Chapter 2
Nonlinear Discrete Systems

In this chapter, a theory for nonlinear discrete systems is reviewed. The local and
global theory of stability and bifurcation for nonlinear discrete systems is presented.
The stability switching and bifurcation on specific eigenvectors of the linearized
system at fixed points under a specific period are discussed. The higher-order
singularity and stability for nonlinear discrete systems on the specific eigenvectors
are also presented.

2.1 Definitions

Definition 2.1 For Q, C #" and A C #™ with a € 7Z, consider a vector function
f,:Q, x A — Q, which is C" (r 2 1)-continuous, and there is a discrete (or dif-
ference) equation in a form of

Xpr1 = £, (Xk, p,) for ¢, Xpp1 €Q,, k€Z and p, €A (2.1)

with an initial condition of x; = X, the solution of Eq. (2.1) is given by

xp = £ (fs (- . .(F2(%0, Py))))
k (2.2)
forx, € Q,, k€Z and p€A.

(i) The difference equation with the initial condition is called a discrete
dynamical system.
(ii) The vector function f,(Xk, p,) is called a discrete vector field on Q.
(iii) The solution x; for each k € Z is called a flow of discrete system.
(iv) The solution x; for all k € Z on domain Q, is called the trajectory, phase
curve, or orbit of the discrete dynamical system, which is defined as

I' = {x¢|xx+1 = £,(x¢,p,) fork € Z andp, € A} CU,Q,. (2.3)
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12 2 Nonlinear Discrete Systems

(v) The discrete dynamical system is called a uniform discrete system if

Xpi1 = £, (X, p,) = £(x¢,p) fork € Z and x; € Q,. (2.4)

Otherwise, this discrete dynamical system is called a non-uniform discrete
system.

Definition 2.2 For the discrete dynamical system in Eq. (2.1), the relation between
state x; and state Xz (k € Z) is called a discrete map if

P, : X —fi—>xk+1 and X3y = Pyx; (2.3)
with the following properties:

NS R

Py Xk — =" Lxty and Xpy =P, 0P, 0---0P,X; (2.6)
where
Pugy =Py 0Py 00 P, (2.7)
IfP,, =P,  =-=P, =P, then
Py =PV =P,0P,0--- 0P, (2.8)
with
P =p, 0PV and PO =1 (2.9)

The total map with [-different sub-maps is shown in Fig. 2.1. The map P,, with
the relation function f,, (o, € Z) is given by Eq. (2.5). The total map P is given
in Eq. (2.7). The domains Q, (o € Z) can fully overlap each other or can be
completely separated without any intersection.

Definition 2.3 For a vector function in f, € #", £, : #" — #". The operator norm
of f, is defined by

n

Il = max |fi(xe,p,)l- (2.10)

i=1 HXk” <lp,

For an n x n matrix f, (X, p,) = A% and A, = (a;)
is defined by

2o the corresponding norm

Al :Z|aij|~ (2.11)

ij=1
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Fig. 2.1 Maps and vector functions on each sub-domain for discrete dynamical system

Definition 2.4 For Q, C #" and A C #" with « € Z, the vector function
f,(xx, p,) With £, : Q, x A — %" is differentiable at x; € Q, if

8fo: (Xk ’ px)

— lim fa(xk + Axk7 pzx) - f%(xka pac)
8Xk

Ax;—0 AXk

. (2.12)

(X¢,p)

Of, /0% is called the spatial derivative of f,(xt,p,) at x;, and the derivative is
given by the Jacobian matrix

afa(xlmpa) _ 8f1<l)
%y axk(f) n><n'

(2.13)

Definition 2.5 For Q, C #" and A C #", consider a vector function f(x, p) with
f:Q,x A— %" where x;, € Q, and p € A with k € Z. The vector function
f(x, p) is said to satisfy the Lipschitz condition if

1£(yx, P) — £(xe, )| < LIy — x| (2.14)

with x¢,y, € Q, and L a constant. The constant L is called the Lipschitz constant.

2.2 Fixed Points and Stability
Definition 2.6 Consider a discrete, dynamical system X1 = f,(xx,p,) in
Eq. (2.4).

(i) A point x; € Q, is called a fixed point or period-1 solution of a discrete
nonlinear system X, = f, (X, p,) under a map P, if for x; 11 = x = X

x; =f,(x;,p). (2.15)

The linearized system of the nonlinear discrete system Xz = f,(X;, p,) in
Eq. (2.4) at the fixed point X is given by
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Yer1 = DPy(x;, P)Yy = DIy (X, P)Y (2.16)
where
Vi =X =X and Y =X — X (2.17)

(ii) A set of points X; € Q,, (o € Z) is called the fixed point set or period-1 point
set of the total map P, with [-different sub-maps in nonlinear discrete system
of Eq. (2.5) if

X1t+j+1 = foc// (XZ-H‘;Px/) for j € Zy and j = mod(j, 1) + 1; (2.18)

* ok
X tmod(l) — Xk

The linearized equation of the total map P, gives

Yiij1 = DPy, (Xz+j7 Paj,)ij = Df,, (X/tﬂw Pa,,)YHj with
Yirj+1 = Xijrl — Xpyjp and  ye = Xy — X for (2.19)

JEZ: and j =mod(j,l) + 1.
The resultant equation for each individual map is
Yisjr1 = DPgyy (X, P)yey; forj € Zy (2.20)

where

* 1 *
DP(k,n) (Xk7p) = Hj:l DP&,-<Xk+j—lap)

= DPOC/(X;:+171’ px,,) """ DPOQ (XZ+17 poq) ' DPOCl (X]tvpocl)
= Df(%1)<xz+lfl7 pm,,) """ Df(az)<xz+l7paz) ’ Df(otl)(xz’ pal)'
(2.21)

The fixed point xj lies in the intersected set of two domains € and Q;, as
shown in Fig. 2.2. In the vicinity of the fixed point x, the incremental relations in
the two domains € and Q. are different. In other words, setting y, = X — x7 and
Yir1 = Xkt1 — X;, the corresponding linearization is generated as in Eq. (2.16).
Similarly, the fixed point of the total map with n-different sub-maps requires the
intersection set of two domains € and €,,, and there are a set of equations to
obtain the fixed points from Eq. (2.18). The other values of fixed points lie in
different domains, ie., X; € Q(j=k+1,k+2,...,k+n—1), as shown in
Fig. 2.3.

The corresponding linearized equations are given in Eq. (2.19). From Eq. (2.20),
the local characteristics of the total map can be discussed as a single map. Thus, the
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Fig. 2.2 A fixed point between domains ; and € for a discrete dynamical system
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Fig. 2.3 Fixed points with -maps for discrete dynamical system

dynamical characteristics for the fixed point of the single map will be discussed
comprehensively, and the fixed points for resultant map are applicable. The results
can be extended to any period-m flows with P").

Definition 2.7 Consider a discrete, nonlinear dynamical system x;; = f(x;, p) in
Eq. (2.4) with a fixed point x;. The linearized system of the discrete nonlinear
system in the neighborhood of x; is y,,, = Df(x,p)y; (¥, =x —x} and
=k, k+1) in Eq. (2.16). The matrix Df(x},p) possesses n; real eigenvalues
|4j| <1 (j € Nv), n, real eigenvalues |4;| > 1 (j € N,), n3 real eigenvalues 4; = 1
(j € N3), and ny real eigenvalues 4; = —1 (G € Ng). N ={1,2,...,n} and N, =
{i1 iz, i JUD (i=1,2,3,4) with i,, €N (m=1,2,...,n,) and =} n; = n.
N;CNU @9, Uj‘:le =N, NNON,=0 (p#i). NN=0 if n; = 0. The corre-
sponding eigenvectors for contraction, expansion, invariance, and flip oscillation
are {vj} G eN;) (i=1,2,3,4), respectively. The stable, unstable, invariant, and
flip subspaces of y,,, = DE(x}, p)y, in Eq. (2.16) are linear subspace spanned by
{v;} G €N (i =1,2,3,4), respectively, i.e.,
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&° = span

\.

o| PEEGP) = 4Dy, =0, }
Yl|kl<1,jeN CNUD

" = span (Df(xk,p) /v, =0, }

,JGNQQNUQ
(DE(x;.p) — 21}y, = O,
) =1,jEN;CNUOD
(Df(x;,p) — AI)v; =0,
Jj=—1jEN,CNUD

(2.22)

&' = span{ v

6" = span{ v;

/—/H/—’h\/—/h\/—/H

where
&8 =&,U & U, with
Df(x;,p) — 21)v; =0,
g’fn:span{v( (Akp). D)V }
0<ii<l,jeEN'CNUOD
(DE(x;.p) — 21y, =0, }_ (2.23)
—-1<2;<0,jeNyCNUY

(DE(x}, p) — 4D)v; =0, }
Ji=0jENCNUD

3

6 = span{vj

& = span{vj

— £ U &Y with

{ (Df(x;,p) — 4D)v; =0, }
&, = span n
/i >1,jeEN) CNUG (2.24)
{(MW@ HM—O}
&y = span
—-1>4,jEN;CNUD

“ 2

Herein, subscripts “m” and “0” represent the monotonic and oscillatory evolutions.

