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Abstract Manufacturing scheduling is one of the most important and complex
combinatorial optimization problems, where it can have a major impact on the pro-
ductivity of a production process.Moreover, most ofmanufacturing scheduling prob-
lems fall into the class ofNP-hard combinatorial problems. In this paper,we introduce
how to design hybrid genetic algorithms (HGA) and multiobjective hybrid genetic
algorithms (Mo-HGA) for solving practical manufacturing scheduling problems for
the hard disc device (HDD) and the thin-film transistor-liquid crystal display (TFT-
LCD) manufacturing systems, respectively. In particularly, evolutionary representa-
tions and the fitness assignment mechanism as well as the hybrid genetic operations
are introduced. Through a variety of computational experiments, the effectiveness
of these HGA algorithm for HDD and Mo-HGA algorithm for TFT-LCD module
assembly as the practical manufacturing scheduling problems are demonstrated. This
paper introduces how to design Mo-HGAs for solving the practical multiobjective
manufacturing scheduling problems expanded by a multiobjective flexible job-shop
scheduling problem (Mo-FJSP; operation sequencing and resources assignment).
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1 Introduction

The semiconductor industry has grown rapidly and subsequently production planning
problems have raised many important research issues. Because of short product life
cycles, it is crucial to rapidly respond to various customer needs and deliver products
on time in high-tech semiconductor manufacturing industries such as the various
semiconductor devices including IC chips, LSI chips and microprocessors, thin-film
transistor-liquid crystal display (TFT-LCD) and hard disc device (HDD). Schedul-
ing problems for semiconductor manufacturing have the features of scheduling with
auxiliary resources, batching processes, multiple orders per job, internal and external
scheduling of cluster tools, a large number of processing steps, random equipment
failures, waiting time constraints [5, 18], job-shop scheduling problems with reen-
trance, sequence-dependent setup time (SDST), and sequence-dependent processing
time (SDPT) [11]. Flexible manufacturing systems (FMS) allow the dynamic con-
figuration of resources to process distinct products. It is possible to assign each of
these products to more than one type of unrelated resource with various efficiencies.
Multipurpose resources can perform a wide range of tasks, which allows schedulers
to concentrate the workloads among these resources to improve the utilization and
reduce resource requirements. A possible negative effect is the reduction of produc-
tion effectiveness because of the time wasted when a machine performs changeover
and configuration to accommodate for the next job. Thus, it is vital to arrange a
production schedule that simultaneously considers the values of multiple resources
to respond to production requirements rapidly and effectively [11, 19].

The HDD and TFT-LCDmanufacturing is capital and technology intensive indus-
try. Facing the fierce competitive pressures, it is important to enhance productivity
and operational efficiency.Manufacturing scheduling of TFT-LCDmodule assembly
system is a key issue to enhance manufacture efficiency that could satisfy customer
demand on time [6].

By focusing on realistic settings, a module assembly process was formulated for
use in the HDD and TFT-LCD industries as a generalization of the flexible job-shop
scheduling problem (FJSP), respectively. On a flexible job-shop floor, workstations
employ non-identical parallel machines scheduling (PMS)model and reentrant flow-
shop scheduling (RFS)model that exhibit distinct production velocities.Anoperation
can be processed using an available machine from a given workstation. For example,
the TFT-LCD module assembly scheduling problem can be divided into two sub-
problems: the routing (i.e., assigning each operation to machines) and scheduling
problems (i.e., determining the start time of each operation to machines). The fol-
lowing factory-specific factors complicate the TFT-LCD module assembly schedul-
ing problem. Bidotet [2] reported detail definitions to avoid ambiguity of terms
commonly used by different communities: complete schedule, flexible schedule,
conditional schedule, predictive schedule, executable schedule, adaptive scheduling
system, robust predictive schedule and table predictive schedule. However, to find the
optimal solutions of manufacturing scheduling gives rise to complex combinatorial
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optimization, unfortunately,most of them fall into the class ofNP-hard combinatorial
problems.

The rest of this paper is organized as follows: Sect. 2 introduces hybrid reen-
trant flow-shop scheduling (RFS) model in HDD manufacturing. The case study
of hybrid RFS problem withtime window constraints for HDD module assembly
system byhybrid genetic algorithm (HGA) with left-shift routine for improving and
fuzzy logic controller (FLC) for tuning parameters introduces and the effectiveness of
computational results demonstrates in Sect. 3. After introducing another case study
of manufacturing model in TFT-LCD module assembly manufacturing system in
Sect. 4, multiobjectivehybrid GA (Mo-HGA) algorithm with TOPSIS (technique for
order preference by similarity to ideal solution) introduces how to design a chromo-
some, treat precedence relationship and fitness assignment mechanism, and clarifies
effectiveness and efficiency in the best compromised solution as a quality of solution
with reasonable interactive computational time. Finally, the conclusion of the paper
and future research are drawn in Sect. 6.

2 Hybrid Reentrant Model in HDD Manufacturing

The semiconductor industry has grown rapidly, and subsequently production plan-
ning problems have raised many important research issues. The reentrant flow-shop
scheduling (RFS) problemwith timewindows constraint for hard disk devices (HDD)
manufacturing is one such problem of the expanded semiconductor industry. The
RFS scheduling problem with the objective of minimizing the makes pan of jobs is
considered. This research addresses the HGA with auto-tuning parameters for the
deterministic Fm |fmls, rcrc, temp|Cmax problem.

