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Abstract. We consider the complexity class ACC1 and related families
of arithmetic circuits. We prove a variety of collapse results, showing sev-
eral settings in which no loss of computational power results if fan-in of
gates is severely restricted, as well as presenting a natural class of arith-
metic circuits in which no expressive power is lost by severely restricting
the algebraic degree of the circuits. These results tend to support a con-
jecture regarding the computational power of the complexity class VP
over finite algebras, and they also highlight the significance of a class of
arithmetic circuits that is in some sense dual to VP.

1 Introduction

Most of the well-studied subclasses of P are defined in terms of Boolean or
arithmetic circuits. The question of the relative power of NC1, LogCFL, and AC1,
or of #NC1 and #LogCFL boils down to the question of how the computational
power of a (log-depth, polynomial-size) circuit model depends on the fan-in of
gates in the model.

Our main contribution is to present several settings where fan-in can be
severely restricted for log-depth, polynomial-size circuits, with no loss of com-
putational power.

1.1 ACC1 and TC1

There is a large literature exploring the connections between Boolean and arith-
metic circuit complexity; see [18]. For instance, the Boolean class TC1 (log-depth
MAJORITY circuits) corresponds to #AC1(Fpn

) (log-depth unbounded fan-in
arithmetic circuits where the circuits for inputs of size n operate over the field
Fpn

, where pn is the n-th prime [12]). We show here that ACC1 =
⋃

p #AC1(Fp).
Is unbounded fan-in necessary for these characterizations?

No, it is not! The semiunbounded fan-in model, where the + gates have fan-
in two, also yields ACC1 (Corollary 1), and the same is true (modulo logspace-
Turing reductions) for TC1 (Theorem 6).

The usual definition of ACC1 is in terms of unbounded fan-in AND and OR
gates, along with MODm gates for different m, and we observe here that TC1 has
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an analogous characterization with MODpn
gates. Here, too, the fan-in of the

AND and OR gates can be restricted, to constant fan-in for ACC1 (Theorem 9)
(while AND and OR gates are not needed at all for the TC1 characterization
(Theorem 6)).

1.2 Algebraic Degree

In the previous section’s discussion, the arithmetic circuit families that character-
ize ACC1 and TC1 have algebraic degree nO(log n). Much more has been written
about poly-size arithmetic circuits with degree nO(1): VP. Similar to our charac-
terization of ACC1 in terms of semiunbounded circuits, VP also corresponds to
semiunbounded circuits, but with the (more common) restriction of having the ×
gates have fan-in two [2,16].VP is usually studied as a class of polynomials, but it is
also common to study the Boolean part of VP over a given semiring R, where (fol-
lowing [5]), the Boolean part of an arithmetic circuit class is the class of languages
whose characteristic functions are computed by circuits in the class. Especially
over finite fields, there is little to distinguish VP from its Boolean part.

Immerman and Landau conjectured that computing the determinant of inte-
ger matrices is complete for TC1 [11]. This would have several consequences,
including providing a characterization of TC1 in terms of VP(Q). Buhrman et al.
[7] have argued that the Immerman-Landau conjecture is unlikely, in that this
would imply that arbitrary polynomials having degree nO(log n) and polynomial-
size arithmetic circuits mod pn could be simulated by arithmetic circuits of much
lower degree over Q. This raises the question: When can high-degree polynomials
over one algebra be simulated by low-degree polynomials over another?

Our degree-reduction theorem (Corollary 7) gives one natural class of polyno-
mials of degree nO(log n) over one algebra (F2) that can be simulated by polyno-
mials having much smaller degree. We show that restricting the fan-in of × gates
in #AC1(F2) circuits to be logarithmic results in no loss of expressive power; the
restricted class (whose polynomials have algebraic degree only nO(log log n)) repre-
sents the same class of functions as the unrestricted class (with degree nO(log n)).
We believe that this weakens the arguments against the Immerman-Landau con-
jecture that were raised in [7], and we suspect that there are other such examples,
where restricting the fan-in of × gates causes no loss of power. We also see no
reason why degree nO(log log n) should be optimal. Lowering the degree to nO(1)

would imply #AC1(F2) = AC1[2] = VP(F2). (We omit “Boolean part” if it causes
no confusion.)