Definition 2.8 Consider a discrete, nonlinear dynamical system x;; = f(x;, p) in
Eq. (2.4) with a fixed point x;. The linearized system of the discrete nonlinear
system in the neighborhood of x; is y,., = DE(x{,p)y; (y,=x —Xx; and
l = k,k+ 1) in Eq. (2.16). The matrix Df(x;, p) has complex eigenvalues o; & ip;
with eigenvectors w; +iv; (j € {1,2,...,n}), and the base of vector is

B = {ul,vl,...,uj,vj,...,un,v,,}. (2.25)

The stable, unstable, center subspaces of y; | = Df (X}, p)y, in Eq. (2.16) are linear
subspaces spanned by {u;,v;}(G €N; i=1,2,3), respectively. Set N =
{1,2,..,n} plus N; = {i1,ia, .. iy, UG C NUD with i,, e N im=1,2,...,n)
and ! n; = n. UL |N; = N with N; NN, = @(p # i). N; = @ if n; = 0. The stable,
unstable, center subspaces of y,_; = Df(x}, p)y, in Eq. (2.16) are defined by
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r = w/ocf+/3]2<l,
(DE(x;, p) — (o5 £if;)D)(w £ iv;) = 0, (
jeN, C {1,2,...,}’1}U®

(DE(x;,p) — (o £if)T)(w; £iv;) = 0, ( (2.26)
JEN, C{L,2,....,n}UD

rj:w/oc}—i—ﬁ]?: 1,
(Dt (x;, p) — (o = if)I)(w; £ iv;) =0,
JENSCH{L,2,...n}UD

S f— . .
6° = spanq (u;,V;

~

ou
6" = spanq (w;,v;

~

~

oC __
6° = spany (u;,V;

Definition 2.9 Consider a discrete, nonlinear dynamical system X1 = f(Xx, p) in
Eq. (2.4) with a fixed point x;. The linearized system of the discrete nonlinear
system in the neighborhood of X is y,,, = Df(x{,p)y; (¥, =x —x; and
I =k,k+1)in Eq. (2.16). The fixed point or period-1 point is hyperbolic if no any
eigenvalues of Df(x}, p) are on the unit circle (i.e., [4;| # 1 fori=1,2,... n).

Theorem 2.1 Consider a discrete, nonlinear dynamical system X1 = f(X¢, p) in
Eq. (2.4) with a fixed point x;. The linearized system of the discrete nonlinear
system in the neighborhood of xi is y..; = DE(x;,p)y, (y; =X —Xx; and
j=k,k+1)in Eq. (2.16). The eigenspace of Df(x},p) (i.e., & C R") in the lin-
earized dynamical system is expressed by direct sum of three subspaces

E=6dE D E (2.27)

where &°,6" and &° are the stable, unstable, and center subspaces, respectively.
Proof The proof can be referred to Luo (2011). U

Definition 2.10 Consider a discrete, nonlinear dynamical system x| = f(Xg, p) in
Eq. (2.4) with a fixed point x;. Suppose there is a neighborhood of the equilibrium
x; as Ux(x;) C , and in the neighborhood,

Lo 6+ v, B) = DG D)yl

0, 2.28
llyell—0 LA (228)

and

Yir1 = DE(XL, P)Yy- (2.29)
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(i) A C" invariant manifold

tyloc(xkaxlt) = {Xk € Ux (X;:)|Jllfrnoo Xti = X;: and (2 30)
Xiij € U(xy) withj € Z }

is called the local stable manifold of x;, and the corresponding global stable
manifold is defined as

S (%6,%;) = Ujez, £(Lroe (et Xi45) = Yjer £ (Proe(36,%7)). (2.31)
(i) A C”" invariant manifold %joc(Xx,X})

Yl X)) = {50 & D) lim ey =i and
Xiyj € Up(x}) with j € Z_}

is called the local unstable manifold of x*, and the corresponding global
unstable manifold is defined as

U (%, %¢) = Uiez, 8 (Uroe (X1, X54;)) = Ujer 89 (Uoe (30, %7)). - (2.33)

(iii) A C"! invariant manifold %10c(x,x") is called the center manifold of x* if
%10c (X, X") possesses the same dimension of &€ for x* € %o (X,X"), and the
tangential space of @0 (x,x*) is identical to &°.

As in continuous dynamical systems, the stable and unstable manifolds are
unique, but the center manifold is not unique. If the nonlinear vector field f is
C-continuous, then a C”" center manifold can be found for any r < oco.

Theorem 2.2 Consider a discrete, nonlinear dynamical system X1 = f(X¢, p) in
Eq. (2.4) with a hyperbolic fixed point X;. The corresponding solution is X;i; =
f(Xiyj—1,P) with j € Z. Suppose there is a neighborhood of the hyperbolic fixed
point X (i.e., Ux(x}) C Q,), and £(x¢,p) is C" (r > 1)-continuous in Uy(X}). The
linearized system is Yy ;11 = DE(X;, P)Yiry (Vis = Xty — X¢) in Ur(xg). If the
homeomorphism between the local invariant subspace E(X}) C Ui(x;) and
the eigenspace & of the linearized system exists with the condition in Eq. (2.28), the
local invariant subspace is decomposed by

E(X¢,X;) = Lroc (Xies X)) B Uroc (Xie, Xp)- (2.34)

(@) The local stable invariant manifold %\..(x,X*) possesses the following
properties:

@) for x; € Proc(Xks X7), Lroc(Xi, Xi) possesses the same dimension of &°
and the tangential space of S \oc(Xk,Xy) is identical to &°;
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(i) for x¢ € S10c(Xk;X}), Xkrj € Lloc(Xk, X;) and lim x,y; = X} for all j € Z;
Jj—00
(i) For Xk & SLioc(Xi,X}), |[Xiqj — X[|| > 0 for 6 > 0 with j,j, € Zy and
J=j =0.
(b) The local unstable invariant manifold U\o.(Xk,X;) possesses the following
properties:

@) for X € Uroc(Xk, X}), Uioc(Xk, X)) possesses the same dimension of &"
and the tangential space of Uoc(Xk,X;) is identical to 6"
(i) for Xk € Uioc(Xi,Xy), Xy € Uroc(Xk,X;) and jEI_nOO Xiyj = X; for all

JEZL;
(i) for X; & Unoc(Xk, X", |[Xeyj — X¢|| =0 for 6 > 0 with j,j € Z_ and
J<ji <0.
Proof See Nitecki (1971). O

Theorem 2.3 Consider a discrete, nonlinear dynamical system X1 = f(X¢, p) in
Eq. (2.4) with a fixed point X;. The corresponding solution is Xij = £(X¢j—1,P)
with j € Z. Suppose there is a neighborhood of the fixed point xi (i.e.,
Ui(x}) C Qy), and £(x¢,p) is C" (r > D-continuous in Ui(x}). The linearized
system is Yy i1 = DE(X;, P)Yiss (Viyj = Xaj — Xp) in Up(X}). If the homeomor-
phism between the local invariant subspace E(X;) C Uy(X}) and the eigenspace &
of the linearized system exists with the condition in Eq. (2.28), in addition to the
local stable and unstable invariant manifolds, there is a C'™' center manifold
Groc(Xk,X;). The center manifold possesses the same dimension of & for
X" € Groc(Xk, X;), and the tangential space of €1oc(X,X") is identical to &°. Thus,
the local invariant subspace is decomposed by

E(Xt,X;) = Lroc(Xk, X3) D Uioe (X, X)) D Broc (Xk, X} )- (2.35)

Proof See Guckenhiemer and Holmes (1990). O

Definition 2.11 Consider a discrete, nonlinear dynamical system x;; = f(X¢, p) in
Eq. (2.4) on domain Q, € #". Suppose there is a metric space (Q,, p), then the map
P under the vector function f(x;, p) is called the contraction map if

1 2 1 2 N 1 2
p) X)) = pe(x", p), £(x p)) < 2p(x) x?) (2.36)

for 2 € (0,1) and X,El),X]Ez) € Q, with p(x,(cl),x,iz)) = ||x,<(l) - X,EZ)H.

Theorem 2.4 Consider a discrete, nonlinear dynamical system X1 = f(x¢, p) in
Eq. (2.4) on domain Q, € R". Suppose there is a metric space (Qy, p), if the map P
under the vector function f(Xy,p) is the contraction map, then there is a unique
fixed point X;, which is globally stable.