A HDD (hard disk device) manufacturing system is one of the most complicated
systems depending on several constraints, such as various product families with
different processing time and processing flow, high flexibility machines, and one
or more time operations on a workstation in the reentry flow of a job. Moreover,
controlling processing time constraints is an important issue for an industry which
requires high quality production especially in a hard-disk manufacturing system.
HDD manufacturing consists of four Main processes as shown in Fig. 1.

SF (slider fabrication)
HGA (head gimbals assembly)
HSA (head stack assembly)
HDD (hard disk drive assembly)

HDD process is consisting of the following two serial one.
Assembly Lines and Backend Process, Backend Process consists of the following

eight production stages [16]:
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Fig. 1 Main processes of
HDD manufacturing

SF HGA HSA HDD 

HDD 
Assembly 

Lines

Backend 
Process

1. Charge 2. Filler 3. Discharge 4. BE Test 

5. LP6. Pack 17. FQA8. Pack 2

(1) Charge (Helium Charge);
(2) Filler Test;
(3) Discharge (Helium Discharge);
(4) BE test (Backend test);
(5) LP (Label Printing);
(6) Pack 1;
(7) FQA (Sampling constraint);
(8) Pack 2.

In this section, we consider assembly line process for HDD (hard disk drive)
manufacturing system as shown in Fig. 2. This is the hybrid flow-shop in a real hard-
disk manufacturing system, there are 9 processes with 17 workstations such as a
complex parallel machine scheduling (PMS) model introduced in Sect. 2. Each of
them has a different number ofmachines which also have different efficiencies. Some
machines might be limited by production constraints, such as machine eligibility
restriction and sequence dependent setup time. Moreover, the system still consists
of several sub-systems for example, reentrant shop, common machine shop, and
permutation shop. Unfortunately, these were located in the single system; it was
very difficult to solve all by the optimization techniques.

Nevertheless, planning and scheduling in the above system might be reduced by
a simplification. Decomposition of the problem and decrement of the problem size
were usually included by many researchers. This should be done to understand and
clarify a complicated system [3, 4].

Without any generality of HDD manufacturing system, we can consider a small
scale of there entrant flow-shop scheduling (RFS) problem for producing 4 different
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Fig. 2 Real model of HDD
manuf. system

Fig. 3 Processing flow of a
simple RFS problem
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Fig. 4 Precedence relationship graph of simple RFS problem

HDD products under 7 workstations as shown in Fig. 3. Considering the processing
flow of a simplified RFS scheduling problem as shown in Fig. 4, there are 4 products
(J1, J2, J3, and J4) with no consideration of lot sizes of jobs. This means all jobs
have the same lot sizes. Also, this manufacturing system has 7 workstations with
the reentrant workstations (Table1). Moreover, in this example, there is the time
windows constraint (tw = 30min/lot) for controlling production starting fromWS-6
to WS-7.

From the data set, the precedence relationship can be defined by the successors
and operation sequence as shown in Table1. Within these workstations, the jobs will
be produced depending on their operation sequences. The graph is then drawn for
preparing a chromosome for initial generation, and repairing the chromosome after
genetic operators as shown in Fig. 4.

Indeed, the system complexity comes from three important restrictions. First,
all products can be produced depending on reentrant flow; they have to produce
two family product groups at some workstations. Lastly, they have to produce all
products with the completion time of each under the time windows. The objective is
to minimize makes pan and reduce loss.

3 Hybrid Genetic Algorithm with Left-Shift Routine
and Computational Results

Genetic Representation: Gen et al. [9] proposed an implementation of GA for solv-
ing the job-shop scheduling problem. The operation-based representation encoded
a schedule as a sequence of operations and each gene standing for one operation
was proposed by them [10]. Furthermore, we can apply it to the RFS scheduling
problem. After creating the chromosome by the encoding routine, the schedule can
be generated. When generating it, an operation can be started whenever its pre-
decessor has been finished and the machine to process it is available. The gener-
ated schedule of the example chromosome in Fig. 5 is shown as follows: Schedule
S = (oi j , Mm, si j − ci j ); oi j denotes operation j in job i ; Mm is machine m; si j

means starting operation j in job i and is completing operation j in job i .
S = {(o1,1, M1, 0–6), (o2,1, M1, 6–12), (o3,1, M1, 12–18), (o4,1, M1, 18–24),

(o1,2a, M2, 6–13), (o1,3, M3, 13–18), (o2,2a, M2, 13–20), (o2,3, M3, 20–25),(o3,2a,

M2, 20–27), (o3,3, M3, 27–32), (o4,2a, M2, 27–34), (o4,3, M3, 34–39), (o1,2b, M2,
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Fig. 5 The illustration of a chromosome with operation-based representations

32–41), (o2,2b, M2, 41–48), (o3,2b, M2, 48–55), (o4,2b, M2, 55–62), (o1,4, M4, 41–
95), (o1,5, M5, 95–103), (o1,6A, M6, 103–110), (o1,7a, M7, 110–121), (o2,4, M4,

95–149), (o2,5, M5, 149–157), (o2,6A, M6, 157–164), (o2,7b, M7, 164–174), (o3,4,
M4, 149–203), (o3,2c, M2, 203–210), (o3,6B, M6, 210–218), (o3,7a, M7, 218–229),
(o4,4, M4, 203–257), (o4,2c, M2, 257–264), (o4,6B, M6, 264–272), (o4,7c, M7, 272–
284)}.

