
Chapter 2
Mathematical Preliminaries

2.1 Introduction

In this chapter, the fundamental mathematical concepts and analysis tools in systems
theory are summarized, which will be used in control design and stability analysis
in the subsequent chapters. Much of the material is described in classical control
theory textbooks and robotics books as standard form. Thus, some standard theorems,
lemmas, and corollaries, which are available in references, are sometimes given
without a proof. This chapter serves as a short review and as a convenient reference
when necessary. In addition, for robotic control, stability analysis is the key core for
all closed-loop systems, therefore, some metric or norms need to be defined such
that system could be measured. Those norms that are defined to easily manipulate
for control design and also, all norms that have some physical significance.

2.2 Linear Algebra

This chapter reviews some basic linear algebra facts that are essential in the study of
this text. Most topics are developed intuitively for readers to grasp the ideas better.
Detailed discussion can be found in the references listed at the end of the chapter.

2.2.1 Linear Subspaces

Denote R as the real scalar field, let Rn denote the vector space over R. For any
x1, x2, . . . , xk ∈ R

n , an element of the form α1x1 + · · · + αk xk with αi ∈ R is then
called a linear combination over R of x1, . . . , xk . The set of all linear combinations
of x1, x2, . . . , xk ∈ R

n is a subspace called the span of x1, x2, . . . , xk , denoted by
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span{x1, x2, . . . , xk} := {x = α1x1 + · · · + αk xk : αi ∈ R}. (2.1)

The set of vectors x1, x2, . . . , xk is said to be linearly dependent over R if there
exists α1, . . . ,αk ∈ R not all zero such that

α1x1 + · · · + αk xk = 0. (2.2)

If the only set of αi for which (2.2) holds is α1 = 0,α2 = 0, . . . ,αk = 0, then the
set of vectors are said to be linearly independent.

Let S ⊂ R
n , then a set of vectors {x1, x2, . . . , xk} ∈ S is called a basis for S

if x1, x2, . . . , xk are linearly independent and S = span{x1, x2, . . . , xk}. Note that,
the basis of a subspace S is not unique but all bases for S have the same number of
elements, which is called the dimension of S, denoted by dim(S).

Vectors {x1, x2, . . . , xk} are called mutually orthogonal if xT
i x j = 0 for all i �= j

and orthonormal if xT
i x j = δi j , where δi j is the Kronecker delta function with

δi j = 1 for i = j and δi j = 0 for i �= j . More generally, a collection of subspaces
S1, S2, . . . , Sk of Rn is said to be mutually orthogonal if xT y = 0 with any x ∈ Si

and y ∈ S j for i �= j .
Let U and V be subspaces of S. If U ∩ V = {0}, then U + V is direct sum.

Direct sum is denoted as U+̇V . Let U , V be subspaces of S and U+̇V = S, then
U+̇V is referred to as a direct sum decomposition of S. Then U and V are a pair of
complementary subspaces with respect to S.U is called the complementary subspace
ofV with respect to S. For any subspaceU of S, there exists subspaceV ⊂ S such that

S = U+̇V . (2.3)

The orthogonal complement of a subspace S is defined as

S⊥ := {y ∈ R
n : yT x = 0, ∀ x ∈ S}. (2.4)

Then, the set of vectors {μ1,μ2, . . . ,μk} is said to be an orthonormal basis of S if the
vectors form a basis of S and are orthonormal. It is always possible to extend such a
basis to a full orthonormal basis {μ1,μ2, . . . ,μn} for Rn . Note that in this case

S⊥ = span{μk+1, . . . ,μn}, (2.5)

and {μk+1, . . . ,μn} is called an orthonormal complement of {μ1,μ2, . . . ,μk}.
Let A ∈ R

m×n be a linear transformation from R
n to Rm ; that is,

A : Rn �→ R
m . (2.6)

Then the kernel or null space of the linear transformation A is defined by

Ker A = N (A) := {x ∈ R
n : Ax = 0}, (2.7)
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and the image or range of A is

Im A = R(A) := {y ∈ R
m : y = Ax, x ∈ R

n}. (2.8)

Let ai (i = 1, 2, . . . , n) denotes the columns of a matrix A; then

Im A = span{a1, a2, . . . , an}. (2.9)

A square matrix U ∈ R
n×n whose columns form an orthonormal basis for Rn is

called an orthogonal matrix, and it satisfies U T U = UU T = I .
Now let A = [ai j ] ∈ R

n×n ; then the trace of A is defined as

trace (A) :=
n∑

i=1

aii . (2.10)

2.2.2 Eigenvalues and Eigenvectors

Let A ∈ R
n×n ; then the eigenvalues of A are the n roots of its characteristic polyno-

mial p(λ) = det(λI − A). The spectrum of A is the set of all λ that are eigenvalues
of A. The spectral radius is defined as the maximal modulus of the eigenvalues, and
is given by

ρ(A) := max
1≤i≤n

|λi | (2.11)

if λi is a root of p(λ), where, as usual, | · | denotes the magnitude. Nonzero vector
x that satisfies

Ax = λx (2.12)

is referred to as a right eigenvector of A. Dually, a nonzero vector y is called a left
eigenvector of A if

yT A = λyT . (2.13)

We just call the right eigenvector an eigenvector, if it seldom causes confusion.
We also let λmax(A) and λmin(A) denote the largest eigenvalue and the smallest
eigenvalue of A, respectively.

Lemma 2.1 Consider the Sylvester equation

AX + X B = C, (2.14)

where A, B, and C are given matrices. There exists a unique solution X if and only
if λi (A) + λ j (B) �= 0, ∀i = 1, 2, . . . , n, and j = 1, 2, . . . , m.

In particular, if B = AT , Eq. (2.14) is called the Lyapunov equation.
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2.2.3 Vector Norms and Matrix Norms

A real-valued function ‖·‖ defined on vector space X is called norm if for any x ∈ X
and y ∈ Y , it satisfies:

(i) ‖x‖ ≥ 0 (positivity);
(ii) ‖x‖ = 0 if and only if x = 0 (positive definiteness);
(iii) ‖αx‖ = |α| ‖x‖, for any scalar α (homogeneity) ;
(iv) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

Let x ∈ R
n . The vector p-norm (1 ≤ p < ∞) is then defined by

‖x‖p :=
( n∑

i=1

|xi |p
)1/p

.

In particular, when p = 1, p = 2, and p = ∞, it has

‖x‖1 :=
n∑

i=1

|xi |;

‖x‖2 :=
√√√√

n∑

i=1

|xi |2;

‖x‖∞ := max
1≤i≤n

|xi |.

Generally speaking, norm is an abstraction and extension of our usual concept of
length in three-dimensional Euclidean space. A vector norm is a measure of the
vector “length,” for example, ‖x‖2 is the Euclidean distance of the vector x from the
origin.

Similarly, we can introduce some kinds of measure for a matrix. Let A = [ai j ] ∈
R

m×n ; then the matrix norm induced by the vector p-norm is defined as

‖A‖p := sup
x �=0

‖Ax‖p

‖x‖p
.

Thematrix norms induced by vector p-norms are sometimes called induced p-norms.
This is because ‖A‖p is defined by or induced from a vector p-norm. In fact, A can
be viewed as a mapping from a vector space Rn equipped with a vector norm ‖ · ‖p.
So from a system theoretical point of view, the induced norms have the interpretation
of input/output amplification gains.

Lemma 2.2 Let ‖A‖p1 and ‖A‖p2 be any two different norms, then there exist
positive constants c1, c2, depending only on the choice of the norms, such that for
all A,

c1‖A‖p2 ≤ ‖A‖p1 ≤ c2‖A‖p2.
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In particular, the induced matrix 2-norm can be computed as

‖A‖2 =
√

λmax (AT A).