Proof The proof can be referred to Luo (2011). U
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Definition 2.12 Consider a discrete, nonlinear dynamical system X = f(x, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by x;; =
f(X¢1j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point x; (i.e.,
Ur(x}) C Qy), and f(x4,p) is C" (r>1)-continuous in Ui(x;). The linearized
system is y; ;1 = DE(X, P)Yir; (Vioj = Xkt — X;) in Ui(xg). Consider a real
eigenvalue /; of matrix Df(x;,p) (i € N={1,2,...,n}) and there is a corre-

sponding eigenvector v;. On the invariant eigenvector v,@ =v;, consider y,(f) =

c](f)v,- and y,(fll = c,(fJ)er,- = i,-c,f)v,-, and thus, c,(fil = )V,-c,f).
@) x,ii) on the direction v; is stable if
lim | = lim 1) % [P =0 for || <1. (2.37)
(ii) x,@ on the direction v; is unstable if
lim V| = lim 1)k x e = 00 for |A] > 1. (2.38)
(iii) x,@ on the direction v; is invariant if

lim ) = lim Gkl =) for 2 = 1. (2.39)

@iv) x,@ on the direction v; is flipped if

lim ¢ = lim ()% x ) = ¢

Hooo m T ) o forii=—1.  (2.40)
lim ¢’ = lim (4) X ¢y = —cp

2k+1—00 2k+1—00

W) X,(f) on the direction v; is degenerate if

) = (2)c) =0 for 4 =0. (2.41)

Definition 2.13 Consider a discrete, nonlinear dynamical system X1 = f(X¢, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by x;; =
f(X¢4j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point x; (i.e.,
Ui(x}) C Qy), and f(x, p) is C” (r > 1)-continuous in Uy(x};). Consider a pair of
complex eigenvalues o; + iff; of matrix Df(x},p) ( € N = {1,2,...,n},i=v/~1)
and there is a corresponding eigenvector w; £1iv;. On the invariant plane of

(ul(j)’ V](f)) = (w;,V;), consider x,(f) = x,((:)L + X,(fl with
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x,((i) = c,((i)ui + d,£i>vi, x,((’il = c,((illu,- + d,ﬁlvi. (2.42)

Thus, ¢’ = (c{”,d")" with

o), = Ec!) = rRic}’ (2.43)
where
o P cosO; sin0;
Ei = and Ri = . y
—b; o —sin0; cos 0; (2.44)
ri=1/o? 4+ B7, cosO;=o;/r; and  sin0; = B;/r;
and
k .
| oo B « | coskl; sink;
E; = {—ﬁi oc,} and  R; = {—sinkﬁi coskO; | (2.45)
@) x,@ on the plane of (u;,v;) is spirally stable if
. D)) _ 15 k(K (@) _ — |
khm e, ]| _khm ri|IR:|| < |ley’|| =0 for r; = |4 <1. (2.46)
(i) X,@ on the plane of (u;,v;) is spirally unstable if
lim [|e’]] = lim #f][RE|| x [|ey)]| = 00 for ri=|4| > 1. (247)
(iii) x,(:) on the plane of (u;,v;) is on the invariant circles if
@ _ k& Rk @ (@) f =l =1 2.48
lleg [ = i IIRF[] < lleg || = [leg”|| - for ri = |4 = 1. (2.48)

@iv) x,ii) on the plane of (u;,v;) is degenerate in the direction of w; if §; = 0.
Definition 2.14 Consider a discrete, nonlinear dynamical system x;; = f(Xg, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by X ; =
f(x¢4j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point x} (i.e.,
Uk(x}) C Qy), and £(x¢, p) is C” (r > 1)-continuous in U(x;) with Eq. (2.28). The
linearized system is y,.; 1 = DE(X;,P)¥iy; (Vioj = Xktj — X;) in Up(x;). The
matrix Df(x}, p) possesses n eigenvalues 4; (i =1,2,...,n).

(i) The fixed point x} is called a hyperbolic point if |1;| # 1 (i =1,2,...,n).
(i) The fixed point x; is called a sink if |4;|<1 (= 1,2, ...,n).
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(ili) The fixed point x; is called a source if [4;| > 1 (i=1,2,...,n).
(iv) The fixed point x; is called a center if |4;| =1 (i =1,2,...,n) with distinct
eigenvalues.

Definition 2.15 Consider a discrete, nonlinear dynamical system x| = f(x, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by x;; =
f(Xi4j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point x; (i.e.,
Ui(x}) C Q,), and f(xy, p) is C” (r > 1)-continuous in Uy (x;) with Eq. (2.28). The
linearized system is y, ;.1 = DE(X;, P)Yi; (Verj = Xksj — Xg) in Ur(xg). The
matrix Df(x}, p) possesses n eigenvalues 4; (i =1,2,...,n).

(i) The fixed point x} is called a stable node if |1;|<1(i=1,2,...,n).
(i) The fixed point x} is called an unstable node if |4;| > 1 (i =1,2,...,n).
(iii) The fixed point X; is called an (I, : I,)-saddle if at least one |4;| > 1 (i € L;
C {1,2,...,n}) and the other |4;| <1 (€ L, C {1,2,...,n}) with L UL, =
{1,2,...,n} and Ly N L, = @. I, = span(L;) and [, = span(L,).
(iv) The fixed point x; is called an [th-order degenerate case if 4; =0
GeLC{l1,2,...,n}.

Definition 2.16 Consider a discrete, nonlinear dynamical system x| = f(X;, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by x;; =
f(X¢1j—1,p) with j € Z. Suppose there is a neighborhood of the fixed point x; (i.e.,
Ui(x}) C Qy), and f(x¢, p) is C"(r > 1)-continuous in Ui(x;) with Eq. (2.28). The
linearized system is y, ;. = DE(X;,P)Yi; (Veuj = Xksj — Xg) in Ur(xg). The
matrix Df(x}, p) possesses n-pairs of complex eigenvalues A; (i = 1,2,...,n).

(i) The fixed point x; is called a spiral sink if |;| <1 (i = 1,2, ...,n) and Im4; # 0
Ge{1,2,...,n}).
(i) The fixed point x} is called a spiral source if [4;] > 1 (i=1,2,...,n) with
Im/; #0 (€ {1,2,...,n}).
(ili) The fixed point x; is called a center if |4 =1 with distinct Im4; # 0
(i=1,2,...n).

The generalized stability and bifurcation of flows in linearized, nonlinear
dynamical systems in Eq. (2.4) will be discussed as follows.

Definition 2.17 Consider a discrete, nonlinear dynamical system x;+; = f(X¢, p) in
Eq. (2.4) with a fixed point x;. The corresponding solution is given by Xy, =
f(xx15_1,p) with s € Z. Suppose there is a neighborhood of the fixed point x; (i.e.,
Ui(x}) C Q,), and f(xy, p) is C" (r > 1)-continuous in Uy (x;) with Eq. (2.28). The
linearized systemisy,, .1 = DE(X}, P)¥irs Vits = Xits — X;) in Ug(x;). The matrix
Df(x;,p) possesses n eigenvalues 4; (i=1,2,...,n). Set N={1,2,...,m,m+
L...,(n+m)/2}, N ={ji,jo, . jn,y U Withj, e N(p=1,2,..,n;3j = 1,2,...,7),
=t =m and 2] snj=n—m. U_ N;=N with N;AN; =@ #j). Nj=0
if y=0. N,=NJUN; (¢=1,2) and NYNN; =0 with n] +n) =n,
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where superscripts “m’ and “0” represent monotonic and oscillatory evolutions. The
matrix Df (x}:7 pP) possesses nj-stable, n,-unstable, ns-invariant, and ny-flip real
eigenvectors plus ns-stable,ng-unstable, and n;-center pairs of complex eigenvectors.
Without repeated complex eigenvalues of |4;| = 1 (i € N3 UN4 U N7), an iterative
response of Xy = f(x;,p) is an ([0, n] : [0, n9] : [n3; k3] : [na; xa]|ns : ne = ny)
flow in the neighborhood of the fixed point x;. With repeated complex eigenvalues of
|4:| =1 (i € N3 U N4 UN7), an iterative response of X;41 = £(X, p) is an ([n]", nf] :
(15, 18] : [n3; k3] : [na; K4]|ns : ne = [n7,1;167]) flow in the neighborhood of the fixed
point x;, where k; € {@,m;} (j = 3,4,7). The meanings of notations in the afore-
mentioned structures are defined as follows:

(i) [, n9] represents ni-sinks with n"-monotonic convergence and n{-oscil-
latory convergence among nj-directions of v; if |4;]<1 (i€ N; and

1 <n; <n) with distinct or repeated eigenvalues.
(i) [n%,nS] represents ny-sources with n}'-monotonic divergence and n9-oscil-
latory divergence among np-directions of v; if |4 >1 (€N, and

1 <ny <n) with distinct or repeated eigenvalues.
(iii)) n3 = 1 represents an invariant center on 1-direction of v; if ; =1 (i € N3

and n3 = 1).
(iv) n4 = 1 represents a flip center on 1-direction of v; if 4; = —1 (i € Ny and
ng = 1)

(V) ns represents ns-spiral sinks on ns-pairs of (u;,v;) if |4;|<1 and Im4; # 0
(i € Ns and 1 <ns <n) with distinct or repeated eigenvalues.
(vi) ng represents ng-spiral sources on ng-directions of (u;,v;) if |4;] > 1 and
Im4; # 0 (i € Ng and 1 < ng <n) with distinct or repeated eigenvalues.
(vii) n7 represents nz-invariant centers on nz-pairs of (u;,v;) if |4;| = 1 and ImJ;
#0 (i € N7 and 1 <n7 <n) with distinct eigenvalues.
(viii) @ represents none if n; =0 (j € {1,2,...,7}).
(ix) [n3;x3) represents (n3 — K3)-invariant centers on (n3 — k3 )-directions of v;,
(i3 € N3) and Kx3-sources in x3-directions of v;,(js € N3 and jz # i3) if 4; =1
(i € N3 and n3 <n) with the (k3 + 1)th-order nilpotent matrix Ng-’“ =0
O<kz<nz—1).
(x) [n3; Q] represents n3-invariant centers on nz-directions of v; if ,; = 1 (i € N3
and 1 <n3 <n) with a nilpotent matrix N3 = 0.
(xi) [ng; 14) represents (ny — ky4)-flip oscillatory centers on (ng — K4)-directions
of v;, (is € N4) and r4-sources in k4-directions of v;, (js € Ny and jy # iy) if

Ai=—1 (i € Ny and n4 <n) with the (k4 + 1)th-order nilpotent matrix
Nt =0 (0<ig <ng — 1)
(xii) [n4; 9] represents ny flip oscillatory centers on ny-directions of v; if 2; = —1

(i € Ny and 1 <ny <n) with a nilpotent matrix Ny = 0.
(xiil) [n7,l; k7] represents (n7 — K7)-invariant centers on (n7 — K7)-pairs of (u;,, v;,)
(i7 € N7) and w7-sources on k7-pairs of (uj7,vj7) (j7 € N7 and j; # iy) if
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|4 =1 and ImJ; #0 (i € N; and ny <n) for (I+ 1)-pairs of repeated
eigenvalues with the (r; + 1)th-order nilpotent matrix N§7+l =00<r; <.