The corresponding Gantt chart of this schedule can be drawn as shown in Fig. 6.
From the Gantt chart, it is clear that the operation based method can be used for
generating the suitable candidate chromosome as shown in Fig. 6. So, this sequence
solution has made a 284-min makespan and no loss because there are no jobs exceed-
ing the time windows (30min between WS-6 and WS-7).

Genetic Operations: For creating offspring by genetic operations we used two-
cut point crossover, swap-mutation and insert-mutation operations. For the detailed
calculated results by genetic operations, we can get them in [3].

Fitness Function: In the RFS scheduling problem, the objective is to minimize
the makespan (zi), so it is directly related with maximizing the system throughput.
RFS scheduling in the hard-disk manufacturing system as in this paper, also has to
consider the lost lot which exceeded the critical processing time. Equation (1) shown
the fitness function of GA where vi is a chromosome vector i; the population is
popSize.

eval(vi ) = 1/zi , i = 1, 2, . . . , popSize. (1)

Fig. 6 A Gantt chart of the generated chromosome
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Fig. 7 Overall procedure in the pseudo-code of hybrid GA for solving RFS problem

In addition, RFS scheduling in a hard-disk manufacturing system as in this paper,
also has to consider the number of losses as jobs which exceeded the critical process-
ing time. It also is an indication of the effective system even if the loss cannot be
reworked.

The overall procedure in the pseudo-code of Hybrid GA for solving the reen-
trant flow-shop scheduling (RFS) problem for HDD manufacturing system, can be
designed in Fig. 7. Regular genetic operations might construct illegal offspring in the
next generation. In particular crossover and mutation operations, which are explo-
ration and exploitation for the search space, might not produce a feasible solution.
Then, checking and repairing offspring with system constraints should be done care-
fully.

Checking Precedence Constraint: This paper introduces checking and repairing
precedence constraint for all offspringC(t). The steps of the check and repair routine
for the precedence constraint are given as follows:

Step 1. Transform all offspring C(t) by the decoding routine.
Step 2. Compare each offspring C(t) with operation sequences for each job.
Step 3. If there is an illegal offspring C(t), repair it by the operation sequences based
on the job.

Checking Time Window Constraint: In the same situation, the time window con-
straints for all chromosomes/offspring are checked and repaired. The steps for the
checking and repairing routine for the time window constraint are as follows:

Step 1. Transform all offspring C(t) by decoding routine.
Step 2. Calculate a time difference between first and last operations in time window
zone for each job in C(t).



36 M. Gen et al.

Step 3. Compare a time difference in each job with the time window constraint to
find an illegal job.
Step 4. If there is an illegal job, the first operation shifts to right before the last
operation on the same machine.

Local Search (Left-shift Algorithm): After drawing the Gantt chart of a chromo-
some or an offspring, a local search can be conducted to improve C(t) in order to
reduce the idle time. Left-shift algorithm by Abe and Ida [1] is suitable to apply the
RFS scheduling problem in this paper. The left-shift procedure is shown by the steps
as follows:

To improve the decoded schedule after drawing the Gantt chart, a heuristic of
local search, namely the Left-shift algorithm [7] could be used for solving the RFS
problem too. It will help to better minimize themakespan than the old Gantt chart [4].

Two types of data problems were generated for all data. They were derived by
standardization of industrial case, such as the standardized problem for 17 worksta-
tions, and the simple problem for 7 workstations by covered selection (Table2). In
Table2, all of the processing times on each machine by operations is detailed for the
standardized problem data set. Another data set is the simple problem as listed in
Table2. Both of the tables also include the time window details.

Step 1. Transform all offspring C(t) by decoding routine.
Step 2. Calculate all idle times on each machine.
Step 3. Check all idle times tomove left side for an operation in each partial sequence
by comparing the precedence relationship on the same machine.
Step 4. Repeat steps 2-3 until there are no more left-shift operations.

When considering lot sizes, data is shown in Table3 for the standardized problem
and for the simple problem. So, 11 jobs with 220 lots per period is the problem size
for the standardized problem; 4 jobs with 61 lots per period is the simple problem.
Additionally, this table shows the different product types with “A” being the first type
and “B” being the last type. Also, all of them can be divided into three sub-types.

In Table3, all of the processing times on each machine by operations is detailed
for the standardized problem data set. Another data set is the simple problem as listed
in Table3. This table also includes the time window details. When considering lot
sizes, data is shown in Table4 for the standardized problem and the simple problem.
So, 11 jobs with 220 lots per period is the problem size for the standardized problem;
4 jobs with 61 lots per period is the simple problem. Additionally, this table shows
the different product types with “A” being the first type and “B” being the last type.
Also, all of them can be divided into three sub-types.

