A General Model Transformation
Methodology to Serve Enterprise
Interoperability Data Sharing Problem

Tiexin Wang(%), Sebastien Truptil, and Frederick Benaben

Centre Génie Industriel, Université de Toulouse - Mines Albi,
Campus Jarlard, 81000 Albi, France
{tiexin. wang, sebastien. truptil,
frederick. benaben}@mines-albi. fr

Abstract. Interoperability, as one of the key competition factors for modern
enterprises, describes the ability to establish partnership activities in an envi-
ronment of unstable market. In some terms, interoperability determines the future
of enterprises; so, improving enterprises’ interoperability turns to be a research
focus. “Sharing data among heterogeneous partners” is one of the most basic
common interoperability problems, which requires a general methodology to
serve. Model transformation, which plays a key role in model-driven engineer-
ing, provides a possible solution to data sharing problem. A general model
transformation methodology, which could shield traditional model transforma-
tion practices’ weaknesses: low reusability, contains repetitive tasks, involves
huge manual effort, etc., is an ideal solution to data sharing problem. This paper
presents a general model transformation methodology ‘“combining semantic
check measurement and syntactic check measurement into refined model
transformation processes” and the mechanism of using it to serve interopera-
bility’s data sharing issue.

Keywords: Interoperability + Model-driven engineering + Model transforma-
tion - Semantic check * Syntactic check

1 Introduction

Nowadays, the world is becoming smaller and smaller. With the advancements of
science and technology, more and more collaborations among countries, companies
and persons are appeared. Such collaborations appear and disappear within specific
periods, with achieving or failing of their goals. Based on this fact, the ability of
cooperating with different partners becomes crucial to modern systems and organiza-
tions. Furthermore, “interoperability” is proposed specially to describe such ability.
There are several definitions for interoperability; one of the initial definitions of
interoperability could be referred in [1]. Another two definitions are listed here: as
defined in [2], “interoperability is the ability of a system or a product to work with other
systems or products without special effort from the user”; a similar definition of
interoperability is stated in [3], interoperability is “a measure of the degree to which
diverse systems, organizations, and/or individuals are able to work together to achieve

© IFIP International Federation for Information Processing 2015
M. van Sinderen and V. Chapurlat (Eds.): IWEI 2015, LNBIP 213, pp. 16-29, 2015.
DOL: 10.1007/978-3-662-47157-9_2

A General Model Transformation Methodology 17

a common goal. For computer systems, interoperability is typically defined in terms of
syntactic interoperability and semantic interoperability”. Two key issues that stated in
the two definitions are: “cooperate without special users’ effort” and ‘“semantic and
syntactic” aspects. Although in different domains and from different views of one
domain, the definitions of interoperability might be slightly different, the essence
reflected by these definitions is similar. Figure 1 shows the interoperability issue and
the data sharing problem of it.

—
1 E}' DR _AN—

Y5
Y10t

Information System Information System

= — Application1 <

> Application 1

» Application m

Fig. 1. An illustration of interoperability issue

Figure 1 shows a collaboration situation between two companies. Modern com-
panies use information systems to manage their business; in some aspects, the coop-
eration among companies depends on the merge of their information systems.
Furthermore, merging information systems relies on the interactions of their applica-
tions. So, sharing data among these applications (both within one system and from
different systems) is important for enterprise cooperation. However, generally the
structures of data are designed for specific applications used by particular enterprises; it
is difficult to share data among different applications. Model transformation provides a
possible solution to data sharing issue.

“Enterprise Interoperability Framework (EIF)” [4] shows a possible way of com-
bining formally enterprise interoperability and model-driven engineering (especially
the model transformation part). However, traditional model transformation practices
have their own weakness: low reusability, repetitive tasks, huge manual effort, etc. In
order to apply model transformation to solve interoperability problems, a general model
transformation methodology (shield these weaknesses) is required. This paper presents
such a general model transformation methodology.

This paper is divided into five sections. In the second section, the basic principles of
model-driven engineering (MDE) and model transformation are presented. The third
section describes the overview of the general methodology. The detail of syntactic and
semantic checking measurements is illustrated in the fourth section. Finally, the con-
clusion is proposed in the fifth section.

18 T. Wang et al.

2 Basic Background Theories

In this section, the basic background theories of this general model transformation
methodology (GMTM) are presented. These theories are divided into two group:the-
ories owned by MDE domain and theories belonging specially to model transformation
domain.