(xiv) [n7,1; Q] represents ns-invariant centers on ny-pairs of (u;, v;) if |4;] = 1 and
Im/; # 0 (i € N; and 1 <ny <n) for (I + 1)-pairs of repeated eigenvalues
with a nilpotent matrix N7 = 0.

2.3 Stability Switching Theory

To extend the idea of Definitions 2.11 and 2.12, a new function will be defined to
determine the stability and the stability state switching.

Definition 2.18 Consider a discrete, nonlinear dynamical system X1 = f(xx, p)
€ #" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by
Xitj = £(Xkqj-1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ui(xp) CQ), and f(x¢,p) is C'(r>1)-continuous in U(x;) with
Eq. (2.28). The linearized system is y;. ;. = Df(x,’:,p)yk+j (Yiqj = Xy — Xp) in
Ui(x;) and there are n linearly independent vectors v; (i =1,2,...,n). For a
perturbation of fixed point y; = x; — xj, let y,(f) = c,({i)vi and y,(fil = c,(filvi,

s,(f) =V Y=V, - (X% —X}) (2.49)

where s,(f) = c,(;)\|vi||2. Define the following functions

Gi(x,p) =V} - [f(x¢, p) — x;] (2.50)

and

G<(lf>) (x¢,p) = ViT . Dsf)f(xk(slii))a p) = viT .kaf(Xk(s]Ei))vP)({)CS)XkasioC,(j) s
=T Def(xe(s)), p)villvil| >

G (v, p) = v - DIExe(s”).p) = V] - Dy (D (xels).p)) (2.52)
k

i (i)
Sk

where Do () = 8()/0s and D) () = Do (D17 ()).

k ¢ k
Definition 2.19 Consider a discrete, nonlinear dynamical system x;; = f(xx, p)
€ 2" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by
Xitj = £(X¢qj—1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ur(xp) CQ), and f(x4,p) is C" (r>1)-continuous in Ui(x}) with
Eq. (2.28). The linearized system is y;. ;. = DE(X;, P)Yis; (Vg = Xatj — Xp) in
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Uk(x;) and there are n linearly independent vectors v; (i = 1,2, ...,n). For a per-

turbation of fixed point y;, = x; — xj, let y,(f) = c,(f) v; and Y/(ciL = c,gllv,'.

(i) xx4j (j € Z) at fixed point x;; on the direction v; is stable if
Vi - (e = x)1<|v] - (% — x3))| (2.53)

for x; € U(x}) C Q,. The fixed point x; is called a sink (or stable node) on
the direction v;.
(il) Xp4; (G € Z) at fixed point x;; on the direction v; is unstable if

Vi (R = X0 > V] (%= x7) (2.54)

for x, € U(x;) C Q,. The fixed point X; is called a source (or unstable node)
on the direction v;.
(iii) x¢4; (j € Z) at fixed point x; on the direction v; is invariant if

v (e = x0) = v - (- x)) (2.55)

for x; € U(x;) C Q,. The fixed point x; is called to be degenerate on the
direction v;.

(@iv) x](:lj (j € Z) at fixed point x; on the direction v; is symmetrically flipped if
W) V] - (X1 —Xp) = =V, - (X — X}) (2.56)

for x, € U(x;) C Q,. The fixed point x} is called to be degenerate on the
direction v;.

The stability of fixed points for a specific eigenvector is presented in Fig. 2.4.
The solid curve is V;r “Xpr] = vl.T - f(x¢, p). The circular symbol is fixed point. The
shaded regions are stable. The horizontal solid line is for a degenerate case. The
vertical solid line is for a line with infinite slope. The monotonically stable node
(sink) is presented in Fig. 2.4a. From the fixed point xj, let y, = x; — x; and
Yir1 = Xkr1 — X;. V] X =V -Xgqq and V] -y, = —Vv] -y, are represented by
dashed and dotted lines, respectively. The iterative responses approach the fixed
point. However, the monotonically unstable (source) is presented in Fig. 2.4b. The
iterative responses go away from the fixed point. Similarly, the oscillatory stable
node (sink) after iteration with a flip v -y, = —v] -y, is presented in Fig. 2.4c.
The dashed and dotted lines are used for two lines v! -y, = —v] -y, and
v,.T c X = ViT - Xj+1, respectively. In a similar fashion, the oscillatory unstable node
(source) is presented in Fig. 2.4d. This illustration can be easily observed from the
stability of fixed points. In Fig. 2.4e, f, the oscillatory stable and unstable nodes are

presented as usual through the two-time iterations.
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Fig. 2.4 Stability of fixed points: a monotonically stable node (sink); b monotonically unstable
node (source); ¢ oscillatory stable node (sink) and d oscillatory unstable node (source);
e oscillatory stable node (sink) and f oscillatory unstable node (sink). Shaded areas are stable
zones. (Y, = Xx — X; and ;| = Xpq1 — X;)
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Theorem 2.5 Consider a discrete, nonlinear dynamical system Xp.; = f(X;, p)
€ %" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by
Xitj = £(Xiyj—1,P) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, U(xp) CQ), and f(x¢,p) is C" (r>1)-continuous in Uy(x}) with
Eq. (2.28). The linearized system is Yy i = DE(X(, P)Yis; (Vij = Xksj — X{) in
Ui(x}) and there are n linearly independent vectors v; (i =1,2,...,n). For a

perturbation of fixed point y, = X, — X}, let y,(f) = c,@vi and y,(fl] = c,(fllvi.

(i) Xitj (G € Z) at fixed point X; on the direction v; is stable if and only if
1) /o
Gi(i)) (Xka p) = j'i € (_17 1) (257)
Yk

for x, € U(x}) C Q,.
(il) Xpqj ( € Z) at fixed point X; on the direction v; is unstable if and only if

G} (x;,p) = 4 € (1,00) and (—00, 1) (2.58)
“k

for x, € U(x}) C Q,.
(i) xx4; (G € Z) at fixed point x; on the direction v; is invariant if and only if

Gi;ﬁ)(xltap) =/4=1 and Gi;i)(xz,p) =0m; =2,3,... (2.59)
for x, € U(x]) C Q,.
(@iv) X](:j_] (G € Z) at fixed point X; on the direction vy is symmetrically flip if and
only if
GV

K

(xi,p) =4 =—1 and G (xi,p)=0m;=2,3,...  (2.60)
Sk

for x, € U(x}) C Q,.
Proof The proof can be referred to Luo (2012). O

The monotonic stability of fixed points with higher-order singularity for a spe-
cific eigenvector is presented in Fig. 2.5. The solid curve is v} - x;41 =v] - f(xt, p).
The circular symbol is fixed pointed. The shaded regions are stable. The horizontal
solid line is also for the degenerate case. The vertical solid line is for a line with
infinite slope. The monotonically stable node (sink) of the (2m; 4 1)th-order is
sketched in Fig. 2.5a. The dashed and dotted lines are for V;-r “ X = Vl.T - X1 and
v} *¥ii1 = —V] -y, respectively. The nonlinear curve lies in the stable zone, and
the iterative responses approach the fixed point. However, the monotonically



