.  
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Quadrature mirror filters (QMF). In (2.307), the upper part expresses the com-
ponents from the baseband spectrum, while the lower term contains alias compo-
nents, which shall be eliminated. This can be achieved if the lower term has a 
value of zero. In the QMF construction, the highpass analysis filter H1(f ) is de-
rived from the lowpass filter H0(f ) by time reverting, modulating by a discrete 
cosine with  f   1/2 and shifting the impulse response. Due to the symmetry in the 
lowpass transfer function around f = 0, lowpass and highpass functions are sym-
metric around the point f = 1/4 after the modulation. Modulation, time reversal 
and shift establish them as a system of orthogonal functions.  Typical QMF rela-
tionships of the different filters in the signal domain and the spectral domains of f- 
and z-transfer functions are listed in Table 2.1. The relevant mapping relationships 
for the impulse responses and the Fourier and z transfer functions are also given in 
the lower part of the table. 
 
Table 2.1. Definition of quadrature mirror filters (QMF): Relationships of orthogonal 
lowpass and highpass analysis and synthesis filters, expressed by impulse responses, z- and 
Fourier spectra 

 a(n) A(f) A(z) 

H0 h0(n)=a(n) H0(f)=A(f) H0(z)=A(z) 

H1 h1(n)=( 1) 1 n a( 1 n) H1(f)=e j2 f A(1/2 f) H1(z)=z 1 A( z- 1) 

G0 g0(n)=a( n) G0(f)=A( f ) G0(z)=A(z-1) 

G1 g1(n)=( 1)n+1 a(n+1) G1(f)=e j2 f A(f 1(2) G1(z)=z A( z) 

Inversion h( n) H( f )= H*( f ) H(z 1) 

Modulation ( 1)nh(n) H(f 1/2)=H*(1/2 f) H( z)=H(z e j ) 

 
Substituting z=exp(j2 f) in (2.307) gives 

   
0 0 1 1

0 0 1 1

1( ) ( ) ( ) ( ) ( ) ( )
2
1 ( 1/ 2) ( ) ( 1/ 2) ( ) ( 1/ 2).
2

S f H f G f H f G f S f

H f G f H f G f S f
 (2.308) 

If the common model filter A( f ) as defined in Table 2.1 is used,  

   
j

1( ) ( ) ( ) (1/ 2 ) ( 1/ 2) ( )
2
1 ( 1/ 2) ( ) ( ) ( 1/ 2) ( 1/ 2).
2

S f A f A f A f A f S f

A f A f e A f A f S f
 (2.309) 

The alias component at f=1 /2 is eliminated, and the condition 



2.8  Filterbank transforms       123 
 

 2 2( ) ( ) (1/ 2 ) (1 / 2 ) ( ) (1/ 2 ) 2A f A f A f A f A f A f  (2.310) 

gives perfect reconstruction at the output. (2.310) is generalized to the case of an 
arbitrary number of U subbands by  

   
1

2

0
( ) .

U

k
k

H f U  (2.311) 

1.00

0.00
=0 =

2
2

= /2  
Fig. 2.51. Fourier magnitude transfer functions of filters from (2.312) and a 16-tap filter76   
[  lowpass    highpass ]  

Whereas the alias components are eliminated perfectly, the condition (2.311) for 
mathematically perfect reconstruction of the signal can only be fulfilled for two 
specific cases of QMF:  

 Impulse response lengths are identical to the number of subbands U (which is 
the special case of block transforms, e.g. for U=2 the Haar filter basis); 

 Ideal pass/stop band filters, which would require infinitely extended impulse 
responses (i.e. sinc function or modulated versions thereof). 

 
Example: Haar filter basis. For the case U=M=2, the Haar filter defines the basis 
functions of almost any orthonormal block transforms, including DCT, Walsh, 
Hadamard, Haar transforms and the KLT as optimized for an AR(1) process. The 
z transfer functions according to Table 2.1 are77  

                                                           
76 The 16-tap lowpass FIR filter has the z transfer function 

7 6 5 4 3 2
0

1 2 3 4 5 6 7 8

( ) 0.007 0.02 0.002 0.046 0.026 0.099 0.118 0.472

0.472 0.118 0.099 0.026 0.046 0.002 0.02 0.007 .

H z z z z z z z z

z z z z z z z z
 

77 Another definition 1
1

2 2( )
2 2

H z z  (sign permutation) may alternatively be used. 

Haar filter  
(2.312)

16-tap filter  

0 1/4 1/2 f 

|H(f)| 
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1
0

1 1 1
1

2 2( ) ( )
2 2

2 2( ) ( ) .
2 2

H z F z z

H z z F z z
 (2.312) 

The Fourier spectrum gives with (2.311) 

  
2 2

2 2 2 2
0 1

2 2( ) ( ) 2cos 2sin 2
2 2

H f H f f f . (2.313) 

The disadvantage however is the flat decay of the amplitude transfer function, due 
to the short length of the filters, causing poor frequency separation property and 
eventually strong alias in the sub-sampled signals. Other finite-length filters con-
structed by the conditions of Table 2.1 will not fulfill (2.311) perfectly. The de-
sign of such filters is made as a compromise between frequency separation prop-
erties for alias suppression in the subbands, and a reconstruction error which 
should be kept as low as possible, such that  

  
1 !2

0
( ) min

U

k
k

U H f . (2.314) 

 
Fig. 2.51 shows the amplitude transfer functions of the filters (2.312) and a pair of 
16 tap QMF filters originally suggested in [JOHNSTON 1980], where for the latter the 
value that can be computed from (2.314) is in the range of 10 4. 
 
To define more general conditions for alias-free and lossless reconstruction, the 
constraint of QMF, where H0 and H1 are mirror-symmetric, can be released. From 
(2.307), the elimination of the alias component is also achieved if the following 
conditions are met78: 

  
0 1

1 0

( ) ( ),

( ) ( ).

m

m

G z z H z

G z z H z  (2.315) 

Substituting (2.315) into (2.307) gives 

   0 1 1 0
1( ) ( ) ( ) ( ) ( ) ( )
2

mS z H z H z H z H z S z z , (2.316) 

which gives as condition for perfect reconstruction 

   0 1( ) ( ) 2 with ( ) ( ) ( )mK z K z z K z H z H z . (2.317) 

Two types of filters, which are determined from (2.315)-(2.317), are introduced in 
                                                           
78 Both combinations ( / ) are possible. The following equations in the explanation of 
PRF use the first option ( ), whereas e.g. (2.325) uses ( ). 
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the following sub-sections. The term z m expresses an arbitrary shift which may 
occur anywhere in the analysis/synthesis chain. In image processing, filtering is 
often performed such that the current sample of the signal is weighted by the cen-
ter sample of the impulse response (in case of odd length) or by one of the two 
center samples (in case of even length). As all filters introduced here are of FIR 
type79, this has the effect that the reconstructed pictures are not spatially shifted.  
 
Perfect reconstruction filters (PRF). For this type of filter, the basis functions of 
lowpass and highpass can be orthogonal, but the highpass impulse response may 
no longer be a modulated version of the lowpass response, no mirror symmetry 
exists. Typically, the resulting frequency bands have unequal widths. Besides the 
property of guaranteed perfect reconstruction, the filters have linear phase proper-
ty, and with appropriate selection of the filter coefficients can be implemented 
using integer computations. (2.317) can be expressed by the following condition, 

   0 0

1 1

( ) ( )
det ( ) 2 with ( )

( ) ( )
m H z H z

z z z
H z H z

K K . (2.318) 

The factorization of P(z) into H0(z) and H1( z) is now reduced into a problem to 
factorize the matrix K(z), which shall have a determinant expressing a shift by m 
samples and multiplication by a factor of 2. The factorization is simplified, if the z 
polynomials are decomposed into polyphase components, where sub-responses of 
subscripts A and B contain only the even and odd samples of the impulse re-
sponse, respectively: 

   2 1 2
,A ,B( ) ( ) ( )k k kH z H z z H z . (2.319) 

Writing the polyphase components of the filter pair into the following polyphase 
matrix80, 

   0,A 0,B

1,A 1,B

( ) ( )
( )

( ) ( )
H z H z

z
H z H z

H , (2.320) 

(2.318) will be fulfilled if (2.320) has det(H (z 2 ) )=z1 m. The following construc-
tion of polyphase matrices was suggested in [VETTERLI, LEGALL 1989]; observe that 
the leftmost matrix is the polyphase matrix of the Haar filter (2.312) which is 
further extended by the z polynomials expressed in the matrix product, 

  
1

1
1

11 1 1 0
( )

11 1 0

P
p

pp

z
z

H .       (2.321) 

                                                           
79 For IIR subband filters, see e.g. [SMITH 1991]. 
80 For a deeper discussion of polyphase systems, see Sec. 2.8.3. 
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H(z) is complemented by its inverse, which represents the polyphase components 
of the synthesis filters, 

   

0, 1,

0, 1,

11

2
1

( ) ( )
( )

( ) ( )

11 1 01 1 .
11 12 10 1

A A

B B

P
p

pp p

G z G z
z

G z G z

z

G

 (2.322) 

The impulse response length of the filters Hk (z) and Gk(z) will then be 2P.  
 