2.1 Model-Driven Engineering

Model-driven engineering (MDE) [5], which initially referred as model-driven software
development, is an important direction in the development of software process. It takes
modeling and model transformation as the main means of software development methods.
Comparing with other software development methods, the main features of model-driven
development approach are paying more attention to construct the abstract description of
different areas of knowledge: the domain models; then based on these models to char-
acterize the software system. Through layers of automatic (semi-automatic) conversion of
the models, the development from design to achieve the transition to the final completion
of the entire system will complete.

At this moment, the principles of “model driven engineering” are applied on many
different domains (knowledge engineering, enterprise engineering, etc.); it is not
restricted to software development any more.

As an example to broader MDE’s vision, “model-driven architecture (MDA)” [6]
was launched in 2001 by the Object Management Group (OMG). Figure 2 shows the
basic principles of MDA.

CIM model to model
o o o Abstract CM = CM > CIM | oo cam

l model to model
P'iz;:: PIM b—{ PIM '— PIM | < | PIM
model to code
[

Concrete ’PSM }*{ PSM }7\ PSM “[PSM ‘

CIM: Computation independent model PIM: Platform-independent model ~ PSM: Platform-specific model

Fig. 2. Simple illustration of MDA

In MDA, models could be divided into three groups: “CIM”, “PIM” and “PSM”. In
each of the three groups, large number of models could be built to reflect the char-
acteristics, which based on different point of views, of one system. Models in PIM layer
should be generated by transforming the models from CIM layer; the mechanism of
building PSM layer’s models follows the same principle (generated by transforming
models from PIM layer).

In MDE context, everything could be regarded as a model or could be modeled. In
simple words, MDE uses models to describe the reality (concerns the modeling techniques)

A General Model Transformation Methodology 19

and uses model transformations to solve conversion problems. Modeling, as one key role of
MDE, means the activities of building models; model transformation, as another key role of
MDE, means the process of taking the source model to generate the target model.

2.2 Model and Meta-model

Model and meta-model are two basic concepts in MDE; Fig. 3 shows the relation
between them.

presents conforms conforms
Subject - Model | Meta-model - Meta-meta-model

Fig. 3. Relation between model and meta-model

As defined in [7], model is “a simplification of the subject and its purpose is to
answer some particular questions aimed towards the subject”. Models are built to
represent the characteristics of real systems based on specific point views. Meta-models
are a specific kind of model; they make statements about what can be expressed in valid
models. Meta-models could have several layers; meta-model defines building rules for
models that conform to it.

2.3 Model Transformation

Model transformation plays a key role in MDE,; it is the nexus among heterogeneous
models. With the extensive usage of MDE theory, more and more theories, techniques
and tools of model transformation have been created. Large amount of model trans-
formation practices have been developed to serve some specific domain problems using
these theories, techniques and tools; two examples are stated in [8, 9].

In general, according to [10], there are two main kinds of model transformation
approaches. They are: model-to-code approaches and model-to-model approaches. For
model-to-code approaches (PIM to PSM), there are two categories: “Visitor-based
approaches” and “Template-based approaches”. For the model-to-model approaches,
there are five categories:

e Direct-dManipulation Approaches: offering an internal model representation plus
some API to manipulate this model

e Relational Approaches: grouping declarative approaches where the main concept is
mathematical relations

e Graph-Transformation-Based Approaches: e.g., VIATRA, ATOM and GreAT
Structure-Driven Approaches: an example is “Optimal]” model transformation
Hybrid Approaches: combining different techniques from the previous categories

The detail of these approaches (their applicable situations, working mechanism, etc.)
could be consulted in [10].

20 T. Wang et al.

However, as mentioned above, traditional model transformation practices have
internal weaknesses; these weaknesses limit the scope of model transformation usage. As
the inner characteristics and requirement of modern enterprise interoperability (e.g. agility,
transient, heterogeneity, complexity), traditional model transformation practices are not a
good choice to serve it. So, a general model transformation methodology is required.

3 Overview of the General Methodology

This section presents the detail of GMTM. The main objective of GMTM is “over-
coming the shortcomings of traditional model transformation practices and serving to
enterprise interoperability”. “General” means the use of this methodology is widely,
not limited to a specific domain. In order to be general, the process of defining model
transformation mappings should be automatic. To achieve this goal, semantic and
syntactic checking (S&S) measurements are combined into the traditional model
transformation process.