28 2 Nonlinear Discrete Systems

T _ T
vV, "X, =V, ‘X

k+1

Fig. 2.5 Monotonic stability of fixed points with higher-order singularity: a monotonically stable
node (sink) of (2m; + 1)th-order, b monotonically unstable node (source) of (2m; + 1)th-order,
¢ monotonically lower saddle of (2m;)th-order, and d monotonically upper saddle of (2m;)th-
order. Shaded areas are stable zones. (y;, = Xx — X; and y;_ | = Xp1 — X§)

unstable (source) of the (2m; + 1)th-order is presented in Fig. 2.5b. The nonlinear
curve lies in the unstable zone, and the iterative responses go away from the fixed
point. The monotonically lower saddle of the (2m;)th-order is presented in
Fig. 2.5c. The nonlinear curve is tangential to the line of VlT SXp = vl-T - Xg41 With the
(2m;)th-order, and the upper branch is in the stable zone and the lower branch is in
the unstable zone. Similarly, the monotonically upper saddle of the (2m;)th-order is
presented in Fig. 2.5d. The oscillatory stability of fixed points with higher-order
singularity for a specific eigenvector after iteration with a flip v -y, = —v] -y
is presented in Fig. 2.6. The oscillatory stable node (sink) of the (2m; + 1)th-order
is sketched in Fig. 2.6a. The dashed and dotted lines are for v} -y, = =V} -y,
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Fig. 2.6 Oscillatory stability of fixed points with higher-order singularity after iteration with a flip
V] -y, = —V] - y4.1: a oscillatory stable node (sink) of (2m; + 1)th-order, b oscillatory unstable
node (source) of (2m; + 1)th-order, ¢ oscillatory lower saddle of (2m;)th-order, and d oscillatory
upper saddle of (2m;)th-order. Shaded areas are stable zonmes. (y, =xX; —X; and
Yir1 = Xes1 — Xp)

and vl.T C X = viT - Xj+1, respectively. The nonlinear curve lies in the stable zone,
and the iterative responses approach the fixed point. However, the oscillatory
unstable (source) of the (2m; + 1)th-order is presented in Fig. 2.6b. The nonlinear
curve lies in the unstable zone, and the iterative responses go away from the fixed
point. The oscillatory lower saddle of the (2m;)th-order is presented in Fig. 2.6c¢.
The nonlinear curve is tangential to and below the line of v} -y, = —v! -y, with
the (2m;)th-order, and the upper branch is in the stable zone and the lower branch is
in the unstable zone. Finally, the oscillatory upper saddle of the (2m;)th-order is
presented in Fig. 2.6d. For clear illustrations, the oscillatory stability of fixed points
with higher-order singularity for the two-time iterations is presented in Fig. 2.7.
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Fig. 2.7 Oscillatory stability of fixed points with higher-order singularity for the two-time
iterations: a oscillatory stable node (sink) of (2m; + 1)th-order, b oscillatory unstable node
(source) of (2m; + 1)th-order, ¢ oscillatory lower saddle of (2m;)th-order, and d oscillatory upper
saddle of (2m;)th-order. Shaded areas are stable zones. (y;, = Xx — X; and y;, | = Xpq1— X})

Definition 2.20 Consider a discrete, nonlinear dynamical system x;,; = f(x;, p)
€ #°" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by
Xij = £(Xeqj—1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ur(xp) CQ), and f(x4,p) is C" (r>1)-continuous in U(x;) with
Eq. (2.28). The linearized system is y; ;.1 = DE(X, P)¥iy; (Veiy = Xksj — Xg) in
Ui(x;) and there are n linearly independent vectors v; (i = 1,2, ...,n). For a per-
turbation of fixed point y; = x; — x;, let y,(f) = c,(f)v,- and y,(fll = c,ﬁlvi.

(i) Xx4; ( € Z) at fixed point x;; on the direction v; is monotonically stable of

the (2m; + 1)th-order if
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(i)

(iif)

(iv)

G (x;,p) =24 =1,

s

=~

(r1) [
G (x5,p) =0 for r;=2,3,...,2m;,
(0 (X6 P) (2.61)
G(2m,+l)(x;:7p> 7507

()
Sk

Vi (R = xp)<[v] - (3 = x3)]

for x; € Ux(x;) C Q,. The fixed point X; is called a monotonic sink (or
stable node) of the (2m; + 1)th-order on the direction v;.

Xi4j (j € Z) at fixed point x; on the direction v; is monotonically unstable of
the (2m; + 1)th-order if

Gl (xp) = 4 =1,
k
(ri> *
GJ(x,p)=0 for r,=2,3,....2m;
s K (2.62)
2Wl,‘ 1 *
G( " )(kap) 3& 07

0

Vi (R = x0) > V] - (% = %)

for x; € Ui(x}) C Q,. The fixed point x; is called a monotonic source (or
unstable node) of the (2m; + 1)th-order on the direction v;.

Xk (j € Z) at fixed point x; on the direction v; is monotonically unstable of
the (2m;)th-order, lower saddle if

G (xi,p) =4 = 1,

(
Sk

GE,:))(XLP) =0 for r;=2,3,...,.2m; — 1;
k

Gii)mi)(xlt?p) L0, (2.63)
k
)

VI (i = X[ < V] - (e = x)| - for s

V- (e = X)) > V- (xe = xp)|for 5 <0

>0,

for x; € Uk(XZ) C Q,. The fixed point x; is called a monotonic, lower
saddle of the (2m;)th-order on the direction v;.

Xi4j (j € Z) at fixed point x; on the direction v; is monotonically unstable of
the (2m;)th-order, upper saddle if

1)« ,
G§<ff(xk,p) =4 =1,
k
G((rif))(xz,p) =0 for r;=2,3,...,2m —1;
Sk
2m;) ok
Gim '(x;.p) £ 0,

s
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)

(vi)

(vii)
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Vi (X1 —x5)| > v - (x¢ — x;)| for s,(ﬁ > 0,

(i)

(2.64)
Vi (R =X <Ivi - (% —xp)| - for 57 <0

for x; € Up(x}) C Q,. The fixed point x; is called a monotonic, upper
saddle of the (2m;)th-order on the direction v;.

X+ (7 € Z) at fixed point x; on the direction v; is oscillatory stable of the
(2m; + 1)th-order if

1) o*
G(Y(i))(xkap) =A=-1,
Sk
Gi(rl_f))(x;:’p) =0 for r,=2,3,...,2m;
k
2m;+1 %
Giﬁ') i )(Xk>P) # 0;
k

Vi (R = xp)<[v} - (3 — ;)]

(2.65)

for x; € Uk(x;) C Q,. The fixed point x; is called an oscillatory sink (or
stable node) of the (2m; + 1)th-order on the direction v;.

Xi+; (j € Z) at fixed point x; on the direction v; is oscillatory unstable of the
(2m; + 1)th-order if

G(?(Xi,p) =/i=—1

S,

>~

G(r‘)(xk,p) =0 for ,=2,3,....2m;
2m; %

Gg,) ixi,p) #0,
k

Vi (R = X)) > v (3% = X))

(2.66)

for x; € Ur(x}) C Q,. The fixed point x; is called an oscillatory source (or
unstable node) of the (2m; + 1)th-order on the direction v;.

Xi+; (j € Z) at fixed point x; on the direction v; is oscillatory unstable of the
(2m;)th-order, lower saddle if

G(lx>(xkap) = /li = _17

(
S

Gig;)(xk,p) =0 for r;=2,3,....2m — 1;
(

k

2m;

Gs(l )(X;”p) # 0, (2.67)
k

v (X1 —X0)| > [V (x — x;)| for s >0,

v; + % k k

v (X — <IVF- (%, —x¥)| for s <0

| i + i k k

for x; € Up(x}) C Q,. The fixed point x; is called an oscillatory lower
saddle of the (2m;)th-order on the direction v;.
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(viil) Xz (j € Z) at fixed point x; on the direction v; is oscillatory unstable of the
(2m;)th-order, upper saddle if
1 *
G((i))(xkvp) = jvi = _la

Sk

Gi(rl‘)>(XZap) =0 for ;= 2,3,...,2m; — 1;
k

2m; *
Gi(;) )(kap) #0, (2.68)

k

VT (Rt — X)) < VT - (% — x3)| for s >0,

V7 (et — xp)| > V- (e —xp)| for s <0

for x; € Up(x;) C Q,. The fixed point x; is called an oscillatory, upper
saddle of the (2m;)th-order on the direction v;.

Theorem 2.6 Consider a discrete, nonlinear dynamical system X1 = f(X¢,p) €
A" in Eq. (2.4) with a fixed point X;. The corresponding solution is given by
Xitj = £(Xeqj—1, p) withj € Z. Suppose there is a neighborhood of the fixed point X;
(i.e., U(x}) C Q), and £(xy, p) is C" (r > 1)-continuous in Ux(x}) with Eq. (2.28).
The linearized system is Y1 = DE(X;, P)Yisj (Vi = Xay — Xp) in Up(x) and
there are n linearly independent vectors v; (i = 1,2,...,n). For a perturbation of
fixed point y;, = x; — x3, let y,((i) = c,@vi and y,((’;)rl = c,((i)rlvi.

() Xiyj ( € Z) at fixed point X, on the direction v; is monotonically stable of the

(2m; + 1)th-order if and only if

:)(X;vp) =0 fOI‘Vi = 2737 . '72mi; (269)

for X, € U(x}) C Q.
(il) xxy; (G € Z) at fixed point X;, on the direction v; is monotonically unstable of
the (2m; + 1)th-order if and only if

J(xi.p) =0 forr=2,3,....2m, (2.70)

for x, € U(x}) C Q,.
(i) Xiy; (G € Z) at fixed point X; on the direction v; is monotonically unstable of
the (2m;)th-order, lower saddle if and only if
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G ;’;')(x,t,p) =0 forr;=2,3,....2m — 1
(2.71)

for x, € U(x}) C Q.
(iv) Xx4j (G € Z) at fixed point x;; on the direction v; is monotonically unstable of
the (2m;)th-order if and only if

Gi}if(x;p) =li=1,
k

G\ (x;,p) =0 forri=2,3,....2m — 1,
; (2.72)

G%m")(xz,p) > 0 unstable for s,(f) > 0;

G(?m')(xk,p) >0 stableforsk <0

k
for xp € U(x}) C Q,.
(V) Xisj G € Z) at fixed point x;; on the direction v; is oscillatory stable of the
(2m; + 1)th-order if and only if

G ))(Xltap) = )*i = _17

G (xp,p) =0 forr; =2,3,....2m, (2.73)

(

5

i

k

2m 1 *

GE“ >(xk,p) >0

k
for x, € U(x}) C Q.