1.3 Duality

We have mentioned that VP corresponds to semiunbounded arithmetic circuits
with bounded-fan-in × gates. Over the Boolean semiring, logarithmic depth
polynomial-size semiunbounded fan-in circuits (with bounded fan-in AND gates
and unbounded fan-in OR gates, with NOT gates only at the input level) char-
acterize the complexity class LogCFL, also known as SAC1, which has been the
subject of numerous investigations [9,13].
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Because LogCFL is closed under complement [6], it can be characterized in
terms of semiunbounded fan-in circuits by restricting either the AND gates or
the OR gates to have bounded fan-in. It is unknown if there is any other algebraic
structure for which a similar phenomenon occurs. In particular, it is not known
how the complexity of functions in VP(Fp) compares to that of the functions in
the classes defined by logarithmic depth polynomial-size semiunbounded fan-in
circuits with bounded fan-in + gates and unbounded fan-in × gates.

A large part of the motivation for this paper is to understand the compu-
tational power of these semiunbounded fan-in circuit classes, which are in some
sense dual to Valiant’s classes VP(Fp). We use the notation ΛP(Fp) to refer to
the class of problems characterized by logarithmic depth polynomial-size semi-
unbounded fan-in circuits with bounded fan-in addition gates and unbounded
fan-in multiplication gates. Formal definitions appear in Sect. 2. We show that
each class ΛP(Fp) corresponds exactly to a particular subclass of ACC1, and that
the union over all p of ΛP(Fp) is exactly equal to ACC1 (Corollary 1).

We conjecture that ACC1 is precisely the class of languages logspace-Turing
reducible to

⋃
m VP(Zm). If the conjecture is true, then ACC1 can be defined using

either kind of semiunbounded circuits, with bounded fan-in + or bounded fan-in×.

2 Preliminaries, and Definitions of Λ-classes

We assume that the reader is familiar with Boolean circuit complexity classes
such as AC0 and ACC0; a good source for this background material is the excellent
text by Vollmer [18]. The following notation is used by Vollmer, and we follow
those conventions here:

Definition 1. – ACi is the class of languages accepted by Dlogtime-uniform
circuit families of size nO(1) and depth O(logi n), with NOT gates, and
unbounded fan-in (AND, OR).

– ACi[m] is defined as ACi, but in addition unbounded fan-in MODm gates are
allowed, which output 1 iff the number of input wires carrying a value of 1 is
a multiple of m.

– For any finite set S ⊂ N, ACi[S] is defined analogously to ACi[m], but now
the circuit families are allowed to use MODr gates for any r ∈ S. It is known
that, for any m ∈ N,ACi[m] = ACi[Supp(m)], where – following the notation
of [8] – Supp(m) ={p : p is prime and p divides m} [14]. Thus, in particular
ACi[6] = ACi[2, 3] and ACi = ACi[∅]. (We omit unnecessary brackets, writing
for instance ACi[2, 3] instead of ACi[{2, 3}].)

– ACCi =
⋃

m ACi[m].
– TCi is the class of languages accepted by Dlogtime-uniform circuit families of

size nO(1) and depth O(logi n), consisting of unbounded fan-in MAJORITY
gates, and NOT gates.

– SACi is the class of languages accepted by Dlogtime-uniform circuit families of
polynomial size and depth O(logi n), consisting of unbounded fan-in OR gates
and bounded fan-in AND gates, along with NOT gates at (some of) the leaves.
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Note that the restriction that NOT gates appear only at the leaves in SACi

circuits is essential; if NOT gates could appear everywhere, then these classes
would coincide with ACi. Similarly, note that we do not bother to define SACi[m],
since a MODm gate with a single input is equivalent to a NOT gate, and thus
SACi[m] would be the same as ACi[m].

The algebraic complexity classes VP(R) for various algebraic structures R
were originally defined [15] as classes of families of n-variate polynomials of
degree nO(1) that can be represented by polynomial-size (nonuniform) arithmetic
circuits over R. Here, we let VP(R) denote the corresponding uniform class, and
recall that the log2 n depth bound of [16] can be made logarithmic:

Theorem 1. [2] For any commutative semiring R, VP(R) coincides with the
class of families of polynomials over R represented by logspace-uniform circuit
families of polynomial size and logarithmic depth with unbounded fan-in + gates,
and fan-in two × gates.