3.1 Theoretical Main Framework of the General Methodology

GMTM is created on the basis of a theoretical main framework, which is based on [11],
and shown in Fig. 4.

Source Specific Shared concepts Specific Target
meta-model Concepts (Transformation Concepts meta-model
rules area)

A,
Source Specific Shared Shared Specific Target
Model Part L Part Model
4 < y
Backup // Enrichment

Capltallzed Mapplng rule: Additional
Knowledge Knowledge

Fig. 4. Theoretical main framework

Figure 4 illustrates the theoretical basis of GMTM. The significance of doing model
transformation could be “sharing knowledge”, “exchanging information”, etc. The
purpose of model transformation practice is: generate the target model based on the
source model.

The necessary condition of doing model transformation between two models is: the
source model and target model should have some potential common items (to be
detected and found). For the reason “models are built based on the rules defined in their
meta-models”, the potential common items could be traced on meta-model layer.

A General Model Transformation Methodology 21

The source MM shares part of its concepts with the target MM. As a consequence,
the source model embeds a shared part and a specific part. The shared part provides the
extracted knowledge, which may be used for the model transformation, while the
specific part should be saved as capitalized knowledge in order not to be lost. Then,
mapping rules (built based on the overlapping conceptual area between MMs) can be
applied on the extracted knowledge. The transformed knowledge and an additional
knowledge (to fill the lack of knowledge concerning the non-shared part of concepts
into the target MM) may be finally used to create the shared part and the specific part of
the target model.

3.2 The Meta-meta-model Within Main Framework

According to [12], in order to apply semantic checking measurements in the process of
defining model transformation mapping rules, some principles should be obeyed. In
this GMTM, the mechanism of applying S&S in model transformation process is
defined in a meta-meta-model (MMM), which is shown at the top of Fig. 4.

There are several meta-modelling architectures, for example “MOF: Meta-Object
Facility” [13]. These architectures define their own semantic and syntax. For GMTM
these existing meta-modelling architectures are complex to use. So, based on the
context of model transformation, we adapt the idea stated in MOF and generate this
MMM. Figure 5 shows the content of this MMM.

Environment

2
+id: String has
+name: String

1]«
contains

N 1|

Model S icR
+environment String has 1 +level: Stiing
+id: String +relation: String
+name: String L +calculate ()

[N)

1

<<dataType>>

e 2/ 0.1 | PrimitiveType

Element Property 1
+model: String 1.7 " |+id: String *
+id: String +name: String |]
+name: Stiing 22 * |+ value: String

* has 20 * 01
has . [<<dataType>>
1 |1 Enumeration

SyntacticRelation

. Edge .
= 1. links 1 [e +level Sting
+propenty: List firstEnd: String
+role: List +secondEnd: String +relation: String
* * |+ role: Sting +calculate ()

Fig. 5. The class diagram of the meta-meta-model

For GMTM, this MMM works on the top abstract level of all the other models. As
this MMM is defined as a common criterion, the meta-models (for both source models
and target models) could be built or transformed to the versions that conform to it.

22 T. Wang et al.

As shown in Fig. 5, there are ten core elements in this meta-meta-model. As models
may come from various domains or systems, a class named “Environment” is defined
to stand for these domains. All the model instances are standed by the class “Model”,
every model belongs to a specific “Environment”. “Model” is made of “Element”,
which has two inheritances: “Node” and “Edge”. “Node” are linked by “Edge” based
on their “roles”. “Element” has a group of “Property”, the “Property” could identify
and explain the “Element”. “Property” has a data type: ‘“Primitive Type” or “Enu-
meration”; to a certain extend, data type could differentiate “Property”.

All these items (with the relationships among them), illustrated above, present the
standard requirement on specific meta-models. Another two key items shown in Fig. 5
are: “Semantic Relation” and “Syntactic Relation”. They exist on different kinds of
items (e.g. between a pair of elements). Model transformation rules are generated based
on these two relations.

Generally, model transformation mappings are defined on the element level (node and
edge); the mapping rules are usually generated by domain experts. However, applying
model transformation practices to serve enterprise interoperability requires model
transformation practices to be more flexible and easier (faster) to integration. So, semantic
checking and syntactic checking that focused on element and property levels, are intro-
duced to automatically define the mappings (replacing manual efforts). Also, in the
MMM, the property and its dada type are highlighted; both of them are used to deduce
semantic relation on element level. Furthermore, the inner attribute of element and
property: their names, have also been used to define semantic and syntactic relations.