Examples. For P = 1, the result from (2.321) and (2.322) is the Haar filter pair 
(2.323), using the alternative form of H1(z) as defined in the footnote on p. 123. 
For P = 2, the following set of filters is computed [LEGALL, TABATABAI 1988): 

   

1 2 3
0

2

1 2 3
1

2

1 2 3
0 1

2

1 2 3
1 0 2

1( ) (1 ),
2 1

1( ) (1 ),
2 1

1( ) ( ) ( 1 ),
2 1

1( ) ( ) (1 ).
2 1

H z z z z

H z z z z

G z H z z z z

G z H z z z z

 (2.324) 

As an example, the normalization factor is 1/4 for  = 3, which enables a division-
free integer implementation. With (2.317), K(z) K( z) = 2z 3. 
 

Biorthogonal filters. In the PRF construction described above, lowpass and 
highpass filter kernels are always of same length, and orthogonality still applies 
due to the Haar polyphase matrix in combination with the other symmetric matrix 
entries in (2.321). Even this relationship between the bases H0 and H1 can be 
waived81; (2.316) only requires the analysis highpass H1 to be a ‘–z’-modulated 
version of the synthesis lowpass G0, and the synthesis highpass G1 shall be a ‘–z’-
modulated version of the analysis lowpass H0. Hence, a bi-orthogonal relationship 
shall exist between the pairs of analysis highpass / synthesis lowpass filters and 
the analysis lowpass / synthesis highpass filters. In this case, as for the following 
example sets of filters, lowpass and highpass impulse responses can also have 

                                                           
81 Orthogonality is however an important property regarding encoding of frequency coeffi-
cients, see (5.47). 
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different lengths. Linear-phase properties are retained when the filters themselves 
have symmetric impulse responses, but are not required in general82, 

(5/3) 2 1 2 (5/3) 1 2
0 1

(5/3) 1 (5/3) 3 2 1
0 1

1 1( ) 2 6 2 ; ( ) 1 2 ,
8 2
1 1( ) 2 ; ( ) 2 6 2 ;
2 8

H z z z z z H z z z

G z z z G z z z z z
 (2.325) 

  

(9/7) 4 3 2
0

1 2 3 4

(9/7) 2 1
1

2 3 4

( ) 0.027 0.016 0.078 0.267 0.603

0.267 0.078 0.016 0.027 ,
( ) 0.091 0.057 0.591 1.115

0.591 0.057 0.091 .

H z z z z z

z z z z
H z z z z

z z z

 (2.326) 

Biorthogonal filters are often employed in the Discrete Wavelet transform (see 
Sec. 4.4.4). Certain constraints should be observed in the design, in particular that 
an iterative application of the lowpass filter on scaled (sub-sampled) signals shall 
still have the effect of a (stronger) lowpass filter. 

2.8.3 Implementation of filterbank structures 
 
If filterbanks are implemented according to the direct structures introduced so far, 
the complexity of realization for subband analysis and synthesis is considerably 
higher than with block transforms using fast transform algorithms. Methods which 
reduce the computational complexity are introduced here. 

Cascaded two-band systems. If two-band systems from Fig. 2.50 are configured 
in a cascaded tree consisting of T subsequent stages, each output signal from a 
preceding stage of the cascade is again decomposed into two more narrow sub-
bands, and a complete decomposition into U = 2T subbands can be realized as 
shown in Fig. 2.52. Intermediate results are used as input to several filters at the 
subsequent stage, and the later stages use increasingly sub-sampled signals, which 
significantly reduces operations compared to a system with parallel filters. Due to 
the frequency inversion occurring in highpass band sub-sampling (see Fig. 2.49), 
any frequency band that stems from an odd number of highpass filter / decimation 
steps will be frequency inverted. For the subsequent level, it is therefore necessary 
to exchange the sequence of filters H0 and H1 if an arrangement of subbands by 
increasing frequency order is desirable83. 
                                                           
82 Both filters are sometimes modified, multiplying H0 by 2  and dividing H1 by 2 , 
which almost approaches orthonormality at least for the case of the 9/7 filter. A shift m=1 
is used w.r.t. (2.315). By the lengths of their lowpass/highpass analysis filter kernels, these 
two filter pairs are denoted as 5/3 and 9/7, respectively. 
83 This has an analogy with the distinction between Walsh and Hadamard transforms, 
where the iterative Hadamard development ignores the frequency reversion. 
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Fig. 2.52. Realization of subband analysis filter in a cascade from 2-band systems  
 
Exploitation of filter symmetries. If symmetric (linear phase) filters are used, 
duplicate multiplications can be avoided, where samples have to be multiplied 
several times by identical factors. If the highpass basis function is a modulated 
version of the lowpass or uses the same multiplication factors (as in the cases of 
QMF and PRF types), yet another degree of freedom exists to reduce multiplica-
tions further by a factor of up to 2 by using results jointly (see also Problem 2.18). 
 
Polyphase systems. Only each U th sample will be retained by subband analysis 
after the filtering and sub-sampling steps. Hence, the convolution does not need to 
be performed at positions which are discarded anyway. This leads to a reduction 
of operations by a factor of U. The structure of a polyphase system is shown in 
Fig. 2.53 using an example of U = 2. Sub-sampling is performed prior to filtering, 
whereby the signal is decomposed into U polyphase components, which establish 
a set of sample sequences each sub-sampled at a different phase position. Further, 
it is necessary to decompose the filter impulse responses into polyphase compo-
nents, such that instead of a length-P filter, U partial filters of lengths either P/U  
or P/U+1  are obtained. If the subband filter impulse response hk is decomposed 
into U polyphase components hk,A(m), hk,B(m), ... , U partial filters of transfer 
functions Hk,A(z), Hk,B(z), ... are given (see Fig. 2.53a for the case U = 2). Similar-
ly, it is not necessary to apply multiplications on zero values inserted for interpo-
lation filtering at the synthesis stage. This can be realized by performing the inter-
polation filtering step within the polyphase components, and compose the differ-
ent phase positions into the reconstructed signal only in a last step. In fact, the 
expansion of the signal is performed after filtering, but no zero values are actually 
inserted, as the polyphase components from all partial filters fill the corresponding 
gaps. The same reduction of the number of multiply/add operations by a factor of 
U is also achieved in synthesis (Fig. 2.53b). 
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Fig. 2.53. Realization of subband analysis and synthesis by polyphase systems, U=2  
a Separation of impulse response into partial terms hA(n) und hB(n)   
b Structure of the overall polyphase system 
 
For a system with U = 2, the polyphase components of a signal s(n) are sequences 
of even samples s(2m) and odd samples s(2m+1). In the z transform domain, the 
following relationships apply:  

    

1/2 1/2
A A

1/2 1/2 1/2 1/2
B B

2 1 2
A B

1(2 ) ( ) ( ) ,
2

1(2 1) ( ) ( ) ,
2

( ) ( ) ( ) ( ) ; .
2

z

z

z

s m s m S z S z S z

s m s m S z z S z z S z

ns n S z S z z S z m

      (2.327) 

Here, the subscripts A and B relate to the even and odd polyphase components, 
respectively. Formally, the components of the z transform can be combined in the 
following vector notation, 

   A
1

B

( )
( )

( )
S z

z
z S z

S . (2.328) 

The same procedure can be applied to the z polynomials of the filter impulse re-
sponses. As the convolution in the signal domain corresponds to a multiplication 
in the z domain, the filtering of the even/odd signal spectra by the respective filter 
transfer functions can be expressed as 
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   0,A 0,B0 A
1