We shall adopt the following convention throughout this book for the vector and
matrix norms unless specified otherwise: Let x ∈ R

n and A ∈ R
m×n ; then we shall

denote the Euclidean 2-norm of x simply by

‖x‖ := ‖x‖2
and the induced 2-norm of A by

‖A‖ := ‖A‖2.

Another often used matrix norm is the so-called Frobenius norm. It is defined as

‖A‖F =
√√√√

m∑

i=1

n∑

j=1

|ai j |2.

The symbol Lm
p for 1 ≤ p < ∞ is used in this book. It is defined as the set of all

piecewise continuous functions u : [0,∞) → R
m such that

‖u‖L p =
(∫ ∞

0
‖u(t)‖p dt

)1/p

< ∞

The subscript p in Lm
p refers to the type of p-norm used to define the space, while

the superscript m is the dimension of the signal u.

2.2.4 Similarity Transformation

Consider an n × n matrix A. It maps Rn into itself. If we associate with R
n the

orthonormal basis {i1, i2, . . . , in} with

i1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, i2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , in−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, in =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,
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then the i th column of A is the representation of Ai with respect to the orthonormal
basis. Now if we select a different set of basis {q1, q2, . . . , qn}, then the matrix A has
a different representation A. It turns out that the i th column of A is the representation
of Aqi with respect to the basis {q1, q2, . . . , qn}.

Consider the equation
Ax = y (2.15)

The square matrix A maps x in R
n into y in R

n . With respect to the basis
{q1, q2, . . . , qn}, the equation becomes

Ax = y (2.16)

where x and y are the representations of x and y with respect to the basis
{q1, q2, . . . , qn}. They are related by

x = Qx y = Qy

with
Q = [q1 q2 . . . qn]

being an n × n nonsingular matrix. Substituting these into (2.15) yields

AQx = Qy or Q−1AQx = y.

Comparing this with (2.16) yields

A = Q−1AQ or A = Q AQ−1. (2.17)

This is called the similarity transformation and A and A are said to be similar. We
write (2.17) as

AQ = Q A

or
A[q1 q2 . . . qn] = [Aq1 Aq2 . . . Aqn] = [q1 q2 . . . qn]A.

This shows that the i th column of A is indeed the representation of Aqi with respect
to the basis {q1, q2, . . . , qn}.

2.2.5 Singular Value Decomposition

Singular value decomposition (SVD) is a very useful tool in matrix analysis. It will
be seen that singular values of a matrix are good measures of the “size” of the matrix
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and that the corresponding singular vectors are good indications of strong/weak input
or output directions.

Lemma 2.3 Let A ∈ R
m×n. There exist unitary matrices

U = [μ1,μ2, . . . ,μm]
V = [ν1, ν2, . . . , νn]

such that

A = UΣV ∗, Σ =
[

Σ1 0
0 0

]
,

where

Σ1 =

⎡

⎢⎢⎢⎣

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σp

⎤

⎥⎥⎥⎦

and
σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0, p = min{m, n}.

The σi is the i th singular value of A, and the vectors μi and ν j are, respectively,
the i th left singular vector and the j th right singular vector. It is easy to verify that

Aνi = σiμi

AT μi = σiνi .

The preceding equations can also be written as

AT Aνi = σ2
i νi

AAT μi = σ2
i μi .

Hence σ2
i is an eigenvalue of AAT or AT A, μi is an eigenvector of AAT , and νi is

an eigenvector of AT A.
The following notations are often adopted:

σ(A) = σmax (A) = σ1 = the largest singular value of A;

and
σ(A) = σmin(A) = σp = the smallest singular value of A.
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2.3 Controllability and Observability

2.3.1 Controllability

This section deals with the controllability properties of nonlinear systems described
by linear time-varying state-space representations. In particular, consider a nonlinear
system defined by the state-space representation:

ẋ(t) = f (x) +
m∑

i=1

gi (x)ui , x ∈ Ωx ⊂ R
n (2.18)

where u = [u1, u2, . . . , un]T ∈ Ωu ⊂ R
m is the input vector. The system (2.18)

is defined to be controllable if there exists an admissible input vector u(t) such that
the state x(t) can converge from an initial point x(t0 = 0) = x0 ∈ Ωx to the final
point x(t f ) ∈ Ωx within a finite time interval t f . The controllability means that the
control system is with a set of input channels through which the input can excite the
states effectively to converge to the destination x f . Then, the controllability of (2.18)
shouldmainly depend on the function forms of all f (x) and gi (x). The controllability
of the nonlinear system (2.18) is based on a useful mathematical concept called Lie
algebra, which is defined as follows:

Definition 2.4 A Lie algebra over the real field R or the complex field C is a vector
space G for which a bilinear map (X, Y ) → [X, Y ] is defined from G × G → G

such that

[X, Y ] = −[Y, X ] (2.19)

[X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X, Y ]] = 0 (2.20)

for any X, Y, Z ∈ G.
From the above definition, a Lie algebra is a vector space where an operator

[·] is installed, which is called a Lie bracket, can be defined arbitrarily as long as
it satisfies two conditions (2.19) and (2.20) simultaneously. The condition (2.19)
is often called a skew symmetric relation and obviously implies that [X, Y ] = 0.
The condition (2.20) is called the Jacobi identity, which reveals a closed-loop cyclic
relation among any three elements in a Lie algebra.

Define a special Lie algebra E that collects all n-dimensional differentiable vector
fields in R

n along with a commutative derivative relation: For any two vector fields
f and g ∈ R

n , which are functions of x ∈ R
n , we have

[ f, g] = ∂g

∂x
f − ∂ f

∂x
g (2.21)
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It can be seen that the above equation satisfies the two conditions (2.19) and (2.20)
of a Lie algebra.

It is easy to extend the above Lie bracket between two vector fields to higher order
derivatives, a more compact notation may be defined based on an adjoint operator,
that is, [ f, g] = ad f g. This new notation treats the Lie bracket [ f, g] as vector field
g operated on by an adjoint operator ad f = [ f, ·]. Therefore, for an n-order Lie
bracket (n > 1), one can simply write

[ f, · · · [ f, g] · · · ] = adn
f g (2.22)

For a general control system given by (2.18), we define a control Lie algebra Δ,
which is spanned by all up to order (n − 1) Lie brackets among f and g1 through
gm as

Δ = span
{
g1, . . . , gm, ad f g1, . . . , ad f gm, . . . , adn−1

f g1, . . . , ad
n−1
f gm

}
(2.23)

With the control Lie algebra concept, we can show that the following theorem is
true and is also a general effective testing criterion for system controllability.

Theorem 2.5 The control system (2.18) is controllable if and only if dim(Δ) =
dim(Ωx ) = n.

Note that because each element in Δ is a function of x , the dimension of Δ may
be different from one point to another. Thus, if the preceding condition of dimension
is valid only in a neighborhood of a point in Ωx ⊂ R

n , we say that the system (2.18)
is locally controllable. On the other hand, if the condition of dimension can cover all
of the region Ωx , then it is globally controllable.

2.3.2 Observability

Consider the observability for the following nonlinear system

ẋ = f (x)

y = h(x)
(2.24)

where y ∈ R
m is the output. This system is said to be observable if for each pair of

distinct states x1 and x2, the corresponding outputs y1 and y2 are also distinguishable.
Clearly, the observability can be interpreted as a testing criterion to check whether
the entire system has sufficient output channels to measure (or observe) each internal
state change. Intuitively, the observability should depend on the function forms of
both f (x) and h(x).
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We introduce a Lie derivative, which is virtually a directional derivative for a
scalar field λ(x), with x ∈ R

n along the direction of an n-dimensional vector field
f (x). The mathematical expression is given as

L f λ(x) = ∂λ(x)

∂x
f (x) (2.25)

Since ∂λ(x)
∂x is a 1 × n gradient vector of the scalar λ(x) and the norm of a gradient

vector represents the maximum rate of function value changes, the product of the
gradient and the vector field f (x) in (2.24) becomes the directional derivative ofλ(x)

along f (x). Therefore, the Lie derivative of a scalar field defined by (2.25) is also a
scalar field. If each component of a vector field h(x) ∈ R

m is considered to take a Lie
derivative along f (x) ∈ R

n , then all components can be acted on concurrently and
the result is a vector field that has the same dimension as h(x); its i th element is the
Lie derivative of the i th component of h(x). Namely, if h(x) = [h1(x), . . . , hm(x)]T

and each component hi (x), i = 1, . . . , m is a scalar field, then the Lie derivative of
the vector field h(x) is defined as

L f h(x) =
⎡

⎢⎣
L f h1(x)

...