3.3 Matching Mechanism

In GMTM, model transformation is regarded as an iterative process: a target model
(generated by one transformation iteration) could be the source model for the next
iteration. In each iteration phase, transformation process is divided into three steps:
matching on element level (coarse-grained matching), hybrid matching (fine-grained
matching) and auxiliary matching (specific parts matching). All these three steps are
supported by software tool; experts may only be involved in the validating process.

Iterative Matching Mechanism. According to the theoretical main framework, model
transformation mappings are built on the potential shared parts between source model
and target model. During the transformation process: the specific part of source model is
saved as capitalized knowledge and the specific part of target model should be enriched
with additional knowledge. So, a question may be put forward: how to deal with the
capitalized knowledge and where the additional knowledge comes from? The “iterative
matching mechanism” gives a possible answer to this question.

Figure 6 shows the general idea of this iterative matching mechanism.

One complete model transformation process may involve several iterations; each of
iterations is an independent model transformation instance. An intermediate model is
both the target model of the former iteration and source model of the latter iteration. All
the specific parts (unmatched items: properties and elements) from source models are
saved into ontology as capitalized knowledge, and the specific parts of target models

A General Model Transformation Methodology 23

SM: source model TM: target model CK: capitalized knowledge AK: additional knowledge

------ ontology

D : element e :@property

Fig. 6. Overview of iterative matching mechanism

are enriched with additional knowledge (capitalized knowledge from former iterations)
that extracted from the same ontology.

Matching on Element Level. Generally, model transformation mappings are defined
on element level (nodes and edges); if two elements (come from source model and
target model, respectively) stand for the same concept (shared concept between two
models), a mapping should be built. As stated above, semantic and syntactic checking
measurements are applied on a pair of elements to detect the relation between them.

The mechanism of defining matches on element level is illustrated by an example
shown in Fig. 7.

Specific Source Meta-Model: A Specific Target Meta-Model: B
Y sl
) Mappings

b

A — =
’y Element Q_J"; — ——(. element
ame ——> name; ’
AN Property — — > Syntactic & semantic checking

Fig. 7. Example of making matching on element level

The two specific meta-models (marked as A and B) are supposed to be conformed
to the MMM. Model A has “m” elements and model B has “n” elements; the mappings
should be built within the “m*n” element’s pairs. Table 1 shows this comparison
matrix. This matrix is built automatically by software tool; based on different inputs
(model instances), similar matrix would be generated automatically.

Within each element’s pair, there exists an “Ele_SSV” value. “Ele_SSV” stands for
“element’s semantic and syntactic value”; it is calculated based on the elements’ names
and their properties. Formula (1) is defined to calculate “Ele_SSV” value.

24 T. Wang et al.
Table 1. Element level selected matrix
A el e2 | . en
El Ele_SSV Ele. SSV | ... Ele_SSV
E2 Ele_SSV Ele_.SSV | ... Ele_SSV
...... Ele_SSV Ele_SSV Ele_SSV
Em Ele_SSV Ele_SSV | ... Ele_SSV

Ele_SSV = name_weight*S_SSV + property_weight*(ZLl Max(P_SSVi))/x (1)

In (1), “name_weight” and “property_weight” are two impact factors for the
parameters elements’ names and elements’ properties, respectively. Both the values of
“name_weight” and “property_weight” are between O and 1; the sum of them is 1.
“S_SSV” stands for “string semantic and syntactic value; it is calculated based on
the words (element’s name is a word). “P_SSV” stands for “semantic and syntactic
value between a pair of properties”; another example which shown below, is used to
calculate “P_SSV”. “x” stands for the number of properties of a specific element from
source meta-model (e.g. element El).

The example shown below is used to generate the “Ele_SSV” value within the
element’s pair of E1 and el (focuses on their properties’ group); Table 2 is created for
this example. This kind of tables is also built automatically (for different comparing
elements’ pairs) by software tool.

Table 2. Property level selected matrix

El pl p2 | . py
P1 P_SSV pPSSv. | ... P_SSV
P2 P_SSV PSSV [... P_SSV
...... P_SSV P_SSV P_SSV
Px P_SSV pSSv. | ... P_SSV

El has “x” properties and el has “y” properties; within each of the “x*y” pairs of
properties, there exists a “P_SSV”. Formula (2) shows the calculating rule of “P_SSV”.

