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Abstract. The Phase Correlation(PC) method demonstrates high robustness and 
accuracy for measuring the very subtle disparities from stereo image pairs, 
where the baseline (or the base-to-height ratio) is unconventionally narrowed. 
However, this method remains inherently computationally expensive. In this 
paper, an adaptive PC based stereo matching method is proposed, aiming to 
achieve higher speed and better stereo quality compared to the existing me-
thods, while also preserving the quality of PC. Improvement was achieved both 
algorithmically and architecturally, via carefully dividing the computing tasks 
among multiprocessors of the GPUs under a novel global-pixel correlation 
framework. Experimental results on our hardware settings show that the method 
achieves as high as 64× and 24× speedup compared to single threaded and mul-
ti-threaded implementation running on a multi-core CPU system, respectively. 

Keywords: Stereo matching · Narrow baseline · Phase Correlation(PC) · CUDA 

1 Introduction 

Stereo vision is an attractive topic in the realm of computer vision, while stereo 
matching [3], targeting at extracting disparity information from a pair of images, is 
the corner stone of the entire task. Though wide-baseline stereo matching [6], [10] is 
commonly used because of its high estimation accuracy, its narrow-baseline counter-
part is, in contrast, much more challenging due to narrow triangulation. It is neverthe-
less worth addressing because it can alleviate the occlusion problem (Fig. 1), while 
requiring a smaller disparity search range. 

To attain high accuracy, PC was integrated into narrow-baseline stereo matching 
[1], [8], [11]. The PC based method is more robust in illumination changes than sim-
ple correlation function based matching, while able to measure the very subtle dispari-
ties that result from low base-to-height ratio (e.g., less than 0.1). Thus potentially 
allowing applications, such as digital elevation models (DEMs), to be derived from 
images that previously might not have been considered suitable for stereo vision. 
However, the PC based method remains inherently computationally expensive.  
With the increasing of image resolutions, the computational time may even become 
prohibited. 
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Fig. 1. Differences of occlusion zones. Occlusions in the left image of the stereo pair are sig-
naled by horizontal lines, occlusions in the right image of the stereo pair are signaled by slanted 
lines. We see that in a wide-baseline system, the occlusion differences are much more critical 
than in a narrow-baseline system. 

To attain fast speed, stereo on graphics processing units (GPUs) is an attractive 
trend. Specially, CUDA (Compute Unified Device Architecture) is a modern GPU 
architecture designed for writing and running general-purpose applications on the 
nVIDIA GPUs. Utilizing the horsepower of massive parallel processors, CUDA is 
effective to accelerate stereo algorithms by exploiting their potential parallelism. Sev-
eral recent methods have reached fast speed on CUDA. Both Sarala [2] and Zhu [12] 
implemented a Normalized Cross Correlation (NCC) approach and obtained signifi-
cant improvement in terms of computational efficiency. Their approach fails to main-
tain the matching quality, however, if the baseline is unconventionally narrowed [8]. 
Kentaro [7] suggested to perform parallel PC within a single image-block pair. It 
offers great speed improvement, only if the image-block size is sufficient large. Un-
fortunately, this is not the case in stereo matching. In most applications, the size of 
image-block is fairly small while the number of blocks is very large. Due to the limi-
tation of memory bandwidth, this approach does not have a noticeable effect on the 
run-times. Similarly, the PC method accelerated for image fusion (e.g. Falk [9]), is 
also not suitable for stereo matching. 

In this paper, the PC method is re-examined, and a novel stereo matching frame-
work based on CUDA especially optimized for narrow-baseline scenario is proposed. 
Using both algorithmic and architectural means, we carefully divide the task among 
multiprocessors of the GPUs and exploit its texture memory. Furthermore, we com-
pare our results against single and multi-threaded CPU based implementation. Expe-
rimental results demonstrate the significant speedup of our approach. The remainder 
of this paper is organized as follows. Section 2 briefly introduces the PC algorithm for 
narrow-baseline stereo matching. Section 3 gives a detailed description of the pro-
posed framework of CUDA PC. The algorithm’s performance are analyzed in detail 
in Section 4. Finally, we conclude in Section 5. 

2 PC for Narrow-Baseline Stereo 

Based on the well-known Fourier shift property [5], the PC method is developed to 
estimate the translation displacement between two images. Consider two 
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3 CUDA PC 

The CUDA environment exposes the single instruction multiple data (SIMD) archi-
tecture of the GPUs by enabling data-parallel computation for millions of threads. 
These threads are organized into a grid of thread-blocks. The highest performance is 
achieved when the threads avoid divergence and perform the same operation on their 
data elements. Overall, the prime computational challenge 

 
Fig. 3. Workflow of the proposed algorithm 

in disparity estimation lies in the PC calculation for a huge number of image block 
pairs, aiming to find the translation displacement of each pixel. In this implementa-
tion, we use the CUFFT function of CUDA library for 2D FTs. The global correlation 
is employed to co-register the right image to the left via shift change. Thus allowing a 
smaller image-block size for pixel correlation, which is helpful to improve the estima-
tion accuracy while reducing the computational cost. A parallel block-cut procedure is 
designed to make the PC calculation for each pixel independent to other pixels. And 
then the translation displacement of each pixel can be computed in parallel. Fig. 3 
shows the principle workflow of the proposed algorithm. 