The more detailed computational results by the proposed hybrid GA with local
search and fuzzy logic controller demonstrated the effectiveness and efficiency by
solving a real case of an HDD manufacturing system. The parameters pC and
pM were variously changed to automatically regulate a suitable balance between
exploitation and exploration during the evolutionary process of the hybrid genetic
algorithm with fuzzy logic controller (HGA.FLC). Recently Sangsawang et al. [16]
proposed metaheuristics optimization approaches for solving the two-stage reen-
trant FFS (RFFS) problem with blocking constraint (FFS|2-stage,rcrc,block|Cmax)
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Table 2 Data set of processing time and time window of the standardized and simple problems

Machines Operations ProcTime (m)

Real data (xi ) Standardized data
(10(yi + 1))

WS-1 o1 6.5 6

o2a 10 7

o2b 10 7

WS-2 o2c 10 7

o2d 10 7

WS-3 o3 16 9

WS-4 o4 2 5

WS-5 o5 0.3 5

WS-6 o6 0.3 5

WS-7 o7 210 54

WS-8 o8 10 7

WS-9 o9 15 8

WS-10 o10 8 7

WS-11 o11A 20 10

o11B 20 10

WS-12 o12A 8 7

o12B 8 7

WS-13 o13A 10.2 7

o13B 11.5 8

WS-14 o14A 4.8 6

o14B 5.6 6

WS-15 o15A 1.5 5

o15B 1.5 5

WS-16 o16 35 13

o17a 26.5 11

WS-17 o17b 23 10

o17c 32 12

WS-1 o1 6

o2a 7

WS-2 o2b 7

o2c 7

WS-3 o3 5

WS-4 o4 54

WS-5 o5 8

WS-6 o6A 7

o6B 8

WS-14 to WS-17: time windows = 300min/lot, WS-6 to WS-7: time windows = 30min/lot
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Table 3 Data set of product types and number of lots of the standardized and simple problems

No. of lots

Product types Products Real data(xi ) Standardized data
(10(yi + 2))

A1 P-1 100 9

A1 P-2 175 11

A2 P-3 1,243 32

A1 P-4 866 25

A2 P-5 1,137 30

A3 P-6 228 12

B1 P-7 228 12

B2 P-8 510 17

B3 P-9 841 24

B2 P-10 1533 38

B3 P-11 139 10

A1 P-1 9

A2 P-2 30

B1 P-3 12

B3 P-4 10

in which they applied a hybrid GA and a hybrid particle swarm optimization (HPSO)
with Cauchy distribution.

4 Manufacturing Model in TFT-LCD Module Assembly

Because of short product lifecycles, it is crucial to rapidly respond to various cus-
tomer needs and deliver products on time in high-tech industries such as the thin-
film transistor-liquid crystal display (TFT-LCD) and semiconductor manufacturing
industries. The TFT-LCDmanufacturing is capital and technology intensive industry.
Facing the fierce competitive pressures, it is important to enhance productivity and
operational efficiency. Manufacturing scheduling of TFT-LCD Module Assembly
system is a key issue to enhance manufacture efficiency that could satisfy customer
demand on time [6]. By focusing on realistic settings, amodule assembly processwas
formulated for use in the TFT-LCD industry as a generalization of the flexible job-
shop scheduling problem (FJSP). On a flexible job-shop floor, workstations employ
non-identical parallel machines scheduling (PMS) that exhibit distinct production
velocities. An operation can be processed using an available machine from a given
workstation. The TFT-LCD module assembly scheduling problem can be divided
into two subproblems: the routing (i.e., assigning each operation to machines) and
scheduling problems (i.e., determining the start time of each operation to machines).
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The following factory-specific factors complicate the TFT-LCD module assembly
scheduling problem.

The TFT-LCD module assembly production is one of FJSP models that is critical
to satisfy the customer demands on time. On the module assembly shop floor, each
workstation has identical and non-identical parallel machines that access the jobs at
various processing velocities dependingon the product families. To satisfy the various
jobs, the machines need to be set up as the numerous tools to conduct consecutive
products. This study aims to propose a novel approach to address the TFT-LCD
module assembly scheduling problem by simultaneously considering the following
multiple and often conflicting objectives such as the makespan, the weighted number
of tardy jobs, and the total machine setup time, subject to the constraints of product
families, non-identical parallel machines, and sequence-dependent setup times [6].

The TFT-LCDmanufacturing process is divided into three main stages: Array/CF
(color filter) process, Cell process, and Module process (Fig. 8). The Array/CF
process is similar to semiconductor wafer fabrication except that transistors are built
up on the glass substrate instead of siliconwafer, and the processes are also re-entrant
flow. The Cell process attaches the Array substrate and CF substrate together, and
fills the liquid crystal between two substrates. The Module process, the final stage, is
to assemble all customized components as the finished goods. The Module process
stage involves six workstations that assemble customized components (e.g., inte-
grated circuit, printed circuit board, driver board, backlight, and chassis) onto the
panels to complete the final TFT-LCD production:

(1) The IC (integrated circuit) bonding.
(2) The PCB (printed circuit board) bonding.
(3) The components assembly.
(4) The burn-in test.
(5) The inspection.
(6) The packing and shipping.