L f hm(x)

⎤

⎥⎦ (2.26)

With the Lie derivative concept, we now define an observation space Ω0 over Rn as

Ω0 = span{h(x), L f h(x), . . . , Ln−1
f h(x)} (2.27)

In other words, this space is spanned by all up to order (n − 1) Lie derivatives of the
output function h(x). Then, we further define an observability distribution, denoted
by dΩ0, which collects the “gradient” vector of every component in Ω0. Namely,

dΩ0 = span{∂φ

∂x
|φ ∈ Ω0} (2.28)

With these definitions, we can present the following theorem for testing the
observability.

Theorem 2.6 The system (2.24) is observable if and only if dim(dΩ0) = n.

Similar to the controllability case, this testing criterion also has locally observable
and globally observable cases, depending on whether the condition of dimension in
the theorem is valid only in a neighborhood of a point or over the entire state region.
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2.4 Stability Theory

2.4.1 Definitions

Let us consider the following nonautonomous system:

ẋ = f (t, x) (2.29)

where f : [0,∞) × D → R
n is piecewise continuous in t and locally Lipschitz in

x , with D ⊆ R
n is a domain that contains the origin x = 0.

Definition 2.7 The origin x = 0 is said to be an equilibrium point of system (2.29)
if for all t ≥ 0,

f (t, 0) = 0

Definition 2.8 A continuous function α : [0, a) → R+ is said to belong to class K
if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞
and α(r) → ∞ as r → ∞.

Definition 2.9 A continuous function β : [0, a) × R+ → R+ is said to belong to
class KL if, for each fixed s, the mapping β(r, s) belongs to class K with respect
to r and, for each fixed r , the mapping β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞. It is said to belong to class KL∞ if, in addition, for each
fixed s the mapping β(r, s) belongs to class K∞ with respect to r .

Definition 2.10 The equilibrium point x = 0 of system (2.29) is said to be

(1) stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ t0 ≥ 0 (2.30)

(2) uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0 independent of t0
such that (2.30) is satisfied;

(3) unstable if it is not stable;
(4) asymptotically stable if it is stable and there is a positive constant c = c(t0)

such that x(t) → 0 as t → ∞, for all ‖x(t0)‖ < c;
(5) uniformly asymptotically stable if it is uniformly stable and there is a positive

constant c, independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0 as t → ∞,
uniformly in t0; that is, for each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ < η,∀t ≥ t0 + T (η),∀‖x(t0)‖ < c. (2.31)

(6) globally uniformly asymptotically stable (GUAS) if it is uniformly stable, δ(ε)
can be chosen to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive
numbers η and c, there is T = T (η, c) > 0 such that
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‖x(t)‖ < η,∀t ≥ t0 + T (η, c),∀‖x(t0)‖ < c. (2.32)

Definition 2.11 The system (2.29) is said to be exponentially stable if there exist
positive constants c, k, and λ such that

‖x(t)‖ ≤ k(‖x(t0)‖)e−λ(t−t0),∀t ≥ t0 ≥ 0,∀‖x(t0)‖ < c (2.33)

and further is globally exponentially stable (GES) if (2.33) holds for any initial
state x(t0).

Definition 2.12 The system (2.29) is K-exponentially stable if there exist positive
constants c and λ and a class K function α such that

‖x(t)‖ ≤ α(‖x(t0)‖)e−λ(t−t0),∀t ≥ t0 ≥ 0,∀‖x(t0)‖ < c (2.34)

and further is globallyK-exponentially stable if (2.34) holds for any initial state x(t0).

Definition 2.13 The solution of (2.29) is as follows:

(1) uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0,
and for every a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ β,∀t ≥ t0. (2.35)

(2) globally uniformly bounded if (2.35) holds for an arbitrarily large a;
(3) uniformly ultimately bounded with ultimate bound b if there exist positive

constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c) there is
T = T (a, b) ≥ 0, independent of t0, such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b,∀t ≥ t0 + T . (2.36)

(4) globally uniformly ultimately bounded if (2.36) holds for an arbitrarily large a.

2.4.2 Lemmas and Theorems

Lemma 2.14 Assume that d : Rn → R
n satisfies

P

[
∂d

∂x

]
+

[
∂d

∂x

]T

P ≥ 0,∀x ∈ R
n, (2.37)

when P = PT > 0. Then

(x − y)T P(d(x) − d(y)) ≥ 0,∀x, y ∈ R
n . (2.38)
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Theorem 2.15 Let D = {x ∈ R
n
∣∣‖x‖ < r} with x = 0 being an equilibrium of

(2.29). Let V : D × R
n → R+ be a continuously differentiable function such that

∀t ≥ 0,∀x ∈ D,

γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖),
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −γ3(‖x‖). (2.39)

Then the system (2.29) is

(1) uniformly stable, if γ1 and γ2 are class K functions on [0, r) and γ3 ≥ 0 on
[0, r);

(2) uniformly asymptotically stable, if γ1, γ2, and γ3 are class K functions on [0, r);
(3) exponentially stable if γi (ρ) = kiρ

α on [0, r), ki > 0,α > 0, i = 1, 2, 3;
(4) globally uniformly stable if D = R

n, γ1, and γ2 are class K∞ functions, and
γ3 ≥ 0 on R+;

(5) GUAS if D = R
n, γ1 and γ2 are class K∞ functions, and γ3 is a class K function

on R+;
(6) GES, if D = R

n, γi (ρ) = kiρ
α on R+, ki > 0,α > 0, i = 1, 2, 3.

Theorem 2.16 If there exists a continuously differentiable function V : Rn ×R+ →
R+ such that

γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖),
V̇ = ∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W (x) ≤ 0. (2.40)

for all t ≥ 0 and x ∈ R
n, where γ1 and γ2 are class K∞ functions, and W is a

continuous function. Then all solutions of (2.29) are globally uniformly bounded
and satisfy

lim
t→∞ W (x(t)) = 0. (2.41)

In addition, if W (x) is positive definite, then the equilibrium point x = 0 is GUAS.

Theorem 2.17 Let V : [0,∞) × D → R be a continuously differentiable function
and D ∈ R

n be a domain that contains the origin, if

α1(‖x‖) ≤ V (x, t) ≤ α2(‖x‖),
∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −W (x),∀‖x‖ ≥ μ > 0 (2.42)

for all t ≥ 0 and x ∈ D where α1 and α2 are class K functions, and W is a contin-
uously positive definite function. Take r > 0 such that Br ⊂ D and suppose that

μ < α−1
2 (α1(r)). (2.43)



38 2 Mathematical Preliminaries

Then, there exists a class KL function β and for every initial state x(t0), satisfying
‖x(t0)‖ < α−1

2 (α1(r)), there is T > 0 (dependent on x(t0) and μ) such that the
solutions of (2.29) satisfy

‖x(t)‖ ≤ β(‖x(to)‖, t − t0),∀t0 ≤ t ≤ t0 + T,

‖x(t)‖ < α−1
1 (α2(μ)),∀t ≥ t0 + T . (2.44)

Moreover, if D = R
n and α1 belongs to class K∞, then (2.44) holds for any initial

state x(t0) with no restriction on how large μ is.