3.1 Global Correlation. 

For narrow-baseline images, it is worth to note that the disparities are likely to be in a 
small range, which is less than the size of image-block. Thus the process can be efficient 
as no search region is ever required. The only question remains of how to locate the cor-
responding block in the right image for each block in the left. We therefore employ a 
global correlation procedure to estimate the global translation relationship. Although, we 
assume that the images have been acquired with or resampled close to epipolar geometry. 
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(xm,ym) and two side-peaks at (xs,ym) and (xm,ys) where xs = (xm ± 1)%B and ys = (ym ± 
1)%B, the sub-pixel offset (∆xp,∆yp) are decided by linear weighting such that 

  (6) 

For a single PCS, the major computing task lies in searching for the main peak, 
which is a linear process and shows greater advantage when processed on CPU. In 
spite of this, we distribute the computing task to GPU. The reason is that a Npar times 
parallelism not only can offset the inferiority on GPU, but also performs far more 
efficiently than a sequential process on CPU. Afterwards, the disparity(dx,dy) is de-
cided such that 

 dx = xg + xm + ∆xp ,dy = yg + ym + ∆yp . (7) 

Repeat the above steps, we extract the disparity information for each pixel. In ad-
dition, small disparity outliers are filtered using a median filter, resulting in the dis-
parity map shown in Fig. 2(b) and the absolute final reconstruction result in Fig. 2(c). 

4 Experiments 

The hardware environment is based on Intel CoreI5-3470 CPU @ 3.2 GHz and 
NVIDIA GTX770 graphics card. In order to evaluate the efficiency, the proposed 
method was compared against both the single-threaded and 4-threaded CPU imple-
mentation. We have used stereo pairs of different sizes with image-block size set to 
16 × 16 and 32 × 32 respectively. The timing results are summarized in table 1. 

Our results demonstrate that the proposed method outperforms the CPU based im-
plementation by a huge factor. For a stereo pair of size 1024×768 with image-block 
size set to 16 × 16, the new method takes 0.6 seconds, bringing an impressive 64× 
speedup with respect to the single-threaded CPU implementation. Even compared to 
the 4-threaded CPU implementation, our method can 

Table 1. Timing results for stereo matching 

 
 
 
 
 
 
 
 
 
 

 

Image Size 
CPU-1 thread(s) CPU-4 threads(s) This method(s)

16 × 16 32 × 32 16 × 16 32 × 32 16 × 16 32 × 32 
320 × 240 3.2 5.5 1.1 2.2 0.2 0.8

640 × 480 14.0 29.5 5.0 10.4 0.3 1.6

1024 × 768 38.6 78.3 14.9 29.5 0.6 2.7

1600 × 1200 91.0 193.0 30.7 75.5 1.5 4.8

2048 × 1536 150.9 345.1 58.4 121.1 2.6 8.0

3024 ×2016 332.7 756.8 126.4 276.5 5.6 19.4 
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Fig. 5. Plot of the speedups achieved compared to the two CPU implementations 

perform 24 times faster. Fig. 5 shows a detailed plot of the speedups achieved com-
pared to the two CPU implementations. Not surprisingly, the speedup ratio increases 
along with the increase in image size. Theoretically, it can be explained that a larger 
image size means more image-block pairs parallelized at a time, with the relationship 
of . Then the speedup ratio comes to fluctuate in a small scope, cor-

responding to the full capacity for our NVIDIA GTX770 GPU. It is also obvious that 
reducing the image-block size helps to increase the parallel number. Nevertheless, the 
interval [16,32] for the side length of image-block has been empirically proved to be 
suitable for the narrow-baseline scenario, with regard to matching accuracy. 

Here, we see that the excellent performance on efficiency of our method lies  
in a high-level parallelization, not in a common speed-accuracy tradeoff. Hence the 
quality of PC in the narrow-baseline scenario is well maintained. With high resolution 
stereo image pairs, our method has the ability to provide disparity information  
instantly with high accuracy. 

5 Conclusion 

In this paper, a novel stereo matching framework based on CUDA especially optimized 
for narrow-baseline scenario is proposed. We employed global correlation to improve the 
estimation accuracy while reducing the computational cost. Via a crucial block-cut pro-
cedure, we carefully divide the task among multiprocessors of the GPUs in a high paral-
lel level. Texture memory is also used, providing a great scope for accessing images. 
Experimental results demonstrate that the proposed method outperforms the CPU based 
implementation by a huge factor, which is capable of instantly and precisely measuring 
the fractional disparities in narrow-baseline scenario. 
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