1,A 1,B1 B

( ) ( )( )

( ) ( )( ) ( )
( ) ( )( ) ( )

z zz

H z H zC z S z
H z H zC z z S z

C SH

. (2.329) 

For the synthesis part, a similar principle applies. Writing the reconstructed signal 
by 

    2 1 2A
A B1

B

( )
( ) ; ( ) 2 ( ) ( )

( )
S z

z S z S z z S z
z S z

S , (2.330) 

the synthesis filter step can be expressed as 

   0,A 1,A 0A
1

0,B 1,B 1B

( )( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

zzz

G z G z C zS z
G z G z C zz S z

CGS

. (2.331) 

Combining (2.329) and (2.331), the condition for perfect reconstruction is 

   0,A 1,A 0,A 0,B

0,B 1,B 1,A 1,B

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
G z G z H z H z

z z
G z G z H z H z

G H I , (2.332) 

from which the following relationships are determined: 

   

0,A 0,A 1,A 1,A

0,A 0,B 1,A 1,B

0,B 0,A 1,B 1,A

0, 0,B 1,B 1,B

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 1.B

G z H z G z H z
G z H z G z H z
G z H z G z H z
G z H z G z H z

 (2.333) 

These are fulfilled by the following conditions,  

   
0,A 1,B 0,B 1,A

1,A 0,B 1,B 0,A

( ) ( ) ; ( ) ( ) ;
( ) ( ) ; ( ) ( ),

H z G z H z G z
H z G z H z G z  (2.334) 

which by substitution into (2.333) gives the additional condition 

   0,A 1,B 0,B 1,A( ) ( ) ( ) ( ) det ( ) 1H z H z H z H z zH . (2.335) 

Using (2.328) to express the polyphase filters in the (not downsampled) z domain, 
(2.333) is equivalent to (2.315), while (2.335) is equivalent to (2.317). A special 
case of the polyphase transform is observed for H(z) = G(z) = I, which is the so-
called lazy transform where the ‘subband’ signals c0 (m) and c1(m) would simply 
be the polyphase components generated without any lowpass or highpass filtering. 
 
Lifting implementation. Subband filters described by polyphase components can 
be implemented in a lifting structure [DAUBECHIES, SWELDENS 1998] as shown in Fig. 
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2.54. The first step of the lifting filter is a decomposition of the signal into its 
even- and odd-indexed polyphase components by the lazy transform. Then, the 
two basic operations are prediction steps P(z) and update steps U(z). The predic-
tion and update filters have simple impulse responses typically of length 2 or 3; 
the number of steps necessary and the values of coefficients in each step are de-
termined by a factorization of biorthogonal filter pairs. Finally, normalization by 
factors aLow and aHigh is applied.  

Lazy Transform
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+
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Fig. 2.54. Lifting structure of a subband filter (top: analysis; bottom: synthesis). 
 
The construction of the prediction and update filter kernels can best be started 
from the polyphase representation. Assume that decomposition of a signal has 
been performed by a polyphase filter matrix H0(z) (which could be the identity 
matrix I for the lazy transform in the beginning). If a prediction step is performed 
using the filter transfer function P(z), the result is identical to a filter expressed by 
the polyphase matrix 

   

pr 0

0,A 0,B

1,A 0,A 1,B 0,B

( )

1 0
( ) ( )

( ) 1

( ) ( )
.

( ) ( ) ( ) ( ) ( ) ( )

z

z z
P z

H z H z
H z P z H z H z P z H z

P

H H

 (2.336) 

The complementary synthesis filter guarantees perfect reconstruction, such that 
Gpr(z)Hpr(z) = I when G0(z)H0(z) = I, 

   0,A 1,A 1,Apr 0

0,B 1,B 1,B

( ) ( ) ( ) ( )1 0
( ) ( )

( ) ( ) ( ) ( )( ) 1
G z P z G z G z

z z
G z P z G z G zP z

G G . (2.337) 

Similarly, a single update step can be formulated as 
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up 0

0,A 1,A 0,B 1,B

1,A 1,B

( )

1 ( )
( ) ( )

0 1

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( )

z

U z
z z

H z U z H z H z U z H z
H z H z

U

H H

       (2.338) 

where the complementary synthesis filter is 

   0,A 1,A 0,Aup 0

0,B 1,B 0,B

( ) ( ) ( ) ( )1 ( )
( ) ( )

( ) ( ) ( ) ( )0 1
G z G z U z G zU z

z z
G z G z U z G z

G G . (2.339) 

Using (2.336)-(2.339) iteratively starting by a lazy transform, the equivalent poly-
phase matrix after a number of subsequent prediction and update steps is the con-
catenated product of all matrices, e.g. for a number of L subsequent prediction and 
update steps 

  Low

High 1

0 1 01 ( )
( )

0 ( ) 10 1

L
l

l l

a U z
z

a P z
H . (2.340) 

Vice versa, it is possible to factorize a given polyphase matrix containing higher-
order z polynomials into a series of prediction/update matrices with only simple, 
low-order polynomials. Separation of single prediction and update steps from a 
given (complete) polyphase matrix H(z) will result in the following expression 
according to (2.336) and (2.338): 

   pr -up1 0 1 ( )
( ) ( ) ; ( ) ( )

( ) 1 0 1
U z

z z z z
P z

H H H H . (2.341) 

The factorization is always possible, as the determinant of any of the single pre-
diction and update matrices is one, and hence inversion is possible. By polynomial 
division, the result can be computed step by step, and the factorization typically 
terminates when only a diagonal matrix with normalization factors aLow and aHigh 
is left. 
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Fig. 2.55. Lifting flows of  a Haar basis (2.312)  b biorthogonal 5/3 filter (2.325)  
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Examples. The biorthogonal 5/3 filter from (2.325) can be expressed by the fol-
lowing polyphase matrix, which is further factorized into one normalization, one 
prediction and one update matrix 

  
1 3 1 1 11 1 1
8 4 8 4 4 4 4

1 1 11 1 1
2 22 2

( )( )

1 01 0 1
( )

10 11 0 1

zz

z z z z
z

zz

A PU

H . (2.342) 

Here, aHigh=aLow=1, P(z)=½(z 1+1)  and U(z)=¼(1+z ) . Another example is 
for the Haar filter84, where aLow= 2 , aHigh= 2 / 2 , P(z)= 1 and U(z)=1/2:  

   
1
2

( )( )

1 1 2 0 1 012( )
1 1 1 12 0 10 2 / 2

zz

z

PUA

H . (2.343) 

The lifting structure can also be interpreted by a signal flow diagram, which is 
shown in Fig. 2.55 for the examples of a Haar filter (2.343) (without considering 
the normalization factors) and the biorthogonal 5/3 filter (2.342).  

The lifting structure further allows definition of nonlinear subband filters. A 
simple example is usage of rank-order filters like median or weighted median 
filters in prediction and update steps [CLAYPOOLE ET AL. 1997] 
 

2.8.4 Wavelet transform 

 
The continuous-time wavelet transform (WT) is defined by the convolution equa-
tion  

   ( , ) ( ) ( )ds ft f s tW , (2.344) 

being based on bandpass filter kernels  

   01( ) withf
ftt
f

. (2.345) 

The function ( ) is the mother wavelet, which is a bandpass filter of center fre-

                                                           
84 In the case of the Haar filter, the usage of the lifting approach does not to give an ad-
vantage in terms of complexity for signal decomposition, which is due to the fact that the 
polyphase polynomials already are of order zero before the factorization. This method is 
however relevant in motion-compensated temporal-axis wavelet filtering, cf. Sec. 7.3.2, 
and can also be used to avoid bit-depth extension of the transformed representation. 
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quency f0, which is time-scaled by the factor  when intended to operate at a dif-
ferent frequency [RIOUL, VETTERLI 1991]. 