2.4.3 Input-to-State Stability

Definition 2.18 We indicate the essential supremumnorm of an essentially bounded
function with the symbol ‖ · ‖∞. A function μ is said to be essentially bounded if
esssupt≥0‖μ(t)‖ < ∞. For given times 0 ≤ T1 < T2, we indicate with μ[T1,T2) :
[0,+∞) → Rm the function given by μ[T1,T2)(t) = μ(t) for all t ∈ [T1, T2) and= 0
elsewhere. An input μ is said to be locally essentially bounded if, for any T > 0,
μ[0,T ) is essentially bounded. A function w : [0, b) → R, 0 < b ≤ +∞, is said to
be locally absolutely continuous if it is absolutely continuous in any interval [0, c],
0 < c < b.

Definition 2.19 The system

ẋ = f (t, x, u), (2.45)

where f is piecewise continuous in t and locally Lipschitz in x and u, is said to be
input-to-state stable (ISS) if there exist a classKL function β and a classK function
γ, such that, for any x(t0) and for any input u(·) continuous and bounded on [0,∞),
the solution exists for all t ≥ t0 ≥ 0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(
‖u[0,t)‖∞

)
. (2.46)

The following theorem establishes the equivalence between the existence of a
Lyapunov-like function and the input-to-state stability.

Theorem 2.20 Suppose that for the system (2.45) there exists a continuous function
V : R+ × R

n → R+ such that for all x ∈ R
nand u ∈ R

m,

γ1(‖x‖) ≤ V (t, x) ≤ γ2(‖x‖),
‖x‖ ≥ ρ(‖u[0,∞)‖∞) ⇒ ∂V

∂t
+ ∂V

∂x
f (t, x, u) ≤ −γ3(‖x‖) (2.47)
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where γ1, γ2, and ρ are class K∞ functions and γ3 is a class-K function. Then the
system (2.45) is ISS with γ = γ−1

1 ◦ γ2 ◦ ρ.

Proof If x(t0) is in the set

Rt0 = {x ∈ R
n
∣∣‖x‖ ≤ ρ(‖u[0,∞)‖∞)}, (2.48)

then x(t) remains within the set

St0 = {x ∈ R
n
∣∣‖x‖ ≤ γ−1

1 ◦ γ2 ◦ ρ(‖u[0,∞)‖∞)}, (2.49)

for all t ≥ t0. Define B = [t0, T ) as the time interval before x(t) enters Rt0 for the
first time. In view of the definition of Rt0 we have

V̇ ≤ −γ3 ◦ γ−1
2 (V ),∀t ∈ B. (2.50)

Then, there exists a class-KL function βv such that V (t) ≤ βv(V (t0), t −t0),∀t ∈ B,
which implies

‖x(t)‖ ≤ γ−1
1 (βv(γ2(‖x(t0)‖), t − t0)) := β(‖x(t0)‖, t − t0),∀t ∈ B. (2.51)

On the other hand, by (2.49), we conclude that

‖x(t)‖ ≤ γ−1
1 ◦ γ2 ◦ ρ(‖u[0,∞)‖∞) := γ(‖u[0,∞)‖∞) (2.52)

for all t ∈ [t0,∞]\B. Then by (2.51) and (2.52),

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ(‖u[0,∞)‖∞),∀t ≥ t0 ≥ 0. (2.53)

By causality, we have

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ(‖u[0,t)‖∞),∀t ≥ t0 ≥ 0. (2.54)

A function V satisfying conditions (2.47) is called an ISS Lyapunov function.

2.4.4 Lyapunov’s Direct Method

This section presents an extension of the Lyapunov function concept, which is a
useful tool to design an adaptive controller for nonlinear systems. Assuming that the
problem is to design a feedback control law α(x) for the time-invariant system:

ẋ = f (x, u), x ∈ R
n, u ∈ R, f (0, 0) = 0, (2.55)
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such that the equilibrium x = 0 of the closed-loop system:

ẋ = f (x,α(x)), (2.56)

is globally asymptotically stable (GAS). Take the candidate Lyapunov functionV (x),
in which derivative along the solutions of (2.56) satisfies V̇ (x) ≤ −W (x), where
W (x) is a positive definite function. We therefore need to find α(x) guarantee that
for all x ∈ R

n such that

∂V (x)

∂x
f (x,α(x)) ≤ −W (x). (2.57)

This is a difficult problem. A stabilizing control law for (2.55) may exist but we
may fail to satisfy (2.57) because of a poor choice of V (x) and W (x). A system for
which a good choice of V (x) and W (x) exists is said to possess a control Lyapunov
function (CLF). For systems affine in the control:

ẋ = f (x) + g(x)u, f (0) = 0, (2.58)

the CLF inequality (2.57) becomes

∂V

∂x
f (x) + ∂V

∂x
g(x)α(x) ≤ −W (x), (2.59)

If V (x) is a CLF for (2.58), then a particular stabilizing control law α(x), smooth
for all x �= 0, is given by

u = α(x) =

⎧
⎪⎨

⎪⎩
−

∂V
∂x f (x)+

√(
∂V
∂x f (x)

)2+
(

∂V
∂x g(x)

)4
∂V
∂x g(x)

, ∂V
∂x g(x) �= 0,

0, ∂V
∂x g(x) = 0.

It should be noted that (2.59) can be satisfied only if

∂V

∂x
g(x) = 0 ⇒ ∂V

∂x
f (x) < 0,∀x �= 0 (2.60)

and that in this case (2.60) gives

W (x) =
√(

∂V

∂x
f

)2

+
(

∂V

∂x
g

)4

> 0,∀x �= 0 (2.61)

As a design tool, however, amain drawback of CLF is that formost nonlinear systems
the CLF is usually unknown.Meanwhile, the task of finding an appropriate CLFmay
be as complex as that of designing a stabilizing feedback law in practical.
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2.4.5 Barbalat-Like Lemmas

This section presents lemmas that are useful in investigating the convergence of
time-varying systems.

If a function f ∈ L1, it may not be bounded. On the contrary, if a function f is
bounded, it is not necessary that f ∈ L1. However, if f ∈ L1

⋂
L∞, then f ∈ L p

for all p ∈ [1,∞). Moreover, f ∈ L p could not lead to f → 0 as t → ∞. If f
is bounded, it can also lead to f → 0 as t → ∞. However, we have the following
results.

Lemma 2.21 (Barbalat’s lemma) Consider the function φ : R+ → R. If φ is uni-
formly continuous and limt→∞

∫ t
0 φ(τ )dτ exists and is finite, then

lim
t→∞ φ(t) = 0. (2.62)

Lemma 2.22 Assume that a nonnegative scalar differentiable function f (t) enjoys
the following conditions:

∣∣∣∣
d

dt
f (t)

∣∣∣∣ ≤ k1 f (t) (2.63)

∫ ∞

0
f (t)dt ≤ k2 (2.64)

for all t ≥ 0, where k1 and k2 are positive constants, then limt→∞ f (t) = 0.

Proof Integrating both sides of (2.63) gives

f (t) ≤ f (0) + k1

∫ t

0
f (s)ds ≤ f (0) + k1k2,

f (t) ≥ f (0) − k1

∫ t

0
f (s)ds ≥ f (0) − k1k2. (2.65)

These inequalities imply that f (t) is a uniformbounded function. From (2.65) and the
second condition in (2.63), we have that f (t) is also bounded on the half axis [0,∞),
i.e., f (t) ≤ k3 with k3 a positive constant. Hence

∣∣ d
dt f (t)

∣∣ ≤ k1k3. Now assume that
limt→∞ f (t) �= 0. Then there exists a sequence of points ti and a positive constant
ε such that f (ti ) ≥ ε, ti → ∞, i → ∞, |ti − ti−1| > 2ε/(k1k3) and moreover
f (s) ≥ ε/2, s ∈ Li = [ti − ε/(2k1k3), ti + ε/(2k1k3)]. Since the segments Li and
L j do not intersect for any i and j with i �= j , we have

∫ ∞

0
f (t)dt ≥

∫ T

0
f (t)dt ≥

∑

ti ≤T

∫

Li

f (t)dt ≥ ε

2

ε

k1k3
M(T ) (2.66)
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where M(T ) is the number of points ti not exceeding T. Since limT →∞ M(T ) = ∞,
the integral

∫ ∞
0 f (t)dt is divergent. This contradicts Condition 2 in (2.63). This

contradiction proves the lemma.