(Vi) Xx4j (G € Z) at fixed point X on the direction v; is oscillatory unstable of the
(2m; + 1)th-order if and only if

Gi(ll))<XZap) = ;”l' = _17

k

G (xi:p) =0 forr=2,3,....2m; (2.74)
2m;+1
Giu ! )(Xk7p)<0

k

for x, € U(x}) C Q.
(vii) Xp4j (G € Z) at fixed point X} on the direction v; is oscillatory unstable of the
(2m;)th-order, upper saddle if and only if
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G (xi,p) =0 forri=2,3,...,2m—1,
(2.75)

k
G (x;,p) > 0 unstable for s\’ <0

for x, € U(x}) C Q.

(viil) Xxy; ( € Z) at fixed point X; on the direction v; is oscillatory unstable of the
(2m;)th-order, lower saddle if and only if

G (x:,p) = 4= —1,

(i)
Sk

GE:S)(XZ’[)) = O forri = 273a---’2mi - la
k

| (2.76)
GE;;"") (xi,p) <O stablefors\’ <0;
Giém,-)(xz,p) <0 unstable for s,ﬂi) >0
Yk
for x; € U(x;) C Q.
Proof The proof can be referred to Luo (2012). 0

Definition 2.21 Consider a discrete, nonlinear dynamical system x| = f(xx, p)
€ #" in Eq. (2.4) with a fixed point x;. The corresponding solution is given by
Xitj = £(X¢qj—1, p) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ui(xp) CQ), and f(x¢,p) is C'(r>1)-continuous in Ui(x;) with
Eq. (2.28). The linearized system is y; ;1 = DE(X, P)Yiy; (Yerj = Xk4j — Xp) in
Ui(x3). Consider a pair of complex eigenvalues o; = if; (i € N = {1,2,...,n},
i = v/—1) of matrix Df(x*, p) with a pair of eigenvectors u; % iv;. On the invariant
plane of (u;,v;), consider r,(:) = y,ii) = y,((:)L + y,(jl with

r,(:) = c,@u,- + d,(f)v,-7

0, = e+ dflv 27
and
&) = L 1AauT 3) ~ An(v] )]
d = LM GT v — Al y) (278)

Ar=[[w|?, A=Vl P, A =) - v

A=AA A},
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Consider a polar coordinate of (ry, 0) defined by

c,(f) = r,ii) cos 0,(:), and d,gi) = r,gi) sin 6,(;);
. : : . . (2.79)
P =1/ ()2 + @")?, and 6 = arctan(d” /c).
Thus,
m _1
Ckr1 = x [AzGcin (X, p) — Alzde (X, p)] (2.80)
i 1 '
d,EL =A [AlGdk“) (X, p) — AUGCL” (X, p)]
where
S~ L om0y ,0)
G (e, ) = ul - [f(xe,p) —xj] = > ﬁGﬂ' (0 ()™,
ml | (2.81)
G (5 p) =7 - (s p) = xi) = D_ G (0)) ()"
mi=1""1
G (0) = of -0 K(xe, p)luscos 6] + visin 61|
o , P (2.82)
G (0F) = v] - 90" £ (xe, p) i cos 0} + v sin 6]
k (x;.p)
Thus,
”1&11 = \/(cgl) k+1 \/Zm ) z(é "G rkil)(el(g )
oo mi— m; i 2.83
¢ ¢ S ety @8
k+l k+1
9/(&1 = arctan( k+l/ck+1)
where
G(;i>(9,(€l>)
+1

= = 1 1 ri i Si i ri i Si i+,
=22 G0 068 00 + G OG O o gy

ri=1 s;=1 k+1
=—> a6 OG0 + G (060
m; K+ Crt1 K+l Kt
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and
m; i 1 m; i m; i
G (60) = £1A.G 1 (6) — A6l (0)),
Crt1 Sk k (285)
™ 00y — Lia g™ gy _ AG™ (9
4% ( k ) A[ ™ 0 ( k ) 12% ( k )}
k+1 k k

From the foregoing definition, consider the first-order terms of G-function

1 1 1
GE(:‘? (Xka p) = Gii’gl (Xk7 P) + GE)((igz(Xka p)7

i
6D 0108) = 63, 508) + Gl o) o
where
G, (%) = ] - Duf(xe,2)2, 0% = uf - Duf(xi, p)u;
=u} - (=fvi+ ow) = A — BiAn, (2.87)
Gy (%e:P) = 1] - D5 P)0,0%e = w0 - D, DI
=u; - (B + ;) = oA + BiA;
and
ij?)l(xk,p) =v! - Dy f(x;, p)ac](j)xk =v; - Dyf(x, p)u;
=V} - (=B + a) = —Bis + %A, (2.88)
G;?)Z (%,p) = V] - Dy f(xe, P)0,0% = ] - Dy (%, P)Vi
=vI - (B + o) = wAy + BiAm.
Substitution of Egs. (2.86)—(2.88) into Eq. (2.82) gives
GEE’J)(HIEi)) = Giilgl(xk, p) cos 9,@ + G[(:iizz(xkﬂ p)sin 91(<i>
= (;A; — B;A2) cos 0,@ + (24A12 + B;Ar) sin 91(:)’ (2.89)
G4)(0) = G (xp)cos 0+ G (x1,p) sin

= (—f;As + ;A12) cos 0,@ + (A2 + B;A12) sin 01@-

From Eq. (2.85), we have
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i 1 i i
G (0)) = 5 (26 (0) = MGy (6]

= o; COS 9,(3) + f; sin H,g),

| (2.90)
1 i )i 1) /(i
0 (00) =5 (0) - MGl (6]
= o;sin 0 — B, cos 0

Thus,

2 i 1 i 1 i 1 i 1 i

GG (0) = (61 (664 (0) + 6 (06 (6))
Tkt 81 Crr1 diy 4y (291)
= o+ f.
Furthermore, Eq. (2.83) gives
r,EiJ)rl = pir,Ei) + o(r,(f)) and 05(’11 = Hff) — ¥ + o(r,(f>). (2.92)

where

¥; = arctan(f;/o;) and p; = \/o? + 7. (2.93)

As r,((i) < 1 and r,@ — 0, we have
r = pird and 0], =0, -0} (2.94)

With an initial condition of r,@ = 7Y and 0,@ = 0,(:), the corresponding solution of

Eq. (2.94) is

el = (pYrd and 0} =jo;i - 0. (2.95)

From Egs. (2.80), (2.81), and (2.90), we have

c,(fl] = oc,-r,(f) cos (9,(:) + ﬁir,(f) sin 9,@ = oz,-c,(f) + ﬁid,(f),
d,(cill = ocir,((i) sin 0,(;) — ﬁirlgi) cos 0/((:‘) = —ﬁ,-c,(f) + ocid,Ei).

Cl(ciJ)rl o B c,(f) B cost; sinv; c,(f) (2.97)
d0 [T LB ]\ [T sinds cosdi ] g [ :

(2.96)
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From the foregoing equation, we have

(@) i ) . .. (i)
Crij o P i| cosjv; singd; | ) c

{d&)—j} = [_[gi Oﬂz} {dzi) } = (pi)][—sinjﬂi cosjﬂ,} {dEi) } (2.98)
Definition 2.22 Consider a discrete, nonlinear dynamical system Xy =
f(x¢,p) € #" in Eq. (2.4) with a fixed point x;. The corresponding solution is
given by X;y; = f(Xi4j—1,p) with j € Z. Suppose there is a neighborhood of the
fixed point x} (i.e., Ux(x}) C Q), and f(x¢,p) is C” (r > 1)-continuous in Uy (x})
with Eq. (2.28). The linearized system is y; ;1 = DE(X;, P)Yiy; (Viqj = Xkt — Xf)
in Ui(x;). Consider a pair of complex eigenvalues o; £if; i € N = {1,2,...,n},
i = v/—1) of matrix Df(x*, p) with a pair of eigenvectors u; # iv;. On the invariant
plane of (u;,v;), consider r,(f) = y,(f) = y,((’l + y,((’l with Egs. (2.73) and (2.75). For
any arbitrarily small ¢ > 0, the stability of the fixed point x; on the invariant plane
of (u;,v;) can be determined.

(6] X,Ei) at the fixed point x; on the plane of (u;,v;) is spirally stable if

P - <o. (2.99)

(i1) x,@ at the fixed point x; on the plane of (u;,v;) is spirally unstable if

P = s, (2.100)

(iii) x,@ at the fixed point X} on the plane of (u;, v;) is spirally stable with the m;th-
order singularity if for 0,(;) € [0,2n]

Pi = \/alz+ﬂ12:17

s(i) i
GU(0) =0 fors) = 1,2, m—1, (2.101)
Tt
(i)

Fepl — r,(ci) <0.