Note that over Fp, many different polynomials yield the same function. For
example, since x3 = x in F3, every function on n variables has a polynomial of
degree at most 2n. Very likely there are functions represented by polynomials
in VP(F3) of degree, say, n5, but not by any VP polynomial of degree 2n. On
the other hand, there is a case to be made for focusing on the functions in these
classes, rather than focusing on the polynomials that represent those functions.
For instance, if the Immerman-Landau conjecture is true, and TC1 is reducible
to problems in VP(Q), it would suffice for every function in TC1 = #AC1(Fpn

)
to have a representation in VP(Q), even though the polynomials represented by
#AC1(Fpn

) circuits have large degree, and thus cannot be in any VP class.
In the literature on VP classes, one standard way to focus on the functions

represented by polynomials in VP is to consider what is called the Boolean Part
of VP(R), which is the set of languages A ⊆ {0, 1}∗ such that, for some sequence
of polynomials (Qn), for x ∈ A we have Q|x|(x) = 1, and for x ∈ {0, 1}∗ such
that x /∈ A we have Q|x|(x) = 0.

When the algebra R is a finite field, considering the Boolean part of VP(R)
captures the relevant complexity aspects, since the computation of any function
represented by a polynomial in VP(R) (with inputs and outputs coming from
R) is logspace-Turing reducible to some language in the Boolean Part of VP(R).

In this paper, we are concerned exclusively with the “Boolean Part” of arith-
metic classes. For notational convenience, we refer to these classes using the
“VP ”notation, rather than constantly repeating the phrase “Boolean Part”.

Following the naming conventions of [18], for any Boolean circuit complexity
class C defined in terms of circuits with AND and OR gates, we define #C(R)
to be the class of functions represented by arithmetic circuits defined over the
algebra R, where AND is replaced by ×, and OR is replaced by + (and NOT
gates at the leaves are applied to the {0, 1} inputs). (The classes #P,#L, and
#LogCFL also fit into this naming scheme, using established connections between
Turing machines and circuits.) In particular, we will be concerned with the
following two classes:
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Definition 2. Let R be any suitable semiring1. Then

– #AC1(R) is the class of functions f : {0, 1}∗ → R given by families of logspace-
uniform circuits of unbounded fan-in + and × gates having depth O(log n) and
size nO(1).

– #SAC1(R) is the class of functions f : {0, 1}∗ → R represented by families of
logspace-uniform circuits of unbounded fan-in + gates and × gates of fan-in
two, having depth O(log n) and polynomial size.

Input variables may be negated. Where no confusion will result, the notation
#C(R) will also be used to refer to the related class of languages.

Hence from Theorem 1 we see that VP(Fp) = #SAC1(Fp) for any prime p.
Now we introduce classes that are dual to the #SAC1(R) classes. Define

#SAC1,∗(R) to be the class of functions f : {0, 1}∗ → R represented by families
of logspace-uniform circuits of unbounded fan-in × gates and + gates of fan-in
two, having depth O(log n) and size nO(1). Because of the connection between VP
and #SAC1, we use the convenient notation ΛP(R) to denote the dual notation,
rather than the more cumbersome #SAC1,∗(R).

Of course, the set of formal polynomials represented by ΛP circuits is not
contained in any VP class, because ΛP contains polynomials of degree nO(log n).
However, as discussed in the previous section, we are considering the “Boolean
Part” of these classes. More formally:

Definition 3. Let p be a prime power. ΛP(Fp) is the class of all languages
A ⊆ {0, 1}∗ with the property that there is a logspace-uniform family of circuits
{Cn : n ∈ N}, each of depth O(log n) consisting of input gates, + gates of fan-in
two, and × gates of unbounded fan-in, such that for each string x of length n, x
is in A if and only if Cn(x) evaluates to 1, when the + and × gates are evaluated
over Fp. Furthermore, if x �∈ A, then Cn(x) evaluates to 0.

Another way of relating arithmetic classes (such as VP and ΛP) to complexity
classes of languages would be to consider the languages that are logspace-Turing
reducible to the polynomials in VP(R) or ΛP(R), via a machine M with a poly-
nomial p as an oracle, which obtains the value of p(x1, . . . , xn) when M writes
x1, . . . xn on a query tape. It is worth mentioning that (the Boolean parts of)
both VP(Fp) and ΛP(Fp) are closed under logspace-Turing reductions, although
this is still open for classes over Zm when m is not prime.