Cell Process

TFT Input PI Rubbing Sealant Printing LC Filling

Polarizer
Attaching Cutting CF InputODF Assembly

Module Process

Packing & Shipping Inspection Burn-In Test

Components
   Assembly

PCB BondingCell Input IC Bonding

Array & CF Process

Array Process

Glass Substrate

Patterning

Glass Substrate

CF Process
PS ITO Photo B

Photo BM Photo R

Deposition PR Coating

Stripping Etching Developing

Exposuring

Photo G

Mask

(a) (b)

(c)

Fig. 8 Three main stages of the TFT-LCDmanufacturing process: a Array process, b Cell process,
and c Module process
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The module assembly process is the final stage of TFT-LCD manufacturing
process, and the finished goods are directly shipping to customers. Therefore, it
is very important to deliver product on time. In order to keep efficiency and commit
customer’s due date, the Module assembly scheduling problem should be consid-
ered the following multiple and conflicting objectives simultaneously: minimizing
makespan, minimizing total workload, and maximizing confirmed line item per-
formance (CLIP) rate. The CLIP is a measure of customer satisfaction reliability,
meaning the percentage of order requests that was delivered as promised (i.e., com-
mit customer’s due date). The CLIP has been used as the major key performance
indicator in high-tech industry [14]. However, if the scheduling in order to com-
mit the customer’s due date, its lead to a larger makespan and workload [17]. It’s
dilemma to minimize makespan, total workload and maximize CLIP rate at the same
time in the shop-floor manufacturing environment. The minimizing makespan and
minimizing total work load are the effective objectives, and the maximizing CLIP
rate is the objective that directly related to customer service by keeping manufacture
efficiency and committing customer’s due date. Therefore, this paper considers the
conflicting objectives simultaneously to find a suitable compromised schedule.

On the module assembly shop floor, the manufacturing process consisting of five
workstations with 10 machines (WS-1: JI with 3 m/c, WS-2: 3D VAS with 1 m/c,
WS-3: Packer with 1 m/c, WS-4:MA with 2 m/c and WS-5:3D Cal. with 1 m/c)
depend on the product family. Figure9 shows the jobs with different product fami-
lies and access to different routes. For instance, for Job 4 in Fig. 9, one of the products
is a 3D-type panel, which requires laminating the 3D glass substrate onto the panel
after the cell process. It must then pass through the IC and PCB bonding, components
assembly, and the test workstations. Before shipping, 3D products must pass through
the 3D calibration workstation to calibrate the 3D product picture settings. In addi-
tion, two types of shipments exist depending on customer demand: semi-finished
and finished goods. Semi-finished goods do not require assembling the customized
electric components onto the panel.

Fig. 9 Processing flow in module assembly for the TFT-LCD manufacturing
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Jobs can be assigned to non-identical machines and a high speed processing
velocity is chosen to improve production efficiency. Choosing the fast processing
time, the job could be finished quickly with earlier completion time. However, if
all jobs are assigned to the fast processing time machine, the job must queue and
also delay the completion time. Furthermore, jobs in varying product families require
machine setup tools, increasing the total setup time andprolonging the job completion
time.

Various product families can be produced using the varying process on a non-
identical machine shop floor. The module assembly scheduling system requires
selecting which job operation passes through which machine and determining the
start time of each operation in each machine. Therefore, this study was conducted
to solve the complex scheduling problem that considers incompatible product fam-
ilies, non-identical parallel machines, and sequence-dependent setup time (SDST)
constraints in a real production system. There are several product types based on
its specification (panel size, display type, shipping type, etc.) and Table5 is product
family case in Module Assembly for the TFT-LCD manufacturing.

Themodule process stage involves fiveworkstations in which customized compo-
nents (i.e., integrated circuit (IC), printed circuit board (PCB), driver board, backlight,
and chassis) are assembled onto the panel.

(1) IC and PCB bonding (Workstation 1): Bonding the IC and PCB components
onto the panel.

(2) The 3D substrate lamination (Workstation 2): Laminating the 3D substrate on
the cell panel if the product is a 3D type.

(3) Semi-finished goods packing (Workstation 3): Semi-finished goods are packed
to ship to the customer.

(4) Component assembly and testing (Workstation 4): Assembling customized elec-
tric components onto the panel.

(5) The 3D calibration (Workstation 5): Calibrating 3D product picture setting.

Table 5 Product family cases in module assembly for the TFT-LCD manufacturing

Job Lot size Due date Display type Operation sequence Product type

i qi di (k s) oik

1 250 45 2D o11, o12 Small Size_SKD

2 500 65 2D o21, o22 Large Size_Module

3 400 60 3D_OGS o31, o32, o33, o34 Large Size_Module

4 200 60 3D_GPR o41, o42, o43 Small Size_SKD

5 500 95 3D_GPR o51, o52, o53 Large Size_Module

6 600 32 2D o61, o62 Small Size_SK

7 400 75 2D o71, o72 Large Size_Module

8 600 95 3D_OGS o81, o82, o83, o84 Large Size_Module
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Fig. 10 Precedence relationship graph in module assembly for the TFT-LCD manufacturing

Based on the precedence relationship of the processing flow in TFT-LCDmodule
assembly, the following five different types of routes created as shown in Fig. 10.

The module process is the final stage of TFT-LCDmanufacturing system, and the
finished products are directly shipping to customers. The module assembly schedul-
ing problem consider the multiple conflicting objectives simultaneously:

(1) Minimizing makespan.
(2) Minimizing total workload.
(3) Maximizing CLIP (confirmed line item performance).

Constraints:

(1) Incompatible product families: The jobs requiring the same recipe can be
regarded as a product family and have the same processing time in one machine.
Incompatible product families cannot be processed together in one machine.

(2) Parallel machines.
(3) Sequence dependent setup time (SDST): With variety customers and product

families, a machine setup time is required if two consecutive jobs of different
product families in the same machine.