P_SSV = pn_weight*S_SSV + pt_weight"id_type (2)

In (2), “pn_weight” and “pt_weight” are two impact factors for the parameters
properties’ names and properties’ types, respectively. The sum of “pn_weight” and
“pt_weight” is 1. “S_SSV” is the same as stated in (1); this time, it stands for the
semantic and syntactic value between two properties’ names. “id_type” stands for
“identify properties type”. If two properties have the same type, this value is 1;
otherwise, this value is O.

A General Model Transformation Methodology 25

With the help of Table 2 (also needs the “S_SSV” between E1’s name and el’s
name), the “Ele_SSV” between element “E1” and “el” could be calculated. In this
way, Table 1 could be fulfilled with calculated values. For each element (E1, E2...) of
the source model A, it has a maximum “Ele_SSV” value with a specific target model
element (el, e2...); if this value exceeds a predefined threshold value (e.g. 0.5), a match
is built between the two elements. Moreover, making matching between two elements
requires building mappings among their properties; Table 2 provides necessary and
sufficient information to build mappings on property level. The rule of choosing
property matching pairs is same of choosing element matching pairs (set another
threshold value). In this way, both on element and property levels, the matches are:
“one to one” and “many to one”.

At this moment, the impact factors and selecting threshold values are assigned
directly by experience.

Hybrid Matching. After first matching step, some of the elements (both belonging to
source and target meta-models) are still unmatched; even the matched elements, some
of their properties are still unmatched. The hybrid matching step focuses on these
unmatched items.

This matching step works on property level, all the matching pairs would be built
among properties (come from both the unmatched and matched elements).

All the unmatched properties from source model will be compared with all the
properties from target model. A comparison matrix (similar to Table 2) is created to
help complete this step. The mechanism of building such matching pairs is also
depending on semantic and syntactic checking measurements (based on properties’
names and types).

In hybrid matching step, all the matching pairs are built on property’s level. This
step breaks the constraint: property matching pairs only exists within matched ele-
ment’s pairs; this constraint is the main granularity issue involved in model transfor-
mation process. However, it is also necessary to consider about the influence from
element’s level when building mappings in hybrid matching step. The matching
mechanism of this step shows in (3).

HM_P_SSV = el_weight*S_SSV + pl_weight'P_SSV (3)

In (3), “HM_P_SSV” stands for “hybrid matching property semantic and syntactic
value”. “el_weight” and “pl_weight” are two impact factors for the parameters “ele-
ment level” and “property level”, respectively. The sum of ‘“el_weight” and
“pl_weight” is 1. “S_SSV” is calculated between two elements’ names (for source
property and target property, respectively). “P_SSV?”, as stated in (2), calculates the
syntactic and semantic relation between two properties based on their names and types.

This step achieves “one to many” matching mechanism on element’s level, and on
property level matching breaks the matched elements’ constraint: properties from one
source element could be matched to properties that from several target elements.

Auxiliary Matching. After the first and second matching steps, all the shared parts
(presented in the theoretical main framework) between source model and target model
are regarded to be found. However, according to the iterative model transformation

26 T. Wang et al.

process mentioned at the beginning of this subsection, there are still some specific parts
that should be stored as capitalized knowledge or enriched as additional knowledge.
Auxiliary matching step focuses on the mechanism of storing and reusing these specific
parts from both source and target models.

All the unmatched items from source model, which regarded as specific parts, are
stored in ontology (which is called “AMTM_O” within this project). AMTM_O
designed with the same structure as MMM that shown as Fig. 5.

The syntactic and semantic checking measurements that involved in these three
matching steps will be explained in detail respectively in the following section.

4 Syntactic and Semantic Checking Measurements

GMTM requires defining automatically the model transformation mapping rules. So,
semantic and syntactic checking measurements (executed by software tool) are
involved. As shown in (4), the “S_SSV” stands for the semantic and syntactic value
between two strings.

S_SSV = sem_weight’S_SeV + syn_weight"S_SyV (4)

“Sem_weight” and “syn_weight” are two impact factors for the parameters
semantic value and syntactic value; the sum of them is 1. The two following subsec-
tions illustrate the way to calculate “S_SeV” and “S_SyV”, respectively.