Proposition 1. ΛP(Fp) = LΛP(Fp) and VP(Fp) = LVP(Fp)

(Proofs are omitted; see [3].) VP over fields of the same characteristic yield
the same class of languages.
1 Our primary focus in this paper is on finite semirings, as well as countable semirings

such as Q, where we use the standard binary representation of constants (say, as
a numerator and denominator) when a logspace uniformity machine makes use of
constants in the description of a circuit. It is not clear to us which definition would
be most useful in describing a class such as #AC1(R), and so for now we consider
such semirings to be “unsuitable”.
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Proposition 2. Let p be a prime, and let k ≥ 1. Then VP(Fp) = VP(Fpk).

It is also appropriate to use the VP and ΛP notation when referring to the
classes defined by Boolean semiunbounded fan-in circuits with negation gates
allowed at the inputs. With this notation, VP(B2) corresponds to the Boolean
class SAC1, and ΛP(B2) corresponds to the complement of SAC1 (with bounded
fan-in OR gates, and unbounded fan-in AND gates). It has been shown by
[6] that SAC1 is closed under complement. Thus we close this section with the
equality that serves as a springboard for investigating the ΛP classes.

Theorem 2. [6] VP(B2) = ΛP(B2)(= SAC1 = LogCFL).

We believe VP(Fp) �= ΛP(Fp) for every prime p; see Sect. 5.

3 Subclasses of ACC1

In this section, we present our characterizations of ACC1 in terms of ΛP(Fp).

Theorem 3. For any prime p and any k ≥ 1, ΛP(Fpk) = AC1[Supp(pk − 1)].
(Recall that Supp(m) is defined in Definition 1.)

Corollary 1. ACC1 =
⋃

p ΛP(Fp).

Note also that several of the ΛP(Fp) classes coincide. This is neither known
nor believed to happen with the VP(Fp) classes. Augmenting the ΛP(Fp) classes
with unbounded fan-in addition gates increases their computation power only
by adding MODp gates, as the following theorem demonstrates.

Theorem 4. For each prime p and each k ≥ 1, #AC1(Fpk) = AC1[{p} ∪
Supp(pk − 1)].

Corollary 2. ACC1 =
⋃

p ΛP(Fp) =
⋃

p #AC1(Fp) =
⋃

m #AC1(Zm).

Corollary 3. For any prime p there is a prime q such that #AC1(Fp) ⊆ ΛP(Fq).

VP(Fp) also has a simple characterization in terms of Boolean circuits. For
this, we need a more general definition:

Definition 4. Let m ∈ N, and let g be any function on N. Define g-AC1[m] to
be the class of languages with logspace-uniform circuits of polynomial size and
depth O(log n), consisting of unbounded-fan-in MODm gates, along with AND
gates of fan-in O(g(n)). Clearly g-AC1[m] ⊆ AC1[m].

Observe that, since a MODm gate can simulate a NOT gate, g-AC1[m] remains
the same if OR gates of fan-in O(g) are also allowed.

Corollary 4. For every prime p, VP(Fp) = 2-AC1[p] ⊆ AC1[p].
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We remark that the same proof shows that, for any m ∈ N, VP(Zm) ⊆ 2-
AC1[m]. However, the converse inclusion is not known, unless m is prime. We
remark that the proofs of Theorems 3 and 4 carry over also for depths other
than log n. (Related results for constant-depth unbounded-fan-in circuits can be
found already in [1,14].)

Corollary 5. For any prime p, #SACi,∗(Fp) = ACi[Supp(p− 1)] and #ACi(Fp)
= ACi[p ∪ Supp(p − 1)].

3.1 Comparing ΛP and VP.

How do the ΛP and VP classes compare to each other? As a consequence of
Corollary 4 and Theorem 3, VP(Fp) ⊆ ΛP(Fq) whenever p divides q − 1. In
particular, VP(F2) ⊆ ΛP(Fq) for any prime q > 2. No inclusion of any ΛP class
in any VP class is known unconditionally, although ΛP(B2)(= SAC1) is contained
in every VP(Fp) class in the nonuniform setting [9,13], and this holds also in the
uniform setting under a plausible derandomization hypothesis [4].