The TFT-LCD module assembly scheduling problem is formulated as a multi-
objective mixed-integer linear programming (Mo-MILP) model as shown in Chou
et al. [6].

5 Multiobjective Hybrid GA with TOPSIS
and Computational Result

Genetic Representation: A common representation of the FJSP problem is designed
using a two-vector chromosome that names all the operations of a job by using the
same symbol, and interprets themaccording to the order of occurrence in the sequence
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Fig. 11 Scheme of operation sequence vector v1 and machine assignment vector v2

of a given chromosome [10]. The TFT-LCDmodule assembly scheduling problem is
a combination of operation scheduling andmachine assignment decisions. Therefore,
in this study, the chromosome was designed as two parts: an operation sequence
vector (v1) and a machine assignment vector (v2). The evaluated TFT-LCD module
assembly scheduling problem comprised eight jobs and eight machines, where each
job required several operations. The operation sequence vector v1 shows that each
job i appears nitimes, indicating niordered operations. An example of the operation
sequence vector is shown in Fig. 11. The machine assignment vector v2(r) shows
that the machine selected for the operation is indicated at position r , and shown in
Fig. 11. For example, the position 1 in v1(1) indicates o61 (i.e., the first operation of
Job 6), and Position 1 in v2(1) denotes that machine 1 is assigned to o11. The main
advantage of a two-vector representation is that each possible chromosome always
depicts a feasible candidate.

Population Initialization (Encoding Routine): To guarantee the quality and diver-
sity of an initial population, a mixed strategy is used to generate chromosomes that
include an operation sequence vector and a machine assignment vector. First, a ran-
dom rule strategy is applied to randomly initialize the operations in a sequence vector.
Second, minimal processing time and random rule strategies are applied to generate
the machine assignment vector, as follows:

(1) The minimal processing time strategy [13, 15] is used to locate the machine
that exhibits a minimal processing time for the permuted operation, and then adds
its processing time to every subsequent entry.

(2) The random rule strategy randomly assigns a machine to each operation.
In this study, the random rule strategy was used to initialize the operation

sequences, in which 50% of the machine assignment vectors were generated using
the minimal processing time strategy, and the remaining 50% were generated using
the random rule strategy.

Left-shift Based Decoding: This study used left-shift based decoding, where each
operation was shifted left until it was as compact as possible to reduce the machine
idle time. This strategy is used to search for the earliest available time interval [t E

i , t L
i ]

to allocate the permuted operation to a machine based on the operation sequence
vector. If the time span is sufficient from the beginning to ending, is allocated in the
time interval; otherwise, is allocated at the end ofmachine. The following relationship
formulated in Eq.2):
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{
max

{
t E

j + shgik j , tC
i,k−1

}
+ pik j � t L

j , if k � 2

t E
j + pik j � t L

j , if k = 1.
(2)

Left-shift based decoding sequentially allocates each operation to an assigned
machine in the order represented in the operation sequence vector. The detailed
example of the process by the left-shift based decoding is shown in Chow et al. [6].

Genetic Operations: In the two-vector representation, each gene of the operation
sequence vector does not indicate a specific job’s operation but refer to its context-
dependent. This reason causes the crossover procedure cannot inherit their parental
characteristics at the form of two-vector representation. We used the order crossover
in this study for the operation sequence vector and the procedure is as follows.

Step 1. Randomly select a subsection of the operation from one parent.
Step 2. Conduct an offspring by copying the subsection of the parent, including the
operation sequence and machine assignment in the corresponding position.
Step 3. Delete the operations that are already in the offspring from the second parent.
Step 4. Allocate the operations and assigned machines to the unfixed positions of
the offspring from left to right, according to the sequence in the second parent.

The conventional mutation operator is used to randomly generate offspring [13].
In this study, the objective functions of makespan and total machine setup time
are used to minimize the production time. An artificial mutation was developed,
combining the minimal processing time concept and mutation operator, reallocating
the machine that exhibits the minimal processingtime to the operation [15]. In the
operation sequence vector, a gene of certain probability is selected and the operations
are randomly exchanged with the machine that was assigned to the operation. In the
machine assignment vector, the job that exhibits the longest total processingtime is
selected and the machine that exhibits the maximal processing time is reallocated to
the minimal processingtime to the corresponding operation. The offspring generated
by artificial mutation may exhibit a superior makespan compared with the makespan
before the convergence was accelerated. In addition, immigration strategy was used
to randomly generate new chromosomes and prohibit rapid convergence.

Local Search (Variable Neighborhood Descent): Local search can be used to
improve the convergence speed, yielding superior solutions. The variable neighbor-
hood descent (VND) approach is considered a local search algorithm that produces
a new solution from the current population by making a slight change before it is
inserted into the population [8]. The VND approach is employed to sequentially
identify and exchange critical operations and find a new schedule that exhibits a
small makespan in the multiobjective module assembly scheduling problem. The
makespan of a scheduling solution is defined by the length of its critical path; that
is, the makespan cannot be reduced while adjusting the current critical paths. Any
operationon the critical path is called a critical operation.

This study employed the VND approach to determine a schedule that yielded
a small makespan. To reduce computational loading, only one critical operation is
moved at a time and inserted into an available idle time interval. Therefore, the single
moving operation of the VND procedure is as follows:
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(1) Deleting a critical operation;
(2) Finding an assignable idle time interval;
(3) Allocating the deleted into the found time interval.