The continuous WT in (2.344) is not useful for practical signal analysis. It is high-
ly overcomplete, being defined for an infinite number of instances both of time 
and frequency positions. In the discrete wavelet transform (DWT), the analysis 
shall only be performed for discrete (sampled) signal positions, and only for a 
discrete set of frequencies. The commonly used method is defining a set of basis 
functions by a dyadic frequency sampling scheme, where the upper band limits fk 
and the distances of sampling positions tk used for the respective frequency bands 
are defined over power-of-two relationships, such that the frequency partitioning 
has octave-band style. Assume that U frequency bands are defined85 by 

   12 , , ( )    with  0 .U k
k k k k

k

f t n nT k U
T

 (2.346) 

The distances between discrete center frequencies of the analysis are no longer 
constant, and the effective bandwidth86 fk = [ fk  fk 1 ]  of the frequency bands is 
increased by a factor of 2 when incrementing k. Simultaneously, the distance 
between analysis positions tk = [ tk (n)  tk (n 1) ] decreases by a factor of two. 
This means that for higher frequency bands (higher k), the temporal resolution 
becomes more precise, while less precision in the resolution of the frequency axis 
is achieved. This is illustrated in Fig. 2.56 for both cases of an idealized DWT and 
a discrete short time Fourier transform (STFT), which is typically implemented 
via windowed DFT or DCT analysis. Using the definitions in (2.346), the DWT 
coefficient of discrete frequency k and position n is defined as 

    1( ) ( )k
kk

nTc n s d . (2.347) 

Remark that the basis functions defined here to compute the DWT are time-
continuous and have the purpose to perform filtering for band limitation, whereas 
the convolution is only defined at discrete positions, such that sampling is implic-
itly included. As in (2.346), T is the sampling distance corresponding to the reso-

                                                           
85 In principle, the number U could become arbitrarily high, however for discrete signals 
of finite length N, at least one sampling position tu(m) should be retained in the last step. 
The condition t1(1) t1(0) NT gives e.g. Umax =log2N for cases where N is a power of 2, or 
log2N +1 otherwise. For practical applications, a much lower (pre-defined) number of 

bands is used for discrete wavelet decomposition. To be consistent with previous nota-
tion, we use the variable k as an index that increases with the frequency (starting 
with k=0 for the lowest frequency, whereas k=U would be the original signal 
(without wavelet decomposition).  
86 The term ‘effective bandwidth’ is not precisely defined, except for the case of ideal 
filters. One possible way of interpretation is the width of a rectangular function with identi-
cal maximum amplitude and total integration area as the filter’s Fourier transfer function 
has.   
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lution accuracy when all frequency bands are used (i.e. original sampling before 
DWT decomposition is applied).  
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Fig. 2.56. Resolution accuracy in signal and frequency domains  a for STFT  b for DWT 
 
The DWT allows reconstructing the signal by different resolution levels (scales). 
In a more abstract sense, the frequency domain representation up to half sampling 
rate can be constructed from a set of scale spaces and a set of wavelet spaces, 
each of which is related to one of the dyadic resolution levels (see Fig. 2.57). 
When the scale space Vk represents a certain bandwidth resolution of a (sampled) 
signal sk (n), the next-lower scale space Vk 1 represents a signal sk 1(n) with half 
number of samples and half bandwidth. The scale space VU represents the signal 
s(n)=sU (n) with maximum possible resolution, relating to a sampling distance 
T=1, which then corresponds to the frequency cut-off | f |=1/2. To achieve the 
perfect approximation, the wavelet space Wk must be an orthogonal complement 
which contains the residual between two adjacent scale spaces: 

   1 andk k k k kV V W V W  (2.348) 

1/41/81/16

... WU-1WU-2WU-3

VU

VU-1

VU-2

VU-3

f1/2  
Fig. 2.57. Layout of dyadic scale and wavelet spaces by partitioning of the frequency axis  
 
If the conditions in (2.348) hold true, all lower-frequency wavelet spaces must be 
orthogonal as well. All details which are lost when reducing the resolution from 
Vk to Vk 1 are found in Wk 1. Iteratively, an arbitrary scale space can be expressed 
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as a direct sum of all lower-indexed wavelet spaces, where the summation is ter-
minated by the lowest-resolution scale space87: 

   1 2 1 1k k kV W W W V . (2.349) 

The analysis of the signal, i.e. the decomposition into components which relate to 
the respective scale and wavelet spaces, is performed by scaling functions ( ) 
and wavelet functions ( ). The scaling function is in principle a lowpass filter 
which is used to generate a lower-resolution representation, e.g. to construct Vk 1 
out of Vk . 

As Vk 1 Vk, any function in Vk 1 can be expressed as a linear combination of 
basis functions k ( ) related to the scale space Vk . Therefore, also the scaling 
function in Vk 1 can be described by the refinement equation expressing a super-
position of scaling functions in Vk : 

   1 0( ) ( ) ( )k k k
m

h m m T . (2.350) 

As for the wavelet space Wk 1  Vk is also valid, an associated wavelet function 
can be generated similarly by the wavelet equation  

   1 1( ) ( ) ( )k k k
m

h m m T . (2.351) 

Likewise, the operations (2.350)/(2.351) can be reversed, such that the next-
higher scaling function (representing a signal of higher resolution) shall be recon-
structed from a current level’s scaling and wavelet functions as 

 
0,A 1 1 1,A 1 1

0,B 1 1 1,B 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),

k k k k k
m m

k k k k k k
m m

g m m T g m m T

T g m m T g m m T
(2.352) 

where A and B denote the even and odd polyphase components of the discrete 
filter functions. 

The iterative development of scaling and wavelet functions shall now be illus-
trated for the simplest possible orthogonal wavelet basis, which is the Haar basis. 
The refinement and wavelet equations to perform the mapping from Vk+1 into Vk 
and Wk, using the discrete filter coefficients (2.312), give 

                                                           
87 The termination by a scale space is necessary if the analyzed signal is finite, or if the 
delay occurring by the analysis shall be finite, as is typically always the case in multimedia 
signal processing and analysis. Theoretically, a scale space could also be established from 
an infinite series of sub-ordinate wavelet spaces. To make the notation consistent with the 
previous frequency representations that are introduced, the signal in the lowest-resolution 
scale space V1 is either denoted as s1(n) or c0(n). 
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0 0

1 1

1

(0) (1)

1

(0) (1)

2 2( ) ( ) ( )
2 2

2 2( ) ( ) ( )
2 2

k k k k

h h

k k k k

h h

T

T

. (2.353) 

The scaling function U ( ) in VU is a rectangle (‘hold element’ in sampling) of 
length T and amplitude 1. Fig. 2.58 shows the weighted superposition of two 
copies of this scaling function, resulting in the scaling and wavelet functions in 
VU 1 and WU 1, respectively. If this is performed iteratively, both functions are 
scaled to double width and are amplitude-scaled by another factor of 2  with 
each subsequent iteration step. For this case, the convergence into the final shape 
of scaling and wavelet functions is already achieved after one iteration (which is 
due to the fact that the shape of the scaling function will always remain the rec-
tangle, regardless how wide it may become). 
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Fig. 2.58. Development of next-higher level scaling and wavelet functions for the Haar 
basis 
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Fig. 2.59. Reconstruction of next-lower level scaling functions for the Haar basis 
 
Now, reconstruction of the different copies of the scaling function in Vk shall be 
performed from the scaling and wavelet functions in Vk 1 and Wk 1. The related 
equations are   
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0 1 0 1

1 1 1 1

(0) (0) (1) (1)

2 2 2 2( ) ( ) ( ) ; ( ) ( ) ( )
2 2 2 2k k k k k k k

g g g g

T . (2.354) 

This process of reconstruction is shown in Fig. 2.59. 