No ΛP(Fq) class can be contained in VP(Fp) unless AC1 ⊆ VP(Fp), since
AC1 = ΛP(F2) ⊆ ΛP(F3) ⊆ ΛP(Fq) for every prime q ≥ 3. AC1 is not known to
be contained in any VP class.

4 Threshold Circuits and Small Degree

The inspiration for the results in this section comes from the following theorem
of Reif and Tate [12] (as re-stated by Buhrman et al. [7]):

Theorem 5. TC1 = #AC1(Fpn
).

Here, the class #AC1(Fpn
) consists of the languages whose (Boolean) char-

acteristic functions are computed by logspace-uniform families of arithmetic cir-
cuits of logarithmic depth with unbounded fan-in + and × gates, where the arith-
metic operations of the circuit Cn are interpreted over Fpn

, where p1, p2, p3, . . .
is the sequence of all primes 2, 3, 5, . . . That is, circuits for inputs of length n use
the n-th prime to define the algebraic structure.

This class is closed under logspace-Turing reductions – but when we consider
other circuit complexity classes defined using Fpn

, it is not clear that these other
classes are closed.

As an important example, we mention VP(Fpn
). As we show below, this class

has an important connection to VP(Q), which is perhaps the canonical example
of a VP class. Vinay [17] proved that VP(Q) has essentially the same compu-
tational power as #LogCFL (which counts among its complete problems the
problem of determining how many distinct parse trees a string x has in a certain
context-free language). Here, we mention one more alternative characterization
of the computational power of VP(Q).

Proposition 3. LVP(Fpn ) = LVP(Q) = L#LogCFL.
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With arithmetic circuits of superpolynomial algebraic degree (such as ΛP),
evaluating the circuits over Z produces output that needs a superpolynomial
number of bits to express in binary. Thus, when we consider such classes, it will
always be in the context of structures (such as Fpn

) where the output can be
represented in a polynomial number of bits.

Our first new result in this section, is to improve Theorem 5. (Recall the
definition of g-AC1[m] from Definition 4.)

Theorem 6. TC1 = #AC1(Fpn
) = LΛP(Fpn ) = AC1[pn] = 0-AC1[pn].

We also mention that Theorem 6 generalizes to other depths, in a way analogous
to Corollary 5:

Corollary 6. TCi = #ACi(Fpn
) = ACi[pn] = 0-ACi[pn].

For i ≥ 1 the equality TCi = L#SACi,∗(Fpn ) also holds, but for i = 0 a more careful
argument is needed, using AC0-Turing reducibility in place of logspace-Turing
reducibility.

In order to set the context for the results of the next section, it is necessary
to consider an extension of Theorem 6, involving arithmetic circuits over certain
rings. Thus we require the following definition.

Definition 5. Let (mn) be any sequence of natural numbers (where each mn >
1) such that the mapping 1n 
→ mn is computable in logspace. We use the nota-
tion #AC1(Zmn

) to denote the class of functions f with domain {0, 1}∗ such
that there is a logspace-uniform family of arithmetic circuits {Cn} of logarith-
mic depth with unbounded fan-in + and × gates, where the arithmetic opera-
tions of the circuit Cn are interpreted over Zmn

, and for any input x of length
n, f(x) = Cn(x). We use the notation #AC1(ZL) to denote the union, over all
logspace-computable sequences of moduli (mn), of #AC1(Zmn

).

Since the sequence of primes (pn) is logspace-computable, we have that TC1

(= #AC1(Fpn
)) is clearly contained in #AC1(ZL). Conversely, each function in

#AC1(ZL) is in TC1. Thus, arithmetic circuits over the integers mod mn for
reasonable sequences of moduli mn give yet another arithmetic characterization
of TC1.

4.1 Degree Reduction

In this subsection, we introduce a class of circuits that is intermediate between
the unbounded fan-in circuit model and the semiunbounded fan-in model, for the
purposes of investigating when arithmetic circuits of superpolynomial algebraic
degree can be simulated by arithmetic circuits (possibly over a different algebra)
with much smaller algebraic degree.