Remark 2.23 Lemma 2.22 is different from Barbalat’s Lemma 2.21. While
Barbalat’s lemma assumes that f (t) is uniformly continuous, Lemma 2.22 assumes
that | d

dt f (t)|is bounded by k1 f (t).

Corollary 2.24 If f (t) is uniformly continuous, such that
∫ ∞
0 f (τ )dτ exists and is

finite, then f (t) → 0 as t → ∞.

Corollary 2.25 If f (t), ḟ (t) ∈ L∞, and f (t) ∈ L p, for some p ∈ [1,∞), then
f (t) → 0 as t → ∞.

Corollary 2.26 For the differentiable function f (t), if limt→∞ f (t) = k < ∞ and
f̈ (t) exists, then ḟ (t) → 0 as t → ∞.

Corollary 2.27 If limt→∞
∫ ∞
0 f 2(t)dt < ∞ and ẋ(t), t ∈ [0,∞), exists and

bounded, then f (t) → 0 as t → ∞.

Lemma 2.28 If a scalar function V (x, t) satisfies the following conditions:

(i) V (x, t) is lower bounded
(ii) V̇ (x, t) is negative semi-definite

(iii) V̇ (x, t) is uniformly continuous in times

then V̇ (x, t) → 0 as t → ∞.
Indeed, V then approaches a finite limiting value V∞, such that V∞ ≤ V (x(0), 0)

(this does not require uniform continuity). The above lemma then follows from
Barbalat’s lemma.

2.4.6 Lyapunov Theorem

The Lyapunov approach provides a rigorous method for addressing stability. The
method is a generalization of the idea that if there is some “measure of energy” in a
system, then we can study the rate of change of the energy of the system to ascertain
stability. We review several concepts that are used in Lyapunov stability theory.

Definition 2.29 A continuous function V : R
n × R+ → R is a locally positive

definite function if for some ε > 0 and some continuous, strictly increasing function
α : R+ → R,

V (0, t) = 0, and V (x, t) ≥ α‖x‖, ∀t ≥ 0 (2.67)

Definition 2.30 A continuous function V : Rn × R+ → R is a positive definite
function if it satisfies the conditions of Definition 2.29 and, additionally, α(p) → ∞
as p → ∞.



2.4 Stability Theory 43

Definition 2.31 A continuous function V : Rn ×R+ → R is decrescent if for some
ε > 0 and some continuous, strictly increasing function β : R+ → R,

V (x, t) ≤ β(‖x‖), ∀x ∈ Ω, ∀t ≥ 0 (2.68)

Based on above definitions, by studying an appropriate energy function, the fol-
lowing theorem is provided to determine stability.

Theorem 2.32 (Lyapunov Theorem) Any nonlinear dynamic system

ẋ = f (x, t), x(0) = x0 (2.69)

with an the equilibrium point at the origin, let Ω be a ball of size around the origin,
i.e., Ω = {x : ‖x‖ ≤ ε, ε > 0}. If there exists a continuously differentiable function

V (0, t) = 0 and V (x, t) > 0 wi th x �= 0

such that
V̇ (x, t) ≤ 0 wi th x ∈ Ω

the origin of system is stable.
Moreover, if

V̇ (x, t) < 0 with x ∈ Ω but x �= 0

then the origin of system is asymptotically stable.
The function V (x, t) is called the Lyapunov function.

The indirect method of Lyapunov uses the linearization of a system to determine
the local stability of the original system.

Theorem 2.33 (Stability by linearization) Consider the system ẋ = f (x, t) and
define

A(t) = ∂ f (x, t)

∂x
(2.70)

with x = 0 to be the Jacobian matrix of f (x, t) with respect to x, evaluated at the
origin. It follows that for each fixed t,

f1(x, t) = f (x, t) − A(t)x (2.71)

approaches zero as x approaches zero. Assume

lim‖x‖→0
sup
t≥0

‖ f1(x, t)‖
‖x‖ = 0 (2.72)
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Further, If 0 is a uniformly asymptotically stable equilibrium point of

ż = A(t)z (2.73)

then it is a locally uniformly asymptotically stable equilibrium point of ẋ = f (x, t).

2.4.6.1 Invariant Set Theorems

Asymptotic stability of a control system is a very important property. However, the
Lyapunov theorems are usually difficult to apply because frequently V̇ , the deriv-
ative of the Lyapunov function candidate, is only semi-definite. With the help of
the invariant set theorems, asymptotic stability can still possibly be concluded for
autonomous systems fromLaSalle’s invariance principle. The concept of an invariant
set is a generalization of the concept of equilibrium point.

Definition 2.34 (α limit set) The set Ω ∈ R
n is the α limit set of a trajectory

ω(t, x0, t0) if for every y ∈ Ω , there exists a strictly increasing sequence of times T
such that ω(T, x0, t0) → y as T → ∞.

Definition 2.35 A set Ω ∈ R
n is said to be an invariant set of the dynamic system

ẋ = f (x) if for all y ∈ Ω and t0 > 0, we have ω(t, y, t0) ∈ Ω,∀t > t0.

Theorem 2.36 (LaSalle’s Theorem) Let Ω be a compact invariant set Ω =
x ∈ R

n : V̇ (x) = 0 and V : Rn → R be a locally positive definite function such
that on the compact set we have V̇ (x) ≤ 0. As t → ∞, the trajectory tends to
the largest invariant set inside Ω; i.e., its α limit set is contained inside the largest
invariant set in Ω . In particular, if Ω contains no invariant sets other than x = 0,
then V (x) is asymptotically stable.

Corollary 2.37 Given the autonomous nonlinear system

ẋ = f (x), x(0) = x0 (2.74)

and let the origin be an equilibrium point, V (x) : N → R be a continuously
differentiable positive definite function on a neighborhood N of the origin, such that
V̇ (x) ≤ 0 in N , then the origin is asymptotically stable if there is no solution that
can stay forever in S = {x ∈ N | V̇ (x) = 0}, other than the trial solution. The
origin is globally asymptotically stable if N = R

n and V (x) is radially unbounded.

2.5 Linear Matrix Inequalities

Some miscellaneous definitions and results involving matrices and matrix equations
are presented in this section. These results will be used throughout the book, espe-
cially those related with the concept of linear matrix inequalities (or in short LMIs),
which will play a very important role in the following chapters.
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Definition 2.38 (Generalized Inverse) The generalized inverse (Moore–Penrose
inverse) of a matrix A is the unique matrix A+ such that

(i) AA+ A = A,
(ii) A+ AA+ = A+,
(iii) (AA+)T = AA+,
(iv) (A+ A)T = A+ A.

Lemma 2.39 (Schur Complements) Consider a symmetric matrix A such that

A =
[

A11 A12

AT
12 A22

]
. (2.75)

(i) A < 0 if and only if {
A22 < 0,

A11 − A12A−1
22 AT

12 < 0,
(2.76)

or {
A11 < 0,

A22 − AT
12A−1

11 A12 < 0.
(2.77)

(ii) A ≤ 0 if and only if ⎧
⎨

⎩

A22 ≤ 0,
A12(I − A+

22A22) = 0,
A11 − A12A+

22AT
12 ≤ 0,

(2.78)

or ⎧
⎨

⎩

A11 ≤ 0,
A12(I − A11A+

11) = 0,
A22 − AT

12A+
11A12 ≤ 0.

(2.79)

where I is the identity matrix with appropriate dimension.

Next, we present the definition of a linear matrix inequality.