 (2.350) and (2.351) are the key equations of the DWT. They can be used to de-
termine discrete lowpass and highpass analysis filter coefficients h0(k) and h1(k) of 
a filter bank system. Assume that continuous-time scaling and wavelet functions 
shall be orthogonal. If such functions can be constructed iteratively using discrete 
filter coefficients h0(k) and h1(k), any signal decomposition performed by these 
coefficients in a filterbank system would be orthogonal as well in case of large 
number of iterations, even if the impulse responses h0(k) and h1(k) may not be 
orthogonal. Furthermore, the scaling functions, even though they play conceptual-
ly a similar role as a band-limiting lowpass filter in conventional sampling, do not 
necessarily need to provide perfect band separation. When only the full set of 
spaces is relevant in a wavelet representation, orthogonality needs to be observed 
just between the underlying continuous scaling and wavelet functions, which is a 
much weaker condition than non-overlapping frequency bands. The orthogonality 
of the decomposition is guaranteed if the following condition holds true88: 

1 1( ) ( ) 0  where  ( ) lim ( )  and ( ) lim ( )
U U

d . (2.355) 

This leads to conditions which can be used to design biorthogonal filter pairs. The 
continuous scaling and wavelet functions can be used to reconstruct (interpolate) 
continuous signals from the samples in the DWT domain. The discrete coeffi-
cients according to (2.350) and (2.351) can also directly be used to perform all 
underlying operations directly in the sampled signal domain (i.e. compute DWT 
from a sampled signal). Assume that a discrete approximation of the signal is 
available in some resolution scale k as sk (n). The scaling coefficients of the next-
coarser approximation (representing a signal of half resolution or half number of 
samples) are then computed as  

   1 0( ) ( ) (2 )k k
m

s n h m s n m , (2.356) 

and the complementary wavelet coefficients are 

                                                           
88 The limit transitions in the following equation assume that the iterative construction of 
the scaling and wavelet functions could be continued ad infinitum (not stopping at k=0, 
which would be the case with a finite number of U bands, but rather continue with negative 
values). In contrast to the previous definitions in (2.350)-(2.354), time-axis scaling by a 
factor of 2 may be performed during each iteration of the continuous scaling and wavelet 
functions (corresponding to the subsampling in the discrete filterbank) to prevent infinite 
extension. This also implies, that even starting from an initial rectangular scaling function, 
final functions ( ) and ( ) are becoming smooth with appropriate choice of the coeffi-
cients h and g, provided that the initial function has lowpass characteristics. 
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   1 1( ) ( ) (2 )k k
m

c n h m s n m . (2.357) 

This decomposition can be computed iteratively, starting by sU (n)  s(n). Actual-
ly, each level of this decomposition is identical to the decomposition of a signal 
into low- and high-frequency subbands as introduced in Sec. 4.4.2. However, in 
contrast to the cascaded system from Fig. 2.52, only the low frequency output (the 
next lower scale signal sk 1) is subject to further decomposition. Using the corre-
sponding synthesis functions, it is possible to compute the reconstruction of the 
signal by inverting the sequence of recursion defining the inverse DWT (IDWT):  

   0 1 1 1( ) ( 2 ) ( ) ( 2 ) ( )k k k
m m

s n g n m s m g n m c m . (2.358) 

Note that (2.356)-(2.358) implicitly include polyphase operations in the expres-
sion of the discrete convolutions. As shown earlier, perfect reconstruction is pos-
sible if the synthesis coefficients g0 (k) and g1(k) are related to h0 (k) and h1(k) by 
bi-orthogonality (4.170). However, if h0 (k) and h1(k) are chosen such that the 
continuous scaling and wavelet functions are orthogonal, it can be concluded that 
the sequences of discrete scaling and wavelet coefficients will also be orthogonal, 
even if the filter basis may only be biorthogonal (the latter being sufficient to 
achieve perfect reconstruction). 

Fig. 2.60 shows the block diagram of a DWT analysis/synthesis filter bank, 
and a schematic layout of the resulting frequency decomposition, which can be 
described as an octave-band structure. For consistency with the notation used in 
case of other transforms, the signal relating to the scale space V1 is denoted as c0 
(instead s1), while the designations of the wavelet coefficients relating to wavelet 
spaces Wk, k= 1, … ,U 1, are retained as ck as above. 

If the Haar basis (2.312) is used, the resulting decomposition is exactly the 
same as for the Haar transform, cf. (2.249). However, longer filter impulse re-
sponses can provide a better frequency separation and also better alias suppression 
in the scaled signal versions. 
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Fig. 2.60.  a Octave-band filter bank system for DWT and IDWT  b Octave-band frequen-
cy layout (3 levels of analysis)  
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For many classes of signals, in particular for natural image signals, the higher 
accuracy of frequency resolution for the lower-frequency bands provides a good 
fit with signal models. According to the AR(1) model with 1, significantly 
more low-frequency than high-frequency components can be expected. For the 
high-frequency components, accurate frequency analysis is less important than an 
accurate localization of detail, in particular if a signal potentially exhibits discon-
tinuities, as it is the case in edge areas (which are not adequately captured by the 
AR model). The fact that discontinuities in the signal appear at various resolution 
levels, and therefore also across wavelet bands at the same location, is denoted as 
scaling property. 
 

2.8.5 Two- and multi-dimensional filter banks 
 
The simplest realization of a two- or multi-dimensional filter bank is the separa-
ble method, where the analysis and synthesis filters are a product of horizontal 
and vertical filters. For the 2D case, the basis functions for the frequency band of 
index k1 in horizontal and k2 in vertical direction can be described as  
   

1 2 1 2 1 2 1 2, 1 2 1 2 , 1 2 1 2( , ) ( ) ( )  and  ( , ) ( ) ( ).k k k k k k k kh n n h n h n g n n g n g n  (2.359) 
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Fig 2.61. 2D system for decomposition into four frequency bands  

With U1U2 bands, the total sub-sampling factor is |U| = U1U2 in case of critical 
sampling. Separable 2D systems with 2-band decomposition structures per dimen-
sion can be realized sequentially, such that filtering and sub-sampling is at first 
performed over one dimension. Only a reduced number of samples then needs to 
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be fed into the second directional decomposition stage. A block diagram with the 
case U1=2, U2=2, |U |=4, is shown in Fig. 2.61.  
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Fig. 2.62. Layout of 2D frequency bands.  a 4 band elementary decomposition  b 16 bands 
of equal bandwidth   c Separable octave-band, 16 bands   d 2D DWT, 10 bands  (S = scal-
ing band)  
 
 

a 

  

b 

  
 

c 

 
 

Fig. 2.63. Decomposition of an image into subband pictures  (amplified by factor 4, except 
c00)  a relating to Fig. 2.62a  b relating to Fig. 2.62b  c relating to Fig. 2.62d  
 
Fig. 2.62a depicts the related layout of subbands in the 2D frequency domain. 
This basic 4-band decomposition structure of Fig. 2.61 can then again be applied 
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iteratively to respective (sub-sampled) outputs of the previous stage. For a case 
where all 4 subbands are equally decomposed in the next level, Fig. 2.62b shows a 
layout example with 16 bands. Fig. 2.62c is an example where a wavelet-style 
octave-band decomposition is applied fully separable over both dimensions, 
which is equivalent with the Haar transform scheme in Fig. 2.41c. Fig 2.62d 
shows the layout which is commonly denoted as 2D DWT, where only the low-
pass output c00 of the 4-band system is subject to further 4-band decomposition 
etc. In Fig. 2.62c/d, ‘S’ denotes the scaling band of lowest resolution, which rep-
resents a sub-sampled version of the picture. 

Fig. 2.63 shows results of subband and wavelet decomposition applied to an 
image signal, where the different sub-sampled subband pictures are shown in the 
positions of their corresponding frequency partitions in Fig. 2.62. 

It is also possible to realize non-separable 2D filter banks. Fig. 2.64 shows an 
example of a 2D decimation by a factor of 2, where a subband system decomposes 
a rectangular-grid (separable) sampled signal into two components of quincunx 
sampling. To describe such systems, the principles introduced in the context of 
multi-dimensional sampling can be used. If 1 2( , )ks n n is the original signal and 
sk 1(n1,n2)  the sub-sampled signal, the relationship between the indices can be 
expressed by the sampling matrix U such that89 

   1 11 12 1 1

2 21 22 2

; ;
n u u n
n u u n

n Un n U n . (2.360) 

The factor of sub-sampling, and hence the number of spectral copies (original plus 
alias spectra) is equal to the absolute determinant 

   11 22 21 12u u u uU . (2.361) 

The related frequency sampling matrix F = [U 1]T points to the positions of peri-
odic spectral copies, where alias may occur. In analogy with (2.297), the z trans-
form of the decimated signal is 

    

1 2
11 1 12 2 11 12 21 1 22 2 21 22

1 2

1 1
( ) ( )

1 1 2 1 2 1 2
0 0

j2

1,2

1( , ) W , W

with W e   and  max{ }.