The starting point for this subsection is Theorem 4.3 in [2], which states that
every problem in AC1 is reducible to a function computable by polynomial-size
arithmetic circuits of degree nO(log log n). In this section, we refine that result
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and put it in context with the theorems about TC1 that were presented in the
previous subsection. Those results show that TC1 reduces to semiunbounded
fan-in arithmetic circuits in the ΛP(Fpn

) model, but leave open the question of
whether TC1 also reduces to semiunbounded fan-in arithmetic circuits in the
VP(Fpn

) model (which coincides with VP(Q)). We are unable to answer this
question, but we show some interesting inclusions occur if we relax the VP model,
by imposing a less-stringent restriction on the fan-in of the × gates.

Definition 6. Let (mn) be any sequence of natural numbers (where each
mn > 1) such that the mapping 1n 
→ mn is computable in L. #WSAC1(Zmn

) is
the class of functions represented by logspace-uniform arithmetic circuits {Cn},
where Cn is interpreted over Zmn

, where each Cn has size polynomial in n,
and depth O(log n), and where the + gates have unbounded fan-in, and the ×
gates have fan-in O(log n). Thus these circuits are not semiunbounded, but have
a “weak” form of the semiunbounded fan-in restriction. We use the notation
#WSAC1(ZL) to denote the union, over all logspace-computable sequences of
moduli (mn), of #WSAC1(Zmn

). In the special case when mn = p for all n, we
obtain the class #WSAC1(Fp).

We refrain from defining a weakly semiunbounded analog of ΛP, because it
would coincide with ΛP, since AC0 circuits can add O(log n) numbers.

We improve on [2, Theorem 4.3] by showing that AC1 is contained in the class
#WSAC1(F2); note that all polynomials in #WSAC1(Fp) have degree nO(log log n),
and note also that the class of functions considered in [2] is not obviously even
in TC1. In addition, we improve on [2] by reducing not merely AC1, but also
AC1[p] for any prime p. Also, we obtain an equality.

Theorem 7. Let p be any prime. Then AC1[p] = #WSAC1(Fp).

We especially call attention to the following corollary, which shows that, over
F2, polynomial size logarithmic depth arithmetic circuits of degree nO(log n) and
of degree nO(log log n) represent precisely the same functions!

Corollary 7. #WSAC1(F2) = #AC1(F2) = AC1[2] = ΛP(F3).

If we focus on the Boolean classes, rather than on the arithmetic classes, then
we obtain a remarkable collapse.

Theorem 8. Let m ∈ N. Then AC1[m] = log-AC1[m].

It follows that arithmetic AC1 circuits over any finite field Fp can be simulated
by Boolean circuits with MOD gates and small fan-in AND gates. It remains
open whether this in turn leads to small-degree arithmetic circuits over Fp when
p > 2, and also whether the fan-in of the AND gates can be sublogarithmic,
without loss of power.

When m is composite, Theorem 8 can be improved to obtain an even more
striking collapse, by invoking the work of Hansen and Koucký [10].

Theorem 9. Let m not be a prime power. Then AC1[m] = 2-AC1[m].
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Corollary 8. ACC1 =
⋃

p ΛP(Fp) =
⋃

p #AC1(Fp) =
⋃

m #AC1(Zm) =
⋃

m 2-
AC1[m].

It might be useful to have additional examples of algebras, where some degree
reduction can be accomplished. Thus we also offer the following theorem:

Theorem 10. Let p be any prime. Then AC1[p] ⊆ L#WSAC1(ZL).

Using Theorems 3 and 4 we obtain the following.

Corollary 9. If p is a Fermat prime, then ΛP(Fp) ⊆ L#WSAC1(ZL).

5 Conclusions, Discussion, and Open Problems

We have introduced the complexity classes ΛP(R) for various algebraic struc-
tures R, and have shown that they provide alternative characterizations of
well-known complexity classes. Furthermore, we have shown that arithmetic
circuit complexity classes corresponding to polynomials of degree nO(log log n)

also yield new characterizations of complexity classes, such as the equality
AC1[p] = log -AC1[p] = #WSAC1(Fp). In the case when p = 2, we addition-
ally obtain #AC1(F2) = AC1[2] = log -AC1[2] = #WSAC1(F2), showing that
algebraic degree nO(log n) and nO(log log n) have equivalent expressive power, in
this setting.