Definition 2.40 A linear matrix inequality is any constraint that can be written or
converted to

F(x) = F0 + x1F1 + x2F2 + · · · + xm Fm < 0, (2.80)

where xi are the variables, and the symmetric matrices Fi for i = 1, . . . , m are
known.

The linear matrix inequality (2.80) is referred to as a strict linear matrix inequality.
Also of interest is the nonstrict linear matrix inequality, where F(x) ≤ 0. From the
practical point of view, LMIs are usually presented as

f (X1, . . . , X N ) < g(X1, . . . , X N ), (2.81)
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where f and g are affine functions of the unknown matrices X1, . . . , X N . Quadratic
forms can usually be converted to affine ones using the Schur complements. There-
fore, we will make no distinctions between quadratic and affine forms, or between a
set of LMIs or a single one, and will refer to all of them as simply LMIs.

2.6 Stochastic Systems

2.6.1 Probability Preliminaries

A stochastic process X = {X (t), t ∈ T } is a collection of random variables. That is,
for each t in the index set T , X (t) is a random variable. We often interpret t as time
and call X (t) the state of the process at time t . When the index set T is countable,
X is called a discrete-time stochastic process, while if T is a continuum, it is then
called a continuous-time stochastic process.

A continuous-time stochastic process {X (t), t ∈ T } is said to have independent
increments if for all t0 < t1 < t2 < · · · < tn , the random variables

X (t1) − X (t0), X (t2) − X (t1), . . . , X (tn) − X (tn−1) (2.82)

are independent. It is said to possess stationary increments if X (t + s)− X (t) has the
same distribution for all t . That is, it possesses independent increments if the changes
in the processes’ value over nonoverlapping time intervals are independent; and it
possesses stationary increments if the distribution of the change in value between
any two points depends only on the distance between those points.

2.6.2 Continuous-Time Markov Chains

Consider a stochastic process {Xn, n = 0, 1, 2, . . .} that takes on a finite or countable
number of possible values. Unless otherwise mentioned, this set of possible values
of the process will be denoted by the set of nonnegative integers {0, 1, 2, . . .}. In this
case, Xn = i denotes that the process is in state i at time n. When the process is
in state i , the value Pi j represents the probability that the process will be in state.
Specifically,

P{Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X1, X0 = i0} = Pi j (2.83)

for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. Such a stochastic process is known
as a Markov chain. In the above definition, for any Markov chain, the conditional
distribution of any future state Xn+1, given the past states X0, X1, . . . , Xn−1 and the
present state xn , is independent of the past states and depends only on the present
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state, which is called the Markovian property. A process with this property is said to
be Markovian or a Markov process.

In analogy with the definition of a discrete-timeMarkov chain, a process {Xt , t ≥
0} is called continuous-timeMarkov chain if for all s, t ≥ 0, and nonnegative integers
i, j, X (μ), 0 ≤ μ < s,

P{X (t + s) = j | X (s) = i, X (μ) = x(μ), 0 ≤ μ < s}
= P{X (t + s) = j | X (s) = i}.

In other words, a continuous-time Markov chain is a stochastic process having the
Markovian property that the conditional distribution of the future state at time t + s,
given the present state at s and all future states depend only on the current state while
it is independent of the past ones.

Now let us introduce a Markovian jumping system, which is defined as

ẋ(t) = f (t, x(t), r(t)) (2.84)

where x ∈ R
n is the state, r : R+ → S is the continuous-time Markov chain with

S � {1, 2, . . . , N } being the discrete state, f : R+ ×R
n ×S → R

n is the nonlinear
dynamic which satisfies the locally Lipschitz conditions. In general, to analyze the
stability of system (2.84), the following infinitesimal operator is also needed.

Definition 2.41 For any given V (x(t), t, r(t)) ∈ C(Rn ×R+ ×S;R+), associated
with system (2.84), the infinitesimal operator L, from R

n × R+ × S to R, can be
described as follows:

LV (x(t), t, i) = Vt (x(t), t, i) + Vx (x(t), t, i) f (t, x(t), i) +
N∑

j=1

πi j V (x(t), t, j)

(2.85)

for any i ∈ S, where

Vt (x(t), t, i) =
(

∂V (x(t), t, i)

∂t

)
, (2.86)

Vx (x(t), t, i) =
(

∂V (x(t), t, i)

∂x1
, . . . ,

∂V (x(t), t, i)

∂xn

)
, (2.87)

Vxx (x(t), t, i) =
(

∂2V (x(t), t, i)

∂xm∂xs

)

n×n
. (2.88)
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2.6.3 Stochastic Stability

2.6.3.1 Stability in Probability

In this section we shall investigate various types of stability for the d-dimensional
stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)d B(t) on t ≥ t0. (2.89)

Definition 2.42 The trivial solution of equation (2.89) is said to be:

1. stochastically stable or stable in probability if for every pair of ε ∈ (0, 1) and
r > 0, there exists a σ = σ(ε, r, t0) > 0 such that

P{|x(t; t0, x0)| < r ∀ t ≥ t0} ≥ 1 − ε (2.90)

whenever |x0| < σ. Otherwise, it is said to be stochastically unstable.
2. stochastically asymptotically stable if it is stochastically stable and, moreover,

for every ε ∈ (0, 1), there exists a σ0 = σ0(ε, t0) > 0 such that

P{ lim
t→∞ x(t; t0, x0) = 0} ≥ 1 − ε (2.91)

whenever |x0| < δ0.
3. stochastically asymptotically stable in the large if it is stochastically stable and,

moreover, for all x0 ∈ R
d

P{ lim
t→∞ x(t; t0, x0) = 0} = 1. (2.92)

It should also be pointed out that when g(x, t) ≡ 0, these definitions reduce to
the corresponding deterministic ones. We now extend the Lyapunov Theorem to the
stochastic case.

Theorem 2.43 If there exists a positive definite function V (x, t) ∈ C(Sh ×[t0,∞);
R+) such that

LV (x, t) ≤ 0 (2.93)

for all (x, t) ∈ Sh × [t0,∞], then the trivial solution of equation (2.89) is stochasti-
cally stable.

Theorem 2.44 If there exists a positive definite decrescent function V (x, t) ∈
C(Sh ×[t0,∞);R+) such that LV (x, t) is negative definite, then the trivial solution
of equation (2.89) is stochastically asymptotically stable.

Theorem 2.45 If there exists a positive definite decrescent radially unbounded func-
tion V (x, t) ∈ C(Rd ×[t0,∞);R+) such that LV (x, t) is negative definite, then the
trivial solution of equation (2.89) is stochastically asymptotically stable in the large.
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2.6.3.2 Almost Sure Exponential Stability

We first give the formal definition of the almost sure exponential stability.

Definition 2.46 The trivial solution of equation (2.89) is said to be almost surely
exponentially stable if

lim
t→∞

1

t
log |x(t; t0, x0)| < 0 a. s. (2.94)

for all x0 ∈ R
d .

The left-hand side of (2.94) is called the sample Lyapunov exponents of the
solution. We therefore see that the trivial solution is almost surely exponentially
stable if and only if the sample Lyapunov exponents are negative. The almost sure
exponential stability means that almost all sample paths of the solution will tend to
the equilibrium position x = 0 exponentially fast. To establish the theorems on the
almost sure exponential stability, we need to prepare a useful lemma. We assume
that the existence-and-uniqueness is fulfilled and f (0, t) ≡ 0, g(0, t) ≡ 0.

Lemma 2.47 For all x0 �= 0 in R
d

P{x(t; t0, x0) �= 0 on t ≥ t0} = 1. (2.95)

That is, almost all the sample paths of any solution starting from a nonzero state will
never reach the origin.

Theorem 2.48 Assume that there exists a function V ∈ C(Rd × [t0,∞);R+), and
constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x �= 0 and t ≥ t0,

(i) c1|x |p ≤ V (x, t),
(ii) LV (x, t) ≤ c2V (x, t),

(iii) |Vx (x, t)g(x, t)|2 ≥ c3V 2(x, t).