U U
f k f k f f f k f k f f

k
k k

i ijj

S z z S z z z z

U u

U   (2.362) 

The reverse operation is an interpolation by factor U*, which is a generalization of 
(2.299) using the parameters in U 

   11 21 12 22
1 2 1 1 2 1 2( , ) ( , )u u u u

k kS z z S z z z z . (2.363) 
 

                                                           
89 The following considerations are strictly valid for integer subsampling factors uij, as 
otherwise an additional sub-sample phase shift would be necessary which would require an 
additional interpolation step. 
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Example. The sampling matrix Tq for the case of quincunx decimation and the 
related frequency sampling matrix Fq in analogy with (2.63) and Fig. 2.64 are 
expressed as 

   
1T 21

q q q 1
2

02 1
;

10 1
U F U . (2.364) 

The z transform of the decimated signal is 

   
1 1 1 11

j22 2 2 2
1 1 2 1 1 2

0

1( , ) W , W with W e .
2

k k

k k
k

S z z S z z z  (2.365) 

To realize a non-separable decimation, it is typically necessary to use non-
separable filters. The quincunx decimation can be performed using the following 
biorthogonal pair of 2D filter matrices [KOVACEVIC, VETTERLI 1992], where according 
to the conditions of biorthogonal filters, the highpass H1 is operated with a one-
sample delay either horizontally or vertically relative to the lowpass H0. 

    0 1

0 0 1 0 0
0 1 00 2 4 2 0

1 1; 1 4 11 4 28 4 1
32 4

0 1 00 2 4 2 0
0 0 1 0 0

H H . (2.366) 
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Fig. 2.64. Non-separable 2D system with 2:1 quincunx decimation   
a Sub-sampling schema in the spatial domain  b Layout of frequency bands 
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As in (2.325), the kernels of lowpass and highpass filters are of different size. 
Applying the relationships G0(z)=H1( z) and G1(z)= H0( z) from (2.316), the 
synthesis filters are determined by multiplication (modulation) with alternating 
signs. For symmetric 2D filters, this is realized such that impulse response values 
with an odd sum of indices are multiplied by 1, i.e.  

  
1 2

1 2

0 1 2 1 1 2
1

1 1 2 0 1 2

( , ) ( 1) ( , ),

( , ) ( 1) ( , ).

n n

n n

g n n h n n

g n n h n n  (2.367) 

The resulting synthesis filter matrices are 

    0 1

0 0 1 0 0
0 1 0 0 2 4 2 0

1 11 4 1 ; 1 4 28 4 1
4 32

0 1 0 0 2 4 2 0
0 0 1 0 0

G G . (2.368) 

2.8.6 Pyramid decomposition 
 
The DWT is a multi-resolution scheme for signal representation. This means that 
by using more higher-frequency wavelet bands, the resolution of the reconstructed 
signal is increased; in a critically sampled (typically dyadic) wavelet representa-
tion, the total number of coefficient samples equals the number of samples in the 
full-resolution signal, regardless of the depth of the wavelet tree. An alternative 
type of multi-resolution methods are the pyramid schemes. U signal representa-
tions with different sampling resolutions are generated by filtering and downsam-
pling, in addition to the original (full) resolution. In principle, arbitrary downsam-
pling factors are possible, even though out of complexity reasons and to avoid 
excessive over-completeness, dyadic factors are often chosen when pyramid 
schemes are used in compression, unless different up/downsampling is needed 
e.g. to support multiple spatial resolutions.  

Whereas the scheme of Gaussian pyramid generates the different resolution 
representations as independent entities (in case of dyadic resolutions this would 
correspond to the scale spaces in Fig. 2.57), the Laplacian pyramid establishes a 
differential representation, which can be interpreted as a set of bandpass channels 
(this would roughly correspond to the wavelet spaces in Fig. 2.57). However, in 
contrast to the DWT approach, no downsampling is applied to the bandpass com-
ponents, which means that the representation (in terms of number of samples) is 
over-complete, as the spectrum below the respective pass band should be approx-
imately void. On the other hand, alias and frequency reversion are avoided by 
omitting the downsampling, which can be beneficial in terms of coding, e.g. when 
shift invariance is required as in motion compensated prediction. 
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Fig. 2.65. a Generation of the Gaussian pyramid representation (typically identical filters 
and identical subsampling schemes described by U are used throughout the levels). b Illus-
tration of images sizes (dyadic scheme) as levels of a pyramid  
 
Gaussian pyramid. All resolution levels can be used independently, i.e. no lower 
resolution level is needed if a finer resolution level shall be used.  The generation 
of the Gaussian pyramid representation is performed by elementary building 
blocks consisting of lowpass filtering followed by decimation described by a 
sampling matrix U (see Fig. 2.65a; as an example, for a 2D signal with horizon-
tal/vertical subsampling factors U1=U2=2, the total subsampling ratio is 4:1 with 
|U|=4). This is performed in an iterative cascade through all levels of the pyramid, 
starting from the base and terminating at the top (see Fig. 2.65b). By cascading U 
elementary building blocks, a total of U+1 resolution levels (including the original 
resolution s(n)=sU (n)) are generated. The signal sk 1(U 1n) is obtained by low-
pass filtering and subsampling, sk 1(U 1n)=sk (n) h(n)90. The concept is similar to 
the processing of scale-space components in the wavelet transform (Fig. 2.57), but 
exhibits redundancy due to the fact that the coarser resolutions establish subspaces 

                                                           
90 This convolution is to be performed with reference to n coordinates, but only at posi-
tions where U 1n consists of integer numbers (i.e. the positions still existing after subsam-
pling). In case of non-dyadic subsampling, U itself could contain non-integer numbers. In 
that case, it would be necessary to include a position-dependent sub-sample phase shift 
(interpolation) in the lowpass filter impulse response. 
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of the finer resolutions instead of being orthogonal complements. The resulting 
representation is therefore significantly redundant and over-complete, and not as 
such very suitable for the purpose of compression.  

The method is denoted as Gaussian pyramid, because filters approximating a 
Gaussian-shaped impulse response are often used as lowpass filters prior to deci-
mation in this context. The convolution of two Gaussian functions results in a 
Gaussian of extended length. Hence, the effect of the cascaded system at a later 
stage is approximately equivalent to the usage of one Gaussian filter with a longer 
width of the impulse response (lowpass with lower cut-off frequency)91. The 
implementation complexity in the cascaded pyramid system is however much 
lower due to the intermediate sub-sampling operations.  
 
An example for simple approximation of a non-separable 2D Gaussian with a 
short kernel is given by the filter matrix92 

  
0 1 0

1 1 4 1
8

0 1 0
GH .                (2.369) 

Laplacian pyramid. Each resolution level (except for the smallest scale image) is 
represented by a difference signal. The principle as applied for generation of the 
difference signals is shown in Fig. 2.66a. Firstly, the lower-resolution signal 
sk 1(n) is generated as in the case of the Gaussian pyramid. Then, it is upsampled 
and filtered by a lowpass interpolation filter to generate a prediction and compute 
the difference (prediction error) signal93, 

  1
1ˆ ˆ( ) ( ) ( ), ( ) ( ) ( )k k k k ks s g e s sn U n n n n n n . (2.370) 

For reconstruction, the difference is added to the prediction from the next-coarser 
signal (Fig. 2.66b). If U elementary building blocks are arranged in a cascaded 
structure, a total of U+1 resolution levels is represented by U difference signals 
e1(n)…eU (n) and one strongly-scaled signal s0(n). The reconstructed signals 
                                                           
91 This statement ignores the alias which can occur due to the subsampling, depending on 
the spectrum of the signal. On the other hand, the Gaussian function is non-negative, which 
gives a penalty in terms of the sharpness of the frequency cut-off, but prevents from ringing 
at signal discontinuities (e.g. edges in images). 
92 A typical primitive 1D approximation of a Gaussian filter function is the binomial filter 
with the coefficient vector h = [ ¼  ½  ¼ ]T. (2.369) represents a superposition of a horizon-
tal and a vertical binomial filter. Iterated convolution gives longer binomial functions, 
which by tendency give an approximation of a sampled Gaussian according to the central 
limit theorem. For 2D, typically separable filters are used. 
93 This convolution is performed at all positions where n is integer, where U 1n n ex-
presses that in the upsampled sk 1 zero values are inserted where U 1n is not an integer 
number. In case of non-dyadic subsampling, U may itself contain non-integer numbers and 
it may be necessary to additionally include a position-dependent sub-sample phase shift in 
the filter impulse response. 
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s1(n)…sU (n) at the different pyramid levels are equivalent to the output of the 
Gaussian pyramid. Reconstruction always must start at the lowest resolution level 
and requires U sequential operations. 
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Fig. 2.66. Laplacian pyramid representation:  a analysis  b synthesis  
 