4.1 Syntactic Checking Measurement

Syntactic checking measurement is used to calculate the syntactic similarity between
two words (elements’ and properties’ names in our case). There exists several syntactic
checking methods; majority of them use classic similarity metrics to calculate the
syntactic relations. Some of examples could be referred in [14].

The syntactic checking measurement in GMTM could be divided into two phases:

1. Pretreatment: focuses on finding if two words that in different forms (e.g. tense,
morphology, gender) stand for the same word.

2. “Levenshtein Distances™ algorithm [15]: calculates the syntactic similarity between
two words.

“Levenshtein distances” is equal to the number of operations needed to transform
one string to another. There are three kinds of operations: insertions, deletions and
substitutions. Formula (5) shows the calculation of syntactic relation between two
words: wordl and word2 based on “Levenshtein distances”.

S_SyV = 1-LD/Max(word]1.length, word2.length) (5)

In (5), “S_SyV” stands for the syntactic similarity value between “wordl” and
“word2”; “LD” stands for the “Levenshtein distances” between them. The value of
“S_SyV”isbetween 0 and 1; the higher of this value means the higher syntactic similarity.

A General Model Transformation Methodology 27

4.2 Semantic Checking Measurement

Contrast to syntactic checking measurement (rely just on comparing the two words);
semantic checking measurement should rely upon a huge semantic thesaurus which
contains large amount of words, their semantic meanings and semantic relations among
them. A specific semantic thesaurus has been created for GMTM, and it is based on the
basis of “WordNet” [16]. Figure 8 shows the structure of this semantic thesaurus.

Word } :

Word |

SenseKey.

SenseKey

SenseKey

Word

Fig. 8. Structure of the semantic thesaurus

Sense Base

* Word
sense

Synset Base

1
1 Belong |
! { Word g:
| Sensekey Sense i Synset

1
' :
1 :
: SenseKey [Word Be|0n§l Sema‘ntlc
H e I : relation
N I
! Belong

1
: “ Word I : Synset
l ; sense i
: \. H Semantic
¥ \ | relation
1 \{ Word ‘ Belong i

1
: sense :
i Belong 1 Synset
i 1
! '

Figure 8 shows three kinds of elements stored in the semantic thesaurus.

e Word base: normal English words (nouns, verbs and adjectives) are stored here.

e Sense base: contains all the word senses; a word could have “one or several” senses.
E.g., word “star’: it has six senses (four as a noun and two as a verb).

e “Synset” base: synonym groups; the word senses are divided into different syn-
onyms groups. Semantic relations are built among different synsets.

Table 3 shows the content stored in this semantic thesaurus and the numbers of

each kind of items.

Table 3. Content in semantic thesaurus

Items

Number

Words
Word senses
Synsets

147306
206941
114038

There are five kinds of semantic relations defined among synsets: “synonym”,
“hypernym”, “iterative hypernym”, “similar-to” and “antonym”. For each of the
semantic relations, a specific value (between 0 and 1) is assigned to it. Table 4 shows
these “value and semantic relation” pairs.

28 T. Wang et al.

Table 4. Relations and values pairs

Semantic relation S_SeV Remark

Synonym 0.9 Words from the same synset
Hypernym 0.8 Two synsets have this relation
Similar-to 0.85 Only between two adjectives
Antonym 0.2 Words have opposite meanings
Iterative hypernym 0.8" Inheritance hypernym relation

In Table 4, all the “S_SeV” values are assigned directly (by experience); these
values should be assigned with more reasonable methods.

With the huge content stored in the semantic thesaurus (shown in Tables 3 and 4,
formula (1), (2), (3) and (4) can work for GMTM.

5 Conclusion

In this paper, a general model transformation methodology (GMTM) is presented. This
methodology aims at dealing with the data sharing problem of enterprise interopera-
bility. As the inner requirement of interoperability: flexibility, faster exchange infor-
mation, this general methodology should surmount the traditional model transformation
practices’ weaknesses (limited to specific domains).

Some points, which need to be improved in the future, are listed below:

e The impact factors such as: “sem_weight” and “pn_weight” and threshold values:
the better way of assigning them is by using some mathematic strategy (“choquet”
integral?).

e Semantic checking measurement: only formal English words are stored in the
semantic thesaurus with semantic meanings; not for words (in specific cases).

e The S_SeV values that defined in Table 4: more test cases are needed to modify
these values into reasonable scope.