Then

lim
t→∞

1

t
log |x(t; t0, x0)| ≤ −c3 − 2c2

2p
a. s.

for all x0 ∈ R
d . In particular, if c3 > 2c2, the trivial solution of equation (2.89) is

almost surely exponentially stable.

Corollary 2.49 Assume that there exists a function V ∈ C(Rd × [t0,∞);R+), and
positive constants p,α,λ, such that for all x �= 0, t ≥ t0,

α|x |p ≤ V (x, t) (and) LV (x, t) ≤ −λV (x, t).
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Then

lim
t→∞

1

t
log |x(t; t0, x0)| ≤ −λ

p
a. s.

for all x0 ∈ R
d . In other words, the trivial solution of equation (2.89) is almost surely

exponentially stable.

This corollary follows from Theorem 2.48 immediately by letting c1 = α, c2 =
−λ, and c3 = 0. These results have given the upper bound for the sample Lyapunov
exponents. Let us now turn to the study of the lower bound.

Theorem 2.50 Assume that there exists a function V ∈ C(Rd × [t0,∞);R+), and
constants p > 0, c1 > 0, c2 ∈ R, c3 > 0, such that for all x �= 0 and t ≥ t0,

(i) c1|x |p ≥ V (x, t) > 0,
(ii) LV (x, t) ≥ c2V (x, t),

(iii) |Vx (x, t)g(x, t)|2 ≤ c3V 2(x, t).

Then

lim
t→∞

1

t
log |x(t; t0, x0)| ≥ −2c2 − c3

2p
a. s.

for all x0 ∈ R
d . In particular, if 2c2 > c3, then almost all the sample paths of

|x(t; t0, x0)| will tend to infinity, and we say in this case that the trivial solution of
(2.89) is almost surely exponentially unstable.

2.6.3.3 Moment Exponential Stability

In this section we shall discuss the pth moment exponential stability for equation
(2.89) and we shall always let p > 0. Let us first give the definition of the pth
moment exponential stability.

Definition 2.51 The trivial solution of equation (2.89) is said to be pth moment
exponentially stable if there is a pair of positive constants λ and C such that

E |x(t; t0, x0)|p ≤ C |x0|pe−λ(t−t0) on t ≥ t0 (2.96)

for all x0 ∈ R
d . When p = 2, it is usually said to be exponentially stable in mean

square.

Clearly, the pth moment exponential stability means that the pth moment of the
solution will tend to 0 exponentially fast. The pth moment exponential stability and
the almost sure exponential stability donot imply eachother and additional conditions
are required in order to deduce one from the other. The following theorem gives the
conditions under which the pth moment exponential stability implies the almost sure
exponential stability.
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Theorem 2.52 Assume that there is a positive constant K such that

xT f (x, t) ∨ |g(x, t)|2 ≤ K |x |2 ∀ (x, t) ∈ R
d × [t0,∞). (2.97)

Then the pth moment exponential stability of the trivial solution of equation (2.89)
implies the almost sure exponential stability.

Theorem 2.53 Let q > 0. Assume that there is a function V (x, t) ∈ C(Rd ×
[t0,∞);R+), and positive constants c1, c2, c3, such that

c1|x |q ≤ V (x, t) ≤ c2|x |q and LV (x, t) ≥ c3V (x, t) (2.98)

for all (x, t) ∈ R
d × [t0,∞]. Then

E |x(t; t0, x0)|q ≥ c1
c2

|x0|qec3(t−t0) on t ≥ t0 (2.99)

for all x0 ∈ R
d , and we say in this case that the trivial solution of equation (2.89) is

qth moment exponentially unstable.

2.7 Time-Delay Systems

A prevalent model description for dynamical systems is the ordinary differential
equations in the form of

ẋ(t) = f (t, x(t)). (2.100)

In this description, the variables x(t) ∈ R
n are known as the state variables, and the

differential equations characterize the evolution of the state variables with respect
to time. A fundamental presumption on a system modeled as such is that the future
evolution of the system is completely determined by the current value of the state
variables. In other words, the value of the state variables x(t), t0 ≤ t < ∞, for any
t0, can be found once the initial condition

x(t0) = x0 (2.101)

is known. Stability and control of dynamical systemsmodeled in ordinary differential
equations have been an extensively developed subject of scientific learning.However,
many dynamical systems cannot be properly modeled by an ordinary differential
equation. In particular, for some particular classes of systems, the future evolution
of the state variables x(t) not only depends on their current value x(t0), but also on
their past values, say x(ξ), t0 − r ≤ ξ ≤ t0, r > 0. Such systems are called time-
delay systems that may arise for a variety of reasons in many scientific disciplines
including engineering, biology, ecology, and economics.
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2.7.1 Functional Differential Equations

We can use functional differential equations to describe time-delay systems. When
the past dependence is through the state variable and not the derivative of the state
variable, we call the functional differential equations as retarded functional differ-
ential equations. When the delayed argument occurs in the derivative of the state
variable as well as in the independent variable, we call them neutral functional dif-
ferential equations. Because the retarded functional differential equations are more
common, we discuss them below.

The simplest linear retarded functional differential equation has the form

ẋ(t) = Ax(t) + Bx(t − d) + f (t) (2.102)

where A, B, and d are constants with d > 0, f is a given continuous function on R,
and x is a scalar. The following theorem specifies what is the initial value problem
for Eq. (2.102).

Theorem 2.54 If φ is a given continuous function on [−d, 0], then there is a unique
function x(φ, f ) defined on [−d,∞] which coincides with φ on [−d, 0] and satisfies
Eq. (2.102) for t ≥ 0. Of course, at t = 0, the derivative in Eq. (2.102) represents
the right-hand derivative.

Theorem 2.54 specifies the minimum amount of initial data—a function on the entire
interval [−d, 0]—to find a solution x(t) for (2.102).

If f is not continuous but only locally integrable onR, then the same proof yields
the existence of a unique solution x(φ, f ). Of course, by a solution, we mean a
function which satisfies Eq. (2.102) almost everywhere.

Theorem 2.55 If x(φ, f ) is the solution of Eq. (2.102) defined by Theorem 2.54,
then the following assertions are valid.

(i) x(φ, f )(t) has a continuous first derivative for all t > 0 and has a continuous
derivative at t = 0 if and only if φ(θ) has a derivative at θ = 0 with

φ̇(0) = Aφ(0) + Bφ(−d) + f (0). (2.103)

If f has derivatives of all orders, then x(φ, f )becomes smoother with increasing
values of t .

(ii) If B �= 0, then x(φ, f ) can be extended as a solution of equation (2.102) on
[−d − ε,∞], 0 < ε ≤ d, if and only if φ(θ) has a continuous first derivative on
[−ε, 0] and Eq. (2.103) is satisfied. Extension further to the left requires more
smoothness of φ and f and additional boundary conditions.

The smoothing property (i) of Theorem 2.55 is precisely why retarded equations
have a structure very similar to ordinary differential equations.
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Lemma 2.56 If μ and α are real-valued continuous functions on [a, b], and β ≥ 0
is integrable on [a, b] with

μ(t) ≤ α(t) +
∫ t

a
β(s)μ(s)ds, a ≤ t ≤ b,

then

μ(t) ≤ α(t) +
∫ t

a
β(s)α(s)

[
exp

∫ t

s
β(τ )dτ

]
ds, a ≤ t ≤ b.

If, in addition, α is nondecreasing, then

μ(t) ≤ α(t)exp

(∫ t

a
β(s)ds

)
, a ≤ t ≤ b.