Assuming (almost) alias-free subsampling and high-quality interpolation, the 
difference between the signal sk (n) and the output of the filter (2.369) would be 
close to the prediction ˆ ( )ks n  from (2.370), which could then be generated directly 
by the filter 

   L G

0 0 0 0 1 0
10 1 0 1 4 1
8

0 0 0 0 1 0
H H . (2.371) 

This filter kernel provides an approximation of the local second derivative of the 
signal and is denoted as Laplacian filter operator. From this, the differential pyr-
amid is also called Laplacian pyramid [BURT, ADELSON 1983]. In principle, this pyr-
amid represents second derivatives of the signal within different scale spaces, 
which could also be interpreted as bandpass-filtered (or highpass-filtered for 
eU (n)) versions of s(n)94.  
                                                           
94 When subsampling is omitted and filtering is done by concatenating Gaussian impulses 
responses, the signals ek (n) are also entitled as differences of Gaussians (DoG), which is 
approximately equal to filtering by 2nd derivatives of Gaussians (Laplacian of Gaussian, 
LoG). Such representations are largely over-complete in terms of number of samples and 
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Unlike the wavelet transform, the differential signals ek (n) of the Laplacian pyra-
mid are not orthogonal complements. Firstly, ek (n) and sk (n) must be correlated, 
as the prediction error contains all detail information that is not predictable from 
sk 1(n). Second, due to the usage of non-ideal filters the prediction errors ek (n) 
and ek 1(n) over the different levels may be correlated as well; furthermore, struc-
tures with wide spectra such as edges and pulses would also appear in the predic-
tion errors over a variety of k values. In general however, this redundancy will be 
significantly lower than in the case of the Gaussian pyramid. Furthermore, an 
over-completeness is inherent to the pyramid schemes in terms of number of sam-
ples. For example, if U pyramid levels are used for a 2D (image) signal, the total 
number of samples to be represented grows by a factor of  

   
0

1 4
4 3

uU

u
, (2.372) 

as compared to the number of samples in the original signal. In contrast to that, 
block and block-overlapping transforms, filterbank and DWT transforms can use 
critical sampling, such that the overall number of frequency coefficients is identi-
cal to the number of signal samples. However, block and wavelet transform, 
though not over-complete, need to make trade-offs between lowpass and highpass 
filters in order to achieve perfect reconstruction. This can invoke other effects (in 
particular aliasing in bands and additionally frequency reversion in highpass 
bands), which may even be more severe than the disadvantage of increased num-
ber of samples. When using a pyramid representation in the context of encoding, 
the over-completeness seems to be a disadvantage in first place, but the aforemen-
tioned alias-bearing effects of critically sampled representations can be avoided. 
Furthermore, the redundancy between various components in the pyramid can be 
utilized and removed by coding. Therefore, the differential pyramid has turned out 
to be efficient as a compression method, particularly in the context of scalable 
(multi-resolution) representations of image and video signals, where additional 
methods such as prediction over another dimension can remove the redundancy. 
Nevertheless, it should be noted that the over-completeness causes a penalty in 
terms of larger complexity, as more samples need to be processed. 

                                                                                                                                     
are not usually used in coding, but rather when using multi-resolution representations for 
feature analysis (see [MCA, SEC. 4.4]) 
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2.9 Problems  

Problem 2.1. 
a) Determine a condition for alias-free hexagonal sampling (Fig. 2.11c).  
b) What is the ratio of the area of the base band, as compared to rectangular sampling 

with horizontal and vertical sampling distances equal to the vertical distance in the 
hexagonal case? 

c) What is the ratio of the horizontal sampling distance in hexagonal sampling, as com-
pared to the rectangular sampling case of b) ? 

d) Compute the determinant of the sampling matrix Thex, normalized by the vertical 
sampling distance. Discuss the relationship of this value with the results from parts b) 
and c). 

 
Problem 2.2. 
a) Show that the quincunx grid (Fig. 2.11d) can be constructed by superposition of two 

rectangular grids which are offset by T1|T2, and each having sampling distances 
2T1|2T2 horizontally | vertically.  

b) Compute the periodic spectrum from this construction, and show that it is identical to 
the spectrum found via the sampling matrix (2.63). 

 
Problem 2.3. 
A two-dimensional cosine (2.1) of horizontal frequency F1=1 /(3T) is sampled by a quin-
cunx grid. 
a) Compute the 2D Fourier spectrum. 
b) Determine the upper limit for vertical frequency |F2| guaranteeing alias free sampling. 
c) Which horizontal frequency becomes visible after ideal lowpass filter reconstruction 

from the sampled signal, if the vertical frequency is F2=1 /(3T)? 
 
Problem 2.4.  
 
For the generalized Gaussian PDF (2.126), 
a) Show that =2 gives the Gaussian normal PDF (2.127). 
b) Show that =1 gives the Laplacian PDF (2.128). 
c) With (c)= (c+1) /c, which PDF can asymptotically be expected for ?  
  [ use values (3)=2 ; (1)=1 ; (1.5)= 2/  ; (0.5)=  ]. 
 
Problem 2.5.  
 
A one-dimensional, stationary zero-mean process s(n) with Gaussian PDF has an auto-
covariance function ss(k)= s

2 |k|. 
a) Construct the autocovariance matrix Css of size 3x3 .  
b) Show that for =0: p3(x)=pN (x1)pN (x2)pN (x3). Here, p3(x) is a vector Gaussian PDF 

(2.156) for vector random variables x=[x1 x2 x3]T, and pN (xi) shall be Gaussian normal 
distributions (2.127). 
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Problem 2.6.  
 
a) Combined random instantiations from two event sets S1 and S2 shall be statistically 

independent, i.e. Pr(S1,S2)=Pr(S1)Pr(S2). Show the following relationships for this 
case: H(S1|S2)=H(S1); H(S2|S1)=H(S2); I(S1;S2)=0. 

b) Instantiations drawn from the two event sets S1 and S2 shall now always be identical. 
Show that H(S1|S2)=0; H(S2|S1)=0; I(S1;S2)=H(S1)=H(S2). 

 
 
Problem 2.7.  
 
The joint PDF of two Gaussian processes s1(n) and s2(n) shall be defined by (2.153). Fur-
ther, 

1 2
2s s . 

a) Determine the joint PDF for the cases of uncorrelated signals (
1 2

( ) 0s s 0 ) and fully 

dependent signals (
1 2

( ) 1s s 0 ). 

b) Determine the conditional PDF 
2 1 2 1( ; )s sp x x 0  for the general case first, then specifi-

cally for the two cases of a).  
 
Problem 2.8.  
 

The eigenvalues of the matrix 
1

1
C  are 1=1+  and 2=1 . 

a) Following (A.20), determine 1 und 2 of C such that they establish an orthonormal 
base =[ 1 2 ] according to (A.24). 

b) Sketch the eigenvectors within a coordinate system of axes x1, x2. 
c) Determine the inverse -1. 
d) Compute the determinant of C, and compare the result against the product of the 

eigenvalues.  
 
Problem 2.9.  
 
For the AR(1) model from (2.189) and (2.190), prove the validity of  the autocorrelation 
and variance properties (2.191) and of the spectral properties (2.192).  
 
Problem 2.10.  
 
For statistical modeling of a 1D signal, an AR(1) model of variance s

2 and correlation 
coefficient ss(1)=0.95 is used. By using the autocorrelation function of the model, a linear 
predictor shall be optimized. Determine the coefficients a(1) and a(2) for a predictor filter 
of order P = 2 by solving the Wiener-Hopf equation (2.207).  

 
Problem 2.11.  
 
For linear 2D prediction of a separable AR(1) process with 1= 2=0.95, a non-separable 
predictor filter is used which implements 1 2 1 2 1 2ˆ( , ) 0.5 ( 1, ) 0.5 ( , 1)s n n s n n s n n as 
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prediction equation. Determine the variance of the prediction error signal, and compare 
against the variance of the innovation signal v(n1,n2). 
 
Problem 2.12.  
 
A video sequence consists of pictures which are unchanged except for global translation 
motion. The picture information is an output from a 2D separable AR(1) model generator. 
Parameters are 1= 2=0.95. From one picture to the next, translation shift by k1 =7 hori-
zontally and k2=3 is observed. Different methods of linear prediction shall be compared 
using the criterion of prediction error variance: 
a) Spatial prediction, separable predictor according to (2.226); 
b) Temporal prediction 1 2 3 1 2 3ˆ( , , ) ( , , 2)s n n n s n n n ; 
c) Motion-compensated temporal prediction 1 2 3 1 1 2 2 3ˆ( , , ) ( , , 1)s n n n s n k n k n . 
 