The usage of GMTM is not limited to the interoperability domain; GMTM allows
MDE theories to serve other engineering domains too.

GMTM

sensors ‘ l data ‘ . ‘information‘ ‘knowledge

gathering interpretation exploitation

Fig. 9. Position of GMTM usage

Figure 9 shows the general contribution of GMTM: converting rough data to
information. With rules that defined in specific domains, such information could be
transformed to knowledge which serves to domain specific problems.

By combining semantic and syntactic checking measurements into model trans-
formation process, an efficient general model transformation methodology is created.

A General Model Transformation Methodology 29

With the improvement on some of the details that involved in this GMTM, this
methodology may serve to a large number of domains.

References
1. AMICE: CIMOSA: CIM Open System Architecture, 2nd edn. Springer, Berlin (1993)
2. Konstantas, D., Bourrieres, J.P., Léonard, M., Boudjlida, N.: Interoperability of Enterprise

10.

11.

12.

13.

14.

15.

16.

Software and Applications, IESA 2005. Springer, London (2005)

Ide, N., Pustejovsky, J.: What does interoperability mean, anyway? toward an operational
definition of interoperability. In: Proceedings of the Second International Conference on
Global Interoperability for Language Resources (ICGL 2010) (2010)

Chen, D., Dassisti, M., Elvesater, B.: Enterprise Interoperability Framework and
Knowledge Corpus - Final report Annex: Knowledge Pieces, Contract no.: IST508 011,
Deliverable DI.3 Annex, 21 May 2007

Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25-31 (2006)

Soley, R., OMG staff: Model-Driven Architecture, OMG Document, November 2000. http://
www.omg.org/mda

Bézivin, J.: Model driven engineering: an emerging technical space. In: Lidmmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36-64. Springer, Heidelberg
(2006)

Castro, D.V., Maros, E., Vara, J.M.: Applying CIM-to-PIM model transformations for the
service-oriented development of information systems. Inf. Softw. Technol. 53(1), 87-105
(2011)

Grange, R., Bigand, M., Bourey, J.P.: Transformation of decisional models into UML:
application to GRAI grids. Int. J. Comput. Integr. Manuf. 23(7), 655-672 (2010)
Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOPSLA
2003 Workshop on Generative Techniques in the Context of Model-Driven Architecture
(2003)

Bénaben, F., Mu, W., Truptil, S., Pingaud, H.: Information systems design for emerging
ecosystems. In: 4th IEEE International Conference on Digital Ecosystems and Technologies
(DEST 2010) (2010)

Fabro, D., Bézivin, M.D., J., Jouault, F., Breton, E.. AMW: a generic model weaver. In: 1¢re
Journées sur I’Ingénierie Dirigée par les Modéles, Paris (2005)

Object Management Group: MOF 2.0 Query/Views/Transformations RFP. OMG Document
(2002)

William, W. C., Pradeep, R., Stephen, E. F.: A comparison of string metrics for matching
names and records. In: KDD Workshop on Data Cleaning and Object Consolidation, vol. 3
(2003)

Wilbert, H.: Measuring Dialect Pronunciation Differences using Levenshtein Distance. Ph.D.
thesis, Rijksuniversiteit Groningen (2004)

Huang, X., Zhou, C.: An OWL-based wordnet lexical ontology. J. Zhejiang Univ. 8(6),
864-870 (2007)

http://www.omg.org/mda
http://www.omg.org/mda

2 Springer
http://www.springer.com/978-3-662-47156-2

Enterprise Interoperability

&th International IFIP Working Conference, I'WEI 2015,
MNimes, France, May 28-29, 2015, Proceedings

van Sinderen, M.; Chapurlat, V. (Eds.)

2015, X, 187 p. 73 illus., Softcover

ISEM: 978-3-662-47156-2

	A General Model Transformation Methodology to Serve Enterprise Interoperability Data Sharing Problem
	Abstract
	1 Introduction
	2 Basic Background Theories
	2.1 Model-Driven Engineering
	2.2 Model and Meta-model
	2.3 Model Transformation

	3 Overview of the General Methodology
	3.1 Theoretical Main Framework of the General Methodology
	3.2 The Meta-meta-model Within Main Framework
	3.3 Matching Mechanism

	4 Syntactic and Semantic Checking Measurements
	4.1 Syntactic Checking Measurement
	4.2 Semantic Checking Measurement

	5 Conclusion
	References