@iv) x,((i) at the fixed point X on the plane of (u;,v;) is spirally unstable with the

mjth-order singularity if for 61" € [0, 27]

pi: \/azz+[))12:17

st i

G0 =0 forst! = 1,2, m—1, (2.102)
Tt

r,E?_l — r,((i) > 0.
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v) X,(f) at the fixed point x; on the plane of (u;,v;) is circular if for H,g) € [0,27]

P = —o. (2.103)

(vi) X,@ at the fixed point x; on the plane of (u;, v;) is degenerate in the direction

of w; if

Bi=0 and 6, -0 =o0. (2.104)

Theorem 2.7 Consider a discrete, nonlinear dynamical system Xi1 = f(x¢,p) €
A" in Eq. (2.4) with a fixed point X;. The corresponding solution is given by
Xitj = £(Xeqj—1, P) with j € Z. Suppose there is a neighborhood of the fixed point
x; (e, Ui(xp) CQ), and £(x¢,p) is C" (r>1)-continuous in Uy(x}) with
Eq. (2.28). The linearized system is Y, ; 1 = DE(X(, P)Yiy; (Vey = Xksj — X3) in
Ui(x}). Consider a pair of complex eigenvalues o; £if; (i € N ={1,2,...,n},
i = V/—1) of matrix Df(x*, p) with a pair of eigenvectors w; = iv;. On the invariant
plane of (w;,v;), consider r,g) = y,(j) = y,(fl + y,(('z with Egs. (2.73) and (2.75). For
any arbitrarily small ¢ > 0, the stability of the equilibrium X;; on the invariant plane
of (u;,v;) can be determined.

) X,((i) at the fixed point X; on the plane of (w, Vi) is spirally stable if and only if

pi<l. (2.105)

(i1) X,(f) at the fixed point X;, on the plane of (w;, v;) is spirally unstable if and only if

p; > 1. (2.106)

(iii) X,@ at the fixed point X;. on the plane of (w;,v;) is stable with the m;th-order
singularity if and only if for 9,(:) € [0,27]

pi= \/O(zz+ﬂ12:17

(@)

G (00) =0 forsi=1,2,...m — 1, (2.107)
Ty

GZ?)” 0y <o0.
@iv) X,(:) at the fixed point X; on the plane of (w;,V;) is spirally unstable with the
myth-order singularity if and only if for 0,(;) € [0,27]
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Pi = \/azz+ﬁl2:l7

G000y =0 fors? =0,1,2,. . om—1 (2.108)

r]((l') k k g Ly &y ey Ml ) .
GZ@”(@@) > 0.

W) X]Ei) at the fixed point X; on the plane of (w;,v;) is circular if and only if for

0 e [0,2x]
Pi = \V “12+ﬁ12:1a

69, i . (2.109)
G (91(<l>) =0 for s,(f> =0,1,2,....
Tk
Proof The proof can be referred to Luo (2011). O

2.4 Bifurcation Theory

Definition 2.23 Consider a discrete, nonlinear dynamical system X} =
f(x¢,p) € #" in Eq. (2.4) with a fixed point x;. The corresponding solution is
given by X;4; = f(X44j_1,p) With j € Z. Suppose there is a neighborhood of the
fixed point x; (i.e., Ux(x}) C Q), and f(x,p) is C" (r > 1)-continuous in Uy(x})
with Eq. (2.28). The linearized system is y;. ;.1 = DE(X;, P)Yiys (Ve = Xety — X5)
in Ui(x;) and there are n linearly independent vectors v; (i = 1,2,...,n). For a

perturbation of fixed point y; = x; — xj, let y}(i) = c,ii)v,- and y,(jll = 01(31"#

s,(f) =v -y, =V (X —x{) (2.110)

where s,@ = c,(f)|\v,~||2.

seh = e =] - [f(xep) — x] @.111)
In the vicinity of point (X, Po). v} - f(x¢, p) can be expanded for (0<60<1) as

v [f(%,P) = Xi)) = ailsy’ = s{{)) + b - (p = Po)

. l ! r —r,r i )% —r r
+ Z EZ anz('q ' )(sl(c) - S/(<(>o))q (p - po)
=2 e (2.112)
1 (i) ()= m+1
* (m+1)! [~ Sk(0)>8s£i> + (P = Po)3p]

X (v; - £(xz0) + 0Axi, py + 0AP))
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where

, bl =v] - Opf(xt,p)

1

1

T
a =y; 'a(f>f(xk7p) * )
* (X500 (X0 P0)

(2.113)

agr,x) _ V,»T . ai(rﬁ)al()v)t(xb p)
k

X:0) o)

If a; = 1 and p = p,, the stability of the fixed point X; on an eigenvector v; changes
from stable to unstable state (or from unstable to stable state). The bifurcation
manifold on the direction of v; is determined by

- 1 ! r —r,r i *x \g—r r
bl - (p—po) + D> Coal (s —s{0) " (p—po) =0.  (2.114)

In the neighborhood of (XZ<0>7 Py), when other components of fixed point x; on the
eigenvector of v;forall j # i, (i,j € N) do not change their stability states, Eq. (2.114)

possesses [-branch solutions of equilibrium s,Ei)* (0<l<m) with [;-stable and
l,-unstable solutions (I;,l, € {0,1,2,...,1}). Such l-branch solutions are called the
bifurcation solutions of fixed point X} on the eigenvector of v; in the neighborhood of
(X} (0): Po)- Such a bifurcation at point (X}, , Po) is called the hyperbolic bifurcation

of mth-order on the eigenvector of v;. Consider two special cases herein.

() If

1 i) i)x
a =0 and bl - (p—po) +5a VG —s =0 (2.115)

20
where
a9 =T aﬁgal()o)f(xk, ) =vI. 35(5))f(xk’ p)
‘ (Xt(0)"Po) * (X} )P0
2) gt 2.11
=T OPH e D)), = GO (xig o) #0. (116
k(0)"F0 Sy
T_ T,
b; =v; - Opf(xs, p) <xz(0)Apo>7é 0,
a x [b] - (p — py)] <0, (2.117)

such a bifurcation at point (xg, py) is called the saddle—node bifurcation on the

eigenvector of v;.
Gi) If

b/ - (p—py) =0 and

(L) (2.118)
a;

i)*

7)* 1 i [
(P = Po)(si”" = i)+ (5 = s
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where
52 0 — =v] 85(2,3 81(,0>f(Xk, p) =v;- afg))f(xkv p)
K (XZ(O) Po) k (x5:Po)
2 *
=¥ 000 D) (Vi) = G KL Ro) 0,
1(0) « (2.119)
al"! =vI. 9\ alVE(x,, p) =V - 0,00f(xc,p)|
% ("Z(o) Po) g ) o)
= v;.r . 8xk8pf(xk, p)V,' (XZ(O)PO)# 0,
o < ™ - (b p0)] <0, (2.120)

such a bifurcation at point (x,’:(o), Po) is called the transcritical bifurcation on

the eigenvector of v;.

Definition 2.24 Consider a discrete, nonlinear dynamical system Xy} =
f(x¢,p) € #" in Eq. (2.4) with a fixed point x;. The corresponding solution is
given by X;y; = f(Xi4j—1,p) With j € Z. Suppose there is a neighborhood of the
fixed point x; (i.e., Ui(x}) C Q), and f(x,p) is C" (r > 1)-continuous in Uy (x})
with Eq. (2.28). The linearized system is y;; 1 = DE(X}, P)Yiy; (Vij = Xktj — Xf)
in Uy(x}) and there are n linearly independent vectors v; (i =1,2,...,n). For a
perturbation of fixed point y, = xx —xj, let y,@ = c,g)vi and y,@l = c,ﬁlvi.
Equations (2.110), (2.111), and (2.113) hold. In the vicinity of point (X}, py),
v] - f(xg, p) can be expended for (0<6<1) as

ViT - [f(xe, p) — X/t+1(0)] = al(sk - Sk( )+ bT (P —Po)

+ Z p Z a5 = s{) " (B~ po)’
q= r=

! (@) (i) m+1
T 06— 510)0 + (0= Po)dy)

x (vi - £(x4 + 0AXy, py + 0APp)) (2.121)

and

Vi (X1, D) — X)) = ail(si]) — Sii110) + b7 - (P — Do)

rr i (l)* —r r
+ Z Z q Sk+1(0))q (P —Po)

! (@) * m+1
T o1 56— S0, + (0 =R

x (v] - £(X11(0) T 0AXks1,Po + 0AP)). (2.122)
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If a; = —1 and p = py, the stability of current equilibrium x;; on an eigenvector Vv;
changes from stable to unstable state (or from unstable to stable state). The bifur-
cation manifold in the direction of v; is determined by

b - (p— po) +ai(s) — si?&})
+Z _zcr s = sl =) = (LT = 510

T (s _ () (2.123)
b, - (p—po) +ai(s), — Sk+l(0))

m

Z ZCZafq sl =5 0)" (= Po) = (5 = siy)-

In the neighborhood of (X}Z(O), Po), when other components of fixed point Xz(o) on
the eigenvector of v; for all j # i, (j,i € N) do not change their stability states,

Eq. (2.123) possesses [-branch solutions of equilibrium s,(f)*(0<l§m) with [;-
stable and /»-unstable solutions (/1,/, € {0,1,2,...,1}). Such I-branch solutions are
called the bifurcation solutions of fixed point x; on the eigenvector of v; in the
neighborhood of (x} . po). Such a bifurcation at point (xj,po) is called the
hyperbolic bifurcation of mth-order with doubling iterations on the eigenvector of
v;. Consider a special case. If

bl (p—pp) =0, =—1,a>" =0, a*’ =0, al'’ =0,

I 3o v \3 he X
[(1 o (P — Po) + @il (s} J —S;i) )'*‘5 f )(sk_sk(o)) Z(Sz(cll i(ciuo))

i)* )% 1 3,0 % % )% i)*
[a(l.,l) . (p —po) + a,-](s,((il — s,(cll(o)) +§a§ )(Sk+1 — sk+1(0))3 — s,(() _ sl(c()()))
(2.124)
where
af3'0> =v] - Ofgfﬁlgmf(xk, p) =v]- 653)>f(xk, p)
k (X;(g) Po) o (xz(n) Po)
3) r o
= v - OE(x p) (vivivi)| .= G (X{(0) Po) # O,
Ho (2.125)
az(l.h =v - ai;)al()l)f(xkvp) =v; -0 50 ) Opf (X, )
(X 9):Po) Xi(0P0)

=v. Ox.Op f(xk,p)vl‘ #0,
(0> :Po)

PN [algl.l) -(p = po)] <O, (2.126)

1
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such a bifurcation at point (XZ(O), po) is called the pitchfork bifurcation (or period-
doubling bifurcation) on the eigenvector of v;.