We have obtained new characterizations of ACC1 in terms of restricted fan-in:
ACC1 =

⋃
p #AC1(Fp) =

⋃
p ΛP(Fp) =

⋃
m 2-AC1[m]. That is, although ACC1

corresponds to unbounded fan-in arithmetic circuits of logarithmic depth, and to
unbounded fan-in Boolean circuits with modular counting gates, no power is lost
if the addition gates have bounded fan-in (in the arithmetic case) or if only the
modular counting gates have unbounded fan-in (in the Boolean case). It remains
unknown if every problem in ACC1 is reducible to a problem in

⋃
m VP(Zm),

although we believe that our theorems suggest that this is likely. It would be
highly interesting to see such a connection between ACC1 and VP.

We believe that it is fairly likely that several of our theorems can be improved.
For instance:

∗ Perhaps Theorems 8 and 9 can be improved, to show that for all m, AC1[m] = 2-
AC1[m]. Note that this is known to hold if m is not a prime power. By Corollary 4
this would show that VP(Fp) = AC1[p] for all primes p. It would also show that
#AC1(F2) = VP(F2) = ΛP(Fp) for every Fermat prime p. (We should point out
that this would imply that AC1 ⊆ VP(Fp) for every prime p, whereas even the
weaker inclusion SAC1 ⊆ VP(Fp) is only known to hold non-uniformly [9].)

∗ Can Corollary 9 be improved to hold for all primes p, or even for ΛP(Fpn
)?

The latter improvement would show that TC1 ⊆ L#WSAC1(ZL).

∗ Perhaps one can improve Theorem 10, to achieve a simulation of degree nO(1).
Why should nO(log log n) be optimal? Perhaps this could also be improved to hold
for composite moduli?



24 E. Allender et al.

Note that if some combinations of the preceding improvements are possible, TC1

would reduce to VP(Q), which would be a significant step toward the Immerman-
Landau conjecture.

It appears as if VP(Fp) and ΛP(Fp) are incomparable for every non-Fermat
prime p > 2, since VP(Fp) = 2-AC1[p] and ΛP(Fp) = 2-AC1[Supp(p − 1)], involv-
ing completely different sets of primes. For Fermat primes we have ΛP(Fp) = log-
AC1[2] and again the VP and ΛP classes seem incomparable. When p = 2, we
have VP(F2) = 2-AC1[2] and ΛP(F2) = AC1; if VP(F2) = AC1[2] (which may be
possible), then it would appear that the VP class could be more powerful than
the ΛP class. But based on current knowledge it also appears possible that the
VP and ΛP classes are incomparable even for p = 2.

Some of our theorems overcome various hurdles that would appear to stand
in the way of a proof of our conjecture that ACC1 =

⋃
m LVP(FZm ). First, recall

that VP(Zm) ⊆ 2-AC1[m] (Corollary 4). Thus, if the conjecture is correct, then
unbounded fan-in AND and OR gates would have to be simulated efficiently
with bounded fan-in gates. But this is true in this context: AC1[m] = 2-AC1[m],
if m is not a prime power (Theorem 9). If m is a prime power, then the fan-in
can be reduced to log n (Theorem 8). If the fan-in can be reduced to O(1) also
in the case of prime power moduli, or if ACC1 circuits with bounded fan-in AND
and OR (which have the full power of ACC1, by Corollary 8) can be simulated
by VP(Zm) circuits, then the conjecture holds. (The latter simulation is possible
if the MOD gates in the ACC1 circuits are for a prime modulus; see Corollary 4.)

A second objection that might be raised against the conjecture deals with
algebraic degree. ACC1 corresponds precisely to polynomial-size logarithmic
depth unbounded fan-in arithmetic circuits over finite fields (Corollary 2). Such
circuits represent polynomials of degree nO(log n), whereas VP circuits represent
polynomials of degree only nO(1). One might assume that there are languages
represented by polynomial-size log-depth arithmetic circuits of degree nO(log n)

that actually require such large degree in order to be represented by arithmetic
circuits of small size and depth.

Our degree-reduction theorem (Corollary 7) shows that this assumption is
incorrect. Every Boolean function that can be represented by an arithmetic
AC1 circuit over F2 (with algebraic degree nO(log n)) can be represented by an
arithmetic AC1 circuit over F2 where the multiplication gates have fan-in O(log n)
(and thus the arithmetic circuit has algebraic degree nO(log log n)).
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