TOPSIS: The technique for order preference by similarity to the ideal solution
(TOPSIS) is to derive the best compromised solution among Pareto optimal solu-
tions. TOPSIS evaluation mechanism quickly conduct a best compromised sched-
ule into the manufacturing system and TOPSIS is considering the best alternative
should have the shortest distance from the ideal solution (A+) [12]. To prioritize the
Pareto non-dominated solutions based on objective functions that decision maker
concerned. TOPSIS evaluation mechanism ranks the best compromised scheduling
from all alterative solutions and the detailed procedure is shown in Chou et al. [6].
Decision makers design the preference of objective functions:

Normalized weight vector; w1 + w2 + w3 = 1;
Minimize makespan: weight w1;
Minimize total workload: weight w2;
Maximize CLIP weight: w3

Overall Procedure of Mo-HGA: This study combined the auto-tuning strategy
[20] to dynamically regulate the parameters for the multiobjective hybrid genetic
algorithm (Mo-HGA) by employing a fuzzy logic controller (FLC). Two FLCs, the
crossover and mutation FLCs, were implemented to adaptively regulate the rates of
crossover and mutation operators during the genetic search process as introduced in
[20] FLC for tuning parameters. This enabled the automatic tuning of the parameters
of the Mo-HGA depending on the convergence situation of the current generation.

Fig. 12 Overall procedure ofMo-HGAfor solvingTFT-LCDmodule assembly scheduling problem
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The overall procedure in the pseudo-code of Mo-HGA for solving designed for
solving TFT-LCD module assembly scheduling problem as shown in Fig. 12.

A small-scale case was used to demonstrate the applicability of the proposed Mo-
HGA. In this case, eight jobs involving 22 operationswere arranged to eightmachines
on the shop floor, and the job quantity, product family, and operation sequences are
listed in Table5. The operation processing time of this small-scale case is shown
in Table6. The processing time of these 22 operations were designed on the basis
of empirical setting that depends on the job quantity and production velocity of the
machine. The sequence-dependent setup time between the product families is shown
in Table7.

Schedule S = {(oi j , Mm, si j − ci j )}; oi j denotes operation j in job i ; Mm is
machine m; si j means starting operation j in job i and ci j is completing operation j
in job i . Here is one of Pareto optimal solutions with three objective function values
and Gantt chart (Fig. 13) by Mo-HGA as follows:

Table 6 Processing time of the small-scale case

Processing
time (s)

M1 M2 M3 M4 M5 M6 M7 M8

o11 – 5,750 – – – – – – –

o12 – – – – – 6,250 – – –

o21 – – 25,000 17,500 – – – – –

o22 – – – – – – 25,000 15,000 –

o31 – 20,000 14,000 – – – – –

o32 – – – 6,000 – – – –

o33 – – – – – 20,000 12,000 –

o34 – – – – – – – 24,000

o41 – – – 3,000 – – – –

o42 4,600 – – – – – – –

o43 – – – – – – 5,000 –

o51 – – – 7,500 – – – –

o52 – 25,000 17,500 – – – – –

o53 – – – – – 25,000 15,000 –

o61 13,800 – – – – – – –

o62 – – – – 15,000 – – –

o71 – 20,000 14,000 – – – – –

o72 – – – – – 20,000 12,000 –

o81 – 30,000 21,000 – – – – –

o82 – – – – 9,000 – – – –

o83 – – – – – – 30,000 18,000 –

o84 – – – – – – – 36,000
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M1 o61 o 42 o 11

M 2 o 81

M 3 o31 o21 o 71 o 52

M 4 o 41 o32 o 82 o 51

M 5 o 62 o 12

M 6 o22

M7 o33 o 43 o 83 o 72 o 53

M 8 o34 o 84

3.0 13.8 20.0 21.0 25.6 28.8 32.8 38.5 38.7 44.8 53.7 56.0 59.9 63.7 77.4 92.4 93.0

Fig. 13 Gantt chart of Pareto optimal solution

Schedule: S = o61, o81, o31, o41, o32, o62, o33, o42, o21, o11, o82, o43, o34, o12,
o71, o22, o83, o51, o52, o84, o72, o53 = (o61, M1, 0–13.8), (o81, M2, 0–30.0),
(o31, M3, 0–14.0), (o41, M4, 0–3.0), (o32, M4, 14.0–20.0), (o62, M5, 13.8–28.8),
(o33, M7, 20.0–32.0), (o42, M7, 21.0–25.6), (o21, M3, 21.2–38.7), (o11, M1,

32.8–38.55), (o82, M4, 30.0–39.0), (o43, M7, 32.0–37.0), (o34, M8, 23.0–56.0),
(o12, M5, 38.55–44.8), (o71, M3, 38.7–52.7), (o22, M6, 38.7–63.7), (o83, M7, 39.0–
57.0), (o51, M4, 46.2–53.7),(o52, M3, 59.9–77.4),(o72, M7, 60.6–72.6), (o53, M7,

77.4–92.4), (o84, M8, 57.0–93.0)
Three objectives:Makespan: 93 (K s), Total workload: 310.9 (K s), CLIP: 100 (%).
Tables8 and 9 is shown objective function values by Mo-GA, Mo-HGA.VND

andMo-HGA.VND.FLC for 8-Job/8-Machine and 40-Job/22-Machine respectively.
Comparing the Mo-GA, Mo-HGA with VND, Mo-HGA with VND & FLC exper-
iment results using TOPSIS, the Mo-HGA with VND & FLC could get the best
compromised schedule.