Theorem 2.57 Suppose x(φ, f ) is the solution of equation (2.102) defined by The-
orem 2.54. Then there are positive constants a and b such that

|x(φ, f )(t)| ≤ aebt
(

|φ| +
∫ t

0
| f (s)|ds

)
, t ≥ 0

where |φ| = sup−d≤θ≤0|φ(θ)|.
Since Eq. (2.102) is linear and solutions are uniquely defined by φ, the solution

x(φ, 0) of the homogeneous equation

ẋ(t) = Ax(t) + Bx(t − d) (2.104)

which coincides with φ on [−d, 0] is linear in φ; that is, x(φ + ψ, 0) = x(φ, 0) +
x(ψ, 0) and x(aφ, 0) = ax(φ, 0) for any continuous functions φ and ψ on [−d, 0]
and any scalar a. And, for f = 0, inequality (2.103) implies that x(φ, 0)(t) is
continuous in φ for all t ; that is, x(·, 0)(t) is a continuous linear functional on the
space of continuous functions on [−d, 0].

2.7.2 Stability of Time-Delay Systems

2.7.2.1 Stability Concepts

A functional differential equation details an evolution over a finite Euclidian space
or a functional space. A general system with time delays is given by:

ẋ(t) = f (xt , u(t)), t ≥ 0 a.e., (2.105)

x(τ ) = ξ0(τ ), τ ∈ [−d, 0] (2.106)
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where x(t) ∈ R
n , u(t) ∈ R

m is the input function, for t ≥ 0 xt : [−d, 0] → R
n is

the standard function given by xt (τ ) = x(t + τ ), d is the maximum involved delay,
f : C([−d, 0];Rn) × R

m → R
n is the continuous function which is defined on

[−d, 0] and takes values in R
n , ξ0 ∈ C([−d, 0];Rn). Without loss of generality,

it is also assumed that x(t) = 0 is the trivial solution for the unforced system
ẋ(t) = f (xt , 0).

Definition 2.58 For the system (2.105), the trivial solution x(t) = 0 is said to be

• stable if for any t0 ∈ R and any ε > 0, there exists a δ = δ(t0, ε) > 0 such that
‖xt0‖c < δ implies ‖x(t)‖ < ε for t ≥ t0.

• asymptotically stable if it is stable, and for any t0 ∈ R and any ε > 0, there
exists a δa = δa(t0, ξ) > 0 such that ‖xt0‖c < δa implies limt→∞x(t) = 0 and
‖x(t)‖ < ε for t ≥ t0.

• uniformly stable if it is stable and δ(t0, ε) can be chosen independently of t0.
• uniformly asymptotically stable if it is uniformly stable and there exists a δa > 0
such that for any η > 0, there exists a T = T (δa, η), such that ‖xt0‖c < δ implies
‖x(t)‖ < η for t ≥ t0 + T and t0 ∈ R.

• globally (uniformly) asymptotically stable if it is (uniformly) asymptotically stable
and δa can be an arbitrarily large, finite number.

One should note that the stability notions herein are not at all different from their
counterparts for systems without delay, modulo to the different assumptions on the
initial conditions.

Definition 2.59 • If a time-delay system is asymptotically stable for any delay val-
ues belonging to R+, the system is said to be delay-independent asymptotically
stable.

• If a time-delay system is asymptotically stable for all delay values belonging to a
compact subset D of R+, the system is said to be delay-dependent asymptotically
stable.

• For a delay-dependent asymptotically stable time-delay system, if the stability
does not depend on the variation rate of delays or on the time derivative of delays,
the system is said to be rate-independent asymptotically stable.

• For a delay-dependent asymptotically stable time-delay system, if the stability
depends on the variation rate of delays or on the time derivative of delays, the
system is said to be rate-dependent asymptotically stable.

2.7.2.2 Lyapunov–Krasovskii Theorem

For the time-delay systems, Lyapunov–Krasovskii type theorem plays a role in the
analysis in both the input–output stability (corresponds to zero-state response) and
the asymptotic stability (corresponds to zero-input response).
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Theorem 2.60 (Lyapunov–Krasovskii Stability Theorem) Suppose that x(0) = 0
is an equilibrium of the unforced state equation

ẋ(t) = f (t, xt ), (2.107)

x(t) ∈ R
n, f : R × C([−d, 0],Rn) → R

n and u, v, w : R+ → R+ are continuous
nondecreasing functions, u(s) and v(s) are positive for s > 0, with u(0) = v(0) = 0.
If there exists a continuous differentiable functional V : R × C → R such that:

u(||φ(0)||) ≤ V (t,φ) ≤ v(||φ(0)||) (2.108)

and:

V̇ (t,φ) ≤ −w(‖φ(0)‖) (2.109)

then the zero solution of (2.107) is uniformly stable. If w(s) > 0 for s > 0 , then it
is uniformly asymptotically stable.

2.7.2.3 Razumikhin Theorem

In the Lyapunov–Krasovskii theorem, the taken Lyapunov–Krasovskii functional
requires the state variable x(t) in the interval [t − d, t]. Note that, the necessitates
in the manipulation of functionals make the application of the Lyapunov–Krasovskii
theorem rather difficult. This difficulty may sometimes be circumvented using the
Razumikhin-type theorem, an alternative result involving essentially only functions
rather than functionals, made it available by Razumikhin.

Theorem 2.61 (Razumikhin Theorem) Suppose that x(0) = 0 is an equilibrium of
(2.107), f : R × C([−d, 0],Rn) → R

n and u, v, w : R+ → R+ are continuous
nondecreasing functions, u(s) and v(s) are positive for s > 0, with u(0) = v(0) =
0, v strictly increasing. If there exists a continuous differentiable functional V :
R × R

n → R such that:

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), for t ∈ R and x ∈ R
n (2.110)

and the derivative of V along the solution x(t) of (2.105) satisfies

V̇ (t, x(t)) ≤ −w(‖x(t)‖), whenever V (t + θ, x(t + θ)) ≤ V (t, x(t)) (2.111)

for θ ∈ [−d, 0], then system (2.107) is uniformly stable.
If, in addition, w(s) > 0 for s > 0, and there exists a continuous nondecreasing

function p(s) > s for s > 0 such that condition (2.111) is strengthened to

V̇ (t, x(t)) ≤ −w(‖x(t)‖) if V (t + θ, x(t + θ)) ≤ p(V (t, x(t))) (2.112)
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for θ ∈ [−r, 0], then system (2.107) is uniformly asymptotically stable.
If, in addition, lims→∞u(s) = ∞, then system (2.105) is globally uniformly

asymptotically stable.

2.7.2.4 Input-to-State Stability

Definition 2.62 The system (2.105) is said to be ISS if there exist a KL function
β and a K function γ such that, for any initial state ξ0 and any measurable, locally
essentially bounded input u, the solution exists for all t ≥ 0 and furthermore it
satisfies

|x(t)| ≤ β(‖ξ0‖∞, t) +
∫ t

0
γ(|u(s)|)ds. (2.113)

A Lyapunov–Krasovskii methodology for studying the ISS of nonlinear time-delay
systems is presented below.

Theorem 2.63 If there exist a functional V : C([−d, 0];Rn) → R+, functions α1,
α2 of class K∞, and functions α3, ρ of class K such that:

α1(|φ(0)|) ≤ V (φ) ≤ α2(‖φ‖a),∀φ ∈ C([−d, 0]Rn);
D+V (φ, u) ≤ − α3(‖φ‖a),∀φ ∈ C([−d, 0];Rn), u ∈ R

m : ‖φ‖a ≥ ρ(‖u[0,∞)‖∞);

then, the system (2.105) is ISS with γ = α−1
1 ◦ α ◦ ρ.

2.7.3 Notes

Some of the materials presented in this chapter are not intended to be self-contained.
Rather, they are prepared for readers to review the notations or switch to other
references for detailed information. For linear algebra and system theory, readers are
recommended to [1–6]. For linear matrix inequalities, readers are recommended to
[7–9]. For stochastic systems, readers are recommended to [10–18]. For time-delay
systems, readers are recommended to [19–27].
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