For the saddle-node bifurcation of the first kind, the (2m)th-order singularity of
the fixed point at the bifurcation point exists as a saddle of the (2m)th-order. For the
transcritical bifurcation, the (2m)th-order singularity of the fixed point at the bifur-
cation point exists as a saddle of the (2m)th-order. However, for the stable pitchfork
bifurcation (or saddle-node bifurcation of the second kind, or period-doubling
bifurcation), the (2m + 1)th-order singularity of the fixed point at the bifurcation
point exists as an oscillatory sink of the (2m + 1)th-order. For the unstable pitchfork
bifurcation (or the unstable saddle—node bifurcation of the second kind, or unstable
period-doubling bifurcation), the (2m + 1)th-order singularity of the fixed point at
the bifurcation point exists as an oscillatory source of the (2m + 1)th-order.

Definition 2.25 Consider a discrete, nonlinear dynamical system Xy} =
f(xx,p) € #" in Eq. (2.4) with a fixed point x;. The corresponding solution is
given by X;4; = f(X44j_1,p) with j € Z. Suppose there is a neighborhood of the
fixed point x; (i.e., Ux(x}) C Q), and f(x,p) is C" (r > 1)-continuous in Uy (x})
with Eq. (2.28). The linearized system is y; ;.1 = DE(X;, P)Yiys Ve = Xay — X¢)
in Ug(x}). Consider a pair of complex eigenvalues o; £iff; ( € N = {1,2,...,n},
i = v/—1) of matrix Df(x*, p) with a pair of eigenvectors u; = iv;. On the invariant
plane of (u;,v;), consider r,(:) = y,ii) = y,(;jL + y,(i with

v = cu+dlv and ) = u+dl, v (2.127)
and
(i) i A T A
Cr A[ 2(u; - yy) — 12( ¥,
i 1
d15> A (ALY - y) — A (] -yl (2.128)
Ar = lwl?, Ay = [Ivil*, Ay =u] - v;;
A=AA — A,

Consider a polar coordinate of (ry, 0) defined by

c,(f) = r,((i) cos 0,(5), and al(> = rk sin Ok ;
(2.129)

r,(f) = (6,9)2 + (d,(f))2, and 0,: = arctan(d,gi)/c,@).

Thus,

I(cll — Z [AZG (xk,p) AlZGd(l (Xka p)]a
(2.130)

d\), = [A G (Xk,P) —AnGyp (xx, p)]
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where

G ') (Xk7 p) T [f(xlﬁ p) (0)]

=al - (p—py) +am(cy — c,(f()(;‘)) +an(dy — d1<<1<)(>3)

+ Z .Zcr’ m' e (X Po) (P — Po)ri(r/(cl))m"iri

1 (i) (i)* (i) (i) mi+1
+ m [(Ck — Ck(O))a o + (dk - dk(o))adii) + (p - p())ap]

x (uf - f(xjo + 0Axc, po + 0AP)),

G o (X, p) = V'T [f(xk,p) — X*<0)]
k

=b! - (p—py) +anm(c) — C/(c() )+ am(dy) — d/il()(;)

* Z ! Z Co d}Z) (x5, o) (P — Po) """

1 i i)* i )% i
(6 = 0)d0 + (@ — di5),0 + (b — )"

(2.131)
and
G(S r)
i (Xk( )7Po)
= “iT - [Ox, Ou; cos 0,(;) + O, (Vi sm@ } 8 >f(Xk,p) .
" Ko (2.132)
s,r *
de (Xk(O)va)
=v] [0y, Ow cos@ + 0% (Vi sm@ ] 8 f(xx, p) . >§
k(0)°FO
al = ul - O (xc.p), B = VI - 0pF(x0.p);
aj = ll;F : axkf(xk,P)lli, aiiny = ui : 8ka(Xk, p)“i; (2'133)
a1 =V, - Ox f(Xe, P)W;, aina =V} - Ox £ (Xe, P)Vi.
Suppose

a,=0 and b;=0 (2.134)
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then
i i 2 i 2 S i)\m ~(m
i = V() + @) = (3 e
K+
/G(zo o Zoo:/l(’ (r i))m72 (2.135)
k+l m= "
9/&11 = arctan( k+1/Ck+1)
where
G5 =G0 +6\" and 20 =G'5YV /GG with
Tkt yas) k+l s as)
2,0 1,0 1,0) / p(i
G5 = 16070 po)l + 16" (0 b)Y,
s Cri1 k1
M M () (s (2.136)
ZZ G 0 k 7p0 GC(,-; (0% apo)(P—Po)rH
A+] r:1 5:1 k+l k+1
(L,s r+s
+[G (k,Po)'de (0,p0) - (p — po);
k+
and
1 = 6 /G20 with
Tkt K+
(m) M X 11 (mi—rir) ¢ (0) -
Gr(;) = Z Zﬁw[(}ca; (0, po) - (P —Po)" ]
kel mi=0m;=0""1"""J" ket
G(mj_sjvsi) O(i) . _ m;—s;
<G (0", p0) - (P — Po)
k+1

+ G(ml " rl)(gl(ci>7po) “(p—1p0)" "]

1(+1

X G (0 po) - (0 — o))
:im—lcr il 1 [G S (0( ) G(m r2M—m— r)(el )
ml 2 2 oM — m)! e, kPOl B, ko Po
r,s m—r,2 m—r (i —m
+ G0, po) - Gl (0F) py)] - (0 — o)
k+1 k+1

(2.137)

G " (ko) = A[Aﬁﬁ’ﬁ’*“(xz(m,po) AnG " (x0) po))
o ¢ (2.138)

Gy (O, po) = [AIG%#J) (X/t(o),Po) - AIZGCZ;#’F (XZ(O)aPO)]'
k k

dk+1

A
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It G(igo) =1 and p = p,, the stability of current fixed point X; on an eigenvector

Tt

plane of (u;, v;) changes from stable to unstable state (or from unstable to stable
state). The bifurcation manifold in the direction of v; is determined by

AN 0 =0, (2.139)

Such a bifurcation at the fixed point (XZ(O),pO) is called the generalized Neimark

bifurcation on the eigenvector plane of (u;, v;).
For a special case, if

A0 400N =0, for 20 x <0 and Y =0 (2.140)

such a bifurcation at point (X,p,) is called the Neimark bifurcation on the
eigenvector plane of (u;,v;).

For the repeating eigenvalues of DP(X}, p), the bifurcation of fixed point x; can be
similarly discussed in the foregoing Theorems 2.5 and 2.6. Herein, such a proce-
dure will not be repeated. From the foregoing analysis of the Neimark bifurcation,
the Neimark bifurcation points possess the higher-order singularity of the flow in
discrete dynamical system in the radial direction. For the stable Neimark bifurca-
tion, the mth-order singularity of the flow at the bifurcation point exists as a sink of
the mth-order in the radial direction. For the unstable Neimark bifurcation, the
mth-order singularity of the flow at the bifurcation point exists as a source of the
mth-order in the radial direction.
Consider a 2D map

P:x; — x4 with x4 = f(xg, p) (2.141)

where x; = (x, )" and £ = (f;,£,)" with a parameter vector p. The period-n fixed
point for Eq. (2.141) is (x,p), ie., P<")X,’: = X}, Where P = Po P=1) and
P©) =1, and its stability and bifurcation conditions are given as follows.

(i) period-doubling (flip or pitchfork) bifurcation
tr(DP™) + det(DP™) + 1 =0, (2.142)
(ii) saddle—node bifurcation
det(DP™) + 1 = tr(DP™), (2.143)
(iii) Neimark bifurcation

det(DP™) = 1. (2.144)
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Fig. 2.8 Stability and bifurcation diagrams through the complex plane of eigenvalues for 2D
discrete dynamical systems

The bifurcation and stability conditions for the solution of period-n for
Eq. (2.141) are summarized in Fig. 2.8 with det(DP®) = det(DP®)(x; ), Po)) and
tr(DP™) = tr(DP™ (xz(()), Po))- The thick dashed lines are bifurcation lines. The

stability of the fixed point is given by the eigenvalues in complex plane. The
stability of the fixed point for higher-dimensional systems can be identified by using
a naming of stability for linear dynamical systems in Luo (2011, 2012). The saddle—
node bifurcation possesses stable saddle-node bifurcation (critical) and unstable
saddle—node bifurcation (degenerate).
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