The each objective function value byMo-HGA.VND.FLC for 40-Job/22-Machine
in Table10 is shown three cases of the different computational time such as 60, 180 (s)
and more than 22 generations.

To solve the multiobjective scheduling problem for the TFT-LCD module assem-
bly system by using LINGO for comparing with the Mo-HGA proposed, Chou et al.
[6] also formulated a fuzzy multiobjective mixed-integer linear programming (FMo-
MILP) model to obtain the compromised solution as a benchmark by using fuzzy
multiobjective programming, a fuzzy goal, and fuzzy constraints [21] A quality cri-
terion, the optimality gap, was defined to show the percentage of deviation of the
values of the multiobjective programming approaches (i.e., the FMo-MILP and the
Mo-HGA) from the values of LINGO, according to the following equation [17]:

Optimality Gap = (Approach - LINGO)/LINGO× 100 (%). (3)

The optimality gaps of the small-scale test problems, compared to the compro-
mised solution of multiobjective programming approaches with an aspiration level,
are shown in Tables11 and 12. The results show that the FMO-MILP and the MO-
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Table 10 Objective function values by Mo-HGA.VND.FLC for 40-Job/22Mc

40 Jobs with 22
Machines

MO-HGA with VND & FLC

Terminating Condition Cm (k s) Wt (k s) CLIP (%)

Computational
time>60s

278.8 1429.5 91.8

Computational
time>180s

259.0 1377.0 94.4

Same result over 20
generations

258.0 1372.5 97.7

Table 11 Experimental result of FMo-MILP and Mo-HGA

Test
Problem

MO-MILP (LINGO) FMO-MILP
(LINGO)

MO-HGA Aspiration Level

Cmax WN T ST (Cmax, WN T , ST ) (Cmax, WN T , ST )

P1 50.0 0.37 0 (69.7, 0.37, 7.2) (69.7, 0.37, 7.2) (50.0, 0.37, 0)

P2 60.5 0.34 10.8 (72.5, 0.34, 10.8) (72.5, 0.34, 10.8) (60.5, 0.34, 10.8)

P3 76.2 0.16 10.8 (78.6, 0.18, 14.4) (78.6, 0.18, 14.4) (76.2, 0.16, 10.8)

Table 12 Optimality gaps of small-scale test problems

Test
problem

FMO-MILP MO-HGA

Cmax (%) WN T (%) ST (%) Cmax (%) WN T (%) ST (%)

P1 39.4 0 39.4 0

P2 19.8 0 0 19.8 0 0

P3 3.1 12.5 25.0 3.1 11.1 25.0

HGA yield the same optimality gaps for each test problem.These two approaches
have the values close to the aspiration level. Detailed computational results refer
Chou et al. [6].

As introduced computational results for the various scale of multiobjective
scheduling problems for the TFT-LCD module assembly system by using LINGO
for comparing with the Mo-HGA, it clearly demonstrated that multiobjective hybrid
genetic algorithm with VND and FLC routines (Mo-HGA.VND.FLC) proposed is
effectiveness and efficiency in the best compromised solution as a quality of solution
with reasonable interactive computational time for NP-hardmultiobjective optimiza-
tion problem in practice.
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6 Conclusions

Manufacturing scheduling is one of the important and complex combinatorial opti-
mization problems, where it can have a major impact on the productivity of a pro-
duction process. Moreover, most of scheduling problems fall into the class of NP-
hard combinatorial problems. Recently, many manufacturing companies are faced
with global market demands for a variety of low cost products with a high quality.
For responding rapidly to demand fluctuations and reducing costs related to man-
ufacturing scheduling and logistics networks, hybrid genetic algorithm (HGA) and
multiobjective HGA (Mo-HGA)have received considerable attention regarding their
potential for solving various complex manufacturing and logistics problems.

In this paper, we introduced how to design Hybrid GA and Mo-HGA with para-
meter tuning by the fuzzy logic controller (FLC) and local search such as the left-ship
routine and variable neighborhood descent (VND) routines to solve manufacturing
scheduling problems for hard disc device (HDD) and thin-film transistor-liquid crys-
tal display (TFT-LCD), respectively. In particularly, the FLC for tuning crossover
and mutation rates, the fitness assignment mechanism for multiobjective optimiza-
tion problems (MOP) and genetic representations as well as the hybrid evolutionary
operations are combined. Through a variety of numerical experiments, the effective-
ness and efficiency of the HGA for HDD and Mo-HGA.VND.FLC for TFT-LCD
module assembly as the practical applications of manufacturing scheduling prob-
lems are demonstrated. This paper also introduced how to design Mo-HGAs for
applying a multiobjective flexible job-shop scheduling problem (Mo-FJSP; opera-
tion sequencing and resources assignment) to the practical manufacturing scheduling
problems.

As future researches in multiobjective scheduling problems, it is to apply hybrid
sampling strategy-based evolutionary algorithms [9] to real case study. Another top-
ics is to enhance the evolutionary process by combining hybrid genetic algorithm
with another metaheuristics such as PSO, DE or EDA.
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