 
Problem 2.13.  
 

When defined as a block transform, the Haar transform has U*=log2M+1 ‘basis types’, 
which are subsequently described by an index u*=0,1,...,log2M. From each basis type, M* 
basis functions are developed, each of which has only one internal flip of the sign for the 
cases u*>0. M* is 1 for u*=0,1 and 2u* 1 for the other basis types. Basis functions deter-
mined from the same basis type are indexed by i=0,1,..., M* 1 subsequently, they are non-
overlapping. The orthonormal transform basis set is     

  Haar * * *ha( ) for 1  ( )
0,  elsek

M M M
M M Mn i i n it n   

with 

   * for * 0,1
* for * 1

k k
k

M i k
  and  

*2
*ha( ) ( 1)

k n
MMn

M
.  

The Walsh basis consists of K = M basis functions with constant length M. The kth function 
has k flips between positive and negative values. The function for k = 0 consists of M posi-
tive constant values. The development of remaining Walsh functions is performed recur-
sively, starting from t1(n). The number of recursions necessary to generate all basis func-
tions is log2M  1. During one recursion step, all basis functions developed in the previous 
step are scaled (which is done by eliminating each second sample), and then combined into 
new basis functions, once periodically and once ‘antiperiodic’, i.e. mirrored. The number 
of new basis functions is doubled by each iteration step, and with  flips in the scaled 
function, two new functions can be generated, one of which has 2   1 sign flips, the other 
2   flips. The process of recursion can be described as follows, where the period-
ic/antiperiodic combinations are implemented by multiplying the scaled functions by 1: 
 
Let   
  Wal Rad( ) ( ) for 0 2, 0k kt n t n k n M  

k* = 1, M* = 2, K* = log2M, P(0) = 1. 
 
While k* < K*  
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{ 
    For 0  i < log2 M* : 

Wal
scal ( * 2 )/ 2

( , ) (2 , )
M i

t n i t n i  

   scalWal
1* 2

scal

( , ) for 0 / 2
( ) for 0,1

( ) ( / 2, ) for / 2jM i j

t n i n M
t n j

P i t n M i n M
 

    For the next step, set P(2i+j) = P(i)j+1, M* = 2M*, k* = k* + 1.  
} (2.373) 
 
The factor P(i) has the effect that from a periodic basis function (having even number of 
flips), an antiperiodic function is generated at first in the next step and vice versa. This 
guarantees an ever increasing number of flips, equal to the index of the function. The re-
cursion process is illustrated for the case M = 8 in Fig. 2.67 
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scaling scaling
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Fig. 2.67. Development of the Walsh transform basis 
 
a) Construct the transform matrices of 1D Haar and Walsh transforms for M=4.  
b) Transform the following image matrix by the related separable 2D transforms using 

(2.246): 
18 4 2 4
18 4 2 4
2 4 2 4
2 4 2 4

S . 

c) Interpret the results. Discuss in particular which transform better compacts the given 
image. 
 

Problem 2.14.  
 
a) Determine the transform matrix of a 1D DCT for M=3, and show that the transform is 

orthonormal. 
b) Set up the autocorrelation matrix (2.157) of size 3x3 for an AR(1) model. The matrix 

shall then be transformed by the 1D DCT of a), using (2.287). 
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c) For a model of variance s
2, two different cases =0.9 and =0.5 shall be considered 

to fill the matrix Ccc. Give an interpretation of the differences you observe in the ma-
trix entries. 

d) For both cases from c), compute the trace (A.21) of the autocorrelation matrices and 
their transformed counterparts. Give an interpretation of the result. 

 
Problem 2.15.  
 
a) Determine the transform matrix of a 1D Haar transform for M=4. 
b) Set up the autocorrelation matrix (2.157) of size 4x4 for an AR(1) model, and apply 

its transformation by the Haar transform of a), using (2.287). 
c) Give an interpretation about the remaining correlations between transform coeffi-

cients. 
 
Problem 2.16.  
 
a) Determine the Fourier transfer functions F{tk} for the basis vectors of a transform 

   
T

0
2 2 ,

2 2
t  

T

1
2 2 .

2 2
t   

b) Prove the orthogonality of this basis system. 
c) Show that the functions | F{tk} | of both basis vectors have a mirror symmetry around the 
frequency f = 1/4. 
d) Show that | F {t0} |2 + | F {t1} |2 = const. 

 
Problem 2.17.  
 
a) Determine the basis vectors of the block-overlapping transform according to (2.289)-

(2.292) with settings U=2, M=4. [Hint: To simplify expressions of the trigonometric 
functions, use constants cos(3 /8)=sin( /8)=A and cos( /8)=sin(3 /8)=B; consider 
for which other cases identical values A or B would appear.]  

b) Show the orthogonality of the basis system. 
c) Determine the Fourier transfer functions F{tk}. Do the basis functions have a linear-

phase property? 
d) Would a realization of this transform by a fast algorithm be possible? 
 
Problem 2.18.  
 
a) Show the validity of the orthogonality property for linear-phase QMF systems for the 

following cases of filters: 
 

i) 2 1 2 3
0 ( )H z A z B z C C z B z A z  

ii) 212
0 )( zAzBCzBzAzH  

b) Determine the z transform representations of polyphase filters H0,A, H0,B, H1,A and H1,B 
according to Fig. 2.53 for both filter configurations from a). Which number of multi-
plications per sample would be necessary at minimum?  
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Problem 2.19.  
 
A zero-mean random signal s(n) shall be modeled by an AR(1) process. To describe the 
parameters of the process, the value of spectral power density 2

, ( 1 / 2) / 9sss f  is 
given. 
a) Determine the correlation parameter , and the variance v

2 of the white-noise  inno-
vation in dependency of s

2.    

The signal shall be decomposed into two polyphase components, where the sequences of 
even- and odd-indexed samples shall be processed independently by predictor filters of first 
order, H(z)=az-1, as shown in Fig. 2.68. 
b) Determine the optimum predictor coefficient a.   
c) Determine the variance of the prediction error signal ee(n) of the even-indexed sam-

ples when the optimum a is used. From this, compute the coding gain G= s
2/ ee

2. By 
which factor will this gain be smaller, as compared to the optimum case of prediction 
for the AR(1) model (without polyphase decomposition) ?   

d) Compute the covariance between the signals ee(n) und eo(n) when the optimum a is 
used.  

 

2:1

2:1

z-1

H(z)

s(n)

even indexed

odd indexed

+

-

-

+

e (n)e

e (n)o

H(z)
 

Fig. 2.68. Prediction within polyphase components  
 
Problem 2.20.  
 
An AR(1) process sAR(n) is characterized by the correlation parameter =0.75 and the 
variance of the Gaussian innovation signal, v

2 =7. 
a) Determine the variance of the AR process.     
 
For linear prediction of sAR(n), a falsely adapted prediction error filter with transfer function 
A(z) = 1  z 1 is used (see Fig. 2.69).  
 
 
 

Fig. 2.69. Prediction of an AR(1) process 
 
b) Compute the variance of the prediction error signal e(n) and the coding gain.   
c) Which would be the coding gain in case of optimum prediction? By which factor is 

the coding gain worse in the case of the falsely-adapted prediction from b)?  
d) Determine the power density , ( )ee f . Can e(n) be a white noise process?  
e) Determine a system (z transfer function and block diagram), which generates the 

optimum prediction error signal of lowest possible variance from e(n). 

    A(z) e(n) sAR(n) 
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Problem 2.21.  
 
A binary signal shall be synthesized according to the block diagram given in Fig. 2.70. 
Herein, v(n) is an uncorrelated zero-mean Gaussian process of variance v

2. T is a threshold 
decision circuit with following characteristics: 

0  if  ( )
( )

1  if  ( )
s n C

b n
s n C

 

It is now to be assumed that b(n) behaves as first order Markov process.  
a) Determine the probabilities Pr(0) and Pr(1) depending on C. 
b) For C=0, determine the probabilities Pr(1|0) and Pr(0|1) depending on . 
 

s(n)

x

+

+

C

Tv(n) b(n)

z-1

 
Fig. 2.70.  Circuit for generating a binary signal  
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